1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/oom.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 43 static __must_check int 44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 45 bool readonly); 46 static void 47 i915_gem_object_retire(struct drm_i915_gem_object *obj); 48 49 static void i915_gem_write_fence(struct drm_device *dev, int reg, 50 struct drm_i915_gem_object *obj); 51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 52 struct drm_i915_fence_reg *fence, 53 bool enable); 54 55 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, 56 struct shrink_control *sc); 57 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, 58 struct shrink_control *sc); 59 static int i915_gem_shrinker_oom(struct notifier_block *nb, 60 unsigned long event, 61 void *ptr); 62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 63 64 static bool cpu_cache_is_coherent(struct drm_device *dev, 65 enum i915_cache_level level) 66 { 67 return HAS_LLC(dev) || level != I915_CACHE_NONE; 68 } 69 70 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 71 { 72 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 73 return true; 74 75 return obj->pin_display; 76 } 77 78 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 79 { 80 if (obj->tiling_mode) 81 i915_gem_release_mmap(obj); 82 83 /* As we do not have an associated fence register, we will force 84 * a tiling change if we ever need to acquire one. 85 */ 86 obj->fence_dirty = false; 87 obj->fence_reg = I915_FENCE_REG_NONE; 88 } 89 90 /* some bookkeeping */ 91 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 92 size_t size) 93 { 94 spin_lock(&dev_priv->mm.object_stat_lock); 95 dev_priv->mm.object_count++; 96 dev_priv->mm.object_memory += size; 97 spin_unlock(&dev_priv->mm.object_stat_lock); 98 } 99 100 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 101 size_t size) 102 { 103 spin_lock(&dev_priv->mm.object_stat_lock); 104 dev_priv->mm.object_count--; 105 dev_priv->mm.object_memory -= size; 106 spin_unlock(&dev_priv->mm.object_stat_lock); 107 } 108 109 static int 110 i915_gem_wait_for_error(struct i915_gpu_error *error) 111 { 112 int ret; 113 114 #define EXIT_COND (!i915_reset_in_progress(error) || \ 115 i915_terminally_wedged(error)) 116 if (EXIT_COND) 117 return 0; 118 119 /* 120 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 121 * userspace. If it takes that long something really bad is going on and 122 * we should simply try to bail out and fail as gracefully as possible. 123 */ 124 ret = wait_event_interruptible_timeout(error->reset_queue, 125 EXIT_COND, 126 10*HZ); 127 if (ret == 0) { 128 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 129 return -EIO; 130 } else if (ret < 0) { 131 return ret; 132 } 133 #undef EXIT_COND 134 135 return 0; 136 } 137 138 int i915_mutex_lock_interruptible(struct drm_device *dev) 139 { 140 struct drm_i915_private *dev_priv = dev->dev_private; 141 int ret; 142 143 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 144 if (ret) 145 return ret; 146 147 ret = mutex_lock_interruptible(&dev->struct_mutex); 148 if (ret) 149 return ret; 150 151 WARN_ON(i915_verify_lists(dev)); 152 return 0; 153 } 154 155 int 156 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 157 struct drm_file *file) 158 { 159 struct drm_i915_private *dev_priv = dev->dev_private; 160 struct drm_i915_gem_get_aperture *args = data; 161 struct drm_i915_gem_object *obj; 162 size_t pinned; 163 164 pinned = 0; 165 mutex_lock(&dev->struct_mutex); 166 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 167 if (i915_gem_obj_is_pinned(obj)) 168 pinned += i915_gem_obj_ggtt_size(obj); 169 mutex_unlock(&dev->struct_mutex); 170 171 args->aper_size = dev_priv->gtt.base.total; 172 args->aper_available_size = args->aper_size - pinned; 173 174 return 0; 175 } 176 177 static int 178 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 179 { 180 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 181 char *vaddr = obj->phys_handle->vaddr; 182 struct sg_table *st; 183 struct scatterlist *sg; 184 int i; 185 186 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 187 return -EINVAL; 188 189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 190 struct page *page; 191 char *src; 192 193 page = shmem_read_mapping_page(mapping, i); 194 if (IS_ERR(page)) 195 return PTR_ERR(page); 196 197 src = kmap_atomic(page); 198 memcpy(vaddr, src, PAGE_SIZE); 199 drm_clflush_virt_range(vaddr, PAGE_SIZE); 200 kunmap_atomic(src); 201 202 page_cache_release(page); 203 vaddr += PAGE_SIZE; 204 } 205 206 i915_gem_chipset_flush(obj->base.dev); 207 208 st = kmalloc(sizeof(*st), GFP_KERNEL); 209 if (st == NULL) 210 return -ENOMEM; 211 212 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 213 kfree(st); 214 return -ENOMEM; 215 } 216 217 sg = st->sgl; 218 sg->offset = 0; 219 sg->length = obj->base.size; 220 221 sg_dma_address(sg) = obj->phys_handle->busaddr; 222 sg_dma_len(sg) = obj->base.size; 223 224 obj->pages = st; 225 obj->has_dma_mapping = true; 226 return 0; 227 } 228 229 static void 230 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 231 { 232 int ret; 233 234 BUG_ON(obj->madv == __I915_MADV_PURGED); 235 236 ret = i915_gem_object_set_to_cpu_domain(obj, true); 237 if (ret) { 238 /* In the event of a disaster, abandon all caches and 239 * hope for the best. 240 */ 241 WARN_ON(ret != -EIO); 242 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 243 } 244 245 if (obj->madv == I915_MADV_DONTNEED) 246 obj->dirty = 0; 247 248 if (obj->dirty) { 249 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 250 char *vaddr = obj->phys_handle->vaddr; 251 int i; 252 253 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 254 struct page *page; 255 char *dst; 256 257 page = shmem_read_mapping_page(mapping, i); 258 if (IS_ERR(page)) 259 continue; 260 261 dst = kmap_atomic(page); 262 drm_clflush_virt_range(vaddr, PAGE_SIZE); 263 memcpy(dst, vaddr, PAGE_SIZE); 264 kunmap_atomic(dst); 265 266 set_page_dirty(page); 267 if (obj->madv == I915_MADV_WILLNEED) 268 mark_page_accessed(page); 269 page_cache_release(page); 270 vaddr += PAGE_SIZE; 271 } 272 obj->dirty = 0; 273 } 274 275 sg_free_table(obj->pages); 276 kfree(obj->pages); 277 278 obj->has_dma_mapping = false; 279 } 280 281 static void 282 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 283 { 284 drm_pci_free(obj->base.dev, obj->phys_handle); 285 } 286 287 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 288 .get_pages = i915_gem_object_get_pages_phys, 289 .put_pages = i915_gem_object_put_pages_phys, 290 .release = i915_gem_object_release_phys, 291 }; 292 293 static int 294 drop_pages(struct drm_i915_gem_object *obj) 295 { 296 struct i915_vma *vma, *next; 297 int ret; 298 299 drm_gem_object_reference(&obj->base); 300 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) 301 if (i915_vma_unbind(vma)) 302 break; 303 304 ret = i915_gem_object_put_pages(obj); 305 drm_gem_object_unreference(&obj->base); 306 307 return ret; 308 } 309 310 int 311 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 312 int align) 313 { 314 drm_dma_handle_t *phys; 315 int ret; 316 317 if (obj->phys_handle) { 318 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 319 return -EBUSY; 320 321 return 0; 322 } 323 324 if (obj->madv != I915_MADV_WILLNEED) 325 return -EFAULT; 326 327 if (obj->base.filp == NULL) 328 return -EINVAL; 329 330 ret = drop_pages(obj); 331 if (ret) 332 return ret; 333 334 /* create a new object */ 335 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 336 if (!phys) 337 return -ENOMEM; 338 339 obj->phys_handle = phys; 340 obj->ops = &i915_gem_phys_ops; 341 342 return i915_gem_object_get_pages(obj); 343 } 344 345 static int 346 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 347 struct drm_i915_gem_pwrite *args, 348 struct drm_file *file_priv) 349 { 350 struct drm_device *dev = obj->base.dev; 351 void *vaddr = obj->phys_handle->vaddr + args->offset; 352 char __user *user_data = to_user_ptr(args->data_ptr); 353 int ret; 354 355 /* We manually control the domain here and pretend that it 356 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 357 */ 358 ret = i915_gem_object_wait_rendering(obj, false); 359 if (ret) 360 return ret; 361 362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 363 unsigned long unwritten; 364 365 /* The physical object once assigned is fixed for the lifetime 366 * of the obj, so we can safely drop the lock and continue 367 * to access vaddr. 368 */ 369 mutex_unlock(&dev->struct_mutex); 370 unwritten = copy_from_user(vaddr, user_data, args->size); 371 mutex_lock(&dev->struct_mutex); 372 if (unwritten) 373 return -EFAULT; 374 } 375 376 drm_clflush_virt_range(vaddr, args->size); 377 i915_gem_chipset_flush(dev); 378 return 0; 379 } 380 381 void *i915_gem_object_alloc(struct drm_device *dev) 382 { 383 struct drm_i915_private *dev_priv = dev->dev_private; 384 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 385 } 386 387 void i915_gem_object_free(struct drm_i915_gem_object *obj) 388 { 389 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 390 kmem_cache_free(dev_priv->slab, obj); 391 } 392 393 static int 394 i915_gem_create(struct drm_file *file, 395 struct drm_device *dev, 396 uint64_t size, 397 uint32_t *handle_p) 398 { 399 struct drm_i915_gem_object *obj; 400 int ret; 401 u32 handle; 402 403 size = roundup(size, PAGE_SIZE); 404 if (size == 0) 405 return -EINVAL; 406 407 /* Allocate the new object */ 408 obj = i915_gem_alloc_object(dev, size); 409 if (obj == NULL) 410 return -ENOMEM; 411 412 ret = drm_gem_handle_create(file, &obj->base, &handle); 413 /* drop reference from allocate - handle holds it now */ 414 drm_gem_object_unreference_unlocked(&obj->base); 415 if (ret) 416 return ret; 417 418 *handle_p = handle; 419 return 0; 420 } 421 422 int 423 i915_gem_dumb_create(struct drm_file *file, 424 struct drm_device *dev, 425 struct drm_mode_create_dumb *args) 426 { 427 /* have to work out size/pitch and return them */ 428 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 429 args->size = args->pitch * args->height; 430 return i915_gem_create(file, dev, 431 args->size, &args->handle); 432 } 433 434 /** 435 * Creates a new mm object and returns a handle to it. 436 */ 437 int 438 i915_gem_create_ioctl(struct drm_device *dev, void *data, 439 struct drm_file *file) 440 { 441 struct drm_i915_gem_create *args = data; 442 443 return i915_gem_create(file, dev, 444 args->size, &args->handle); 445 } 446 447 static inline int 448 __copy_to_user_swizzled(char __user *cpu_vaddr, 449 const char *gpu_vaddr, int gpu_offset, 450 int length) 451 { 452 int ret, cpu_offset = 0; 453 454 while (length > 0) { 455 int cacheline_end = ALIGN(gpu_offset + 1, 64); 456 int this_length = min(cacheline_end - gpu_offset, length); 457 int swizzled_gpu_offset = gpu_offset ^ 64; 458 459 ret = __copy_to_user(cpu_vaddr + cpu_offset, 460 gpu_vaddr + swizzled_gpu_offset, 461 this_length); 462 if (ret) 463 return ret + length; 464 465 cpu_offset += this_length; 466 gpu_offset += this_length; 467 length -= this_length; 468 } 469 470 return 0; 471 } 472 473 static inline int 474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 475 const char __user *cpu_vaddr, 476 int length) 477 { 478 int ret, cpu_offset = 0; 479 480 while (length > 0) { 481 int cacheline_end = ALIGN(gpu_offset + 1, 64); 482 int this_length = min(cacheline_end - gpu_offset, length); 483 int swizzled_gpu_offset = gpu_offset ^ 64; 484 485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 486 cpu_vaddr + cpu_offset, 487 this_length); 488 if (ret) 489 return ret + length; 490 491 cpu_offset += this_length; 492 gpu_offset += this_length; 493 length -= this_length; 494 } 495 496 return 0; 497 } 498 499 /* 500 * Pins the specified object's pages and synchronizes the object with 501 * GPU accesses. Sets needs_clflush to non-zero if the caller should 502 * flush the object from the CPU cache. 503 */ 504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 505 int *needs_clflush) 506 { 507 int ret; 508 509 *needs_clflush = 0; 510 511 if (!obj->base.filp) 512 return -EINVAL; 513 514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 515 /* If we're not in the cpu read domain, set ourself into the gtt 516 * read domain and manually flush cachelines (if required). This 517 * optimizes for the case when the gpu will dirty the data 518 * anyway again before the next pread happens. */ 519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 520 obj->cache_level); 521 ret = i915_gem_object_wait_rendering(obj, true); 522 if (ret) 523 return ret; 524 525 i915_gem_object_retire(obj); 526 } 527 528 ret = i915_gem_object_get_pages(obj); 529 if (ret) 530 return ret; 531 532 i915_gem_object_pin_pages(obj); 533 534 return ret; 535 } 536 537 /* Per-page copy function for the shmem pread fastpath. 538 * Flushes invalid cachelines before reading the target if 539 * needs_clflush is set. */ 540 static int 541 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 542 char __user *user_data, 543 bool page_do_bit17_swizzling, bool needs_clflush) 544 { 545 char *vaddr; 546 int ret; 547 548 if (unlikely(page_do_bit17_swizzling)) 549 return -EINVAL; 550 551 vaddr = kmap_atomic(page); 552 if (needs_clflush) 553 drm_clflush_virt_range(vaddr + shmem_page_offset, 554 page_length); 555 ret = __copy_to_user_inatomic(user_data, 556 vaddr + shmem_page_offset, 557 page_length); 558 kunmap_atomic(vaddr); 559 560 return ret ? -EFAULT : 0; 561 } 562 563 static void 564 shmem_clflush_swizzled_range(char *addr, unsigned long length, 565 bool swizzled) 566 { 567 if (unlikely(swizzled)) { 568 unsigned long start = (unsigned long) addr; 569 unsigned long end = (unsigned long) addr + length; 570 571 /* For swizzling simply ensure that we always flush both 572 * channels. Lame, but simple and it works. Swizzled 573 * pwrite/pread is far from a hotpath - current userspace 574 * doesn't use it at all. */ 575 start = round_down(start, 128); 576 end = round_up(end, 128); 577 578 drm_clflush_virt_range((void *)start, end - start); 579 } else { 580 drm_clflush_virt_range(addr, length); 581 } 582 583 } 584 585 /* Only difference to the fast-path function is that this can handle bit17 586 * and uses non-atomic copy and kmap functions. */ 587 static int 588 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 589 char __user *user_data, 590 bool page_do_bit17_swizzling, bool needs_clflush) 591 { 592 char *vaddr; 593 int ret; 594 595 vaddr = kmap(page); 596 if (needs_clflush) 597 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 598 page_length, 599 page_do_bit17_swizzling); 600 601 if (page_do_bit17_swizzling) 602 ret = __copy_to_user_swizzled(user_data, 603 vaddr, shmem_page_offset, 604 page_length); 605 else 606 ret = __copy_to_user(user_data, 607 vaddr + shmem_page_offset, 608 page_length); 609 kunmap(page); 610 611 return ret ? - EFAULT : 0; 612 } 613 614 static int 615 i915_gem_shmem_pread(struct drm_device *dev, 616 struct drm_i915_gem_object *obj, 617 struct drm_i915_gem_pread *args, 618 struct drm_file *file) 619 { 620 char __user *user_data; 621 ssize_t remain; 622 loff_t offset; 623 int shmem_page_offset, page_length, ret = 0; 624 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 625 int prefaulted = 0; 626 int needs_clflush = 0; 627 struct sg_page_iter sg_iter; 628 629 user_data = to_user_ptr(args->data_ptr); 630 remain = args->size; 631 632 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 633 634 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 635 if (ret) 636 return ret; 637 638 offset = args->offset; 639 640 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 641 offset >> PAGE_SHIFT) { 642 struct page *page = sg_page_iter_page(&sg_iter); 643 644 if (remain <= 0) 645 break; 646 647 /* Operation in this page 648 * 649 * shmem_page_offset = offset within page in shmem file 650 * page_length = bytes to copy for this page 651 */ 652 shmem_page_offset = offset_in_page(offset); 653 page_length = remain; 654 if ((shmem_page_offset + page_length) > PAGE_SIZE) 655 page_length = PAGE_SIZE - shmem_page_offset; 656 657 page_do_bit17_swizzling = obj_do_bit17_swizzling && 658 (page_to_phys(page) & (1 << 17)) != 0; 659 660 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 661 user_data, page_do_bit17_swizzling, 662 needs_clflush); 663 if (ret == 0) 664 goto next_page; 665 666 mutex_unlock(&dev->struct_mutex); 667 668 if (likely(!i915.prefault_disable) && !prefaulted) { 669 ret = fault_in_multipages_writeable(user_data, remain); 670 /* Userspace is tricking us, but we've already clobbered 671 * its pages with the prefault and promised to write the 672 * data up to the first fault. Hence ignore any errors 673 * and just continue. */ 674 (void)ret; 675 prefaulted = 1; 676 } 677 678 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 679 user_data, page_do_bit17_swizzling, 680 needs_clflush); 681 682 mutex_lock(&dev->struct_mutex); 683 684 if (ret) 685 goto out; 686 687 next_page: 688 remain -= page_length; 689 user_data += page_length; 690 offset += page_length; 691 } 692 693 out: 694 i915_gem_object_unpin_pages(obj); 695 696 return ret; 697 } 698 699 /** 700 * Reads data from the object referenced by handle. 701 * 702 * On error, the contents of *data are undefined. 703 */ 704 int 705 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 706 struct drm_file *file) 707 { 708 struct drm_i915_gem_pread *args = data; 709 struct drm_i915_gem_object *obj; 710 int ret = 0; 711 712 if (args->size == 0) 713 return 0; 714 715 if (!access_ok(VERIFY_WRITE, 716 to_user_ptr(args->data_ptr), 717 args->size)) 718 return -EFAULT; 719 720 ret = i915_mutex_lock_interruptible(dev); 721 if (ret) 722 return ret; 723 724 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 725 if (&obj->base == NULL) { 726 ret = -ENOENT; 727 goto unlock; 728 } 729 730 /* Bounds check source. */ 731 if (args->offset > obj->base.size || 732 args->size > obj->base.size - args->offset) { 733 ret = -EINVAL; 734 goto out; 735 } 736 737 /* prime objects have no backing filp to GEM pread/pwrite 738 * pages from. 739 */ 740 if (!obj->base.filp) { 741 ret = -EINVAL; 742 goto out; 743 } 744 745 trace_i915_gem_object_pread(obj, args->offset, args->size); 746 747 ret = i915_gem_shmem_pread(dev, obj, args, file); 748 749 out: 750 drm_gem_object_unreference(&obj->base); 751 unlock: 752 mutex_unlock(&dev->struct_mutex); 753 return ret; 754 } 755 756 /* This is the fast write path which cannot handle 757 * page faults in the source data 758 */ 759 760 static inline int 761 fast_user_write(struct io_mapping *mapping, 762 loff_t page_base, int page_offset, 763 char __user *user_data, 764 int length) 765 { 766 void __iomem *vaddr_atomic; 767 void *vaddr; 768 unsigned long unwritten; 769 770 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 771 /* We can use the cpu mem copy function because this is X86. */ 772 vaddr = (void __force*)vaddr_atomic + page_offset; 773 unwritten = __copy_from_user_inatomic_nocache(vaddr, 774 user_data, length); 775 io_mapping_unmap_atomic(vaddr_atomic); 776 return unwritten; 777 } 778 779 /** 780 * This is the fast pwrite path, where we copy the data directly from the 781 * user into the GTT, uncached. 782 */ 783 static int 784 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 785 struct drm_i915_gem_object *obj, 786 struct drm_i915_gem_pwrite *args, 787 struct drm_file *file) 788 { 789 struct drm_i915_private *dev_priv = dev->dev_private; 790 ssize_t remain; 791 loff_t offset, page_base; 792 char __user *user_data; 793 int page_offset, page_length, ret; 794 795 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 796 if (ret) 797 goto out; 798 799 ret = i915_gem_object_set_to_gtt_domain(obj, true); 800 if (ret) 801 goto out_unpin; 802 803 ret = i915_gem_object_put_fence(obj); 804 if (ret) 805 goto out_unpin; 806 807 user_data = to_user_ptr(args->data_ptr); 808 remain = args->size; 809 810 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 811 812 while (remain > 0) { 813 /* Operation in this page 814 * 815 * page_base = page offset within aperture 816 * page_offset = offset within page 817 * page_length = bytes to copy for this page 818 */ 819 page_base = offset & PAGE_MASK; 820 page_offset = offset_in_page(offset); 821 page_length = remain; 822 if ((page_offset + remain) > PAGE_SIZE) 823 page_length = PAGE_SIZE - page_offset; 824 825 /* If we get a fault while copying data, then (presumably) our 826 * source page isn't available. Return the error and we'll 827 * retry in the slow path. 828 */ 829 if (fast_user_write(dev_priv->gtt.mappable, page_base, 830 page_offset, user_data, page_length)) { 831 ret = -EFAULT; 832 goto out_unpin; 833 } 834 835 remain -= page_length; 836 user_data += page_length; 837 offset += page_length; 838 } 839 840 out_unpin: 841 i915_gem_object_ggtt_unpin(obj); 842 out: 843 return ret; 844 } 845 846 /* Per-page copy function for the shmem pwrite fastpath. 847 * Flushes invalid cachelines before writing to the target if 848 * needs_clflush_before is set and flushes out any written cachelines after 849 * writing if needs_clflush is set. */ 850 static int 851 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 852 char __user *user_data, 853 bool page_do_bit17_swizzling, 854 bool needs_clflush_before, 855 bool needs_clflush_after) 856 { 857 char *vaddr; 858 int ret; 859 860 if (unlikely(page_do_bit17_swizzling)) 861 return -EINVAL; 862 863 vaddr = kmap_atomic(page); 864 if (needs_clflush_before) 865 drm_clflush_virt_range(vaddr + shmem_page_offset, 866 page_length); 867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 868 user_data, page_length); 869 if (needs_clflush_after) 870 drm_clflush_virt_range(vaddr + shmem_page_offset, 871 page_length); 872 kunmap_atomic(vaddr); 873 874 return ret ? -EFAULT : 0; 875 } 876 877 /* Only difference to the fast-path function is that this can handle bit17 878 * and uses non-atomic copy and kmap functions. */ 879 static int 880 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 881 char __user *user_data, 882 bool page_do_bit17_swizzling, 883 bool needs_clflush_before, 884 bool needs_clflush_after) 885 { 886 char *vaddr; 887 int ret; 888 889 vaddr = kmap(page); 890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 892 page_length, 893 page_do_bit17_swizzling); 894 if (page_do_bit17_swizzling) 895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 896 user_data, 897 page_length); 898 else 899 ret = __copy_from_user(vaddr + shmem_page_offset, 900 user_data, 901 page_length); 902 if (needs_clflush_after) 903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 904 page_length, 905 page_do_bit17_swizzling); 906 kunmap(page); 907 908 return ret ? -EFAULT : 0; 909 } 910 911 static int 912 i915_gem_shmem_pwrite(struct drm_device *dev, 913 struct drm_i915_gem_object *obj, 914 struct drm_i915_gem_pwrite *args, 915 struct drm_file *file) 916 { 917 ssize_t remain; 918 loff_t offset; 919 char __user *user_data; 920 int shmem_page_offset, page_length, ret = 0; 921 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 922 int hit_slowpath = 0; 923 int needs_clflush_after = 0; 924 int needs_clflush_before = 0; 925 struct sg_page_iter sg_iter; 926 927 user_data = to_user_ptr(args->data_ptr); 928 remain = args->size; 929 930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 931 932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 933 /* If we're not in the cpu write domain, set ourself into the gtt 934 * write domain and manually flush cachelines (if required). This 935 * optimizes for the case when the gpu will use the data 936 * right away and we therefore have to clflush anyway. */ 937 needs_clflush_after = cpu_write_needs_clflush(obj); 938 ret = i915_gem_object_wait_rendering(obj, false); 939 if (ret) 940 return ret; 941 942 i915_gem_object_retire(obj); 943 } 944 /* Same trick applies to invalidate partially written cachelines read 945 * before writing. */ 946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 947 needs_clflush_before = 948 !cpu_cache_is_coherent(dev, obj->cache_level); 949 950 ret = i915_gem_object_get_pages(obj); 951 if (ret) 952 return ret; 953 954 i915_gem_object_pin_pages(obj); 955 956 offset = args->offset; 957 obj->dirty = 1; 958 959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 960 offset >> PAGE_SHIFT) { 961 struct page *page = sg_page_iter_page(&sg_iter); 962 int partial_cacheline_write; 963 964 if (remain <= 0) 965 break; 966 967 /* Operation in this page 968 * 969 * shmem_page_offset = offset within page in shmem file 970 * page_length = bytes to copy for this page 971 */ 972 shmem_page_offset = offset_in_page(offset); 973 974 page_length = remain; 975 if ((shmem_page_offset + page_length) > PAGE_SIZE) 976 page_length = PAGE_SIZE - shmem_page_offset; 977 978 /* If we don't overwrite a cacheline completely we need to be 979 * careful to have up-to-date data by first clflushing. Don't 980 * overcomplicate things and flush the entire patch. */ 981 partial_cacheline_write = needs_clflush_before && 982 ((shmem_page_offset | page_length) 983 & (boot_cpu_data.x86_clflush_size - 1)); 984 985 page_do_bit17_swizzling = obj_do_bit17_swizzling && 986 (page_to_phys(page) & (1 << 17)) != 0; 987 988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 989 user_data, page_do_bit17_swizzling, 990 partial_cacheline_write, 991 needs_clflush_after); 992 if (ret == 0) 993 goto next_page; 994 995 hit_slowpath = 1; 996 mutex_unlock(&dev->struct_mutex); 997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 998 user_data, page_do_bit17_swizzling, 999 partial_cacheline_write, 1000 needs_clflush_after); 1001 1002 mutex_lock(&dev->struct_mutex); 1003 1004 if (ret) 1005 goto out; 1006 1007 next_page: 1008 remain -= page_length; 1009 user_data += page_length; 1010 offset += page_length; 1011 } 1012 1013 out: 1014 i915_gem_object_unpin_pages(obj); 1015 1016 if (hit_slowpath) { 1017 /* 1018 * Fixup: Flush cpu caches in case we didn't flush the dirty 1019 * cachelines in-line while writing and the object moved 1020 * out of the cpu write domain while we've dropped the lock. 1021 */ 1022 if (!needs_clflush_after && 1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1024 if (i915_gem_clflush_object(obj, obj->pin_display)) 1025 i915_gem_chipset_flush(dev); 1026 } 1027 } 1028 1029 if (needs_clflush_after) 1030 i915_gem_chipset_flush(dev); 1031 1032 return ret; 1033 } 1034 1035 /** 1036 * Writes data to the object referenced by handle. 1037 * 1038 * On error, the contents of the buffer that were to be modified are undefined. 1039 */ 1040 int 1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1042 struct drm_file *file) 1043 { 1044 struct drm_i915_private *dev_priv = dev->dev_private; 1045 struct drm_i915_gem_pwrite *args = data; 1046 struct drm_i915_gem_object *obj; 1047 int ret; 1048 1049 if (args->size == 0) 1050 return 0; 1051 1052 if (!access_ok(VERIFY_READ, 1053 to_user_ptr(args->data_ptr), 1054 args->size)) 1055 return -EFAULT; 1056 1057 if (likely(!i915.prefault_disable)) { 1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1059 args->size); 1060 if (ret) 1061 return -EFAULT; 1062 } 1063 1064 intel_runtime_pm_get(dev_priv); 1065 1066 ret = i915_mutex_lock_interruptible(dev); 1067 if (ret) 1068 goto put_rpm; 1069 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1071 if (&obj->base == NULL) { 1072 ret = -ENOENT; 1073 goto unlock; 1074 } 1075 1076 /* Bounds check destination. */ 1077 if (args->offset > obj->base.size || 1078 args->size > obj->base.size - args->offset) { 1079 ret = -EINVAL; 1080 goto out; 1081 } 1082 1083 /* prime objects have no backing filp to GEM pread/pwrite 1084 * pages from. 1085 */ 1086 if (!obj->base.filp) { 1087 ret = -EINVAL; 1088 goto out; 1089 } 1090 1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1092 1093 ret = -EFAULT; 1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1095 * it would end up going through the fenced access, and we'll get 1096 * different detiling behavior between reading and writing. 1097 * pread/pwrite currently are reading and writing from the CPU 1098 * perspective, requiring manual detiling by the client. 1099 */ 1100 if (obj->tiling_mode == I915_TILING_NONE && 1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1102 cpu_write_needs_clflush(obj)) { 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1104 /* Note that the gtt paths might fail with non-page-backed user 1105 * pointers (e.g. gtt mappings when moving data between 1106 * textures). Fallback to the shmem path in that case. */ 1107 } 1108 1109 if (ret == -EFAULT || ret == -ENOSPC) { 1110 if (obj->phys_handle) 1111 ret = i915_gem_phys_pwrite(obj, args, file); 1112 else 1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1114 } 1115 1116 out: 1117 drm_gem_object_unreference(&obj->base); 1118 unlock: 1119 mutex_unlock(&dev->struct_mutex); 1120 put_rpm: 1121 intel_runtime_pm_put(dev_priv); 1122 1123 return ret; 1124 } 1125 1126 int 1127 i915_gem_check_wedge(struct i915_gpu_error *error, 1128 bool interruptible) 1129 { 1130 if (i915_reset_in_progress(error)) { 1131 /* Non-interruptible callers can't handle -EAGAIN, hence return 1132 * -EIO unconditionally for these. */ 1133 if (!interruptible) 1134 return -EIO; 1135 1136 /* Recovery complete, but the reset failed ... */ 1137 if (i915_terminally_wedged(error)) 1138 return -EIO; 1139 1140 /* 1141 * Check if GPU Reset is in progress - we need intel_ring_begin 1142 * to work properly to reinit the hw state while the gpu is 1143 * still marked as reset-in-progress. Handle this with a flag. 1144 */ 1145 if (!error->reload_in_reset) 1146 return -EAGAIN; 1147 } 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * Compare arbitrary request against outstanding lazy request. Emit on match. 1154 */ 1155 int 1156 i915_gem_check_olr(struct drm_i915_gem_request *req) 1157 { 1158 int ret; 1159 1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex)); 1161 1162 ret = 0; 1163 if (req == req->ring->outstanding_lazy_request) 1164 ret = i915_add_request(req->ring); 1165 1166 return ret; 1167 } 1168 1169 static void fake_irq(unsigned long data) 1170 { 1171 wake_up_process((struct task_struct *)data); 1172 } 1173 1174 static bool missed_irq(struct drm_i915_private *dev_priv, 1175 struct intel_engine_cs *ring) 1176 { 1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1178 } 1179 1180 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 1181 { 1182 if (file_priv == NULL) 1183 return true; 1184 1185 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1186 } 1187 1188 /** 1189 * __i915_wait_request - wait until execution of request has finished 1190 * @req: duh! 1191 * @reset_counter: reset sequence associated with the given request 1192 * @interruptible: do an interruptible wait (normally yes) 1193 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1194 * 1195 * Note: It is of utmost importance that the passed in seqno and reset_counter 1196 * values have been read by the caller in an smp safe manner. Where read-side 1197 * locks are involved, it is sufficient to read the reset_counter before 1198 * unlocking the lock that protects the seqno. For lockless tricks, the 1199 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1200 * inserted. 1201 * 1202 * Returns 0 if the request was found within the alloted time. Else returns the 1203 * errno with remaining time filled in timeout argument. 1204 */ 1205 int __i915_wait_request(struct drm_i915_gem_request *req, 1206 unsigned reset_counter, 1207 bool interruptible, 1208 s64 *timeout, 1209 struct drm_i915_file_private *file_priv) 1210 { 1211 struct intel_engine_cs *ring = i915_gem_request_get_ring(req); 1212 struct drm_device *dev = ring->dev; 1213 struct drm_i915_private *dev_priv = dev->dev_private; 1214 const bool irq_test_in_progress = 1215 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1216 DEFINE_WAIT(wait); 1217 unsigned long timeout_expire; 1218 s64 before, now; 1219 int ret; 1220 1221 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1222 1223 if (i915_gem_request_completed(req, true)) 1224 return 0; 1225 1226 timeout_expire = timeout ? 1227 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0; 1228 1229 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) { 1230 gen6_rps_boost(dev_priv); 1231 if (file_priv) 1232 mod_delayed_work(dev_priv->wq, 1233 &file_priv->mm.idle_work, 1234 msecs_to_jiffies(100)); 1235 } 1236 1237 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1238 return -ENODEV; 1239 1240 /* Record current time in case interrupted by signal, or wedged */ 1241 trace_i915_gem_request_wait_begin(req); 1242 before = ktime_get_raw_ns(); 1243 for (;;) { 1244 struct timer_list timer; 1245 1246 prepare_to_wait(&ring->irq_queue, &wait, 1247 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1248 1249 /* We need to check whether any gpu reset happened in between 1250 * the caller grabbing the seqno and now ... */ 1251 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1252 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1253 * is truely gone. */ 1254 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1255 if (ret == 0) 1256 ret = -EAGAIN; 1257 break; 1258 } 1259 1260 if (i915_gem_request_completed(req, false)) { 1261 ret = 0; 1262 break; 1263 } 1264 1265 if (interruptible && signal_pending(current)) { 1266 ret = -ERESTARTSYS; 1267 break; 1268 } 1269 1270 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1271 ret = -ETIME; 1272 break; 1273 } 1274 1275 timer.function = NULL; 1276 if (timeout || missed_irq(dev_priv, ring)) { 1277 unsigned long expire; 1278 1279 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1280 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1281 mod_timer(&timer, expire); 1282 } 1283 1284 io_schedule(); 1285 1286 if (timer.function) { 1287 del_singleshot_timer_sync(&timer); 1288 destroy_timer_on_stack(&timer); 1289 } 1290 } 1291 now = ktime_get_raw_ns(); 1292 trace_i915_gem_request_wait_end(req); 1293 1294 if (!irq_test_in_progress) 1295 ring->irq_put(ring); 1296 1297 finish_wait(&ring->irq_queue, &wait); 1298 1299 if (timeout) { 1300 s64 tres = *timeout - (now - before); 1301 1302 *timeout = tres < 0 ? 0 : tres; 1303 1304 /* 1305 * Apparently ktime isn't accurate enough and occasionally has a 1306 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 1307 * things up to make the test happy. We allow up to 1 jiffy. 1308 * 1309 * This is a regrssion from the timespec->ktime conversion. 1310 */ 1311 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) 1312 *timeout = 0; 1313 } 1314 1315 return ret; 1316 } 1317 1318 /** 1319 * Waits for a request to be signaled, and cleans up the 1320 * request and object lists appropriately for that event. 1321 */ 1322 int 1323 i915_wait_request(struct drm_i915_gem_request *req) 1324 { 1325 struct drm_device *dev; 1326 struct drm_i915_private *dev_priv; 1327 bool interruptible; 1328 unsigned reset_counter; 1329 int ret; 1330 1331 BUG_ON(req == NULL); 1332 1333 dev = req->ring->dev; 1334 dev_priv = dev->dev_private; 1335 interruptible = dev_priv->mm.interruptible; 1336 1337 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1338 1339 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1340 if (ret) 1341 return ret; 1342 1343 ret = i915_gem_check_olr(req); 1344 if (ret) 1345 return ret; 1346 1347 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1348 i915_gem_request_reference(req); 1349 ret = __i915_wait_request(req, reset_counter, 1350 interruptible, NULL, NULL); 1351 i915_gem_request_unreference(req); 1352 return ret; 1353 } 1354 1355 static int 1356 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj) 1357 { 1358 if (!obj->active) 1359 return 0; 1360 1361 /* Manually manage the write flush as we may have not yet 1362 * retired the buffer. 1363 * 1364 * Note that the last_write_req is always the earlier of 1365 * the two (read/write) requests, so if we haved successfully waited, 1366 * we know we have passed the last write. 1367 */ 1368 i915_gem_request_assign(&obj->last_write_req, NULL); 1369 1370 return 0; 1371 } 1372 1373 /** 1374 * Ensures that all rendering to the object has completed and the object is 1375 * safe to unbind from the GTT or access from the CPU. 1376 */ 1377 static __must_check int 1378 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1379 bool readonly) 1380 { 1381 struct drm_i915_gem_request *req; 1382 int ret; 1383 1384 req = readonly ? obj->last_write_req : obj->last_read_req; 1385 if (!req) 1386 return 0; 1387 1388 ret = i915_wait_request(req); 1389 if (ret) 1390 return ret; 1391 1392 return i915_gem_object_wait_rendering__tail(obj); 1393 } 1394 1395 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1396 * as the object state may change during this call. 1397 */ 1398 static __must_check int 1399 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1400 struct drm_i915_file_private *file_priv, 1401 bool readonly) 1402 { 1403 struct drm_i915_gem_request *req; 1404 struct drm_device *dev = obj->base.dev; 1405 struct drm_i915_private *dev_priv = dev->dev_private; 1406 unsigned reset_counter; 1407 int ret; 1408 1409 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1410 BUG_ON(!dev_priv->mm.interruptible); 1411 1412 req = readonly ? obj->last_write_req : obj->last_read_req; 1413 if (!req) 1414 return 0; 1415 1416 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1417 if (ret) 1418 return ret; 1419 1420 ret = i915_gem_check_olr(req); 1421 if (ret) 1422 return ret; 1423 1424 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1425 i915_gem_request_reference(req); 1426 mutex_unlock(&dev->struct_mutex); 1427 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv); 1428 mutex_lock(&dev->struct_mutex); 1429 i915_gem_request_unreference(req); 1430 if (ret) 1431 return ret; 1432 1433 return i915_gem_object_wait_rendering__tail(obj); 1434 } 1435 1436 /** 1437 * Called when user space prepares to use an object with the CPU, either 1438 * through the mmap ioctl's mapping or a GTT mapping. 1439 */ 1440 int 1441 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1442 struct drm_file *file) 1443 { 1444 struct drm_i915_gem_set_domain *args = data; 1445 struct drm_i915_gem_object *obj; 1446 uint32_t read_domains = args->read_domains; 1447 uint32_t write_domain = args->write_domain; 1448 int ret; 1449 1450 /* Only handle setting domains to types used by the CPU. */ 1451 if (write_domain & I915_GEM_GPU_DOMAINS) 1452 return -EINVAL; 1453 1454 if (read_domains & I915_GEM_GPU_DOMAINS) 1455 return -EINVAL; 1456 1457 /* Having something in the write domain implies it's in the read 1458 * domain, and only that read domain. Enforce that in the request. 1459 */ 1460 if (write_domain != 0 && read_domains != write_domain) 1461 return -EINVAL; 1462 1463 ret = i915_mutex_lock_interruptible(dev); 1464 if (ret) 1465 return ret; 1466 1467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1468 if (&obj->base == NULL) { 1469 ret = -ENOENT; 1470 goto unlock; 1471 } 1472 1473 /* Try to flush the object off the GPU without holding the lock. 1474 * We will repeat the flush holding the lock in the normal manner 1475 * to catch cases where we are gazumped. 1476 */ 1477 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1478 file->driver_priv, 1479 !write_domain); 1480 if (ret) 1481 goto unref; 1482 1483 if (read_domains & I915_GEM_DOMAIN_GTT) 1484 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1485 else 1486 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1487 1488 unref: 1489 drm_gem_object_unreference(&obj->base); 1490 unlock: 1491 mutex_unlock(&dev->struct_mutex); 1492 return ret; 1493 } 1494 1495 /** 1496 * Called when user space has done writes to this buffer 1497 */ 1498 int 1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1500 struct drm_file *file) 1501 { 1502 struct drm_i915_gem_sw_finish *args = data; 1503 struct drm_i915_gem_object *obj; 1504 int ret = 0; 1505 1506 ret = i915_mutex_lock_interruptible(dev); 1507 if (ret) 1508 return ret; 1509 1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1511 if (&obj->base == NULL) { 1512 ret = -ENOENT; 1513 goto unlock; 1514 } 1515 1516 /* Pinned buffers may be scanout, so flush the cache */ 1517 if (obj->pin_display) 1518 i915_gem_object_flush_cpu_write_domain(obj); 1519 1520 drm_gem_object_unreference(&obj->base); 1521 unlock: 1522 mutex_unlock(&dev->struct_mutex); 1523 return ret; 1524 } 1525 1526 /** 1527 * Maps the contents of an object, returning the address it is mapped 1528 * into. 1529 * 1530 * While the mapping holds a reference on the contents of the object, it doesn't 1531 * imply a ref on the object itself. 1532 * 1533 * IMPORTANT: 1534 * 1535 * DRM driver writers who look a this function as an example for how to do GEM 1536 * mmap support, please don't implement mmap support like here. The modern way 1537 * to implement DRM mmap support is with an mmap offset ioctl (like 1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1539 * That way debug tooling like valgrind will understand what's going on, hiding 1540 * the mmap call in a driver private ioctl will break that. The i915 driver only 1541 * does cpu mmaps this way because we didn't know better. 1542 */ 1543 int 1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1545 struct drm_file *file) 1546 { 1547 struct drm_i915_gem_mmap *args = data; 1548 struct drm_gem_object *obj; 1549 unsigned long addr; 1550 1551 if (args->flags & ~(I915_MMAP_WC)) 1552 return -EINVAL; 1553 1554 if (args->flags & I915_MMAP_WC && !cpu_has_pat) 1555 return -ENODEV; 1556 1557 obj = drm_gem_object_lookup(dev, file, args->handle); 1558 if (obj == NULL) 1559 return -ENOENT; 1560 1561 /* prime objects have no backing filp to GEM mmap 1562 * pages from. 1563 */ 1564 if (!obj->filp) { 1565 drm_gem_object_unreference_unlocked(obj); 1566 return -EINVAL; 1567 } 1568 1569 addr = vm_mmap(obj->filp, 0, args->size, 1570 PROT_READ | PROT_WRITE, MAP_SHARED, 1571 args->offset); 1572 if (args->flags & I915_MMAP_WC) { 1573 struct mm_struct *mm = current->mm; 1574 struct vm_area_struct *vma; 1575 1576 down_write(&mm->mmap_sem); 1577 vma = find_vma(mm, addr); 1578 if (vma) 1579 vma->vm_page_prot = 1580 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1581 else 1582 addr = -ENOMEM; 1583 up_write(&mm->mmap_sem); 1584 } 1585 drm_gem_object_unreference_unlocked(obj); 1586 if (IS_ERR((void *)addr)) 1587 return addr; 1588 1589 args->addr_ptr = (uint64_t) addr; 1590 1591 return 0; 1592 } 1593 1594 /** 1595 * i915_gem_fault - fault a page into the GTT 1596 * vma: VMA in question 1597 * vmf: fault info 1598 * 1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1600 * from userspace. The fault handler takes care of binding the object to 1601 * the GTT (if needed), allocating and programming a fence register (again, 1602 * only if needed based on whether the old reg is still valid or the object 1603 * is tiled) and inserting a new PTE into the faulting process. 1604 * 1605 * Note that the faulting process may involve evicting existing objects 1606 * from the GTT and/or fence registers to make room. So performance may 1607 * suffer if the GTT working set is large or there are few fence registers 1608 * left. 1609 */ 1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1611 { 1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1613 struct drm_device *dev = obj->base.dev; 1614 struct drm_i915_private *dev_priv = dev->dev_private; 1615 pgoff_t page_offset; 1616 unsigned long pfn; 1617 int ret = 0; 1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1619 1620 intel_runtime_pm_get(dev_priv); 1621 1622 /* We don't use vmf->pgoff since that has the fake offset */ 1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1624 PAGE_SHIFT; 1625 1626 ret = i915_mutex_lock_interruptible(dev); 1627 if (ret) 1628 goto out; 1629 1630 trace_i915_gem_object_fault(obj, page_offset, true, write); 1631 1632 /* Try to flush the object off the GPU first without holding the lock. 1633 * Upon reacquiring the lock, we will perform our sanity checks and then 1634 * repeat the flush holding the lock in the normal manner to catch cases 1635 * where we are gazumped. 1636 */ 1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1638 if (ret) 1639 goto unlock; 1640 1641 /* Access to snoopable pages through the GTT is incoherent. */ 1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1643 ret = -EFAULT; 1644 goto unlock; 1645 } 1646 1647 /* Now bind it into the GTT if needed */ 1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1649 if (ret) 1650 goto unlock; 1651 1652 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1653 if (ret) 1654 goto unpin; 1655 1656 ret = i915_gem_object_get_fence(obj); 1657 if (ret) 1658 goto unpin; 1659 1660 /* Finally, remap it using the new GTT offset */ 1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1662 pfn >>= PAGE_SHIFT; 1663 1664 if (!obj->fault_mappable) { 1665 unsigned long size = min_t(unsigned long, 1666 vma->vm_end - vma->vm_start, 1667 obj->base.size); 1668 int i; 1669 1670 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1671 ret = vm_insert_pfn(vma, 1672 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1673 pfn + i); 1674 if (ret) 1675 break; 1676 } 1677 1678 obj->fault_mappable = true; 1679 } else 1680 ret = vm_insert_pfn(vma, 1681 (unsigned long)vmf->virtual_address, 1682 pfn + page_offset); 1683 unpin: 1684 i915_gem_object_ggtt_unpin(obj); 1685 unlock: 1686 mutex_unlock(&dev->struct_mutex); 1687 out: 1688 switch (ret) { 1689 case -EIO: 1690 /* 1691 * We eat errors when the gpu is terminally wedged to avoid 1692 * userspace unduly crashing (gl has no provisions for mmaps to 1693 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1694 * and so needs to be reported. 1695 */ 1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1697 ret = VM_FAULT_SIGBUS; 1698 break; 1699 } 1700 case -EAGAIN: 1701 /* 1702 * EAGAIN means the gpu is hung and we'll wait for the error 1703 * handler to reset everything when re-faulting in 1704 * i915_mutex_lock_interruptible. 1705 */ 1706 case 0: 1707 case -ERESTARTSYS: 1708 case -EINTR: 1709 case -EBUSY: 1710 /* 1711 * EBUSY is ok: this just means that another thread 1712 * already did the job. 1713 */ 1714 ret = VM_FAULT_NOPAGE; 1715 break; 1716 case -ENOMEM: 1717 ret = VM_FAULT_OOM; 1718 break; 1719 case -ENOSPC: 1720 case -EFAULT: 1721 ret = VM_FAULT_SIGBUS; 1722 break; 1723 default: 1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1725 ret = VM_FAULT_SIGBUS; 1726 break; 1727 } 1728 1729 intel_runtime_pm_put(dev_priv); 1730 return ret; 1731 } 1732 1733 /** 1734 * i915_gem_release_mmap - remove physical page mappings 1735 * @obj: obj in question 1736 * 1737 * Preserve the reservation of the mmapping with the DRM core code, but 1738 * relinquish ownership of the pages back to the system. 1739 * 1740 * It is vital that we remove the page mapping if we have mapped a tiled 1741 * object through the GTT and then lose the fence register due to 1742 * resource pressure. Similarly if the object has been moved out of the 1743 * aperture, than pages mapped into userspace must be revoked. Removing the 1744 * mapping will then trigger a page fault on the next user access, allowing 1745 * fixup by i915_gem_fault(). 1746 */ 1747 void 1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1749 { 1750 if (!obj->fault_mappable) 1751 return; 1752 1753 drm_vma_node_unmap(&obj->base.vma_node, 1754 obj->base.dev->anon_inode->i_mapping); 1755 obj->fault_mappable = false; 1756 } 1757 1758 void 1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1760 { 1761 struct drm_i915_gem_object *obj; 1762 1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1764 i915_gem_release_mmap(obj); 1765 } 1766 1767 uint32_t 1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1769 { 1770 uint32_t gtt_size; 1771 1772 if (INTEL_INFO(dev)->gen >= 4 || 1773 tiling_mode == I915_TILING_NONE) 1774 return size; 1775 1776 /* Previous chips need a power-of-two fence region when tiling */ 1777 if (INTEL_INFO(dev)->gen == 3) 1778 gtt_size = 1024*1024; 1779 else 1780 gtt_size = 512*1024; 1781 1782 while (gtt_size < size) 1783 gtt_size <<= 1; 1784 1785 return gtt_size; 1786 } 1787 1788 /** 1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1790 * @obj: object to check 1791 * 1792 * Return the required GTT alignment for an object, taking into account 1793 * potential fence register mapping. 1794 */ 1795 uint32_t 1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1797 int tiling_mode, bool fenced) 1798 { 1799 /* 1800 * Minimum alignment is 4k (GTT page size), but might be greater 1801 * if a fence register is needed for the object. 1802 */ 1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1804 tiling_mode == I915_TILING_NONE) 1805 return 4096; 1806 1807 /* 1808 * Previous chips need to be aligned to the size of the smallest 1809 * fence register that can contain the object. 1810 */ 1811 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1812 } 1813 1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1815 { 1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1817 int ret; 1818 1819 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1820 return 0; 1821 1822 dev_priv->mm.shrinker_no_lock_stealing = true; 1823 1824 ret = drm_gem_create_mmap_offset(&obj->base); 1825 if (ret != -ENOSPC) 1826 goto out; 1827 1828 /* Badly fragmented mmap space? The only way we can recover 1829 * space is by destroying unwanted objects. We can't randomly release 1830 * mmap_offsets as userspace expects them to be persistent for the 1831 * lifetime of the objects. The closest we can is to release the 1832 * offsets on purgeable objects by truncating it and marking it purged, 1833 * which prevents userspace from ever using that object again. 1834 */ 1835 i915_gem_shrink(dev_priv, 1836 obj->base.size >> PAGE_SHIFT, 1837 I915_SHRINK_BOUND | 1838 I915_SHRINK_UNBOUND | 1839 I915_SHRINK_PURGEABLE); 1840 ret = drm_gem_create_mmap_offset(&obj->base); 1841 if (ret != -ENOSPC) 1842 goto out; 1843 1844 i915_gem_shrink_all(dev_priv); 1845 ret = drm_gem_create_mmap_offset(&obj->base); 1846 out: 1847 dev_priv->mm.shrinker_no_lock_stealing = false; 1848 1849 return ret; 1850 } 1851 1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1853 { 1854 drm_gem_free_mmap_offset(&obj->base); 1855 } 1856 1857 int 1858 i915_gem_mmap_gtt(struct drm_file *file, 1859 struct drm_device *dev, 1860 uint32_t handle, 1861 uint64_t *offset) 1862 { 1863 struct drm_i915_private *dev_priv = dev->dev_private; 1864 struct drm_i915_gem_object *obj; 1865 int ret; 1866 1867 ret = i915_mutex_lock_interruptible(dev); 1868 if (ret) 1869 return ret; 1870 1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1872 if (&obj->base == NULL) { 1873 ret = -ENOENT; 1874 goto unlock; 1875 } 1876 1877 if (obj->base.size > dev_priv->gtt.mappable_end) { 1878 ret = -E2BIG; 1879 goto out; 1880 } 1881 1882 if (obj->madv != I915_MADV_WILLNEED) { 1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1884 ret = -EFAULT; 1885 goto out; 1886 } 1887 1888 ret = i915_gem_object_create_mmap_offset(obj); 1889 if (ret) 1890 goto out; 1891 1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1893 1894 out: 1895 drm_gem_object_unreference(&obj->base); 1896 unlock: 1897 mutex_unlock(&dev->struct_mutex); 1898 return ret; 1899 } 1900 1901 /** 1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1903 * @dev: DRM device 1904 * @data: GTT mapping ioctl data 1905 * @file: GEM object info 1906 * 1907 * Simply returns the fake offset to userspace so it can mmap it. 1908 * The mmap call will end up in drm_gem_mmap(), which will set things 1909 * up so we can get faults in the handler above. 1910 * 1911 * The fault handler will take care of binding the object into the GTT 1912 * (since it may have been evicted to make room for something), allocating 1913 * a fence register, and mapping the appropriate aperture address into 1914 * userspace. 1915 */ 1916 int 1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1918 struct drm_file *file) 1919 { 1920 struct drm_i915_gem_mmap_gtt *args = data; 1921 1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1923 } 1924 1925 static inline int 1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1927 { 1928 return obj->madv == I915_MADV_DONTNEED; 1929 } 1930 1931 /* Immediately discard the backing storage */ 1932 static void 1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1934 { 1935 i915_gem_object_free_mmap_offset(obj); 1936 1937 if (obj->base.filp == NULL) 1938 return; 1939 1940 /* Our goal here is to return as much of the memory as 1941 * is possible back to the system as we are called from OOM. 1942 * To do this we must instruct the shmfs to drop all of its 1943 * backing pages, *now*. 1944 */ 1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 1946 obj->madv = __I915_MADV_PURGED; 1947 } 1948 1949 /* Try to discard unwanted pages */ 1950 static void 1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 1952 { 1953 struct address_space *mapping; 1954 1955 switch (obj->madv) { 1956 case I915_MADV_DONTNEED: 1957 i915_gem_object_truncate(obj); 1958 case __I915_MADV_PURGED: 1959 return; 1960 } 1961 1962 if (obj->base.filp == NULL) 1963 return; 1964 1965 mapping = file_inode(obj->base.filp)->i_mapping, 1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 1967 } 1968 1969 static void 1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1971 { 1972 struct sg_page_iter sg_iter; 1973 int ret; 1974 1975 BUG_ON(obj->madv == __I915_MADV_PURGED); 1976 1977 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1978 if (ret) { 1979 /* In the event of a disaster, abandon all caches and 1980 * hope for the best. 1981 */ 1982 WARN_ON(ret != -EIO); 1983 i915_gem_clflush_object(obj, true); 1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1985 } 1986 1987 if (i915_gem_object_needs_bit17_swizzle(obj)) 1988 i915_gem_object_save_bit_17_swizzle(obj); 1989 1990 if (obj->madv == I915_MADV_DONTNEED) 1991 obj->dirty = 0; 1992 1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1994 struct page *page = sg_page_iter_page(&sg_iter); 1995 1996 if (obj->dirty) 1997 set_page_dirty(page); 1998 1999 if (obj->madv == I915_MADV_WILLNEED) 2000 mark_page_accessed(page); 2001 2002 page_cache_release(page); 2003 } 2004 obj->dirty = 0; 2005 2006 sg_free_table(obj->pages); 2007 kfree(obj->pages); 2008 } 2009 2010 int 2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2012 { 2013 const struct drm_i915_gem_object_ops *ops = obj->ops; 2014 2015 if (obj->pages == NULL) 2016 return 0; 2017 2018 if (obj->pages_pin_count) 2019 return -EBUSY; 2020 2021 BUG_ON(i915_gem_obj_bound_any(obj)); 2022 2023 /* ->put_pages might need to allocate memory for the bit17 swizzle 2024 * array, hence protect them from being reaped by removing them from gtt 2025 * lists early. */ 2026 list_del(&obj->global_list); 2027 2028 ops->put_pages(obj); 2029 obj->pages = NULL; 2030 2031 i915_gem_object_invalidate(obj); 2032 2033 return 0; 2034 } 2035 2036 unsigned long 2037 i915_gem_shrink(struct drm_i915_private *dev_priv, 2038 long target, unsigned flags) 2039 { 2040 const struct { 2041 struct list_head *list; 2042 unsigned int bit; 2043 } phases[] = { 2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND }, 2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND }, 2046 { NULL, 0 }, 2047 }, *phase; 2048 unsigned long count = 0; 2049 2050 /* 2051 * As we may completely rewrite the (un)bound list whilst unbinding 2052 * (due to retiring requests) we have to strictly process only 2053 * one element of the list at the time, and recheck the list 2054 * on every iteration. 2055 * 2056 * In particular, we must hold a reference whilst removing the 2057 * object as we may end up waiting for and/or retiring the objects. 2058 * This might release the final reference (held by the active list) 2059 * and result in the object being freed from under us. This is 2060 * similar to the precautions the eviction code must take whilst 2061 * removing objects. 2062 * 2063 * Also note that although these lists do not hold a reference to 2064 * the object we can safely grab one here: The final object 2065 * unreferencing and the bound_list are both protected by the 2066 * dev->struct_mutex and so we won't ever be able to observe an 2067 * object on the bound_list with a reference count equals 0. 2068 */ 2069 for (phase = phases; phase->list; phase++) { 2070 struct list_head still_in_list; 2071 2072 if ((flags & phase->bit) == 0) 2073 continue; 2074 2075 INIT_LIST_HEAD(&still_in_list); 2076 while (count < target && !list_empty(phase->list)) { 2077 struct drm_i915_gem_object *obj; 2078 struct i915_vma *vma, *v; 2079 2080 obj = list_first_entry(phase->list, 2081 typeof(*obj), global_list); 2082 list_move_tail(&obj->global_list, &still_in_list); 2083 2084 if (flags & I915_SHRINK_PURGEABLE && 2085 !i915_gem_object_is_purgeable(obj)) 2086 continue; 2087 2088 drm_gem_object_reference(&obj->base); 2089 2090 /* For the unbound phase, this should be a no-op! */ 2091 list_for_each_entry_safe(vma, v, 2092 &obj->vma_list, vma_link) 2093 if (i915_vma_unbind(vma)) 2094 break; 2095 2096 if (i915_gem_object_put_pages(obj) == 0) 2097 count += obj->base.size >> PAGE_SHIFT; 2098 2099 drm_gem_object_unreference(&obj->base); 2100 } 2101 list_splice(&still_in_list, phase->list); 2102 } 2103 2104 return count; 2105 } 2106 2107 static unsigned long 2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 2109 { 2110 i915_gem_evict_everything(dev_priv->dev); 2111 return i915_gem_shrink(dev_priv, LONG_MAX, 2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND); 2113 } 2114 2115 static int 2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2117 { 2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2119 int page_count, i; 2120 struct address_space *mapping; 2121 struct sg_table *st; 2122 struct scatterlist *sg; 2123 struct sg_page_iter sg_iter; 2124 struct page *page; 2125 unsigned long last_pfn = 0; /* suppress gcc warning */ 2126 gfp_t gfp; 2127 2128 /* Assert that the object is not currently in any GPU domain. As it 2129 * wasn't in the GTT, there shouldn't be any way it could have been in 2130 * a GPU cache 2131 */ 2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2134 2135 st = kmalloc(sizeof(*st), GFP_KERNEL); 2136 if (st == NULL) 2137 return -ENOMEM; 2138 2139 page_count = obj->base.size / PAGE_SIZE; 2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2141 kfree(st); 2142 return -ENOMEM; 2143 } 2144 2145 /* Get the list of pages out of our struct file. They'll be pinned 2146 * at this point until we release them. 2147 * 2148 * Fail silently without starting the shrinker 2149 */ 2150 mapping = file_inode(obj->base.filp)->i_mapping; 2151 gfp = mapping_gfp_mask(mapping); 2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2153 gfp &= ~(__GFP_IO | __GFP_WAIT); 2154 sg = st->sgl; 2155 st->nents = 0; 2156 for (i = 0; i < page_count; i++) { 2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2158 if (IS_ERR(page)) { 2159 i915_gem_shrink(dev_priv, 2160 page_count, 2161 I915_SHRINK_BOUND | 2162 I915_SHRINK_UNBOUND | 2163 I915_SHRINK_PURGEABLE); 2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2165 } 2166 if (IS_ERR(page)) { 2167 /* We've tried hard to allocate the memory by reaping 2168 * our own buffer, now let the real VM do its job and 2169 * go down in flames if truly OOM. 2170 */ 2171 i915_gem_shrink_all(dev_priv); 2172 page = shmem_read_mapping_page(mapping, i); 2173 if (IS_ERR(page)) 2174 goto err_pages; 2175 } 2176 #ifdef CONFIG_SWIOTLB 2177 if (swiotlb_nr_tbl()) { 2178 st->nents++; 2179 sg_set_page(sg, page, PAGE_SIZE, 0); 2180 sg = sg_next(sg); 2181 continue; 2182 } 2183 #endif 2184 if (!i || page_to_pfn(page) != last_pfn + 1) { 2185 if (i) 2186 sg = sg_next(sg); 2187 st->nents++; 2188 sg_set_page(sg, page, PAGE_SIZE, 0); 2189 } else { 2190 sg->length += PAGE_SIZE; 2191 } 2192 last_pfn = page_to_pfn(page); 2193 2194 /* Check that the i965g/gm workaround works. */ 2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2196 } 2197 #ifdef CONFIG_SWIOTLB 2198 if (!swiotlb_nr_tbl()) 2199 #endif 2200 sg_mark_end(sg); 2201 obj->pages = st; 2202 2203 if (i915_gem_object_needs_bit17_swizzle(obj)) 2204 i915_gem_object_do_bit_17_swizzle(obj); 2205 2206 if (obj->tiling_mode != I915_TILING_NONE && 2207 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2208 i915_gem_object_pin_pages(obj); 2209 2210 return 0; 2211 2212 err_pages: 2213 sg_mark_end(sg); 2214 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2215 page_cache_release(sg_page_iter_page(&sg_iter)); 2216 sg_free_table(st); 2217 kfree(st); 2218 2219 /* shmemfs first checks if there is enough memory to allocate the page 2220 * and reports ENOSPC should there be insufficient, along with the usual 2221 * ENOMEM for a genuine allocation failure. 2222 * 2223 * We use ENOSPC in our driver to mean that we have run out of aperture 2224 * space and so want to translate the error from shmemfs back to our 2225 * usual understanding of ENOMEM. 2226 */ 2227 if (PTR_ERR(page) == -ENOSPC) 2228 return -ENOMEM; 2229 else 2230 return PTR_ERR(page); 2231 } 2232 2233 /* Ensure that the associated pages are gathered from the backing storage 2234 * and pinned into our object. i915_gem_object_get_pages() may be called 2235 * multiple times before they are released by a single call to 2236 * i915_gem_object_put_pages() - once the pages are no longer referenced 2237 * either as a result of memory pressure (reaping pages under the shrinker) 2238 * or as the object is itself released. 2239 */ 2240 int 2241 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2242 { 2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2244 const struct drm_i915_gem_object_ops *ops = obj->ops; 2245 int ret; 2246 2247 if (obj->pages) 2248 return 0; 2249 2250 if (obj->madv != I915_MADV_WILLNEED) { 2251 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2252 return -EFAULT; 2253 } 2254 2255 BUG_ON(obj->pages_pin_count); 2256 2257 ret = ops->get_pages(obj); 2258 if (ret) 2259 return ret; 2260 2261 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2262 return 0; 2263 } 2264 2265 static void 2266 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2267 struct intel_engine_cs *ring) 2268 { 2269 struct drm_i915_gem_request *req; 2270 struct intel_engine_cs *old_ring; 2271 2272 BUG_ON(ring == NULL); 2273 2274 req = intel_ring_get_request(ring); 2275 old_ring = i915_gem_request_get_ring(obj->last_read_req); 2276 2277 if (old_ring != ring && obj->last_write_req) { 2278 /* Keep the request relative to the current ring */ 2279 i915_gem_request_assign(&obj->last_write_req, req); 2280 } 2281 2282 /* Add a reference if we're newly entering the active list. */ 2283 if (!obj->active) { 2284 drm_gem_object_reference(&obj->base); 2285 obj->active = 1; 2286 } 2287 2288 list_move_tail(&obj->ring_list, &ring->active_list); 2289 2290 i915_gem_request_assign(&obj->last_read_req, req); 2291 } 2292 2293 void i915_vma_move_to_active(struct i915_vma *vma, 2294 struct intel_engine_cs *ring) 2295 { 2296 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2297 return i915_gem_object_move_to_active(vma->obj, ring); 2298 } 2299 2300 static void 2301 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2302 { 2303 struct i915_vma *vma; 2304 2305 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2306 BUG_ON(!obj->active); 2307 2308 list_for_each_entry(vma, &obj->vma_list, vma_link) { 2309 if (!list_empty(&vma->mm_list)) 2310 list_move_tail(&vma->mm_list, &vma->vm->inactive_list); 2311 } 2312 2313 intel_fb_obj_flush(obj, true); 2314 2315 list_del_init(&obj->ring_list); 2316 2317 i915_gem_request_assign(&obj->last_read_req, NULL); 2318 i915_gem_request_assign(&obj->last_write_req, NULL); 2319 obj->base.write_domain = 0; 2320 2321 i915_gem_request_assign(&obj->last_fenced_req, NULL); 2322 2323 obj->active = 0; 2324 drm_gem_object_unreference(&obj->base); 2325 2326 WARN_ON(i915_verify_lists(dev)); 2327 } 2328 2329 static void 2330 i915_gem_object_retire(struct drm_i915_gem_object *obj) 2331 { 2332 if (obj->last_read_req == NULL) 2333 return; 2334 2335 if (i915_gem_request_completed(obj->last_read_req, true)) 2336 i915_gem_object_move_to_inactive(obj); 2337 } 2338 2339 static int 2340 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2341 { 2342 struct drm_i915_private *dev_priv = dev->dev_private; 2343 struct intel_engine_cs *ring; 2344 int ret, i, j; 2345 2346 /* Carefully retire all requests without writing to the rings */ 2347 for_each_ring(ring, dev_priv, i) { 2348 ret = intel_ring_idle(ring); 2349 if (ret) 2350 return ret; 2351 } 2352 i915_gem_retire_requests(dev); 2353 2354 /* Finally reset hw state */ 2355 for_each_ring(ring, dev_priv, i) { 2356 intel_ring_init_seqno(ring, seqno); 2357 2358 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2359 ring->semaphore.sync_seqno[j] = 0; 2360 } 2361 2362 return 0; 2363 } 2364 2365 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2366 { 2367 struct drm_i915_private *dev_priv = dev->dev_private; 2368 int ret; 2369 2370 if (seqno == 0) 2371 return -EINVAL; 2372 2373 /* HWS page needs to be set less than what we 2374 * will inject to ring 2375 */ 2376 ret = i915_gem_init_seqno(dev, seqno - 1); 2377 if (ret) 2378 return ret; 2379 2380 /* Carefully set the last_seqno value so that wrap 2381 * detection still works 2382 */ 2383 dev_priv->next_seqno = seqno; 2384 dev_priv->last_seqno = seqno - 1; 2385 if (dev_priv->last_seqno == 0) 2386 dev_priv->last_seqno--; 2387 2388 return 0; 2389 } 2390 2391 int 2392 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2393 { 2394 struct drm_i915_private *dev_priv = dev->dev_private; 2395 2396 /* reserve 0 for non-seqno */ 2397 if (dev_priv->next_seqno == 0) { 2398 int ret = i915_gem_init_seqno(dev, 0); 2399 if (ret) 2400 return ret; 2401 2402 dev_priv->next_seqno = 1; 2403 } 2404 2405 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2406 return 0; 2407 } 2408 2409 int __i915_add_request(struct intel_engine_cs *ring, 2410 struct drm_file *file, 2411 struct drm_i915_gem_object *obj) 2412 { 2413 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2414 struct drm_i915_gem_request *request; 2415 struct intel_ringbuffer *ringbuf; 2416 u32 request_start; 2417 int ret; 2418 2419 request = ring->outstanding_lazy_request; 2420 if (WARN_ON(request == NULL)) 2421 return -ENOMEM; 2422 2423 if (i915.enable_execlists) { 2424 ringbuf = request->ctx->engine[ring->id].ringbuf; 2425 } else 2426 ringbuf = ring->buffer; 2427 2428 request_start = intel_ring_get_tail(ringbuf); 2429 /* 2430 * Emit any outstanding flushes - execbuf can fail to emit the flush 2431 * after having emitted the batchbuffer command. Hence we need to fix 2432 * things up similar to emitting the lazy request. The difference here 2433 * is that the flush _must_ happen before the next request, no matter 2434 * what. 2435 */ 2436 if (i915.enable_execlists) { 2437 ret = logical_ring_flush_all_caches(ringbuf, request->ctx); 2438 if (ret) 2439 return ret; 2440 } else { 2441 ret = intel_ring_flush_all_caches(ring); 2442 if (ret) 2443 return ret; 2444 } 2445 2446 /* Record the position of the start of the request so that 2447 * should we detect the updated seqno part-way through the 2448 * GPU processing the request, we never over-estimate the 2449 * position of the head. 2450 */ 2451 request->postfix = intel_ring_get_tail(ringbuf); 2452 2453 if (i915.enable_execlists) { 2454 ret = ring->emit_request(ringbuf, request); 2455 if (ret) 2456 return ret; 2457 } else { 2458 ret = ring->add_request(ring); 2459 if (ret) 2460 return ret; 2461 } 2462 2463 request->head = request_start; 2464 request->tail = intel_ring_get_tail(ringbuf); 2465 2466 /* Whilst this request exists, batch_obj will be on the 2467 * active_list, and so will hold the active reference. Only when this 2468 * request is retired will the the batch_obj be moved onto the 2469 * inactive_list and lose its active reference. Hence we do not need 2470 * to explicitly hold another reference here. 2471 */ 2472 request->batch_obj = obj; 2473 2474 if (!i915.enable_execlists) { 2475 /* Hold a reference to the current context so that we can inspect 2476 * it later in case a hangcheck error event fires. 2477 */ 2478 request->ctx = ring->last_context; 2479 if (request->ctx) 2480 i915_gem_context_reference(request->ctx); 2481 } 2482 2483 request->emitted_jiffies = jiffies; 2484 list_add_tail(&request->list, &ring->request_list); 2485 request->file_priv = NULL; 2486 2487 if (file) { 2488 struct drm_i915_file_private *file_priv = file->driver_priv; 2489 2490 spin_lock(&file_priv->mm.lock); 2491 request->file_priv = file_priv; 2492 list_add_tail(&request->client_list, 2493 &file_priv->mm.request_list); 2494 spin_unlock(&file_priv->mm.lock); 2495 } 2496 2497 trace_i915_gem_request_add(request); 2498 ring->outstanding_lazy_request = NULL; 2499 2500 i915_queue_hangcheck(ring->dev); 2501 2502 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2503 queue_delayed_work(dev_priv->wq, 2504 &dev_priv->mm.retire_work, 2505 round_jiffies_up_relative(HZ)); 2506 intel_mark_busy(dev_priv->dev); 2507 2508 return 0; 2509 } 2510 2511 static inline void 2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2513 { 2514 struct drm_i915_file_private *file_priv = request->file_priv; 2515 2516 if (!file_priv) 2517 return; 2518 2519 spin_lock(&file_priv->mm.lock); 2520 list_del(&request->client_list); 2521 request->file_priv = NULL; 2522 spin_unlock(&file_priv->mm.lock); 2523 } 2524 2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2526 const struct intel_context *ctx) 2527 { 2528 unsigned long elapsed; 2529 2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2531 2532 if (ctx->hang_stats.banned) 2533 return true; 2534 2535 if (ctx->hang_stats.ban_period_seconds && 2536 elapsed <= ctx->hang_stats.ban_period_seconds) { 2537 if (!i915_gem_context_is_default(ctx)) { 2538 DRM_DEBUG("context hanging too fast, banning!\n"); 2539 return true; 2540 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2541 if (i915_stop_ring_allow_warn(dev_priv)) 2542 DRM_ERROR("gpu hanging too fast, banning!\n"); 2543 return true; 2544 } 2545 } 2546 2547 return false; 2548 } 2549 2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2551 struct intel_context *ctx, 2552 const bool guilty) 2553 { 2554 struct i915_ctx_hang_stats *hs; 2555 2556 if (WARN_ON(!ctx)) 2557 return; 2558 2559 hs = &ctx->hang_stats; 2560 2561 if (guilty) { 2562 hs->banned = i915_context_is_banned(dev_priv, ctx); 2563 hs->batch_active++; 2564 hs->guilty_ts = get_seconds(); 2565 } else { 2566 hs->batch_pending++; 2567 } 2568 } 2569 2570 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2571 { 2572 list_del(&request->list); 2573 i915_gem_request_remove_from_client(request); 2574 2575 i915_gem_request_unreference(request); 2576 } 2577 2578 void i915_gem_request_free(struct kref *req_ref) 2579 { 2580 struct drm_i915_gem_request *req = container_of(req_ref, 2581 typeof(*req), ref); 2582 struct intel_context *ctx = req->ctx; 2583 2584 if (ctx) { 2585 if (i915.enable_execlists) { 2586 struct intel_engine_cs *ring = req->ring; 2587 2588 if (ctx != ring->default_context) 2589 intel_lr_context_unpin(ring, ctx); 2590 } 2591 2592 i915_gem_context_unreference(ctx); 2593 } 2594 2595 kfree(req); 2596 } 2597 2598 struct drm_i915_gem_request * 2599 i915_gem_find_active_request(struct intel_engine_cs *ring) 2600 { 2601 struct drm_i915_gem_request *request; 2602 2603 list_for_each_entry(request, &ring->request_list, list) { 2604 if (i915_gem_request_completed(request, false)) 2605 continue; 2606 2607 return request; 2608 } 2609 2610 return NULL; 2611 } 2612 2613 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2614 struct intel_engine_cs *ring) 2615 { 2616 struct drm_i915_gem_request *request; 2617 bool ring_hung; 2618 2619 request = i915_gem_find_active_request(ring); 2620 2621 if (request == NULL) 2622 return; 2623 2624 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2625 2626 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2627 2628 list_for_each_entry_continue(request, &ring->request_list, list) 2629 i915_set_reset_status(dev_priv, request->ctx, false); 2630 } 2631 2632 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2633 struct intel_engine_cs *ring) 2634 { 2635 while (!list_empty(&ring->active_list)) { 2636 struct drm_i915_gem_object *obj; 2637 2638 obj = list_first_entry(&ring->active_list, 2639 struct drm_i915_gem_object, 2640 ring_list); 2641 2642 i915_gem_object_move_to_inactive(obj); 2643 } 2644 2645 /* 2646 * Clear the execlists queue up before freeing the requests, as those 2647 * are the ones that keep the context and ringbuffer backing objects 2648 * pinned in place. 2649 */ 2650 while (!list_empty(&ring->execlist_queue)) { 2651 struct drm_i915_gem_request *submit_req; 2652 2653 submit_req = list_first_entry(&ring->execlist_queue, 2654 struct drm_i915_gem_request, 2655 execlist_link); 2656 list_del(&submit_req->execlist_link); 2657 intel_runtime_pm_put(dev_priv); 2658 2659 if (submit_req->ctx != ring->default_context) 2660 intel_lr_context_unpin(ring, submit_req->ctx); 2661 2662 i915_gem_request_unreference(submit_req); 2663 } 2664 2665 /* 2666 * We must free the requests after all the corresponding objects have 2667 * been moved off active lists. Which is the same order as the normal 2668 * retire_requests function does. This is important if object hold 2669 * implicit references on things like e.g. ppgtt address spaces through 2670 * the request. 2671 */ 2672 while (!list_empty(&ring->request_list)) { 2673 struct drm_i915_gem_request *request; 2674 2675 request = list_first_entry(&ring->request_list, 2676 struct drm_i915_gem_request, 2677 list); 2678 2679 i915_gem_free_request(request); 2680 } 2681 2682 /* This may not have been flushed before the reset, so clean it now */ 2683 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL); 2684 } 2685 2686 void i915_gem_restore_fences(struct drm_device *dev) 2687 { 2688 struct drm_i915_private *dev_priv = dev->dev_private; 2689 int i; 2690 2691 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2692 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2693 2694 /* 2695 * Commit delayed tiling changes if we have an object still 2696 * attached to the fence, otherwise just clear the fence. 2697 */ 2698 if (reg->obj) { 2699 i915_gem_object_update_fence(reg->obj, reg, 2700 reg->obj->tiling_mode); 2701 } else { 2702 i915_gem_write_fence(dev, i, NULL); 2703 } 2704 } 2705 } 2706 2707 void i915_gem_reset(struct drm_device *dev) 2708 { 2709 struct drm_i915_private *dev_priv = dev->dev_private; 2710 struct intel_engine_cs *ring; 2711 int i; 2712 2713 /* 2714 * Before we free the objects from the requests, we need to inspect 2715 * them for finding the guilty party. As the requests only borrow 2716 * their reference to the objects, the inspection must be done first. 2717 */ 2718 for_each_ring(ring, dev_priv, i) 2719 i915_gem_reset_ring_status(dev_priv, ring); 2720 2721 for_each_ring(ring, dev_priv, i) 2722 i915_gem_reset_ring_cleanup(dev_priv, ring); 2723 2724 i915_gem_context_reset(dev); 2725 2726 i915_gem_restore_fences(dev); 2727 } 2728 2729 /** 2730 * This function clears the request list as sequence numbers are passed. 2731 */ 2732 void 2733 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2734 { 2735 if (list_empty(&ring->request_list)) 2736 return; 2737 2738 WARN_ON(i915_verify_lists(ring->dev)); 2739 2740 /* Retire requests first as we use it above for the early return. 2741 * If we retire requests last, we may use a later seqno and so clear 2742 * the requests lists without clearing the active list, leading to 2743 * confusion. 2744 */ 2745 while (!list_empty(&ring->request_list)) { 2746 struct drm_i915_gem_request *request; 2747 struct intel_ringbuffer *ringbuf; 2748 2749 request = list_first_entry(&ring->request_list, 2750 struct drm_i915_gem_request, 2751 list); 2752 2753 if (!i915_gem_request_completed(request, true)) 2754 break; 2755 2756 trace_i915_gem_request_retire(request); 2757 2758 /* This is one of the few common intersection points 2759 * between legacy ringbuffer submission and execlists: 2760 * we need to tell them apart in order to find the correct 2761 * ringbuffer to which the request belongs to. 2762 */ 2763 if (i915.enable_execlists) { 2764 struct intel_context *ctx = request->ctx; 2765 ringbuf = ctx->engine[ring->id].ringbuf; 2766 } else 2767 ringbuf = ring->buffer; 2768 2769 /* We know the GPU must have read the request to have 2770 * sent us the seqno + interrupt, so use the position 2771 * of tail of the request to update the last known position 2772 * of the GPU head. 2773 */ 2774 ringbuf->last_retired_head = request->postfix; 2775 2776 i915_gem_free_request(request); 2777 } 2778 2779 /* Move any buffers on the active list that are no longer referenced 2780 * by the ringbuffer to the flushing/inactive lists as appropriate, 2781 * before we free the context associated with the requests. 2782 */ 2783 while (!list_empty(&ring->active_list)) { 2784 struct drm_i915_gem_object *obj; 2785 2786 obj = list_first_entry(&ring->active_list, 2787 struct drm_i915_gem_object, 2788 ring_list); 2789 2790 if (!i915_gem_request_completed(obj->last_read_req, true)) 2791 break; 2792 2793 i915_gem_object_move_to_inactive(obj); 2794 } 2795 2796 if (unlikely(ring->trace_irq_req && 2797 i915_gem_request_completed(ring->trace_irq_req, true))) { 2798 ring->irq_put(ring); 2799 i915_gem_request_assign(&ring->trace_irq_req, NULL); 2800 } 2801 2802 WARN_ON(i915_verify_lists(ring->dev)); 2803 } 2804 2805 bool 2806 i915_gem_retire_requests(struct drm_device *dev) 2807 { 2808 struct drm_i915_private *dev_priv = dev->dev_private; 2809 struct intel_engine_cs *ring; 2810 bool idle = true; 2811 int i; 2812 2813 for_each_ring(ring, dev_priv, i) { 2814 i915_gem_retire_requests_ring(ring); 2815 idle &= list_empty(&ring->request_list); 2816 if (i915.enable_execlists) { 2817 unsigned long flags; 2818 2819 spin_lock_irqsave(&ring->execlist_lock, flags); 2820 idle &= list_empty(&ring->execlist_queue); 2821 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2822 2823 intel_execlists_retire_requests(ring); 2824 } 2825 } 2826 2827 if (idle) 2828 mod_delayed_work(dev_priv->wq, 2829 &dev_priv->mm.idle_work, 2830 msecs_to_jiffies(100)); 2831 2832 return idle; 2833 } 2834 2835 static void 2836 i915_gem_retire_work_handler(struct work_struct *work) 2837 { 2838 struct drm_i915_private *dev_priv = 2839 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2840 struct drm_device *dev = dev_priv->dev; 2841 bool idle; 2842 2843 /* Come back later if the device is busy... */ 2844 idle = false; 2845 if (mutex_trylock(&dev->struct_mutex)) { 2846 idle = i915_gem_retire_requests(dev); 2847 mutex_unlock(&dev->struct_mutex); 2848 } 2849 if (!idle) 2850 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2851 round_jiffies_up_relative(HZ)); 2852 } 2853 2854 static void 2855 i915_gem_idle_work_handler(struct work_struct *work) 2856 { 2857 struct drm_i915_private *dev_priv = 2858 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2859 2860 intel_mark_idle(dev_priv->dev); 2861 } 2862 2863 /** 2864 * Ensures that an object will eventually get non-busy by flushing any required 2865 * write domains, emitting any outstanding lazy request and retiring and 2866 * completed requests. 2867 */ 2868 static int 2869 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2870 { 2871 struct intel_engine_cs *ring; 2872 int ret; 2873 2874 if (obj->active) { 2875 ring = i915_gem_request_get_ring(obj->last_read_req); 2876 2877 ret = i915_gem_check_olr(obj->last_read_req); 2878 if (ret) 2879 return ret; 2880 2881 i915_gem_retire_requests_ring(ring); 2882 } 2883 2884 return 0; 2885 } 2886 2887 /** 2888 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2889 * @DRM_IOCTL_ARGS: standard ioctl arguments 2890 * 2891 * Returns 0 if successful, else an error is returned with the remaining time in 2892 * the timeout parameter. 2893 * -ETIME: object is still busy after timeout 2894 * -ERESTARTSYS: signal interrupted the wait 2895 * -ENONENT: object doesn't exist 2896 * Also possible, but rare: 2897 * -EAGAIN: GPU wedged 2898 * -ENOMEM: damn 2899 * -ENODEV: Internal IRQ fail 2900 * -E?: The add request failed 2901 * 2902 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2903 * non-zero timeout parameter the wait ioctl will wait for the given number of 2904 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2905 * without holding struct_mutex the object may become re-busied before this 2906 * function completes. A similar but shorter * race condition exists in the busy 2907 * ioctl 2908 */ 2909 int 2910 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2911 { 2912 struct drm_i915_private *dev_priv = dev->dev_private; 2913 struct drm_i915_gem_wait *args = data; 2914 struct drm_i915_gem_object *obj; 2915 struct drm_i915_gem_request *req; 2916 unsigned reset_counter; 2917 int ret = 0; 2918 2919 if (args->flags != 0) 2920 return -EINVAL; 2921 2922 ret = i915_mutex_lock_interruptible(dev); 2923 if (ret) 2924 return ret; 2925 2926 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2927 if (&obj->base == NULL) { 2928 mutex_unlock(&dev->struct_mutex); 2929 return -ENOENT; 2930 } 2931 2932 /* Need to make sure the object gets inactive eventually. */ 2933 ret = i915_gem_object_flush_active(obj); 2934 if (ret) 2935 goto out; 2936 2937 if (!obj->active || !obj->last_read_req) 2938 goto out; 2939 2940 req = obj->last_read_req; 2941 2942 /* Do this after OLR check to make sure we make forward progress polling 2943 * on this IOCTL with a timeout == 0 (like busy ioctl) 2944 */ 2945 if (args->timeout_ns == 0) { 2946 ret = -ETIME; 2947 goto out; 2948 } 2949 2950 drm_gem_object_unreference(&obj->base); 2951 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2952 i915_gem_request_reference(req); 2953 mutex_unlock(&dev->struct_mutex); 2954 2955 ret = __i915_wait_request(req, reset_counter, true, 2956 args->timeout_ns > 0 ? &args->timeout_ns : NULL, 2957 file->driver_priv); 2958 mutex_lock(&dev->struct_mutex); 2959 i915_gem_request_unreference(req); 2960 mutex_unlock(&dev->struct_mutex); 2961 return ret; 2962 2963 out: 2964 drm_gem_object_unreference(&obj->base); 2965 mutex_unlock(&dev->struct_mutex); 2966 return ret; 2967 } 2968 2969 /** 2970 * i915_gem_object_sync - sync an object to a ring. 2971 * 2972 * @obj: object which may be in use on another ring. 2973 * @to: ring we wish to use the object on. May be NULL. 2974 * 2975 * This code is meant to abstract object synchronization with the GPU. 2976 * Calling with NULL implies synchronizing the object with the CPU 2977 * rather than a particular GPU ring. 2978 * 2979 * Returns 0 if successful, else propagates up the lower layer error. 2980 */ 2981 int 2982 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2983 struct intel_engine_cs *to) 2984 { 2985 struct intel_engine_cs *from; 2986 u32 seqno; 2987 int ret, idx; 2988 2989 from = i915_gem_request_get_ring(obj->last_read_req); 2990 2991 if (from == NULL || to == from) 2992 return 0; 2993 2994 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2995 return i915_gem_object_wait_rendering(obj, false); 2996 2997 idx = intel_ring_sync_index(from, to); 2998 2999 seqno = i915_gem_request_get_seqno(obj->last_read_req); 3000 /* Optimization: Avoid semaphore sync when we are sure we already 3001 * waited for an object with higher seqno */ 3002 if (seqno <= from->semaphore.sync_seqno[idx]) 3003 return 0; 3004 3005 ret = i915_gem_check_olr(obj->last_read_req); 3006 if (ret) 3007 return ret; 3008 3009 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req); 3010 ret = to->semaphore.sync_to(to, from, seqno); 3011 if (!ret) 3012 /* We use last_read_req because sync_to() 3013 * might have just caused seqno wrap under 3014 * the radar. 3015 */ 3016 from->semaphore.sync_seqno[idx] = 3017 i915_gem_request_get_seqno(obj->last_read_req); 3018 3019 return ret; 3020 } 3021 3022 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 3023 { 3024 u32 old_write_domain, old_read_domains; 3025 3026 /* Force a pagefault for domain tracking on next user access */ 3027 i915_gem_release_mmap(obj); 3028 3029 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3030 return; 3031 3032 /* Wait for any direct GTT access to complete */ 3033 mb(); 3034 3035 old_read_domains = obj->base.read_domains; 3036 old_write_domain = obj->base.write_domain; 3037 3038 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 3039 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 3040 3041 trace_i915_gem_object_change_domain(obj, 3042 old_read_domains, 3043 old_write_domain); 3044 } 3045 3046 int i915_vma_unbind(struct i915_vma *vma) 3047 { 3048 struct drm_i915_gem_object *obj = vma->obj; 3049 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3050 int ret; 3051 3052 if (list_empty(&vma->vma_link)) 3053 return 0; 3054 3055 if (!drm_mm_node_allocated(&vma->node)) { 3056 i915_gem_vma_destroy(vma); 3057 return 0; 3058 } 3059 3060 if (vma->pin_count) 3061 return -EBUSY; 3062 3063 BUG_ON(obj->pages == NULL); 3064 3065 ret = i915_gem_object_finish_gpu(obj); 3066 if (ret) 3067 return ret; 3068 /* Continue on if we fail due to EIO, the GPU is hung so we 3069 * should be safe and we need to cleanup or else we might 3070 * cause memory corruption through use-after-free. 3071 */ 3072 3073 if (i915_is_ggtt(vma->vm) && 3074 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3075 i915_gem_object_finish_gtt(obj); 3076 3077 /* release the fence reg _after_ flushing */ 3078 ret = i915_gem_object_put_fence(obj); 3079 if (ret) 3080 return ret; 3081 } 3082 3083 trace_i915_vma_unbind(vma); 3084 3085 vma->unbind_vma(vma); 3086 3087 list_del_init(&vma->mm_list); 3088 if (i915_is_ggtt(vma->vm)) { 3089 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3090 obj->map_and_fenceable = false; 3091 } else if (vma->ggtt_view.pages) { 3092 sg_free_table(vma->ggtt_view.pages); 3093 kfree(vma->ggtt_view.pages); 3094 vma->ggtt_view.pages = NULL; 3095 } 3096 } 3097 3098 drm_mm_remove_node(&vma->node); 3099 i915_gem_vma_destroy(vma); 3100 3101 /* Since the unbound list is global, only move to that list if 3102 * no more VMAs exist. */ 3103 if (list_empty(&obj->vma_list)) { 3104 /* Throw away the active reference before 3105 * moving to the unbound list. */ 3106 i915_gem_object_retire(obj); 3107 3108 i915_gem_gtt_finish_object(obj); 3109 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 3110 } 3111 3112 /* And finally now the object is completely decoupled from this vma, 3113 * we can drop its hold on the backing storage and allow it to be 3114 * reaped by the shrinker. 3115 */ 3116 i915_gem_object_unpin_pages(obj); 3117 3118 return 0; 3119 } 3120 3121 int i915_gpu_idle(struct drm_device *dev) 3122 { 3123 struct drm_i915_private *dev_priv = dev->dev_private; 3124 struct intel_engine_cs *ring; 3125 int ret, i; 3126 3127 /* Flush everything onto the inactive list. */ 3128 for_each_ring(ring, dev_priv, i) { 3129 if (!i915.enable_execlists) { 3130 ret = i915_switch_context(ring, ring->default_context); 3131 if (ret) 3132 return ret; 3133 } 3134 3135 ret = intel_ring_idle(ring); 3136 if (ret) 3137 return ret; 3138 } 3139 3140 return 0; 3141 } 3142 3143 static void i965_write_fence_reg(struct drm_device *dev, int reg, 3144 struct drm_i915_gem_object *obj) 3145 { 3146 struct drm_i915_private *dev_priv = dev->dev_private; 3147 int fence_reg; 3148 int fence_pitch_shift; 3149 3150 if (INTEL_INFO(dev)->gen >= 6) { 3151 fence_reg = FENCE_REG_SANDYBRIDGE_0; 3152 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 3153 } else { 3154 fence_reg = FENCE_REG_965_0; 3155 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 3156 } 3157 3158 fence_reg += reg * 8; 3159 3160 /* To w/a incoherency with non-atomic 64-bit register updates, 3161 * we split the 64-bit update into two 32-bit writes. In order 3162 * for a partial fence not to be evaluated between writes, we 3163 * precede the update with write to turn off the fence register, 3164 * and only enable the fence as the last step. 3165 * 3166 * For extra levels of paranoia, we make sure each step lands 3167 * before applying the next step. 3168 */ 3169 I915_WRITE(fence_reg, 0); 3170 POSTING_READ(fence_reg); 3171 3172 if (obj) { 3173 u32 size = i915_gem_obj_ggtt_size(obj); 3174 uint64_t val; 3175 3176 /* Adjust fence size to match tiled area */ 3177 if (obj->tiling_mode != I915_TILING_NONE) { 3178 uint32_t row_size = obj->stride * 3179 (obj->tiling_mode == I915_TILING_Y ? 32 : 8); 3180 size = (size / row_size) * row_size; 3181 } 3182 3183 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 3184 0xfffff000) << 32; 3185 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 3186 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 3187 if (obj->tiling_mode == I915_TILING_Y) 3188 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 3189 val |= I965_FENCE_REG_VALID; 3190 3191 I915_WRITE(fence_reg + 4, val >> 32); 3192 POSTING_READ(fence_reg + 4); 3193 3194 I915_WRITE(fence_reg + 0, val); 3195 POSTING_READ(fence_reg); 3196 } else { 3197 I915_WRITE(fence_reg + 4, 0); 3198 POSTING_READ(fence_reg + 4); 3199 } 3200 } 3201 3202 static void i915_write_fence_reg(struct drm_device *dev, int reg, 3203 struct drm_i915_gem_object *obj) 3204 { 3205 struct drm_i915_private *dev_priv = dev->dev_private; 3206 u32 val; 3207 3208 if (obj) { 3209 u32 size = i915_gem_obj_ggtt_size(obj); 3210 int pitch_val; 3211 int tile_width; 3212 3213 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 3214 (size & -size) != size || 3215 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3216 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 3217 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 3218 3219 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 3220 tile_width = 128; 3221 else 3222 tile_width = 512; 3223 3224 /* Note: pitch better be a power of two tile widths */ 3225 pitch_val = obj->stride / tile_width; 3226 pitch_val = ffs(pitch_val) - 1; 3227 3228 val = i915_gem_obj_ggtt_offset(obj); 3229 if (obj->tiling_mode == I915_TILING_Y) 3230 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3231 val |= I915_FENCE_SIZE_BITS(size); 3232 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3233 val |= I830_FENCE_REG_VALID; 3234 } else 3235 val = 0; 3236 3237 if (reg < 8) 3238 reg = FENCE_REG_830_0 + reg * 4; 3239 else 3240 reg = FENCE_REG_945_8 + (reg - 8) * 4; 3241 3242 I915_WRITE(reg, val); 3243 POSTING_READ(reg); 3244 } 3245 3246 static void i830_write_fence_reg(struct drm_device *dev, int reg, 3247 struct drm_i915_gem_object *obj) 3248 { 3249 struct drm_i915_private *dev_priv = dev->dev_private; 3250 uint32_t val; 3251 3252 if (obj) { 3253 u32 size = i915_gem_obj_ggtt_size(obj); 3254 uint32_t pitch_val; 3255 3256 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 3257 (size & -size) != size || 3258 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3259 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 3260 i915_gem_obj_ggtt_offset(obj), size); 3261 3262 pitch_val = obj->stride / 128; 3263 pitch_val = ffs(pitch_val) - 1; 3264 3265 val = i915_gem_obj_ggtt_offset(obj); 3266 if (obj->tiling_mode == I915_TILING_Y) 3267 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3268 val |= I830_FENCE_SIZE_BITS(size); 3269 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3270 val |= I830_FENCE_REG_VALID; 3271 } else 3272 val = 0; 3273 3274 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 3275 POSTING_READ(FENCE_REG_830_0 + reg * 4); 3276 } 3277 3278 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 3279 { 3280 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 3281 } 3282 3283 static void i915_gem_write_fence(struct drm_device *dev, int reg, 3284 struct drm_i915_gem_object *obj) 3285 { 3286 struct drm_i915_private *dev_priv = dev->dev_private; 3287 3288 /* Ensure that all CPU reads are completed before installing a fence 3289 * and all writes before removing the fence. 3290 */ 3291 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 3292 mb(); 3293 3294 WARN(obj && (!obj->stride || !obj->tiling_mode), 3295 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 3296 obj->stride, obj->tiling_mode); 3297 3298 if (IS_GEN2(dev)) 3299 i830_write_fence_reg(dev, reg, obj); 3300 else if (IS_GEN3(dev)) 3301 i915_write_fence_reg(dev, reg, obj); 3302 else if (INTEL_INFO(dev)->gen >= 4) 3303 i965_write_fence_reg(dev, reg, obj); 3304 3305 /* And similarly be paranoid that no direct access to this region 3306 * is reordered to before the fence is installed. 3307 */ 3308 if (i915_gem_object_needs_mb(obj)) 3309 mb(); 3310 } 3311 3312 static inline int fence_number(struct drm_i915_private *dev_priv, 3313 struct drm_i915_fence_reg *fence) 3314 { 3315 return fence - dev_priv->fence_regs; 3316 } 3317 3318 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 3319 struct drm_i915_fence_reg *fence, 3320 bool enable) 3321 { 3322 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3323 int reg = fence_number(dev_priv, fence); 3324 3325 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 3326 3327 if (enable) { 3328 obj->fence_reg = reg; 3329 fence->obj = obj; 3330 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 3331 } else { 3332 obj->fence_reg = I915_FENCE_REG_NONE; 3333 fence->obj = NULL; 3334 list_del_init(&fence->lru_list); 3335 } 3336 obj->fence_dirty = false; 3337 } 3338 3339 static int 3340 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3341 { 3342 if (obj->last_fenced_req) { 3343 int ret = i915_wait_request(obj->last_fenced_req); 3344 if (ret) 3345 return ret; 3346 3347 i915_gem_request_assign(&obj->last_fenced_req, NULL); 3348 } 3349 3350 return 0; 3351 } 3352 3353 int 3354 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3355 { 3356 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3357 struct drm_i915_fence_reg *fence; 3358 int ret; 3359 3360 ret = i915_gem_object_wait_fence(obj); 3361 if (ret) 3362 return ret; 3363 3364 if (obj->fence_reg == I915_FENCE_REG_NONE) 3365 return 0; 3366 3367 fence = &dev_priv->fence_regs[obj->fence_reg]; 3368 3369 if (WARN_ON(fence->pin_count)) 3370 return -EBUSY; 3371 3372 i915_gem_object_fence_lost(obj); 3373 i915_gem_object_update_fence(obj, fence, false); 3374 3375 return 0; 3376 } 3377 3378 static struct drm_i915_fence_reg * 3379 i915_find_fence_reg(struct drm_device *dev) 3380 { 3381 struct drm_i915_private *dev_priv = dev->dev_private; 3382 struct drm_i915_fence_reg *reg, *avail; 3383 int i; 3384 3385 /* First try to find a free reg */ 3386 avail = NULL; 3387 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3388 reg = &dev_priv->fence_regs[i]; 3389 if (!reg->obj) 3390 return reg; 3391 3392 if (!reg->pin_count) 3393 avail = reg; 3394 } 3395 3396 if (avail == NULL) 3397 goto deadlock; 3398 3399 /* None available, try to steal one or wait for a user to finish */ 3400 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3401 if (reg->pin_count) 3402 continue; 3403 3404 return reg; 3405 } 3406 3407 deadlock: 3408 /* Wait for completion of pending flips which consume fences */ 3409 if (intel_has_pending_fb_unpin(dev)) 3410 return ERR_PTR(-EAGAIN); 3411 3412 return ERR_PTR(-EDEADLK); 3413 } 3414 3415 /** 3416 * i915_gem_object_get_fence - set up fencing for an object 3417 * @obj: object to map through a fence reg 3418 * 3419 * When mapping objects through the GTT, userspace wants to be able to write 3420 * to them without having to worry about swizzling if the object is tiled. 3421 * This function walks the fence regs looking for a free one for @obj, 3422 * stealing one if it can't find any. 3423 * 3424 * It then sets up the reg based on the object's properties: address, pitch 3425 * and tiling format. 3426 * 3427 * For an untiled surface, this removes any existing fence. 3428 */ 3429 int 3430 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3431 { 3432 struct drm_device *dev = obj->base.dev; 3433 struct drm_i915_private *dev_priv = dev->dev_private; 3434 bool enable = obj->tiling_mode != I915_TILING_NONE; 3435 struct drm_i915_fence_reg *reg; 3436 int ret; 3437 3438 /* Have we updated the tiling parameters upon the object and so 3439 * will need to serialise the write to the associated fence register? 3440 */ 3441 if (obj->fence_dirty) { 3442 ret = i915_gem_object_wait_fence(obj); 3443 if (ret) 3444 return ret; 3445 } 3446 3447 /* Just update our place in the LRU if our fence is getting reused. */ 3448 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3449 reg = &dev_priv->fence_regs[obj->fence_reg]; 3450 if (!obj->fence_dirty) { 3451 list_move_tail(®->lru_list, 3452 &dev_priv->mm.fence_list); 3453 return 0; 3454 } 3455 } else if (enable) { 3456 if (WARN_ON(!obj->map_and_fenceable)) 3457 return -EINVAL; 3458 3459 reg = i915_find_fence_reg(dev); 3460 if (IS_ERR(reg)) 3461 return PTR_ERR(reg); 3462 3463 if (reg->obj) { 3464 struct drm_i915_gem_object *old = reg->obj; 3465 3466 ret = i915_gem_object_wait_fence(old); 3467 if (ret) 3468 return ret; 3469 3470 i915_gem_object_fence_lost(old); 3471 } 3472 } else 3473 return 0; 3474 3475 i915_gem_object_update_fence(obj, reg, enable); 3476 3477 return 0; 3478 } 3479 3480 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 3481 unsigned long cache_level) 3482 { 3483 struct drm_mm_node *gtt_space = &vma->node; 3484 struct drm_mm_node *other; 3485 3486 /* 3487 * On some machines we have to be careful when putting differing types 3488 * of snoopable memory together to avoid the prefetcher crossing memory 3489 * domains and dying. During vm initialisation, we decide whether or not 3490 * these constraints apply and set the drm_mm.color_adjust 3491 * appropriately. 3492 */ 3493 if (vma->vm->mm.color_adjust == NULL) 3494 return true; 3495 3496 if (!drm_mm_node_allocated(gtt_space)) 3497 return true; 3498 3499 if (list_empty(>t_space->node_list)) 3500 return true; 3501 3502 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3503 if (other->allocated && !other->hole_follows && other->color != cache_level) 3504 return false; 3505 3506 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3507 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3508 return false; 3509 3510 return true; 3511 } 3512 3513 /** 3514 * Finds free space in the GTT aperture and binds the object there. 3515 */ 3516 static struct i915_vma * 3517 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3518 struct i915_address_space *vm, 3519 unsigned alignment, 3520 uint64_t flags, 3521 const struct i915_ggtt_view *view) 3522 { 3523 struct drm_device *dev = obj->base.dev; 3524 struct drm_i915_private *dev_priv = dev->dev_private; 3525 u32 size, fence_size, fence_alignment, unfenced_alignment; 3526 unsigned long start = 3527 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3528 unsigned long end = 3529 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3530 struct i915_vma *vma; 3531 int ret; 3532 3533 fence_size = i915_gem_get_gtt_size(dev, 3534 obj->base.size, 3535 obj->tiling_mode); 3536 fence_alignment = i915_gem_get_gtt_alignment(dev, 3537 obj->base.size, 3538 obj->tiling_mode, true); 3539 unfenced_alignment = 3540 i915_gem_get_gtt_alignment(dev, 3541 obj->base.size, 3542 obj->tiling_mode, false); 3543 3544 if (alignment == 0) 3545 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3546 unfenced_alignment; 3547 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3548 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3549 return ERR_PTR(-EINVAL); 3550 } 3551 3552 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3553 3554 /* If the object is bigger than the entire aperture, reject it early 3555 * before evicting everything in a vain attempt to find space. 3556 */ 3557 if (obj->base.size > end) { 3558 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", 3559 obj->base.size, 3560 flags & PIN_MAPPABLE ? "mappable" : "total", 3561 end); 3562 return ERR_PTR(-E2BIG); 3563 } 3564 3565 ret = i915_gem_object_get_pages(obj); 3566 if (ret) 3567 return ERR_PTR(ret); 3568 3569 i915_gem_object_pin_pages(obj); 3570 3571 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view); 3572 if (IS_ERR(vma)) 3573 goto err_unpin; 3574 3575 search_free: 3576 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3577 size, alignment, 3578 obj->cache_level, 3579 start, end, 3580 DRM_MM_SEARCH_DEFAULT, 3581 DRM_MM_CREATE_DEFAULT); 3582 if (ret) { 3583 ret = i915_gem_evict_something(dev, vm, size, alignment, 3584 obj->cache_level, 3585 start, end, 3586 flags); 3587 if (ret == 0) 3588 goto search_free; 3589 3590 goto err_free_vma; 3591 } 3592 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { 3593 ret = -EINVAL; 3594 goto err_remove_node; 3595 } 3596 3597 ret = i915_gem_gtt_prepare_object(obj); 3598 if (ret) 3599 goto err_remove_node; 3600 3601 trace_i915_vma_bind(vma, flags); 3602 ret = i915_vma_bind(vma, obj->cache_level, 3603 flags & PIN_GLOBAL ? GLOBAL_BIND : 0); 3604 if (ret) 3605 goto err_finish_gtt; 3606 3607 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3608 list_add_tail(&vma->mm_list, &vm->inactive_list); 3609 3610 return vma; 3611 3612 err_finish_gtt: 3613 i915_gem_gtt_finish_object(obj); 3614 err_remove_node: 3615 drm_mm_remove_node(&vma->node); 3616 err_free_vma: 3617 i915_gem_vma_destroy(vma); 3618 vma = ERR_PTR(ret); 3619 err_unpin: 3620 i915_gem_object_unpin_pages(obj); 3621 return vma; 3622 } 3623 3624 bool 3625 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3626 bool force) 3627 { 3628 /* If we don't have a page list set up, then we're not pinned 3629 * to GPU, and we can ignore the cache flush because it'll happen 3630 * again at bind time. 3631 */ 3632 if (obj->pages == NULL) 3633 return false; 3634 3635 /* 3636 * Stolen memory is always coherent with the GPU as it is explicitly 3637 * marked as wc by the system, or the system is cache-coherent. 3638 */ 3639 if (obj->stolen || obj->phys_handle) 3640 return false; 3641 3642 /* If the GPU is snooping the contents of the CPU cache, 3643 * we do not need to manually clear the CPU cache lines. However, 3644 * the caches are only snooped when the render cache is 3645 * flushed/invalidated. As we always have to emit invalidations 3646 * and flushes when moving into and out of the RENDER domain, correct 3647 * snooping behaviour occurs naturally as the result of our domain 3648 * tracking. 3649 */ 3650 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { 3651 obj->cache_dirty = true; 3652 return false; 3653 } 3654 3655 trace_i915_gem_object_clflush(obj); 3656 drm_clflush_sg(obj->pages); 3657 obj->cache_dirty = false; 3658 3659 return true; 3660 } 3661 3662 /** Flushes the GTT write domain for the object if it's dirty. */ 3663 static void 3664 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3665 { 3666 uint32_t old_write_domain; 3667 3668 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3669 return; 3670 3671 /* No actual flushing is required for the GTT write domain. Writes 3672 * to it immediately go to main memory as far as we know, so there's 3673 * no chipset flush. It also doesn't land in render cache. 3674 * 3675 * However, we do have to enforce the order so that all writes through 3676 * the GTT land before any writes to the device, such as updates to 3677 * the GATT itself. 3678 */ 3679 wmb(); 3680 3681 old_write_domain = obj->base.write_domain; 3682 obj->base.write_domain = 0; 3683 3684 intel_fb_obj_flush(obj, false); 3685 3686 trace_i915_gem_object_change_domain(obj, 3687 obj->base.read_domains, 3688 old_write_domain); 3689 } 3690 3691 /** Flushes the CPU write domain for the object if it's dirty. */ 3692 static void 3693 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3694 { 3695 uint32_t old_write_domain; 3696 3697 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3698 return; 3699 3700 if (i915_gem_clflush_object(obj, obj->pin_display)) 3701 i915_gem_chipset_flush(obj->base.dev); 3702 3703 old_write_domain = obj->base.write_domain; 3704 obj->base.write_domain = 0; 3705 3706 intel_fb_obj_flush(obj, false); 3707 3708 trace_i915_gem_object_change_domain(obj, 3709 obj->base.read_domains, 3710 old_write_domain); 3711 } 3712 3713 /** 3714 * Moves a single object to the GTT read, and possibly write domain. 3715 * 3716 * This function returns when the move is complete, including waiting on 3717 * flushes to occur. 3718 */ 3719 int 3720 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3721 { 3722 uint32_t old_write_domain, old_read_domains; 3723 struct i915_vma *vma; 3724 int ret; 3725 3726 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3727 return 0; 3728 3729 ret = i915_gem_object_wait_rendering(obj, !write); 3730 if (ret) 3731 return ret; 3732 3733 i915_gem_object_retire(obj); 3734 3735 /* Flush and acquire obj->pages so that we are coherent through 3736 * direct access in memory with previous cached writes through 3737 * shmemfs and that our cache domain tracking remains valid. 3738 * For example, if the obj->filp was moved to swap without us 3739 * being notified and releasing the pages, we would mistakenly 3740 * continue to assume that the obj remained out of the CPU cached 3741 * domain. 3742 */ 3743 ret = i915_gem_object_get_pages(obj); 3744 if (ret) 3745 return ret; 3746 3747 i915_gem_object_flush_cpu_write_domain(obj); 3748 3749 /* Serialise direct access to this object with the barriers for 3750 * coherent writes from the GPU, by effectively invalidating the 3751 * GTT domain upon first access. 3752 */ 3753 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3754 mb(); 3755 3756 old_write_domain = obj->base.write_domain; 3757 old_read_domains = obj->base.read_domains; 3758 3759 /* It should now be out of any other write domains, and we can update 3760 * the domain values for our changes. 3761 */ 3762 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3763 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3764 if (write) { 3765 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3766 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3767 obj->dirty = 1; 3768 } 3769 3770 if (write) 3771 intel_fb_obj_invalidate(obj, NULL); 3772 3773 trace_i915_gem_object_change_domain(obj, 3774 old_read_domains, 3775 old_write_domain); 3776 3777 /* And bump the LRU for this access */ 3778 vma = i915_gem_obj_to_ggtt(obj); 3779 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active) 3780 list_move_tail(&vma->mm_list, 3781 &to_i915(obj->base.dev)->gtt.base.inactive_list); 3782 3783 return 0; 3784 } 3785 3786 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3787 enum i915_cache_level cache_level) 3788 { 3789 struct drm_device *dev = obj->base.dev; 3790 struct i915_vma *vma, *next; 3791 int ret; 3792 3793 if (obj->cache_level == cache_level) 3794 return 0; 3795 3796 if (i915_gem_obj_is_pinned(obj)) { 3797 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3798 return -EBUSY; 3799 } 3800 3801 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3802 if (!i915_gem_valid_gtt_space(vma, cache_level)) { 3803 ret = i915_vma_unbind(vma); 3804 if (ret) 3805 return ret; 3806 } 3807 } 3808 3809 if (i915_gem_obj_bound_any(obj)) { 3810 ret = i915_gem_object_finish_gpu(obj); 3811 if (ret) 3812 return ret; 3813 3814 i915_gem_object_finish_gtt(obj); 3815 3816 /* Before SandyBridge, you could not use tiling or fence 3817 * registers with snooped memory, so relinquish any fences 3818 * currently pointing to our region in the aperture. 3819 */ 3820 if (INTEL_INFO(dev)->gen < 6) { 3821 ret = i915_gem_object_put_fence(obj); 3822 if (ret) 3823 return ret; 3824 } 3825 3826 list_for_each_entry(vma, &obj->vma_list, vma_link) 3827 if (drm_mm_node_allocated(&vma->node)) { 3828 ret = i915_vma_bind(vma, cache_level, 3829 vma->bound & GLOBAL_BIND); 3830 if (ret) 3831 return ret; 3832 } 3833 } 3834 3835 list_for_each_entry(vma, &obj->vma_list, vma_link) 3836 vma->node.color = cache_level; 3837 obj->cache_level = cache_level; 3838 3839 if (obj->cache_dirty && 3840 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 3841 cpu_write_needs_clflush(obj)) { 3842 if (i915_gem_clflush_object(obj, true)) 3843 i915_gem_chipset_flush(obj->base.dev); 3844 } 3845 3846 return 0; 3847 } 3848 3849 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3850 struct drm_file *file) 3851 { 3852 struct drm_i915_gem_caching *args = data; 3853 struct drm_i915_gem_object *obj; 3854 int ret; 3855 3856 ret = i915_mutex_lock_interruptible(dev); 3857 if (ret) 3858 return ret; 3859 3860 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3861 if (&obj->base == NULL) { 3862 ret = -ENOENT; 3863 goto unlock; 3864 } 3865 3866 switch (obj->cache_level) { 3867 case I915_CACHE_LLC: 3868 case I915_CACHE_L3_LLC: 3869 args->caching = I915_CACHING_CACHED; 3870 break; 3871 3872 case I915_CACHE_WT: 3873 args->caching = I915_CACHING_DISPLAY; 3874 break; 3875 3876 default: 3877 args->caching = I915_CACHING_NONE; 3878 break; 3879 } 3880 3881 drm_gem_object_unreference(&obj->base); 3882 unlock: 3883 mutex_unlock(&dev->struct_mutex); 3884 return ret; 3885 } 3886 3887 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3888 struct drm_file *file) 3889 { 3890 struct drm_i915_gem_caching *args = data; 3891 struct drm_i915_gem_object *obj; 3892 enum i915_cache_level level; 3893 int ret; 3894 3895 switch (args->caching) { 3896 case I915_CACHING_NONE: 3897 level = I915_CACHE_NONE; 3898 break; 3899 case I915_CACHING_CACHED: 3900 level = I915_CACHE_LLC; 3901 break; 3902 case I915_CACHING_DISPLAY: 3903 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3904 break; 3905 default: 3906 return -EINVAL; 3907 } 3908 3909 ret = i915_mutex_lock_interruptible(dev); 3910 if (ret) 3911 return ret; 3912 3913 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3914 if (&obj->base == NULL) { 3915 ret = -ENOENT; 3916 goto unlock; 3917 } 3918 3919 ret = i915_gem_object_set_cache_level(obj, level); 3920 3921 drm_gem_object_unreference(&obj->base); 3922 unlock: 3923 mutex_unlock(&dev->struct_mutex); 3924 return ret; 3925 } 3926 3927 static bool is_pin_display(struct drm_i915_gem_object *obj) 3928 { 3929 struct i915_vma *vma; 3930 3931 vma = i915_gem_obj_to_ggtt(obj); 3932 if (!vma) 3933 return false; 3934 3935 /* There are 2 sources that pin objects: 3936 * 1. The display engine (scanouts, sprites, cursors); 3937 * 2. Reservations for execbuffer; 3938 * 3939 * We can ignore reservations as we hold the struct_mutex and 3940 * are only called outside of the reservation path. 3941 */ 3942 return vma->pin_count; 3943 } 3944 3945 /* 3946 * Prepare buffer for display plane (scanout, cursors, etc). 3947 * Can be called from an uninterruptible phase (modesetting) and allows 3948 * any flushes to be pipelined (for pageflips). 3949 */ 3950 int 3951 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3952 u32 alignment, 3953 struct intel_engine_cs *pipelined) 3954 { 3955 u32 old_read_domains, old_write_domain; 3956 bool was_pin_display; 3957 int ret; 3958 3959 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) { 3960 ret = i915_gem_object_sync(obj, pipelined); 3961 if (ret) 3962 return ret; 3963 } 3964 3965 /* Mark the pin_display early so that we account for the 3966 * display coherency whilst setting up the cache domains. 3967 */ 3968 was_pin_display = obj->pin_display; 3969 obj->pin_display = true; 3970 3971 /* The display engine is not coherent with the LLC cache on gen6. As 3972 * a result, we make sure that the pinning that is about to occur is 3973 * done with uncached PTEs. This is lowest common denominator for all 3974 * chipsets. 3975 * 3976 * However for gen6+, we could do better by using the GFDT bit instead 3977 * of uncaching, which would allow us to flush all the LLC-cached data 3978 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3979 */ 3980 ret = i915_gem_object_set_cache_level(obj, 3981 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3982 if (ret) 3983 goto err_unpin_display; 3984 3985 /* As the user may map the buffer once pinned in the display plane 3986 * (e.g. libkms for the bootup splash), we have to ensure that we 3987 * always use map_and_fenceable for all scanout buffers. 3988 */ 3989 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3990 if (ret) 3991 goto err_unpin_display; 3992 3993 i915_gem_object_flush_cpu_write_domain(obj); 3994 3995 old_write_domain = obj->base.write_domain; 3996 old_read_domains = obj->base.read_domains; 3997 3998 /* It should now be out of any other write domains, and we can update 3999 * the domain values for our changes. 4000 */ 4001 obj->base.write_domain = 0; 4002 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 4003 4004 trace_i915_gem_object_change_domain(obj, 4005 old_read_domains, 4006 old_write_domain); 4007 4008 return 0; 4009 4010 err_unpin_display: 4011 WARN_ON(was_pin_display != is_pin_display(obj)); 4012 obj->pin_display = was_pin_display; 4013 return ret; 4014 } 4015 4016 void 4017 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 4018 { 4019 i915_gem_object_ggtt_unpin(obj); 4020 obj->pin_display = is_pin_display(obj); 4021 } 4022 4023 int 4024 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 4025 { 4026 int ret; 4027 4028 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 4029 return 0; 4030 4031 ret = i915_gem_object_wait_rendering(obj, false); 4032 if (ret) 4033 return ret; 4034 4035 /* Ensure that we invalidate the GPU's caches and TLBs. */ 4036 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 4037 return 0; 4038 } 4039 4040 /** 4041 * Moves a single object to the CPU read, and possibly write domain. 4042 * 4043 * This function returns when the move is complete, including waiting on 4044 * flushes to occur. 4045 */ 4046 int 4047 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4048 { 4049 uint32_t old_write_domain, old_read_domains; 4050 int ret; 4051 4052 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 4053 return 0; 4054 4055 ret = i915_gem_object_wait_rendering(obj, !write); 4056 if (ret) 4057 return ret; 4058 4059 i915_gem_object_retire(obj); 4060 i915_gem_object_flush_gtt_write_domain(obj); 4061 4062 old_write_domain = obj->base.write_domain; 4063 old_read_domains = obj->base.read_domains; 4064 4065 /* Flush the CPU cache if it's still invalid. */ 4066 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4067 i915_gem_clflush_object(obj, false); 4068 4069 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4070 } 4071 4072 /* It should now be out of any other write domains, and we can update 4073 * the domain values for our changes. 4074 */ 4075 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 4076 4077 /* If we're writing through the CPU, then the GPU read domains will 4078 * need to be invalidated at next use. 4079 */ 4080 if (write) { 4081 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4082 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4083 } 4084 4085 if (write) 4086 intel_fb_obj_invalidate(obj, NULL); 4087 4088 trace_i915_gem_object_change_domain(obj, 4089 old_read_domains, 4090 old_write_domain); 4091 4092 return 0; 4093 } 4094 4095 /* Throttle our rendering by waiting until the ring has completed our requests 4096 * emitted over 20 msec ago. 4097 * 4098 * Note that if we were to use the current jiffies each time around the loop, 4099 * we wouldn't escape the function with any frames outstanding if the time to 4100 * render a frame was over 20ms. 4101 * 4102 * This should get us reasonable parallelism between CPU and GPU but also 4103 * relatively low latency when blocking on a particular request to finish. 4104 */ 4105 static int 4106 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4107 { 4108 struct drm_i915_private *dev_priv = dev->dev_private; 4109 struct drm_i915_file_private *file_priv = file->driver_priv; 4110 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 4111 struct drm_i915_gem_request *request, *target = NULL; 4112 unsigned reset_counter; 4113 int ret; 4114 4115 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 4116 if (ret) 4117 return ret; 4118 4119 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4120 if (ret) 4121 return ret; 4122 4123 spin_lock(&file_priv->mm.lock); 4124 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4125 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4126 break; 4127 4128 target = request; 4129 } 4130 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4131 if (target) 4132 i915_gem_request_reference(target); 4133 spin_unlock(&file_priv->mm.lock); 4134 4135 if (target == NULL) 4136 return 0; 4137 4138 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL); 4139 if (ret == 0) 4140 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4141 4142 mutex_lock(&dev->struct_mutex); 4143 i915_gem_request_unreference(target); 4144 mutex_unlock(&dev->struct_mutex); 4145 4146 return ret; 4147 } 4148 4149 static bool 4150 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4151 { 4152 struct drm_i915_gem_object *obj = vma->obj; 4153 4154 if (alignment && 4155 vma->node.start & (alignment - 1)) 4156 return true; 4157 4158 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4159 return true; 4160 4161 if (flags & PIN_OFFSET_BIAS && 4162 vma->node.start < (flags & PIN_OFFSET_MASK)) 4163 return true; 4164 4165 return false; 4166 } 4167 4168 int 4169 i915_gem_object_pin_view(struct drm_i915_gem_object *obj, 4170 struct i915_address_space *vm, 4171 uint32_t alignment, 4172 uint64_t flags, 4173 const struct i915_ggtt_view *view) 4174 { 4175 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4176 struct i915_vma *vma; 4177 unsigned bound; 4178 int ret; 4179 4180 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4181 return -ENODEV; 4182 4183 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4184 return -EINVAL; 4185 4186 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) 4187 return -EINVAL; 4188 4189 vma = i915_gem_obj_to_vma_view(obj, vm, view); 4190 if (vma) { 4191 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4192 return -EBUSY; 4193 4194 if (i915_vma_misplaced(vma, alignment, flags)) { 4195 WARN(vma->pin_count, 4196 "bo is already pinned with incorrect alignment:" 4197 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4198 " obj->map_and_fenceable=%d\n", 4199 i915_gem_obj_offset_view(obj, vm, view->type), 4200 alignment, 4201 !!(flags & PIN_MAPPABLE), 4202 obj->map_and_fenceable); 4203 ret = i915_vma_unbind(vma); 4204 if (ret) 4205 return ret; 4206 4207 vma = NULL; 4208 } 4209 } 4210 4211 bound = vma ? vma->bound : 0; 4212 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4213 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, 4214 flags, view); 4215 if (IS_ERR(vma)) 4216 return PTR_ERR(vma); 4217 } 4218 4219 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) { 4220 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND); 4221 if (ret) 4222 return ret; 4223 } 4224 4225 if ((bound ^ vma->bound) & GLOBAL_BIND) { 4226 bool mappable, fenceable; 4227 u32 fence_size, fence_alignment; 4228 4229 fence_size = i915_gem_get_gtt_size(obj->base.dev, 4230 obj->base.size, 4231 obj->tiling_mode); 4232 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, 4233 obj->base.size, 4234 obj->tiling_mode, 4235 true); 4236 4237 fenceable = (vma->node.size == fence_size && 4238 (vma->node.start & (fence_alignment - 1)) == 0); 4239 4240 mappable = (vma->node.start + obj->base.size <= 4241 dev_priv->gtt.mappable_end); 4242 4243 obj->map_and_fenceable = mappable && fenceable; 4244 } 4245 4246 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 4247 4248 vma->pin_count++; 4249 if (flags & PIN_MAPPABLE) 4250 obj->pin_mappable |= true; 4251 4252 return 0; 4253 } 4254 4255 void 4256 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 4257 { 4258 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 4259 4260 BUG_ON(!vma); 4261 BUG_ON(vma->pin_count == 0); 4262 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 4263 4264 if (--vma->pin_count == 0) 4265 obj->pin_mappable = false; 4266 } 4267 4268 bool 4269 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) 4270 { 4271 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4272 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4273 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); 4274 4275 WARN_ON(!ggtt_vma || 4276 dev_priv->fence_regs[obj->fence_reg].pin_count > 4277 ggtt_vma->pin_count); 4278 dev_priv->fence_regs[obj->fence_reg].pin_count++; 4279 return true; 4280 } else 4281 return false; 4282 } 4283 4284 void 4285 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) 4286 { 4287 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4288 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4289 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); 4290 dev_priv->fence_regs[obj->fence_reg].pin_count--; 4291 } 4292 } 4293 4294 int 4295 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4296 struct drm_file *file) 4297 { 4298 struct drm_i915_gem_busy *args = data; 4299 struct drm_i915_gem_object *obj; 4300 int ret; 4301 4302 ret = i915_mutex_lock_interruptible(dev); 4303 if (ret) 4304 return ret; 4305 4306 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4307 if (&obj->base == NULL) { 4308 ret = -ENOENT; 4309 goto unlock; 4310 } 4311 4312 /* Count all active objects as busy, even if they are currently not used 4313 * by the gpu. Users of this interface expect objects to eventually 4314 * become non-busy without any further actions, therefore emit any 4315 * necessary flushes here. 4316 */ 4317 ret = i915_gem_object_flush_active(obj); 4318 4319 args->busy = obj->active; 4320 if (obj->last_read_req) { 4321 struct intel_engine_cs *ring; 4322 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4323 ring = i915_gem_request_get_ring(obj->last_read_req); 4324 args->busy |= intel_ring_flag(ring) << 16; 4325 } 4326 4327 drm_gem_object_unreference(&obj->base); 4328 unlock: 4329 mutex_unlock(&dev->struct_mutex); 4330 return ret; 4331 } 4332 4333 int 4334 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4335 struct drm_file *file_priv) 4336 { 4337 return i915_gem_ring_throttle(dev, file_priv); 4338 } 4339 4340 int 4341 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4342 struct drm_file *file_priv) 4343 { 4344 struct drm_i915_private *dev_priv = dev->dev_private; 4345 struct drm_i915_gem_madvise *args = data; 4346 struct drm_i915_gem_object *obj; 4347 int ret; 4348 4349 switch (args->madv) { 4350 case I915_MADV_DONTNEED: 4351 case I915_MADV_WILLNEED: 4352 break; 4353 default: 4354 return -EINVAL; 4355 } 4356 4357 ret = i915_mutex_lock_interruptible(dev); 4358 if (ret) 4359 return ret; 4360 4361 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4362 if (&obj->base == NULL) { 4363 ret = -ENOENT; 4364 goto unlock; 4365 } 4366 4367 if (i915_gem_obj_is_pinned(obj)) { 4368 ret = -EINVAL; 4369 goto out; 4370 } 4371 4372 if (obj->pages && 4373 obj->tiling_mode != I915_TILING_NONE && 4374 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4375 if (obj->madv == I915_MADV_WILLNEED) 4376 i915_gem_object_unpin_pages(obj); 4377 if (args->madv == I915_MADV_WILLNEED) 4378 i915_gem_object_pin_pages(obj); 4379 } 4380 4381 if (obj->madv != __I915_MADV_PURGED) 4382 obj->madv = args->madv; 4383 4384 /* if the object is no longer attached, discard its backing storage */ 4385 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4386 i915_gem_object_truncate(obj); 4387 4388 args->retained = obj->madv != __I915_MADV_PURGED; 4389 4390 out: 4391 drm_gem_object_unreference(&obj->base); 4392 unlock: 4393 mutex_unlock(&dev->struct_mutex); 4394 return ret; 4395 } 4396 4397 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4398 const struct drm_i915_gem_object_ops *ops) 4399 { 4400 INIT_LIST_HEAD(&obj->global_list); 4401 INIT_LIST_HEAD(&obj->ring_list); 4402 INIT_LIST_HEAD(&obj->obj_exec_link); 4403 INIT_LIST_HEAD(&obj->vma_list); 4404 INIT_LIST_HEAD(&obj->batch_pool_list); 4405 4406 obj->ops = ops; 4407 4408 obj->fence_reg = I915_FENCE_REG_NONE; 4409 obj->madv = I915_MADV_WILLNEED; 4410 4411 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4412 } 4413 4414 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4415 .get_pages = i915_gem_object_get_pages_gtt, 4416 .put_pages = i915_gem_object_put_pages_gtt, 4417 }; 4418 4419 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4420 size_t size) 4421 { 4422 struct drm_i915_gem_object *obj; 4423 struct address_space *mapping; 4424 gfp_t mask; 4425 4426 obj = i915_gem_object_alloc(dev); 4427 if (obj == NULL) 4428 return NULL; 4429 4430 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4431 i915_gem_object_free(obj); 4432 return NULL; 4433 } 4434 4435 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4436 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4437 /* 965gm cannot relocate objects above 4GiB. */ 4438 mask &= ~__GFP_HIGHMEM; 4439 mask |= __GFP_DMA32; 4440 } 4441 4442 mapping = file_inode(obj->base.filp)->i_mapping; 4443 mapping_set_gfp_mask(mapping, mask); 4444 4445 i915_gem_object_init(obj, &i915_gem_object_ops); 4446 4447 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4448 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4449 4450 if (HAS_LLC(dev)) { 4451 /* On some devices, we can have the GPU use the LLC (the CPU 4452 * cache) for about a 10% performance improvement 4453 * compared to uncached. Graphics requests other than 4454 * display scanout are coherent with the CPU in 4455 * accessing this cache. This means in this mode we 4456 * don't need to clflush on the CPU side, and on the 4457 * GPU side we only need to flush internal caches to 4458 * get data visible to the CPU. 4459 * 4460 * However, we maintain the display planes as UC, and so 4461 * need to rebind when first used as such. 4462 */ 4463 obj->cache_level = I915_CACHE_LLC; 4464 } else 4465 obj->cache_level = I915_CACHE_NONE; 4466 4467 trace_i915_gem_object_create(obj); 4468 4469 return obj; 4470 } 4471 4472 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4473 { 4474 /* If we are the last user of the backing storage (be it shmemfs 4475 * pages or stolen etc), we know that the pages are going to be 4476 * immediately released. In this case, we can then skip copying 4477 * back the contents from the GPU. 4478 */ 4479 4480 if (obj->madv != I915_MADV_WILLNEED) 4481 return false; 4482 4483 if (obj->base.filp == NULL) 4484 return true; 4485 4486 /* At first glance, this looks racy, but then again so would be 4487 * userspace racing mmap against close. However, the first external 4488 * reference to the filp can only be obtained through the 4489 * i915_gem_mmap_ioctl() which safeguards us against the user 4490 * acquiring such a reference whilst we are in the middle of 4491 * freeing the object. 4492 */ 4493 return atomic_long_read(&obj->base.filp->f_count) == 1; 4494 } 4495 4496 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4497 { 4498 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4499 struct drm_device *dev = obj->base.dev; 4500 struct drm_i915_private *dev_priv = dev->dev_private; 4501 struct i915_vma *vma, *next; 4502 4503 intel_runtime_pm_get(dev_priv); 4504 4505 trace_i915_gem_object_destroy(obj); 4506 4507 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4508 int ret; 4509 4510 vma->pin_count = 0; 4511 ret = i915_vma_unbind(vma); 4512 if (WARN_ON(ret == -ERESTARTSYS)) { 4513 bool was_interruptible; 4514 4515 was_interruptible = dev_priv->mm.interruptible; 4516 dev_priv->mm.interruptible = false; 4517 4518 WARN_ON(i915_vma_unbind(vma)); 4519 4520 dev_priv->mm.interruptible = was_interruptible; 4521 } 4522 } 4523 4524 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4525 * before progressing. */ 4526 if (obj->stolen) 4527 i915_gem_object_unpin_pages(obj); 4528 4529 WARN_ON(obj->frontbuffer_bits); 4530 4531 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4532 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4533 obj->tiling_mode != I915_TILING_NONE) 4534 i915_gem_object_unpin_pages(obj); 4535 4536 if (WARN_ON(obj->pages_pin_count)) 4537 obj->pages_pin_count = 0; 4538 if (discard_backing_storage(obj)) 4539 obj->madv = I915_MADV_DONTNEED; 4540 i915_gem_object_put_pages(obj); 4541 i915_gem_object_free_mmap_offset(obj); 4542 4543 BUG_ON(obj->pages); 4544 4545 if (obj->base.import_attach) 4546 drm_prime_gem_destroy(&obj->base, NULL); 4547 4548 if (obj->ops->release) 4549 obj->ops->release(obj); 4550 4551 drm_gem_object_release(&obj->base); 4552 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4553 4554 kfree(obj->bit_17); 4555 i915_gem_object_free(obj); 4556 4557 intel_runtime_pm_put(dev_priv); 4558 } 4559 4560 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj, 4561 struct i915_address_space *vm, 4562 const struct i915_ggtt_view *view) 4563 { 4564 struct i915_vma *vma; 4565 list_for_each_entry(vma, &obj->vma_list, vma_link) 4566 if (vma->vm == vm && vma->ggtt_view.type == view->type) 4567 return vma; 4568 4569 return NULL; 4570 } 4571 4572 void i915_gem_vma_destroy(struct i915_vma *vma) 4573 { 4574 struct i915_address_space *vm = NULL; 4575 WARN_ON(vma->node.allocated); 4576 4577 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4578 if (!list_empty(&vma->exec_list)) 4579 return; 4580 4581 vm = vma->vm; 4582 4583 if (!i915_is_ggtt(vm)) 4584 i915_ppgtt_put(i915_vm_to_ppgtt(vm)); 4585 4586 list_del(&vma->vma_link); 4587 4588 kfree(vma); 4589 } 4590 4591 static void 4592 i915_gem_stop_ringbuffers(struct drm_device *dev) 4593 { 4594 struct drm_i915_private *dev_priv = dev->dev_private; 4595 struct intel_engine_cs *ring; 4596 int i; 4597 4598 for_each_ring(ring, dev_priv, i) 4599 dev_priv->gt.stop_ring(ring); 4600 } 4601 4602 int 4603 i915_gem_suspend(struct drm_device *dev) 4604 { 4605 struct drm_i915_private *dev_priv = dev->dev_private; 4606 int ret = 0; 4607 4608 mutex_lock(&dev->struct_mutex); 4609 ret = i915_gpu_idle(dev); 4610 if (ret) 4611 goto err; 4612 4613 i915_gem_retire_requests(dev); 4614 4615 /* Under UMS, be paranoid and evict. */ 4616 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4617 i915_gem_evict_everything(dev); 4618 4619 i915_gem_stop_ringbuffers(dev); 4620 mutex_unlock(&dev->struct_mutex); 4621 4622 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4623 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4624 flush_delayed_work(&dev_priv->mm.idle_work); 4625 4626 /* Assert that we sucessfully flushed all the work and 4627 * reset the GPU back to its idle, low power state. 4628 */ 4629 WARN_ON(dev_priv->mm.busy); 4630 4631 return 0; 4632 4633 err: 4634 mutex_unlock(&dev->struct_mutex); 4635 return ret; 4636 } 4637 4638 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) 4639 { 4640 struct drm_device *dev = ring->dev; 4641 struct drm_i915_private *dev_priv = dev->dev_private; 4642 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4643 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4644 int i, ret; 4645 4646 if (!HAS_L3_DPF(dev) || !remap_info) 4647 return 0; 4648 4649 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4650 if (ret) 4651 return ret; 4652 4653 /* 4654 * Note: We do not worry about the concurrent register cacheline hang 4655 * here because no other code should access these registers other than 4656 * at initialization time. 4657 */ 4658 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4659 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4660 intel_ring_emit(ring, reg_base + i); 4661 intel_ring_emit(ring, remap_info[i/4]); 4662 } 4663 4664 intel_ring_advance(ring); 4665 4666 return ret; 4667 } 4668 4669 void i915_gem_init_swizzling(struct drm_device *dev) 4670 { 4671 struct drm_i915_private *dev_priv = dev->dev_private; 4672 4673 if (INTEL_INFO(dev)->gen < 5 || 4674 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4675 return; 4676 4677 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4678 DISP_TILE_SURFACE_SWIZZLING); 4679 4680 if (IS_GEN5(dev)) 4681 return; 4682 4683 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4684 if (IS_GEN6(dev)) 4685 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4686 else if (IS_GEN7(dev)) 4687 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4688 else if (IS_GEN8(dev)) 4689 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4690 else 4691 BUG(); 4692 } 4693 4694 static bool 4695 intel_enable_blt(struct drm_device *dev) 4696 { 4697 if (!HAS_BLT(dev)) 4698 return false; 4699 4700 /* The blitter was dysfunctional on early prototypes */ 4701 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4702 DRM_INFO("BLT not supported on this pre-production hardware;" 4703 " graphics performance will be degraded.\n"); 4704 return false; 4705 } 4706 4707 return true; 4708 } 4709 4710 static void init_unused_ring(struct drm_device *dev, u32 base) 4711 { 4712 struct drm_i915_private *dev_priv = dev->dev_private; 4713 4714 I915_WRITE(RING_CTL(base), 0); 4715 I915_WRITE(RING_HEAD(base), 0); 4716 I915_WRITE(RING_TAIL(base), 0); 4717 I915_WRITE(RING_START(base), 0); 4718 } 4719 4720 static void init_unused_rings(struct drm_device *dev) 4721 { 4722 if (IS_I830(dev)) { 4723 init_unused_ring(dev, PRB1_BASE); 4724 init_unused_ring(dev, SRB0_BASE); 4725 init_unused_ring(dev, SRB1_BASE); 4726 init_unused_ring(dev, SRB2_BASE); 4727 init_unused_ring(dev, SRB3_BASE); 4728 } else if (IS_GEN2(dev)) { 4729 init_unused_ring(dev, SRB0_BASE); 4730 init_unused_ring(dev, SRB1_BASE); 4731 } else if (IS_GEN3(dev)) { 4732 init_unused_ring(dev, PRB1_BASE); 4733 init_unused_ring(dev, PRB2_BASE); 4734 } 4735 } 4736 4737 int i915_gem_init_rings(struct drm_device *dev) 4738 { 4739 struct drm_i915_private *dev_priv = dev->dev_private; 4740 int ret; 4741 4742 ret = intel_init_render_ring_buffer(dev); 4743 if (ret) 4744 return ret; 4745 4746 if (HAS_BSD(dev)) { 4747 ret = intel_init_bsd_ring_buffer(dev); 4748 if (ret) 4749 goto cleanup_render_ring; 4750 } 4751 4752 if (intel_enable_blt(dev)) { 4753 ret = intel_init_blt_ring_buffer(dev); 4754 if (ret) 4755 goto cleanup_bsd_ring; 4756 } 4757 4758 if (HAS_VEBOX(dev)) { 4759 ret = intel_init_vebox_ring_buffer(dev); 4760 if (ret) 4761 goto cleanup_blt_ring; 4762 } 4763 4764 if (HAS_BSD2(dev)) { 4765 ret = intel_init_bsd2_ring_buffer(dev); 4766 if (ret) 4767 goto cleanup_vebox_ring; 4768 } 4769 4770 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4771 if (ret) 4772 goto cleanup_bsd2_ring; 4773 4774 return 0; 4775 4776 cleanup_bsd2_ring: 4777 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4778 cleanup_vebox_ring: 4779 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4780 cleanup_blt_ring: 4781 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4782 cleanup_bsd_ring: 4783 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4784 cleanup_render_ring: 4785 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4786 4787 return ret; 4788 } 4789 4790 int 4791 i915_gem_init_hw(struct drm_device *dev) 4792 { 4793 struct drm_i915_private *dev_priv = dev->dev_private; 4794 struct intel_engine_cs *ring; 4795 int ret, i; 4796 4797 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4798 return -EIO; 4799 4800 /* Double layer security blanket, see i915_gem_init() */ 4801 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4802 4803 if (dev_priv->ellc_size) 4804 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4805 4806 if (IS_HASWELL(dev)) 4807 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4808 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4809 4810 if (HAS_PCH_NOP(dev)) { 4811 if (IS_IVYBRIDGE(dev)) { 4812 u32 temp = I915_READ(GEN7_MSG_CTL); 4813 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4814 I915_WRITE(GEN7_MSG_CTL, temp); 4815 } else if (INTEL_INFO(dev)->gen >= 7) { 4816 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4817 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4818 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4819 } 4820 } 4821 4822 i915_gem_init_swizzling(dev); 4823 4824 /* 4825 * At least 830 can leave some of the unused rings 4826 * "active" (ie. head != tail) after resume which 4827 * will prevent c3 entry. Makes sure all unused rings 4828 * are totally idle. 4829 */ 4830 init_unused_rings(dev); 4831 4832 for_each_ring(ring, dev_priv, i) { 4833 ret = ring->init_hw(ring); 4834 if (ret) 4835 goto out; 4836 } 4837 4838 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4839 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4840 4841 ret = i915_ppgtt_init_hw(dev); 4842 if (ret && ret != -EIO) { 4843 DRM_ERROR("PPGTT enable failed %d\n", ret); 4844 i915_gem_cleanup_ringbuffer(dev); 4845 } 4846 4847 ret = i915_gem_context_enable(dev_priv); 4848 if (ret && ret != -EIO) { 4849 DRM_ERROR("Context enable failed %d\n", ret); 4850 i915_gem_cleanup_ringbuffer(dev); 4851 4852 goto out; 4853 } 4854 4855 out: 4856 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4857 return ret; 4858 } 4859 4860 int i915_gem_init(struct drm_device *dev) 4861 { 4862 struct drm_i915_private *dev_priv = dev->dev_private; 4863 int ret; 4864 4865 i915.enable_execlists = intel_sanitize_enable_execlists(dev, 4866 i915.enable_execlists); 4867 4868 mutex_lock(&dev->struct_mutex); 4869 4870 if (IS_VALLEYVIEW(dev)) { 4871 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4872 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4873 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4874 VLV_GTLC_ALLOWWAKEACK), 10)) 4875 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4876 } 4877 4878 if (!i915.enable_execlists) { 4879 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission; 4880 dev_priv->gt.init_rings = i915_gem_init_rings; 4881 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; 4882 dev_priv->gt.stop_ring = intel_stop_ring_buffer; 4883 } else { 4884 dev_priv->gt.do_execbuf = intel_execlists_submission; 4885 dev_priv->gt.init_rings = intel_logical_rings_init; 4886 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; 4887 dev_priv->gt.stop_ring = intel_logical_ring_stop; 4888 } 4889 4890 /* This is just a security blanket to placate dragons. 4891 * On some systems, we very sporadically observe that the first TLBs 4892 * used by the CS may be stale, despite us poking the TLB reset. If 4893 * we hold the forcewake during initialisation these problems 4894 * just magically go away. 4895 */ 4896 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4897 4898 ret = i915_gem_init_userptr(dev); 4899 if (ret) 4900 goto out_unlock; 4901 4902 i915_gem_init_global_gtt(dev); 4903 4904 ret = i915_gem_context_init(dev); 4905 if (ret) 4906 goto out_unlock; 4907 4908 ret = dev_priv->gt.init_rings(dev); 4909 if (ret) 4910 goto out_unlock; 4911 4912 ret = i915_gem_init_hw(dev); 4913 if (ret == -EIO) { 4914 /* Allow ring initialisation to fail by marking the GPU as 4915 * wedged. But we only want to do this where the GPU is angry, 4916 * for all other failure, such as an allocation failure, bail. 4917 */ 4918 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4919 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4920 ret = 0; 4921 } 4922 4923 out_unlock: 4924 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4925 mutex_unlock(&dev->struct_mutex); 4926 4927 return ret; 4928 } 4929 4930 void 4931 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4932 { 4933 struct drm_i915_private *dev_priv = dev->dev_private; 4934 struct intel_engine_cs *ring; 4935 int i; 4936 4937 for_each_ring(ring, dev_priv, i) 4938 dev_priv->gt.cleanup_ring(ring); 4939 } 4940 4941 static void 4942 init_ring_lists(struct intel_engine_cs *ring) 4943 { 4944 INIT_LIST_HEAD(&ring->active_list); 4945 INIT_LIST_HEAD(&ring->request_list); 4946 } 4947 4948 void i915_init_vm(struct drm_i915_private *dev_priv, 4949 struct i915_address_space *vm) 4950 { 4951 if (!i915_is_ggtt(vm)) 4952 drm_mm_init(&vm->mm, vm->start, vm->total); 4953 vm->dev = dev_priv->dev; 4954 INIT_LIST_HEAD(&vm->active_list); 4955 INIT_LIST_HEAD(&vm->inactive_list); 4956 INIT_LIST_HEAD(&vm->global_link); 4957 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4958 } 4959 4960 void 4961 i915_gem_load(struct drm_device *dev) 4962 { 4963 struct drm_i915_private *dev_priv = dev->dev_private; 4964 int i; 4965 4966 dev_priv->slab = 4967 kmem_cache_create("i915_gem_object", 4968 sizeof(struct drm_i915_gem_object), 0, 4969 SLAB_HWCACHE_ALIGN, 4970 NULL); 4971 4972 INIT_LIST_HEAD(&dev_priv->vm_list); 4973 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4974 4975 INIT_LIST_HEAD(&dev_priv->context_list); 4976 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4977 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4978 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4979 for (i = 0; i < I915_NUM_RINGS; i++) 4980 init_ring_lists(&dev_priv->ring[i]); 4981 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4982 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4983 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4984 i915_gem_retire_work_handler); 4985 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4986 i915_gem_idle_work_handler); 4987 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4988 4989 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4990 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { 4991 I915_WRITE(MI_ARB_STATE, 4992 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4993 } 4994 4995 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4996 4997 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4998 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4999 dev_priv->fence_reg_start = 3; 5000 5001 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 5002 dev_priv->num_fence_regs = 32; 5003 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 5004 dev_priv->num_fence_regs = 16; 5005 else 5006 dev_priv->num_fence_regs = 8; 5007 5008 /* Initialize fence registers to zero */ 5009 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5010 i915_gem_restore_fences(dev); 5011 5012 i915_gem_detect_bit_6_swizzle(dev); 5013 init_waitqueue_head(&dev_priv->pending_flip_queue); 5014 5015 dev_priv->mm.interruptible = true; 5016 5017 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 5018 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; 5019 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; 5020 register_shrinker(&dev_priv->mm.shrinker); 5021 5022 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 5023 register_oom_notifier(&dev_priv->mm.oom_notifier); 5024 5025 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool); 5026 5027 mutex_init(&dev_priv->fb_tracking.lock); 5028 } 5029 5030 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5031 { 5032 struct drm_i915_file_private *file_priv = file->driver_priv; 5033 5034 cancel_delayed_work_sync(&file_priv->mm.idle_work); 5035 5036 /* Clean up our request list when the client is going away, so that 5037 * later retire_requests won't dereference our soon-to-be-gone 5038 * file_priv. 5039 */ 5040 spin_lock(&file_priv->mm.lock); 5041 while (!list_empty(&file_priv->mm.request_list)) { 5042 struct drm_i915_gem_request *request; 5043 5044 request = list_first_entry(&file_priv->mm.request_list, 5045 struct drm_i915_gem_request, 5046 client_list); 5047 list_del(&request->client_list); 5048 request->file_priv = NULL; 5049 } 5050 spin_unlock(&file_priv->mm.lock); 5051 } 5052 5053 static void 5054 i915_gem_file_idle_work_handler(struct work_struct *work) 5055 { 5056 struct drm_i915_file_private *file_priv = 5057 container_of(work, typeof(*file_priv), mm.idle_work.work); 5058 5059 atomic_set(&file_priv->rps_wait_boost, false); 5060 } 5061 5062 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 5063 { 5064 struct drm_i915_file_private *file_priv; 5065 int ret; 5066 5067 DRM_DEBUG_DRIVER("\n"); 5068 5069 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5070 if (!file_priv) 5071 return -ENOMEM; 5072 5073 file->driver_priv = file_priv; 5074 file_priv->dev_priv = dev->dev_private; 5075 file_priv->file = file; 5076 5077 spin_lock_init(&file_priv->mm.lock); 5078 INIT_LIST_HEAD(&file_priv->mm.request_list); 5079 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 5080 i915_gem_file_idle_work_handler); 5081 5082 ret = i915_gem_context_open(dev, file); 5083 if (ret) 5084 kfree(file_priv); 5085 5086 return ret; 5087 } 5088 5089 /** 5090 * i915_gem_track_fb - update frontbuffer tracking 5091 * old: current GEM buffer for the frontbuffer slots 5092 * new: new GEM buffer for the frontbuffer slots 5093 * frontbuffer_bits: bitmask of frontbuffer slots 5094 * 5095 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5096 * from @old and setting them in @new. Both @old and @new can be NULL. 5097 */ 5098 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5099 struct drm_i915_gem_object *new, 5100 unsigned frontbuffer_bits) 5101 { 5102 if (old) { 5103 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5104 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5105 old->frontbuffer_bits &= ~frontbuffer_bits; 5106 } 5107 5108 if (new) { 5109 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5110 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5111 new->frontbuffer_bits |= frontbuffer_bits; 5112 } 5113 } 5114 5115 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 5116 { 5117 if (!mutex_is_locked(mutex)) 5118 return false; 5119 5120 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 5121 return mutex->owner == task; 5122 #else 5123 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 5124 return false; 5125 #endif 5126 } 5127 5128 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) 5129 { 5130 if (!mutex_trylock(&dev->struct_mutex)) { 5131 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5132 return false; 5133 5134 if (to_i915(dev)->mm.shrinker_no_lock_stealing) 5135 return false; 5136 5137 *unlock = false; 5138 } else 5139 *unlock = true; 5140 5141 return true; 5142 } 5143 5144 static int num_vma_bound(struct drm_i915_gem_object *obj) 5145 { 5146 struct i915_vma *vma; 5147 int count = 0; 5148 5149 list_for_each_entry(vma, &obj->vma_list, vma_link) 5150 if (drm_mm_node_allocated(&vma->node)) 5151 count++; 5152 5153 return count; 5154 } 5155 5156 static unsigned long 5157 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 5158 { 5159 struct drm_i915_private *dev_priv = 5160 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5161 struct drm_device *dev = dev_priv->dev; 5162 struct drm_i915_gem_object *obj; 5163 unsigned long count; 5164 bool unlock; 5165 5166 if (!i915_gem_shrinker_lock(dev, &unlock)) 5167 return 0; 5168 5169 count = 0; 5170 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 5171 if (obj->pages_pin_count == 0) 5172 count += obj->base.size >> PAGE_SHIFT; 5173 5174 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5175 if (!i915_gem_obj_is_pinned(obj) && 5176 obj->pages_pin_count == num_vma_bound(obj)) 5177 count += obj->base.size >> PAGE_SHIFT; 5178 } 5179 5180 if (unlock) 5181 mutex_unlock(&dev->struct_mutex); 5182 5183 return count; 5184 } 5185 5186 /* All the new VM stuff */ 5187 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o, 5188 struct i915_address_space *vm, 5189 enum i915_ggtt_view_type view) 5190 { 5191 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5192 struct i915_vma *vma; 5193 5194 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5195 5196 list_for_each_entry(vma, &o->vma_list, vma_link) { 5197 if (vma->vm == vm && vma->ggtt_view.type == view) 5198 return vma->node.start; 5199 5200 } 5201 WARN(1, "%s vma for this object not found.\n", 5202 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5203 return -1; 5204 } 5205 5206 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o, 5207 struct i915_address_space *vm, 5208 enum i915_ggtt_view_type view) 5209 { 5210 struct i915_vma *vma; 5211 5212 list_for_each_entry(vma, &o->vma_list, vma_link) 5213 if (vma->vm == vm && 5214 vma->ggtt_view.type == view && 5215 drm_mm_node_allocated(&vma->node)) 5216 return true; 5217 5218 return false; 5219 } 5220 5221 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5222 { 5223 struct i915_vma *vma; 5224 5225 list_for_each_entry(vma, &o->vma_list, vma_link) 5226 if (drm_mm_node_allocated(&vma->node)) 5227 return true; 5228 5229 return false; 5230 } 5231 5232 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5233 struct i915_address_space *vm) 5234 { 5235 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5236 struct i915_vma *vma; 5237 5238 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5239 5240 BUG_ON(list_empty(&o->vma_list)); 5241 5242 list_for_each_entry(vma, &o->vma_list, vma_link) 5243 if (vma->vm == vm) 5244 return vma->node.size; 5245 5246 return 0; 5247 } 5248 5249 static unsigned long 5250 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 5251 { 5252 struct drm_i915_private *dev_priv = 5253 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5254 struct drm_device *dev = dev_priv->dev; 5255 unsigned long freed; 5256 bool unlock; 5257 5258 if (!i915_gem_shrinker_lock(dev, &unlock)) 5259 return SHRINK_STOP; 5260 5261 freed = i915_gem_shrink(dev_priv, 5262 sc->nr_to_scan, 5263 I915_SHRINK_BOUND | 5264 I915_SHRINK_UNBOUND | 5265 I915_SHRINK_PURGEABLE); 5266 if (freed < sc->nr_to_scan) 5267 freed += i915_gem_shrink(dev_priv, 5268 sc->nr_to_scan - freed, 5269 I915_SHRINK_BOUND | 5270 I915_SHRINK_UNBOUND); 5271 if (unlock) 5272 mutex_unlock(&dev->struct_mutex); 5273 5274 return freed; 5275 } 5276 5277 static int 5278 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 5279 { 5280 struct drm_i915_private *dev_priv = 5281 container_of(nb, struct drm_i915_private, mm.oom_notifier); 5282 struct drm_device *dev = dev_priv->dev; 5283 struct drm_i915_gem_object *obj; 5284 unsigned long timeout = msecs_to_jiffies(5000) + 1; 5285 unsigned long pinned, bound, unbound, freed_pages; 5286 bool was_interruptible; 5287 bool unlock; 5288 5289 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) { 5290 schedule_timeout_killable(1); 5291 if (fatal_signal_pending(current)) 5292 return NOTIFY_DONE; 5293 } 5294 if (timeout == 0) { 5295 pr_err("Unable to purge GPU memory due lock contention.\n"); 5296 return NOTIFY_DONE; 5297 } 5298 5299 was_interruptible = dev_priv->mm.interruptible; 5300 dev_priv->mm.interruptible = false; 5301 5302 freed_pages = i915_gem_shrink_all(dev_priv); 5303 5304 dev_priv->mm.interruptible = was_interruptible; 5305 5306 /* Because we may be allocating inside our own driver, we cannot 5307 * assert that there are no objects with pinned pages that are not 5308 * being pointed to by hardware. 5309 */ 5310 unbound = bound = pinned = 0; 5311 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 5312 if (!obj->base.filp) /* not backed by a freeable object */ 5313 continue; 5314 5315 if (obj->pages_pin_count) 5316 pinned += obj->base.size; 5317 else 5318 unbound += obj->base.size; 5319 } 5320 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5321 if (!obj->base.filp) 5322 continue; 5323 5324 if (obj->pages_pin_count) 5325 pinned += obj->base.size; 5326 else 5327 bound += obj->base.size; 5328 } 5329 5330 if (unlock) 5331 mutex_unlock(&dev->struct_mutex); 5332 5333 if (freed_pages || unbound || bound) 5334 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", 5335 freed_pages << PAGE_SHIFT, pinned); 5336 if (unbound || bound) 5337 pr_err("%lu and %lu bytes still available in the " 5338 "bound and unbound GPU page lists.\n", 5339 bound, unbound); 5340 5341 *(unsigned long *)ptr += freed_pages; 5342 return NOTIFY_DONE; 5343 } 5344 5345 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5346 { 5347 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); 5348 struct i915_vma *vma; 5349 5350 list_for_each_entry(vma, &obj->vma_list, vma_link) 5351 if (vma->vm == ggtt && 5352 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) 5353 return vma; 5354 5355 return NULL; 5356 } 5357