xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	lockdep_assert_held(&i915->drm.struct_mutex);
143 	GEM_BUG_ON(i915->gt.active_requests);
144 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 
146 	if (!i915->gt.awake)
147 		return I915_EPOCH_INVALID;
148 
149 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
150 
151 	/*
152 	 * Be paranoid and flush a concurrent interrupt to make sure
153 	 * we don't reactivate any irq tasklets after parking.
154 	 *
155 	 * FIXME: Note that even though we have waited for execlists to be idle,
156 	 * there may still be an in-flight interrupt even though the CSB
157 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
158 	 * is completed before we continue, but it doesn't prevent the HW from
159 	 * raising a spurious interrupt later. To complete the shield we should
160 	 * coordinate disabling the CS irq with flushing the interrupts.
161 	 */
162 	synchronize_irq(i915->drm.irq);
163 
164 	intel_engines_park(i915);
165 	i915_timelines_park(i915);
166 
167 	i915_pmu_gt_parked(i915);
168 	i915_vma_parked(i915);
169 
170 	i915->gt.awake = false;
171 
172 	if (INTEL_GEN(i915) >= 6)
173 		gen6_rps_idle(i915);
174 
175 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
176 
177 	intel_runtime_pm_put(i915);
178 
179 	return i915->gt.epoch;
180 }
181 
182 void i915_gem_park(struct drm_i915_private *i915)
183 {
184 	lockdep_assert_held(&i915->drm.struct_mutex);
185 	GEM_BUG_ON(i915->gt.active_requests);
186 
187 	if (!i915->gt.awake)
188 		return;
189 
190 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
191 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
192 }
193 
194 void i915_gem_unpark(struct drm_i915_private *i915)
195 {
196 	lockdep_assert_held(&i915->drm.struct_mutex);
197 	GEM_BUG_ON(!i915->gt.active_requests);
198 
199 	if (i915->gt.awake)
200 		return;
201 
202 	intel_runtime_pm_get_noresume(i915);
203 
204 	/*
205 	 * It seems that the DMC likes to transition between the DC states a lot
206 	 * when there are no connected displays (no active power domains) during
207 	 * command submission.
208 	 *
209 	 * This activity has negative impact on the performance of the chip with
210 	 * huge latencies observed in the interrupt handler and elsewhere.
211 	 *
212 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
213 	 * GT activity, preventing any DC state transitions.
214 	 */
215 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
216 
217 	i915->gt.awake = true;
218 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
219 		i915->gt.epoch = 1;
220 
221 	intel_enable_gt_powersave(i915);
222 	i915_update_gfx_val(i915);
223 	if (INTEL_GEN(i915) >= 6)
224 		gen6_rps_busy(i915);
225 	i915_pmu_gt_unparked(i915);
226 
227 	intel_engines_unpark(i915);
228 
229 	i915_queue_hangcheck(i915);
230 
231 	queue_delayed_work(i915->wq,
232 			   &i915->gt.retire_work,
233 			   round_jiffies_up_relative(HZ));
234 }
235 
236 int
237 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238 			    struct drm_file *file)
239 {
240 	struct drm_i915_private *dev_priv = to_i915(dev);
241 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242 	struct drm_i915_gem_get_aperture *args = data;
243 	struct i915_vma *vma;
244 	u64 pinned;
245 
246 	pinned = ggtt->base.reserved;
247 	mutex_lock(&dev->struct_mutex);
248 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249 		if (i915_vma_is_pinned(vma))
250 			pinned += vma->node.size;
251 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252 		if (i915_vma_is_pinned(vma))
253 			pinned += vma->node.size;
254 	mutex_unlock(&dev->struct_mutex);
255 
256 	args->aper_size = ggtt->base.total;
257 	args->aper_available_size = args->aper_size - pinned;
258 
259 	return 0;
260 }
261 
262 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263 {
264 	struct address_space *mapping = obj->base.filp->f_mapping;
265 	drm_dma_handle_t *phys;
266 	struct sg_table *st;
267 	struct scatterlist *sg;
268 	char *vaddr;
269 	int i;
270 	int err;
271 
272 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273 		return -EINVAL;
274 
275 	/* Always aligning to the object size, allows a single allocation
276 	 * to handle all possible callers, and given typical object sizes,
277 	 * the alignment of the buddy allocation will naturally match.
278 	 */
279 	phys = drm_pci_alloc(obj->base.dev,
280 			     roundup_pow_of_two(obj->base.size),
281 			     roundup_pow_of_two(obj->base.size));
282 	if (!phys)
283 		return -ENOMEM;
284 
285 	vaddr = phys->vaddr;
286 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
287 		struct page *page;
288 		char *src;
289 
290 		page = shmem_read_mapping_page(mapping, i);
291 		if (IS_ERR(page)) {
292 			err = PTR_ERR(page);
293 			goto err_phys;
294 		}
295 
296 		src = kmap_atomic(page);
297 		memcpy(vaddr, src, PAGE_SIZE);
298 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
299 		kunmap_atomic(src);
300 
301 		put_page(page);
302 		vaddr += PAGE_SIZE;
303 	}
304 
305 	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 
307 	st = kmalloc(sizeof(*st), GFP_KERNEL);
308 	if (!st) {
309 		err = -ENOMEM;
310 		goto err_phys;
311 	}
312 
313 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
314 		kfree(st);
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	sg = st->sgl;
320 	sg->offset = 0;
321 	sg->length = obj->base.size;
322 
323 	sg_dma_address(sg) = phys->busaddr;
324 	sg_dma_len(sg) = obj->base.size;
325 
326 	obj->phys_handle = phys;
327 
328 	__i915_gem_object_set_pages(obj, st, sg->length);
329 
330 	return 0;
331 
332 err_phys:
333 	drm_pci_free(obj->base.dev, phys);
334 
335 	return err;
336 }
337 
338 static void __start_cpu_write(struct drm_i915_gem_object *obj)
339 {
340 	obj->read_domains = I915_GEM_DOMAIN_CPU;
341 	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 	if (cpu_write_needs_clflush(obj))
343 		obj->cache_dirty = true;
344 }
345 
346 static void
347 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 				struct sg_table *pages,
349 				bool needs_clflush)
350 {
351 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352 
353 	if (obj->mm.madv == I915_MADV_DONTNEED)
354 		obj->mm.dirty = false;
355 
356 	if (needs_clflush &&
357 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359 		drm_clflush_sg(pages);
360 
361 	__start_cpu_write(obj);
362 }
363 
364 static void
365 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
366 			       struct sg_table *pages)
367 {
368 	__i915_gem_object_release_shmem(obj, pages, false);
369 
370 	if (obj->mm.dirty) {
371 		struct address_space *mapping = obj->base.filp->f_mapping;
372 		char *vaddr = obj->phys_handle->vaddr;
373 		int i;
374 
375 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 			struct page *page;
377 			char *dst;
378 
379 			page = shmem_read_mapping_page(mapping, i);
380 			if (IS_ERR(page))
381 				continue;
382 
383 			dst = kmap_atomic(page);
384 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
385 			memcpy(dst, vaddr, PAGE_SIZE);
386 			kunmap_atomic(dst);
387 
388 			set_page_dirty(page);
389 			if (obj->mm.madv == I915_MADV_WILLNEED)
390 				mark_page_accessed(page);
391 			put_page(page);
392 			vaddr += PAGE_SIZE;
393 		}
394 		obj->mm.dirty = false;
395 	}
396 
397 	sg_free_table(pages);
398 	kfree(pages);
399 
400 	drm_pci_free(obj->base.dev, obj->phys_handle);
401 }
402 
403 static void
404 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
405 {
406 	i915_gem_object_unpin_pages(obj);
407 }
408 
409 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
410 	.get_pages = i915_gem_object_get_pages_phys,
411 	.put_pages = i915_gem_object_put_pages_phys,
412 	.release = i915_gem_object_release_phys,
413 };
414 
415 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
416 
417 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 {
419 	struct i915_vma *vma;
420 	LIST_HEAD(still_in_list);
421 	int ret;
422 
423 	lockdep_assert_held(&obj->base.dev->struct_mutex);
424 
425 	/* Closed vma are removed from the obj->vma_list - but they may
426 	 * still have an active binding on the object. To remove those we
427 	 * must wait for all rendering to complete to the object (as unbinding
428 	 * must anyway), and retire the requests.
429 	 */
430 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 	if (ret)
432 		return ret;
433 
434 	while ((vma = list_first_entry_or_null(&obj->vma_list,
435 					       struct i915_vma,
436 					       obj_link))) {
437 		list_move_tail(&vma->obj_link, &still_in_list);
438 		ret = i915_vma_unbind(vma);
439 		if (ret)
440 			break;
441 	}
442 	list_splice(&still_in_list, &obj->vma_list);
443 
444 	return ret;
445 }
446 
447 static long
448 i915_gem_object_wait_fence(struct dma_fence *fence,
449 			   unsigned int flags,
450 			   long timeout,
451 			   struct intel_rps_client *rps_client)
452 {
453 	struct i915_request *rq;
454 
455 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456 
457 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
458 		return timeout;
459 
460 	if (!dma_fence_is_i915(fence))
461 		return dma_fence_wait_timeout(fence,
462 					      flags & I915_WAIT_INTERRUPTIBLE,
463 					      timeout);
464 
465 	rq = to_request(fence);
466 	if (i915_request_completed(rq))
467 		goto out;
468 
469 	/*
470 	 * This client is about to stall waiting for the GPU. In many cases
471 	 * this is undesirable and limits the throughput of the system, as
472 	 * many clients cannot continue processing user input/output whilst
473 	 * blocked. RPS autotuning may take tens of milliseconds to respond
474 	 * to the GPU load and thus incurs additional latency for the client.
475 	 * We can circumvent that by promoting the GPU frequency to maximum
476 	 * before we wait. This makes the GPU throttle up much more quickly
477 	 * (good for benchmarks and user experience, e.g. window animations),
478 	 * but at a cost of spending more power processing the workload
479 	 * (bad for battery). Not all clients even want their results
480 	 * immediately and for them we should just let the GPU select its own
481 	 * frequency to maximise efficiency. To prevent a single client from
482 	 * forcing the clocks too high for the whole system, we only allow
483 	 * each client to waitboost once in a busy period.
484 	 */
485 	if (rps_client && !i915_request_started(rq)) {
486 		if (INTEL_GEN(rq->i915) >= 6)
487 			gen6_rps_boost(rq, rps_client);
488 	}
489 
490 	timeout = i915_request_wait(rq, flags, timeout);
491 
492 out:
493 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
494 		i915_request_retire_upto(rq);
495 
496 	return timeout;
497 }
498 
499 static long
500 i915_gem_object_wait_reservation(struct reservation_object *resv,
501 				 unsigned int flags,
502 				 long timeout,
503 				 struct intel_rps_client *rps_client)
504 {
505 	unsigned int seq = __read_seqcount_begin(&resv->seq);
506 	struct dma_fence *excl;
507 	bool prune_fences = false;
508 
509 	if (flags & I915_WAIT_ALL) {
510 		struct dma_fence **shared;
511 		unsigned int count, i;
512 		int ret;
513 
514 		ret = reservation_object_get_fences_rcu(resv,
515 							&excl, &count, &shared);
516 		if (ret)
517 			return ret;
518 
519 		for (i = 0; i < count; i++) {
520 			timeout = i915_gem_object_wait_fence(shared[i],
521 							     flags, timeout,
522 							     rps_client);
523 			if (timeout < 0)
524 				break;
525 
526 			dma_fence_put(shared[i]);
527 		}
528 
529 		for (; i < count; i++)
530 			dma_fence_put(shared[i]);
531 		kfree(shared);
532 
533 		/*
534 		 * If both shared fences and an exclusive fence exist,
535 		 * then by construction the shared fences must be later
536 		 * than the exclusive fence. If we successfully wait for
537 		 * all the shared fences, we know that the exclusive fence
538 		 * must all be signaled. If all the shared fences are
539 		 * signaled, we can prune the array and recover the
540 		 * floating references on the fences/requests.
541 		 */
542 		prune_fences = count && timeout >= 0;
543 	} else {
544 		excl = reservation_object_get_excl_rcu(resv);
545 	}
546 
547 	if (excl && timeout >= 0)
548 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
549 						     rps_client);
550 
551 	dma_fence_put(excl);
552 
553 	/*
554 	 * Opportunistically prune the fences iff we know they have *all* been
555 	 * signaled and that the reservation object has not been changed (i.e.
556 	 * no new fences have been added).
557 	 */
558 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 		if (reservation_object_trylock(resv)) {
560 			if (!__read_seqcount_retry(&resv->seq, seq))
561 				reservation_object_add_excl_fence(resv, NULL);
562 			reservation_object_unlock(resv);
563 		}
564 	}
565 
566 	return timeout;
567 }
568 
569 static void __fence_set_priority(struct dma_fence *fence,
570 				 const struct i915_sched_attr *attr)
571 {
572 	struct i915_request *rq;
573 	struct intel_engine_cs *engine;
574 
575 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 		return;
577 
578 	rq = to_request(fence);
579 	engine = rq->engine;
580 
581 	local_bh_disable();
582 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
583 	if (engine->schedule)
584 		engine->schedule(rq, attr);
585 	rcu_read_unlock();
586 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
587 }
588 
589 static void fence_set_priority(struct dma_fence *fence,
590 			       const struct i915_sched_attr *attr)
591 {
592 	/* Recurse once into a fence-array */
593 	if (dma_fence_is_array(fence)) {
594 		struct dma_fence_array *array = to_dma_fence_array(fence);
595 		int i;
596 
597 		for (i = 0; i < array->num_fences; i++)
598 			__fence_set_priority(array->fences[i], attr);
599 	} else {
600 		__fence_set_priority(fence, attr);
601 	}
602 }
603 
604 int
605 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
606 			      unsigned int flags,
607 			      const struct i915_sched_attr *attr)
608 {
609 	struct dma_fence *excl;
610 
611 	if (flags & I915_WAIT_ALL) {
612 		struct dma_fence **shared;
613 		unsigned int count, i;
614 		int ret;
615 
616 		ret = reservation_object_get_fences_rcu(obj->resv,
617 							&excl, &count, &shared);
618 		if (ret)
619 			return ret;
620 
621 		for (i = 0; i < count; i++) {
622 			fence_set_priority(shared[i], attr);
623 			dma_fence_put(shared[i]);
624 		}
625 
626 		kfree(shared);
627 	} else {
628 		excl = reservation_object_get_excl_rcu(obj->resv);
629 	}
630 
631 	if (excl) {
632 		fence_set_priority(excl, attr);
633 		dma_fence_put(excl);
634 	}
635 	return 0;
636 }
637 
638 /**
639  * Waits for rendering to the object to be completed
640  * @obj: i915 gem object
641  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
642  * @timeout: how long to wait
643  * @rps_client: client (user process) to charge for any waitboosting
644  */
645 int
646 i915_gem_object_wait(struct drm_i915_gem_object *obj,
647 		     unsigned int flags,
648 		     long timeout,
649 		     struct intel_rps_client *rps_client)
650 {
651 	might_sleep();
652 #if IS_ENABLED(CONFIG_LOCKDEP)
653 	GEM_BUG_ON(debug_locks &&
654 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
655 		   !!(flags & I915_WAIT_LOCKED));
656 #endif
657 	GEM_BUG_ON(timeout < 0);
658 
659 	timeout = i915_gem_object_wait_reservation(obj->resv,
660 						   flags, timeout,
661 						   rps_client);
662 	return timeout < 0 ? timeout : 0;
663 }
664 
665 static struct intel_rps_client *to_rps_client(struct drm_file *file)
666 {
667 	struct drm_i915_file_private *fpriv = file->driver_priv;
668 
669 	return &fpriv->rps_client;
670 }
671 
672 static int
673 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
674 		     struct drm_i915_gem_pwrite *args,
675 		     struct drm_file *file)
676 {
677 	void *vaddr = obj->phys_handle->vaddr + args->offset;
678 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
679 
680 	/* We manually control the domain here and pretend that it
681 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
682 	 */
683 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
684 	if (copy_from_user(vaddr, user_data, args->size))
685 		return -EFAULT;
686 
687 	drm_clflush_virt_range(vaddr, args->size);
688 	i915_gem_chipset_flush(to_i915(obj->base.dev));
689 
690 	intel_fb_obj_flush(obj, ORIGIN_CPU);
691 	return 0;
692 }
693 
694 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
695 {
696 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
697 }
698 
699 void i915_gem_object_free(struct drm_i915_gem_object *obj)
700 {
701 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
702 	kmem_cache_free(dev_priv->objects, obj);
703 }
704 
705 static int
706 i915_gem_create(struct drm_file *file,
707 		struct drm_i915_private *dev_priv,
708 		uint64_t size,
709 		uint32_t *handle_p)
710 {
711 	struct drm_i915_gem_object *obj;
712 	int ret;
713 	u32 handle;
714 
715 	size = roundup(size, PAGE_SIZE);
716 	if (size == 0)
717 		return -EINVAL;
718 
719 	/* Allocate the new object */
720 	obj = i915_gem_object_create(dev_priv, size);
721 	if (IS_ERR(obj))
722 		return PTR_ERR(obj);
723 
724 	ret = drm_gem_handle_create(file, &obj->base, &handle);
725 	/* drop reference from allocate - handle holds it now */
726 	i915_gem_object_put(obj);
727 	if (ret)
728 		return ret;
729 
730 	*handle_p = handle;
731 	return 0;
732 }
733 
734 int
735 i915_gem_dumb_create(struct drm_file *file,
736 		     struct drm_device *dev,
737 		     struct drm_mode_create_dumb *args)
738 {
739 	/* have to work out size/pitch and return them */
740 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
741 	args->size = args->pitch * args->height;
742 	return i915_gem_create(file, to_i915(dev),
743 			       args->size, &args->handle);
744 }
745 
746 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
747 {
748 	return !(obj->cache_level == I915_CACHE_NONE ||
749 		 obj->cache_level == I915_CACHE_WT);
750 }
751 
752 /**
753  * Creates a new mm object and returns a handle to it.
754  * @dev: drm device pointer
755  * @data: ioctl data blob
756  * @file: drm file pointer
757  */
758 int
759 i915_gem_create_ioctl(struct drm_device *dev, void *data,
760 		      struct drm_file *file)
761 {
762 	struct drm_i915_private *dev_priv = to_i915(dev);
763 	struct drm_i915_gem_create *args = data;
764 
765 	i915_gem_flush_free_objects(dev_priv);
766 
767 	return i915_gem_create(file, dev_priv,
768 			       args->size, &args->handle);
769 }
770 
771 static inline enum fb_op_origin
772 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
773 {
774 	return (domain == I915_GEM_DOMAIN_GTT ?
775 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
776 }
777 
778 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
779 {
780 	/*
781 	 * No actual flushing is required for the GTT write domain for reads
782 	 * from the GTT domain. Writes to it "immediately" go to main memory
783 	 * as far as we know, so there's no chipset flush. It also doesn't
784 	 * land in the GPU render cache.
785 	 *
786 	 * However, we do have to enforce the order so that all writes through
787 	 * the GTT land before any writes to the device, such as updates to
788 	 * the GATT itself.
789 	 *
790 	 * We also have to wait a bit for the writes to land from the GTT.
791 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
792 	 * timing. This issue has only been observed when switching quickly
793 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
794 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
795 	 * system agents we cannot reproduce this behaviour, until Cannonlake
796 	 * that was!).
797 	 */
798 
799 	wmb();
800 
801 	intel_runtime_pm_get(dev_priv);
802 	spin_lock_irq(&dev_priv->uncore.lock);
803 
804 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
805 
806 	spin_unlock_irq(&dev_priv->uncore.lock);
807 	intel_runtime_pm_put(dev_priv);
808 }
809 
810 static void
811 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
812 {
813 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
814 	struct i915_vma *vma;
815 
816 	if (!(obj->write_domain & flush_domains))
817 		return;
818 
819 	switch (obj->write_domain) {
820 	case I915_GEM_DOMAIN_GTT:
821 		i915_gem_flush_ggtt_writes(dev_priv);
822 
823 		intel_fb_obj_flush(obj,
824 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
825 
826 		for_each_ggtt_vma(vma, obj) {
827 			if (vma->iomap)
828 				continue;
829 
830 			i915_vma_unset_ggtt_write(vma);
831 		}
832 		break;
833 
834 	case I915_GEM_DOMAIN_CPU:
835 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
836 		break;
837 
838 	case I915_GEM_DOMAIN_RENDER:
839 		if (gpu_write_needs_clflush(obj))
840 			obj->cache_dirty = true;
841 		break;
842 	}
843 
844 	obj->write_domain = 0;
845 }
846 
847 static inline int
848 __copy_to_user_swizzled(char __user *cpu_vaddr,
849 			const char *gpu_vaddr, int gpu_offset,
850 			int length)
851 {
852 	int ret, cpu_offset = 0;
853 
854 	while (length > 0) {
855 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
856 		int this_length = min(cacheline_end - gpu_offset, length);
857 		int swizzled_gpu_offset = gpu_offset ^ 64;
858 
859 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
860 				     gpu_vaddr + swizzled_gpu_offset,
861 				     this_length);
862 		if (ret)
863 			return ret + length;
864 
865 		cpu_offset += this_length;
866 		gpu_offset += this_length;
867 		length -= this_length;
868 	}
869 
870 	return 0;
871 }
872 
873 static inline int
874 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
875 			  const char __user *cpu_vaddr,
876 			  int length)
877 {
878 	int ret, cpu_offset = 0;
879 
880 	while (length > 0) {
881 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
882 		int this_length = min(cacheline_end - gpu_offset, length);
883 		int swizzled_gpu_offset = gpu_offset ^ 64;
884 
885 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
886 				       cpu_vaddr + cpu_offset,
887 				       this_length);
888 		if (ret)
889 			return ret + length;
890 
891 		cpu_offset += this_length;
892 		gpu_offset += this_length;
893 		length -= this_length;
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * Pins the specified object's pages and synchronizes the object with
901  * GPU accesses. Sets needs_clflush to non-zero if the caller should
902  * flush the object from the CPU cache.
903  */
904 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
905 				    unsigned int *needs_clflush)
906 {
907 	int ret;
908 
909 	lockdep_assert_held(&obj->base.dev->struct_mutex);
910 
911 	*needs_clflush = 0;
912 	if (!i915_gem_object_has_struct_page(obj))
913 		return -ENODEV;
914 
915 	ret = i915_gem_object_wait(obj,
916 				   I915_WAIT_INTERRUPTIBLE |
917 				   I915_WAIT_LOCKED,
918 				   MAX_SCHEDULE_TIMEOUT,
919 				   NULL);
920 	if (ret)
921 		return ret;
922 
923 	ret = i915_gem_object_pin_pages(obj);
924 	if (ret)
925 		return ret;
926 
927 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
928 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
929 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
930 		if (ret)
931 			goto err_unpin;
932 		else
933 			goto out;
934 	}
935 
936 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
937 
938 	/* If we're not in the cpu read domain, set ourself into the gtt
939 	 * read domain and manually flush cachelines (if required). This
940 	 * optimizes for the case when the gpu will dirty the data
941 	 * anyway again before the next pread happens.
942 	 */
943 	if (!obj->cache_dirty &&
944 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
945 		*needs_clflush = CLFLUSH_BEFORE;
946 
947 out:
948 	/* return with the pages pinned */
949 	return 0;
950 
951 err_unpin:
952 	i915_gem_object_unpin_pages(obj);
953 	return ret;
954 }
955 
956 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
957 				     unsigned int *needs_clflush)
958 {
959 	int ret;
960 
961 	lockdep_assert_held(&obj->base.dev->struct_mutex);
962 
963 	*needs_clflush = 0;
964 	if (!i915_gem_object_has_struct_page(obj))
965 		return -ENODEV;
966 
967 	ret = i915_gem_object_wait(obj,
968 				   I915_WAIT_INTERRUPTIBLE |
969 				   I915_WAIT_LOCKED |
970 				   I915_WAIT_ALL,
971 				   MAX_SCHEDULE_TIMEOUT,
972 				   NULL);
973 	if (ret)
974 		return ret;
975 
976 	ret = i915_gem_object_pin_pages(obj);
977 	if (ret)
978 		return ret;
979 
980 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
981 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
982 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
983 		if (ret)
984 			goto err_unpin;
985 		else
986 			goto out;
987 	}
988 
989 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
990 
991 	/* If we're not in the cpu write domain, set ourself into the
992 	 * gtt write domain and manually flush cachelines (as required).
993 	 * This optimizes for the case when the gpu will use the data
994 	 * right away and we therefore have to clflush anyway.
995 	 */
996 	if (!obj->cache_dirty) {
997 		*needs_clflush |= CLFLUSH_AFTER;
998 
999 		/*
1000 		 * Same trick applies to invalidate partially written
1001 		 * cachelines read before writing.
1002 		 */
1003 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1004 			*needs_clflush |= CLFLUSH_BEFORE;
1005 	}
1006 
1007 out:
1008 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1009 	obj->mm.dirty = true;
1010 	/* return with the pages pinned */
1011 	return 0;
1012 
1013 err_unpin:
1014 	i915_gem_object_unpin_pages(obj);
1015 	return ret;
1016 }
1017 
1018 static void
1019 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1020 			     bool swizzled)
1021 {
1022 	if (unlikely(swizzled)) {
1023 		unsigned long start = (unsigned long) addr;
1024 		unsigned long end = (unsigned long) addr + length;
1025 
1026 		/* For swizzling simply ensure that we always flush both
1027 		 * channels. Lame, but simple and it works. Swizzled
1028 		 * pwrite/pread is far from a hotpath - current userspace
1029 		 * doesn't use it at all. */
1030 		start = round_down(start, 128);
1031 		end = round_up(end, 128);
1032 
1033 		drm_clflush_virt_range((void *)start, end - start);
1034 	} else {
1035 		drm_clflush_virt_range(addr, length);
1036 	}
1037 
1038 }
1039 
1040 /* Only difference to the fast-path function is that this can handle bit17
1041  * and uses non-atomic copy and kmap functions. */
1042 static int
1043 shmem_pread_slow(struct page *page, int offset, int length,
1044 		 char __user *user_data,
1045 		 bool page_do_bit17_swizzling, bool needs_clflush)
1046 {
1047 	char *vaddr;
1048 	int ret;
1049 
1050 	vaddr = kmap(page);
1051 	if (needs_clflush)
1052 		shmem_clflush_swizzled_range(vaddr + offset, length,
1053 					     page_do_bit17_swizzling);
1054 
1055 	if (page_do_bit17_swizzling)
1056 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1057 	else
1058 		ret = __copy_to_user(user_data, vaddr + offset, length);
1059 	kunmap(page);
1060 
1061 	return ret ? - EFAULT : 0;
1062 }
1063 
1064 static int
1065 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1066 	    bool page_do_bit17_swizzling, bool needs_clflush)
1067 {
1068 	int ret;
1069 
1070 	ret = -ENODEV;
1071 	if (!page_do_bit17_swizzling) {
1072 		char *vaddr = kmap_atomic(page);
1073 
1074 		if (needs_clflush)
1075 			drm_clflush_virt_range(vaddr + offset, length);
1076 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077 		kunmap_atomic(vaddr);
1078 	}
1079 	if (ret == 0)
1080 		return 0;
1081 
1082 	return shmem_pread_slow(page, offset, length, user_data,
1083 				page_do_bit17_swizzling, needs_clflush);
1084 }
1085 
1086 static int
1087 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1088 		     struct drm_i915_gem_pread *args)
1089 {
1090 	char __user *user_data;
1091 	u64 remain;
1092 	unsigned int obj_do_bit17_swizzling;
1093 	unsigned int needs_clflush;
1094 	unsigned int idx, offset;
1095 	int ret;
1096 
1097 	obj_do_bit17_swizzling = 0;
1098 	if (i915_gem_object_needs_bit17_swizzle(obj))
1099 		obj_do_bit17_swizzling = BIT(17);
1100 
1101 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1106 	mutex_unlock(&obj->base.dev->struct_mutex);
1107 	if (ret)
1108 		return ret;
1109 
1110 	remain = args->size;
1111 	user_data = u64_to_user_ptr(args->data_ptr);
1112 	offset = offset_in_page(args->offset);
1113 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1114 		struct page *page = i915_gem_object_get_page(obj, idx);
1115 		int length;
1116 
1117 		length = remain;
1118 		if (offset + length > PAGE_SIZE)
1119 			length = PAGE_SIZE - offset;
1120 
1121 		ret = shmem_pread(page, offset, length, user_data,
1122 				  page_to_phys(page) & obj_do_bit17_swizzling,
1123 				  needs_clflush);
1124 		if (ret)
1125 			break;
1126 
1127 		remain -= length;
1128 		user_data += length;
1129 		offset = 0;
1130 	}
1131 
1132 	i915_gem_obj_finish_shmem_access(obj);
1133 	return ret;
1134 }
1135 
1136 static inline bool
1137 gtt_user_read(struct io_mapping *mapping,
1138 	      loff_t base, int offset,
1139 	      char __user *user_data, int length)
1140 {
1141 	void __iomem *vaddr;
1142 	unsigned long unwritten;
1143 
1144 	/* We can use the cpu mem copy function because this is X86. */
1145 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1146 	unwritten = __copy_to_user_inatomic(user_data,
1147 					    (void __force *)vaddr + offset,
1148 					    length);
1149 	io_mapping_unmap_atomic(vaddr);
1150 	if (unwritten) {
1151 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1152 		unwritten = copy_to_user(user_data,
1153 					 (void __force *)vaddr + offset,
1154 					 length);
1155 		io_mapping_unmap(vaddr);
1156 	}
1157 	return unwritten;
1158 }
1159 
1160 static int
1161 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1162 		   const struct drm_i915_gem_pread *args)
1163 {
1164 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1165 	struct i915_ggtt *ggtt = &i915->ggtt;
1166 	struct drm_mm_node node;
1167 	struct i915_vma *vma;
1168 	void __user *user_data;
1169 	u64 remain, offset;
1170 	int ret;
1171 
1172 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1173 	if (ret)
1174 		return ret;
1175 
1176 	intel_runtime_pm_get(i915);
1177 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1178 				       PIN_MAPPABLE |
1179 				       PIN_NONFAULT |
1180 				       PIN_NONBLOCK);
1181 	if (!IS_ERR(vma)) {
1182 		node.start = i915_ggtt_offset(vma);
1183 		node.allocated = false;
1184 		ret = i915_vma_put_fence(vma);
1185 		if (ret) {
1186 			i915_vma_unpin(vma);
1187 			vma = ERR_PTR(ret);
1188 		}
1189 	}
1190 	if (IS_ERR(vma)) {
1191 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1192 		if (ret)
1193 			goto out_unlock;
1194 		GEM_BUG_ON(!node.allocated);
1195 	}
1196 
1197 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1198 	if (ret)
1199 		goto out_unpin;
1200 
1201 	mutex_unlock(&i915->drm.struct_mutex);
1202 
1203 	user_data = u64_to_user_ptr(args->data_ptr);
1204 	remain = args->size;
1205 	offset = args->offset;
1206 
1207 	while (remain > 0) {
1208 		/* Operation in this page
1209 		 *
1210 		 * page_base = page offset within aperture
1211 		 * page_offset = offset within page
1212 		 * page_length = bytes to copy for this page
1213 		 */
1214 		u32 page_base = node.start;
1215 		unsigned page_offset = offset_in_page(offset);
1216 		unsigned page_length = PAGE_SIZE - page_offset;
1217 		page_length = remain < page_length ? remain : page_length;
1218 		if (node.allocated) {
1219 			wmb();
1220 			ggtt->base.insert_page(&ggtt->base,
1221 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1222 					       node.start, I915_CACHE_NONE, 0);
1223 			wmb();
1224 		} else {
1225 			page_base += offset & PAGE_MASK;
1226 		}
1227 
1228 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1229 				  user_data, page_length)) {
1230 			ret = -EFAULT;
1231 			break;
1232 		}
1233 
1234 		remain -= page_length;
1235 		user_data += page_length;
1236 		offset += page_length;
1237 	}
1238 
1239 	mutex_lock(&i915->drm.struct_mutex);
1240 out_unpin:
1241 	if (node.allocated) {
1242 		wmb();
1243 		ggtt->base.clear_range(&ggtt->base,
1244 				       node.start, node.size);
1245 		remove_mappable_node(&node);
1246 	} else {
1247 		i915_vma_unpin(vma);
1248 	}
1249 out_unlock:
1250 	intel_runtime_pm_put(i915);
1251 	mutex_unlock(&i915->drm.struct_mutex);
1252 
1253 	return ret;
1254 }
1255 
1256 /**
1257  * Reads data from the object referenced by handle.
1258  * @dev: drm device pointer
1259  * @data: ioctl data blob
1260  * @file: drm file pointer
1261  *
1262  * On error, the contents of *data are undefined.
1263  */
1264 int
1265 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1266 		     struct drm_file *file)
1267 {
1268 	struct drm_i915_gem_pread *args = data;
1269 	struct drm_i915_gem_object *obj;
1270 	int ret;
1271 
1272 	if (args->size == 0)
1273 		return 0;
1274 
1275 	if (!access_ok(VERIFY_WRITE,
1276 		       u64_to_user_ptr(args->data_ptr),
1277 		       args->size))
1278 		return -EFAULT;
1279 
1280 	obj = i915_gem_object_lookup(file, args->handle);
1281 	if (!obj)
1282 		return -ENOENT;
1283 
1284 	/* Bounds check source.  */
1285 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1286 		ret = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1291 
1292 	ret = i915_gem_object_wait(obj,
1293 				   I915_WAIT_INTERRUPTIBLE,
1294 				   MAX_SCHEDULE_TIMEOUT,
1295 				   to_rps_client(file));
1296 	if (ret)
1297 		goto out;
1298 
1299 	ret = i915_gem_object_pin_pages(obj);
1300 	if (ret)
1301 		goto out;
1302 
1303 	ret = i915_gem_shmem_pread(obj, args);
1304 	if (ret == -EFAULT || ret == -ENODEV)
1305 		ret = i915_gem_gtt_pread(obj, args);
1306 
1307 	i915_gem_object_unpin_pages(obj);
1308 out:
1309 	i915_gem_object_put(obj);
1310 	return ret;
1311 }
1312 
1313 /* This is the fast write path which cannot handle
1314  * page faults in the source data
1315  */
1316 
1317 static inline bool
1318 ggtt_write(struct io_mapping *mapping,
1319 	   loff_t base, int offset,
1320 	   char __user *user_data, int length)
1321 {
1322 	void __iomem *vaddr;
1323 	unsigned long unwritten;
1324 
1325 	/* We can use the cpu mem copy function because this is X86. */
1326 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1327 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1328 						      user_data, length);
1329 	io_mapping_unmap_atomic(vaddr);
1330 	if (unwritten) {
1331 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1332 		unwritten = copy_from_user((void __force *)vaddr + offset,
1333 					   user_data, length);
1334 		io_mapping_unmap(vaddr);
1335 	}
1336 
1337 	return unwritten;
1338 }
1339 
1340 /**
1341  * This is the fast pwrite path, where we copy the data directly from the
1342  * user into the GTT, uncached.
1343  * @obj: i915 GEM object
1344  * @args: pwrite arguments structure
1345  */
1346 static int
1347 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1348 			 const struct drm_i915_gem_pwrite *args)
1349 {
1350 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1351 	struct i915_ggtt *ggtt = &i915->ggtt;
1352 	struct drm_mm_node node;
1353 	struct i915_vma *vma;
1354 	u64 remain, offset;
1355 	void __user *user_data;
1356 	int ret;
1357 
1358 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1359 	if (ret)
1360 		return ret;
1361 
1362 	if (i915_gem_object_has_struct_page(obj)) {
1363 		/*
1364 		 * Avoid waking the device up if we can fallback, as
1365 		 * waking/resuming is very slow (worst-case 10-100 ms
1366 		 * depending on PCI sleeps and our own resume time).
1367 		 * This easily dwarfs any performance advantage from
1368 		 * using the cache bypass of indirect GGTT access.
1369 		 */
1370 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1371 			ret = -EFAULT;
1372 			goto out_unlock;
1373 		}
1374 	} else {
1375 		/* No backing pages, no fallback, we must force GGTT access */
1376 		intel_runtime_pm_get(i915);
1377 	}
1378 
1379 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1380 				       PIN_MAPPABLE |
1381 				       PIN_NONFAULT |
1382 				       PIN_NONBLOCK);
1383 	if (!IS_ERR(vma)) {
1384 		node.start = i915_ggtt_offset(vma);
1385 		node.allocated = false;
1386 		ret = i915_vma_put_fence(vma);
1387 		if (ret) {
1388 			i915_vma_unpin(vma);
1389 			vma = ERR_PTR(ret);
1390 		}
1391 	}
1392 	if (IS_ERR(vma)) {
1393 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1394 		if (ret)
1395 			goto out_rpm;
1396 		GEM_BUG_ON(!node.allocated);
1397 	}
1398 
1399 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1400 	if (ret)
1401 		goto out_unpin;
1402 
1403 	mutex_unlock(&i915->drm.struct_mutex);
1404 
1405 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1406 
1407 	user_data = u64_to_user_ptr(args->data_ptr);
1408 	offset = args->offset;
1409 	remain = args->size;
1410 	while (remain) {
1411 		/* Operation in this page
1412 		 *
1413 		 * page_base = page offset within aperture
1414 		 * page_offset = offset within page
1415 		 * page_length = bytes to copy for this page
1416 		 */
1417 		u32 page_base = node.start;
1418 		unsigned int page_offset = offset_in_page(offset);
1419 		unsigned int page_length = PAGE_SIZE - page_offset;
1420 		page_length = remain < page_length ? remain : page_length;
1421 		if (node.allocated) {
1422 			wmb(); /* flush the write before we modify the GGTT */
1423 			ggtt->base.insert_page(&ggtt->base,
1424 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1425 					       node.start, I915_CACHE_NONE, 0);
1426 			wmb(); /* flush modifications to the GGTT (insert_page) */
1427 		} else {
1428 			page_base += offset & PAGE_MASK;
1429 		}
1430 		/* If we get a fault while copying data, then (presumably) our
1431 		 * source page isn't available.  Return the error and we'll
1432 		 * retry in the slow path.
1433 		 * If the object is non-shmem backed, we retry again with the
1434 		 * path that handles page fault.
1435 		 */
1436 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1437 			       user_data, page_length)) {
1438 			ret = -EFAULT;
1439 			break;
1440 		}
1441 
1442 		remain -= page_length;
1443 		user_data += page_length;
1444 		offset += page_length;
1445 	}
1446 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 
1448 	mutex_lock(&i915->drm.struct_mutex);
1449 out_unpin:
1450 	if (node.allocated) {
1451 		wmb();
1452 		ggtt->base.clear_range(&ggtt->base,
1453 				       node.start, node.size);
1454 		remove_mappable_node(&node);
1455 	} else {
1456 		i915_vma_unpin(vma);
1457 	}
1458 out_rpm:
1459 	intel_runtime_pm_put(i915);
1460 out_unlock:
1461 	mutex_unlock(&i915->drm.struct_mutex);
1462 	return ret;
1463 }
1464 
1465 static int
1466 shmem_pwrite_slow(struct page *page, int offset, int length,
1467 		  char __user *user_data,
1468 		  bool page_do_bit17_swizzling,
1469 		  bool needs_clflush_before,
1470 		  bool needs_clflush_after)
1471 {
1472 	char *vaddr;
1473 	int ret;
1474 
1475 	vaddr = kmap(page);
1476 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1477 		shmem_clflush_swizzled_range(vaddr + offset, length,
1478 					     page_do_bit17_swizzling);
1479 	if (page_do_bit17_swizzling)
1480 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1481 						length);
1482 	else
1483 		ret = __copy_from_user(vaddr + offset, user_data, length);
1484 	if (needs_clflush_after)
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	kunmap(page);
1488 
1489 	return ret ? -EFAULT : 0;
1490 }
1491 
1492 /* Per-page copy function for the shmem pwrite fastpath.
1493  * Flushes invalid cachelines before writing to the target if
1494  * needs_clflush_before is set and flushes out any written cachelines after
1495  * writing if needs_clflush is set.
1496  */
1497 static int
1498 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1499 	     bool page_do_bit17_swizzling,
1500 	     bool needs_clflush_before,
1501 	     bool needs_clflush_after)
1502 {
1503 	int ret;
1504 
1505 	ret = -ENODEV;
1506 	if (!page_do_bit17_swizzling) {
1507 		char *vaddr = kmap_atomic(page);
1508 
1509 		if (needs_clflush_before)
1510 			drm_clflush_virt_range(vaddr + offset, len);
1511 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1512 		if (needs_clflush_after)
1513 			drm_clflush_virt_range(vaddr + offset, len);
1514 
1515 		kunmap_atomic(vaddr);
1516 	}
1517 	if (ret == 0)
1518 		return ret;
1519 
1520 	return shmem_pwrite_slow(page, offset, len, user_data,
1521 				 page_do_bit17_swizzling,
1522 				 needs_clflush_before,
1523 				 needs_clflush_after);
1524 }
1525 
1526 static int
1527 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1528 		      const struct drm_i915_gem_pwrite *args)
1529 {
1530 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1531 	void __user *user_data;
1532 	u64 remain;
1533 	unsigned int obj_do_bit17_swizzling;
1534 	unsigned int partial_cacheline_write;
1535 	unsigned int needs_clflush;
1536 	unsigned int offset, idx;
1537 	int ret;
1538 
1539 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1544 	mutex_unlock(&i915->drm.struct_mutex);
1545 	if (ret)
1546 		return ret;
1547 
1548 	obj_do_bit17_swizzling = 0;
1549 	if (i915_gem_object_needs_bit17_swizzle(obj))
1550 		obj_do_bit17_swizzling = BIT(17);
1551 
1552 	/* If we don't overwrite a cacheline completely we need to be
1553 	 * careful to have up-to-date data by first clflushing. Don't
1554 	 * overcomplicate things and flush the entire patch.
1555 	 */
1556 	partial_cacheline_write = 0;
1557 	if (needs_clflush & CLFLUSH_BEFORE)
1558 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1559 
1560 	user_data = u64_to_user_ptr(args->data_ptr);
1561 	remain = args->size;
1562 	offset = offset_in_page(args->offset);
1563 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1564 		struct page *page = i915_gem_object_get_page(obj, idx);
1565 		int length;
1566 
1567 		length = remain;
1568 		if (offset + length > PAGE_SIZE)
1569 			length = PAGE_SIZE - offset;
1570 
1571 		ret = shmem_pwrite(page, offset, length, user_data,
1572 				   page_to_phys(page) & obj_do_bit17_swizzling,
1573 				   (offset | length) & partial_cacheline_write,
1574 				   needs_clflush & CLFLUSH_AFTER);
1575 		if (ret)
1576 			break;
1577 
1578 		remain -= length;
1579 		user_data += length;
1580 		offset = 0;
1581 	}
1582 
1583 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584 	i915_gem_obj_finish_shmem_access(obj);
1585 	return ret;
1586 }
1587 
1588 /**
1589  * Writes data to the object referenced by handle.
1590  * @dev: drm device
1591  * @data: ioctl data blob
1592  * @file: drm file
1593  *
1594  * On error, the contents of the buffer that were to be modified are undefined.
1595  */
1596 int
1597 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598 		      struct drm_file *file)
1599 {
1600 	struct drm_i915_gem_pwrite *args = data;
1601 	struct drm_i915_gem_object *obj;
1602 	int ret;
1603 
1604 	if (args->size == 0)
1605 		return 0;
1606 
1607 	if (!access_ok(VERIFY_READ,
1608 		       u64_to_user_ptr(args->data_ptr),
1609 		       args->size))
1610 		return -EFAULT;
1611 
1612 	obj = i915_gem_object_lookup(file, args->handle);
1613 	if (!obj)
1614 		return -ENOENT;
1615 
1616 	/* Bounds check destination. */
1617 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1618 		ret = -EINVAL;
1619 		goto err;
1620 	}
1621 
1622 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1623 
1624 	ret = -ENODEV;
1625 	if (obj->ops->pwrite)
1626 		ret = obj->ops->pwrite(obj, args);
1627 	if (ret != -ENODEV)
1628 		goto err;
1629 
1630 	ret = i915_gem_object_wait(obj,
1631 				   I915_WAIT_INTERRUPTIBLE |
1632 				   I915_WAIT_ALL,
1633 				   MAX_SCHEDULE_TIMEOUT,
1634 				   to_rps_client(file));
1635 	if (ret)
1636 		goto err;
1637 
1638 	ret = i915_gem_object_pin_pages(obj);
1639 	if (ret)
1640 		goto err;
1641 
1642 	ret = -EFAULT;
1643 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1644 	 * it would end up going through the fenced access, and we'll get
1645 	 * different detiling behavior between reading and writing.
1646 	 * pread/pwrite currently are reading and writing from the CPU
1647 	 * perspective, requiring manual detiling by the client.
1648 	 */
1649 	if (!i915_gem_object_has_struct_page(obj) ||
1650 	    cpu_write_needs_clflush(obj))
1651 		/* Note that the gtt paths might fail with non-page-backed user
1652 		 * pointers (e.g. gtt mappings when moving data between
1653 		 * textures). Fallback to the shmem path in that case.
1654 		 */
1655 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1656 
1657 	if (ret == -EFAULT || ret == -ENOSPC) {
1658 		if (obj->phys_handle)
1659 			ret = i915_gem_phys_pwrite(obj, args, file);
1660 		else
1661 			ret = i915_gem_shmem_pwrite(obj, args);
1662 	}
1663 
1664 	i915_gem_object_unpin_pages(obj);
1665 err:
1666 	i915_gem_object_put(obj);
1667 	return ret;
1668 }
1669 
1670 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1671 {
1672 	struct drm_i915_private *i915;
1673 	struct list_head *list;
1674 	struct i915_vma *vma;
1675 
1676 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1677 
1678 	for_each_ggtt_vma(vma, obj) {
1679 		if (i915_vma_is_active(vma))
1680 			continue;
1681 
1682 		if (!drm_mm_node_allocated(&vma->node))
1683 			continue;
1684 
1685 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1686 	}
1687 
1688 	i915 = to_i915(obj->base.dev);
1689 	spin_lock(&i915->mm.obj_lock);
1690 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1691 	list_move_tail(&obj->mm.link, list);
1692 	spin_unlock(&i915->mm.obj_lock);
1693 }
1694 
1695 /**
1696  * Called when user space prepares to use an object with the CPU, either
1697  * through the mmap ioctl's mapping or a GTT mapping.
1698  * @dev: drm device
1699  * @data: ioctl data blob
1700  * @file: drm file
1701  */
1702 int
1703 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1704 			  struct drm_file *file)
1705 {
1706 	struct drm_i915_gem_set_domain *args = data;
1707 	struct drm_i915_gem_object *obj;
1708 	uint32_t read_domains = args->read_domains;
1709 	uint32_t write_domain = args->write_domain;
1710 	int err;
1711 
1712 	/* Only handle setting domains to types used by the CPU. */
1713 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1714 		return -EINVAL;
1715 
1716 	/* Having something in the write domain implies it's in the read
1717 	 * domain, and only that read domain.  Enforce that in the request.
1718 	 */
1719 	if (write_domain != 0 && read_domains != write_domain)
1720 		return -EINVAL;
1721 
1722 	obj = i915_gem_object_lookup(file, args->handle);
1723 	if (!obj)
1724 		return -ENOENT;
1725 
1726 	/* Try to flush the object off the GPU without holding the lock.
1727 	 * We will repeat the flush holding the lock in the normal manner
1728 	 * to catch cases where we are gazumped.
1729 	 */
1730 	err = i915_gem_object_wait(obj,
1731 				   I915_WAIT_INTERRUPTIBLE |
1732 				   (write_domain ? I915_WAIT_ALL : 0),
1733 				   MAX_SCHEDULE_TIMEOUT,
1734 				   to_rps_client(file));
1735 	if (err)
1736 		goto out;
1737 
1738 	/*
1739 	 * Proxy objects do not control access to the backing storage, ergo
1740 	 * they cannot be used as a means to manipulate the cache domain
1741 	 * tracking for that backing storage. The proxy object is always
1742 	 * considered to be outside of any cache domain.
1743 	 */
1744 	if (i915_gem_object_is_proxy(obj)) {
1745 		err = -ENXIO;
1746 		goto out;
1747 	}
1748 
1749 	/*
1750 	 * Flush and acquire obj->pages so that we are coherent through
1751 	 * direct access in memory with previous cached writes through
1752 	 * shmemfs and that our cache domain tracking remains valid.
1753 	 * For example, if the obj->filp was moved to swap without us
1754 	 * being notified and releasing the pages, we would mistakenly
1755 	 * continue to assume that the obj remained out of the CPU cached
1756 	 * domain.
1757 	 */
1758 	err = i915_gem_object_pin_pages(obj);
1759 	if (err)
1760 		goto out;
1761 
1762 	err = i915_mutex_lock_interruptible(dev);
1763 	if (err)
1764 		goto out_unpin;
1765 
1766 	if (read_domains & I915_GEM_DOMAIN_WC)
1767 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1768 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1769 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1770 	else
1771 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1772 
1773 	/* And bump the LRU for this access */
1774 	i915_gem_object_bump_inactive_ggtt(obj);
1775 
1776 	mutex_unlock(&dev->struct_mutex);
1777 
1778 	if (write_domain != 0)
1779 		intel_fb_obj_invalidate(obj,
1780 					fb_write_origin(obj, write_domain));
1781 
1782 out_unpin:
1783 	i915_gem_object_unpin_pages(obj);
1784 out:
1785 	i915_gem_object_put(obj);
1786 	return err;
1787 }
1788 
1789 /**
1790  * Called when user space has done writes to this buffer
1791  * @dev: drm device
1792  * @data: ioctl data blob
1793  * @file: drm file
1794  */
1795 int
1796 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1797 			 struct drm_file *file)
1798 {
1799 	struct drm_i915_gem_sw_finish *args = data;
1800 	struct drm_i915_gem_object *obj;
1801 
1802 	obj = i915_gem_object_lookup(file, args->handle);
1803 	if (!obj)
1804 		return -ENOENT;
1805 
1806 	/*
1807 	 * Proxy objects are barred from CPU access, so there is no
1808 	 * need to ban sw_finish as it is a nop.
1809 	 */
1810 
1811 	/* Pinned buffers may be scanout, so flush the cache */
1812 	i915_gem_object_flush_if_display(obj);
1813 	i915_gem_object_put(obj);
1814 
1815 	return 0;
1816 }
1817 
1818 /**
1819  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1820  *			 it is mapped to.
1821  * @dev: drm device
1822  * @data: ioctl data blob
1823  * @file: drm file
1824  *
1825  * While the mapping holds a reference on the contents of the object, it doesn't
1826  * imply a ref on the object itself.
1827  *
1828  * IMPORTANT:
1829  *
1830  * DRM driver writers who look a this function as an example for how to do GEM
1831  * mmap support, please don't implement mmap support like here. The modern way
1832  * to implement DRM mmap support is with an mmap offset ioctl (like
1833  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1834  * That way debug tooling like valgrind will understand what's going on, hiding
1835  * the mmap call in a driver private ioctl will break that. The i915 driver only
1836  * does cpu mmaps this way because we didn't know better.
1837  */
1838 int
1839 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1840 		    struct drm_file *file)
1841 {
1842 	struct drm_i915_gem_mmap *args = data;
1843 	struct drm_i915_gem_object *obj;
1844 	unsigned long addr;
1845 
1846 	if (args->flags & ~(I915_MMAP_WC))
1847 		return -EINVAL;
1848 
1849 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1850 		return -ENODEV;
1851 
1852 	obj = i915_gem_object_lookup(file, args->handle);
1853 	if (!obj)
1854 		return -ENOENT;
1855 
1856 	/* prime objects have no backing filp to GEM mmap
1857 	 * pages from.
1858 	 */
1859 	if (!obj->base.filp) {
1860 		i915_gem_object_put(obj);
1861 		return -ENXIO;
1862 	}
1863 
1864 	addr = vm_mmap(obj->base.filp, 0, args->size,
1865 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1866 		       args->offset);
1867 	if (args->flags & I915_MMAP_WC) {
1868 		struct mm_struct *mm = current->mm;
1869 		struct vm_area_struct *vma;
1870 
1871 		if (down_write_killable(&mm->mmap_sem)) {
1872 			i915_gem_object_put(obj);
1873 			return -EINTR;
1874 		}
1875 		vma = find_vma(mm, addr);
1876 		if (vma)
1877 			vma->vm_page_prot =
1878 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1879 		else
1880 			addr = -ENOMEM;
1881 		up_write(&mm->mmap_sem);
1882 
1883 		/* This may race, but that's ok, it only gets set */
1884 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1885 	}
1886 	i915_gem_object_put(obj);
1887 	if (IS_ERR((void *)addr))
1888 		return addr;
1889 
1890 	args->addr_ptr = (uint64_t) addr;
1891 
1892 	return 0;
1893 }
1894 
1895 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1896 {
1897 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1898 }
1899 
1900 /**
1901  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1902  *
1903  * A history of the GTT mmap interface:
1904  *
1905  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1906  *     aligned and suitable for fencing, and still fit into the available
1907  *     mappable space left by the pinned display objects. A classic problem
1908  *     we called the page-fault-of-doom where we would ping-pong between
1909  *     two objects that could not fit inside the GTT and so the memcpy
1910  *     would page one object in at the expense of the other between every
1911  *     single byte.
1912  *
1913  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1914  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1915  *     object is too large for the available space (or simply too large
1916  *     for the mappable aperture!), a view is created instead and faulted
1917  *     into userspace. (This view is aligned and sized appropriately for
1918  *     fenced access.)
1919  *
1920  * 2 - Recognise WC as a separate cache domain so that we can flush the
1921  *     delayed writes via GTT before performing direct access via WC.
1922  *
1923  * Restrictions:
1924  *
1925  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1926  *    hangs on some architectures, corruption on others. An attempt to service
1927  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1928  *
1929  *  * the object must be able to fit into RAM (physical memory, though no
1930  *    limited to the mappable aperture).
1931  *
1932  *
1933  * Caveats:
1934  *
1935  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1936  *    all data to system memory. Subsequent access will not be synchronized.
1937  *
1938  *  * all mappings are revoked on runtime device suspend.
1939  *
1940  *  * there are only 8, 16 or 32 fence registers to share between all users
1941  *    (older machines require fence register for display and blitter access
1942  *    as well). Contention of the fence registers will cause the previous users
1943  *    to be unmapped and any new access will generate new page faults.
1944  *
1945  *  * running out of memory while servicing a fault may generate a SIGBUS,
1946  *    rather than the expected SIGSEGV.
1947  */
1948 int i915_gem_mmap_gtt_version(void)
1949 {
1950 	return 2;
1951 }
1952 
1953 static inline struct i915_ggtt_view
1954 compute_partial_view(struct drm_i915_gem_object *obj,
1955 		     pgoff_t page_offset,
1956 		     unsigned int chunk)
1957 {
1958 	struct i915_ggtt_view view;
1959 
1960 	if (i915_gem_object_is_tiled(obj))
1961 		chunk = roundup(chunk, tile_row_pages(obj));
1962 
1963 	view.type = I915_GGTT_VIEW_PARTIAL;
1964 	view.partial.offset = rounddown(page_offset, chunk);
1965 	view.partial.size =
1966 		min_t(unsigned int, chunk,
1967 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1968 
1969 	/* If the partial covers the entire object, just create a normal VMA. */
1970 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1971 		view.type = I915_GGTT_VIEW_NORMAL;
1972 
1973 	return view;
1974 }
1975 
1976 /**
1977  * i915_gem_fault - fault a page into the GTT
1978  * @vmf: fault info
1979  *
1980  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1981  * from userspace.  The fault handler takes care of binding the object to
1982  * the GTT (if needed), allocating and programming a fence register (again,
1983  * only if needed based on whether the old reg is still valid or the object
1984  * is tiled) and inserting a new PTE into the faulting process.
1985  *
1986  * Note that the faulting process may involve evicting existing objects
1987  * from the GTT and/or fence registers to make room.  So performance may
1988  * suffer if the GTT working set is large or there are few fence registers
1989  * left.
1990  *
1991  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1992  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1993  */
1994 int i915_gem_fault(struct vm_fault *vmf)
1995 {
1996 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1997 	struct vm_area_struct *area = vmf->vma;
1998 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1999 	struct drm_device *dev = obj->base.dev;
2000 	struct drm_i915_private *dev_priv = to_i915(dev);
2001 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2002 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2003 	struct i915_vma *vma;
2004 	pgoff_t page_offset;
2005 	unsigned int flags;
2006 	int ret;
2007 
2008 	/* We don't use vmf->pgoff since that has the fake offset */
2009 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2010 
2011 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2012 
2013 	/* Try to flush the object off the GPU first without holding the lock.
2014 	 * Upon acquiring the lock, we will perform our sanity checks and then
2015 	 * repeat the flush holding the lock in the normal manner to catch cases
2016 	 * where we are gazumped.
2017 	 */
2018 	ret = i915_gem_object_wait(obj,
2019 				   I915_WAIT_INTERRUPTIBLE,
2020 				   MAX_SCHEDULE_TIMEOUT,
2021 				   NULL);
2022 	if (ret)
2023 		goto err;
2024 
2025 	ret = i915_gem_object_pin_pages(obj);
2026 	if (ret)
2027 		goto err;
2028 
2029 	intel_runtime_pm_get(dev_priv);
2030 
2031 	ret = i915_mutex_lock_interruptible(dev);
2032 	if (ret)
2033 		goto err_rpm;
2034 
2035 	/* Access to snoopable pages through the GTT is incoherent. */
2036 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2037 		ret = -EFAULT;
2038 		goto err_unlock;
2039 	}
2040 
2041 	/* If the object is smaller than a couple of partial vma, it is
2042 	 * not worth only creating a single partial vma - we may as well
2043 	 * clear enough space for the full object.
2044 	 */
2045 	flags = PIN_MAPPABLE;
2046 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
2047 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
2048 
2049 	/* Now pin it into the GTT as needed */
2050 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2051 	if (IS_ERR(vma)) {
2052 		/* Use a partial view if it is bigger than available space */
2053 		struct i915_ggtt_view view =
2054 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2055 
2056 		/* Userspace is now writing through an untracked VMA, abandon
2057 		 * all hope that the hardware is able to track future writes.
2058 		 */
2059 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2060 
2061 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
2062 	}
2063 	if (IS_ERR(vma)) {
2064 		ret = PTR_ERR(vma);
2065 		goto err_unlock;
2066 	}
2067 
2068 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2069 	if (ret)
2070 		goto err_unpin;
2071 
2072 	ret = i915_vma_pin_fence(vma);
2073 	if (ret)
2074 		goto err_unpin;
2075 
2076 	/* Finally, remap it using the new GTT offset */
2077 	ret = remap_io_mapping(area,
2078 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2079 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2080 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2081 			       &ggtt->iomap);
2082 	if (ret)
2083 		goto err_fence;
2084 
2085 	/* Mark as being mmapped into userspace for later revocation */
2086 	assert_rpm_wakelock_held(dev_priv);
2087 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2088 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2089 	GEM_BUG_ON(!obj->userfault_count);
2090 
2091 	i915_vma_set_ggtt_write(vma);
2092 
2093 err_fence:
2094 	i915_vma_unpin_fence(vma);
2095 err_unpin:
2096 	__i915_vma_unpin(vma);
2097 err_unlock:
2098 	mutex_unlock(&dev->struct_mutex);
2099 err_rpm:
2100 	intel_runtime_pm_put(dev_priv);
2101 	i915_gem_object_unpin_pages(obj);
2102 err:
2103 	switch (ret) {
2104 	case -EIO:
2105 		/*
2106 		 * We eat errors when the gpu is terminally wedged to avoid
2107 		 * userspace unduly crashing (gl has no provisions for mmaps to
2108 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2109 		 * and so needs to be reported.
2110 		 */
2111 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2112 			ret = VM_FAULT_SIGBUS;
2113 			break;
2114 		}
2115 	case -EAGAIN:
2116 		/*
2117 		 * EAGAIN means the gpu is hung and we'll wait for the error
2118 		 * handler to reset everything when re-faulting in
2119 		 * i915_mutex_lock_interruptible.
2120 		 */
2121 	case 0:
2122 	case -ERESTARTSYS:
2123 	case -EINTR:
2124 	case -EBUSY:
2125 		/*
2126 		 * EBUSY is ok: this just means that another thread
2127 		 * already did the job.
2128 		 */
2129 		ret = VM_FAULT_NOPAGE;
2130 		break;
2131 	case -ENOMEM:
2132 		ret = VM_FAULT_OOM;
2133 		break;
2134 	case -ENOSPC:
2135 	case -EFAULT:
2136 		ret = VM_FAULT_SIGBUS;
2137 		break;
2138 	default:
2139 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2140 		ret = VM_FAULT_SIGBUS;
2141 		break;
2142 	}
2143 	return ret;
2144 }
2145 
2146 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2147 {
2148 	struct i915_vma *vma;
2149 
2150 	GEM_BUG_ON(!obj->userfault_count);
2151 
2152 	obj->userfault_count = 0;
2153 	list_del(&obj->userfault_link);
2154 	drm_vma_node_unmap(&obj->base.vma_node,
2155 			   obj->base.dev->anon_inode->i_mapping);
2156 
2157 	for_each_ggtt_vma(vma, obj)
2158 		i915_vma_unset_userfault(vma);
2159 }
2160 
2161 /**
2162  * i915_gem_release_mmap - remove physical page mappings
2163  * @obj: obj in question
2164  *
2165  * Preserve the reservation of the mmapping with the DRM core code, but
2166  * relinquish ownership of the pages back to the system.
2167  *
2168  * It is vital that we remove the page mapping if we have mapped a tiled
2169  * object through the GTT and then lose the fence register due to
2170  * resource pressure. Similarly if the object has been moved out of the
2171  * aperture, than pages mapped into userspace must be revoked. Removing the
2172  * mapping will then trigger a page fault on the next user access, allowing
2173  * fixup by i915_gem_fault().
2174  */
2175 void
2176 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2177 {
2178 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2179 
2180 	/* Serialisation between user GTT access and our code depends upon
2181 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2182 	 * pagefault then has to wait until we release the mutex.
2183 	 *
2184 	 * Note that RPM complicates somewhat by adding an additional
2185 	 * requirement that operations to the GGTT be made holding the RPM
2186 	 * wakeref.
2187 	 */
2188 	lockdep_assert_held(&i915->drm.struct_mutex);
2189 	intel_runtime_pm_get(i915);
2190 
2191 	if (!obj->userfault_count)
2192 		goto out;
2193 
2194 	__i915_gem_object_release_mmap(obj);
2195 
2196 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2197 	 * memory transactions from userspace before we return. The TLB
2198 	 * flushing implied above by changing the PTE above *should* be
2199 	 * sufficient, an extra barrier here just provides us with a bit
2200 	 * of paranoid documentation about our requirement to serialise
2201 	 * memory writes before touching registers / GSM.
2202 	 */
2203 	wmb();
2204 
2205 out:
2206 	intel_runtime_pm_put(i915);
2207 }
2208 
2209 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2210 {
2211 	struct drm_i915_gem_object *obj, *on;
2212 	int i;
2213 
2214 	/*
2215 	 * Only called during RPM suspend. All users of the userfault_list
2216 	 * must be holding an RPM wakeref to ensure that this can not
2217 	 * run concurrently with themselves (and use the struct_mutex for
2218 	 * protection between themselves).
2219 	 */
2220 
2221 	list_for_each_entry_safe(obj, on,
2222 				 &dev_priv->mm.userfault_list, userfault_link)
2223 		__i915_gem_object_release_mmap(obj);
2224 
2225 	/* The fence will be lost when the device powers down. If any were
2226 	 * in use by hardware (i.e. they are pinned), we should not be powering
2227 	 * down! All other fences will be reacquired by the user upon waking.
2228 	 */
2229 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2230 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2231 
2232 		/* Ideally we want to assert that the fence register is not
2233 		 * live at this point (i.e. that no piece of code will be
2234 		 * trying to write through fence + GTT, as that both violates
2235 		 * our tracking of activity and associated locking/barriers,
2236 		 * but also is illegal given that the hw is powered down).
2237 		 *
2238 		 * Previously we used reg->pin_count as a "liveness" indicator.
2239 		 * That is not sufficient, and we need a more fine-grained
2240 		 * tool if we want to have a sanity check here.
2241 		 */
2242 
2243 		if (!reg->vma)
2244 			continue;
2245 
2246 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2247 		reg->dirty = true;
2248 	}
2249 }
2250 
2251 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2252 {
2253 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2254 	int err;
2255 
2256 	err = drm_gem_create_mmap_offset(&obj->base);
2257 	if (likely(!err))
2258 		return 0;
2259 
2260 	/* Attempt to reap some mmap space from dead objects */
2261 	do {
2262 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2263 		if (err)
2264 			break;
2265 
2266 		i915_gem_drain_freed_objects(dev_priv);
2267 		err = drm_gem_create_mmap_offset(&obj->base);
2268 		if (!err)
2269 			break;
2270 
2271 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2272 
2273 	return err;
2274 }
2275 
2276 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2277 {
2278 	drm_gem_free_mmap_offset(&obj->base);
2279 }
2280 
2281 int
2282 i915_gem_mmap_gtt(struct drm_file *file,
2283 		  struct drm_device *dev,
2284 		  uint32_t handle,
2285 		  uint64_t *offset)
2286 {
2287 	struct drm_i915_gem_object *obj;
2288 	int ret;
2289 
2290 	obj = i915_gem_object_lookup(file, handle);
2291 	if (!obj)
2292 		return -ENOENT;
2293 
2294 	ret = i915_gem_object_create_mmap_offset(obj);
2295 	if (ret == 0)
2296 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2297 
2298 	i915_gem_object_put(obj);
2299 	return ret;
2300 }
2301 
2302 /**
2303  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2304  * @dev: DRM device
2305  * @data: GTT mapping ioctl data
2306  * @file: GEM object info
2307  *
2308  * Simply returns the fake offset to userspace so it can mmap it.
2309  * The mmap call will end up in drm_gem_mmap(), which will set things
2310  * up so we can get faults in the handler above.
2311  *
2312  * The fault handler will take care of binding the object into the GTT
2313  * (since it may have been evicted to make room for something), allocating
2314  * a fence register, and mapping the appropriate aperture address into
2315  * userspace.
2316  */
2317 int
2318 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2319 			struct drm_file *file)
2320 {
2321 	struct drm_i915_gem_mmap_gtt *args = data;
2322 
2323 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 }
2325 
2326 /* Immediately discard the backing storage */
2327 static void
2328 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329 {
2330 	i915_gem_object_free_mmap_offset(obj);
2331 
2332 	if (obj->base.filp == NULL)
2333 		return;
2334 
2335 	/* Our goal here is to return as much of the memory as
2336 	 * is possible back to the system as we are called from OOM.
2337 	 * To do this we must instruct the shmfs to drop all of its
2338 	 * backing pages, *now*.
2339 	 */
2340 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2341 	obj->mm.madv = __I915_MADV_PURGED;
2342 	obj->mm.pages = ERR_PTR(-EFAULT);
2343 }
2344 
2345 /* Try to discard unwanted pages */
2346 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2347 {
2348 	struct address_space *mapping;
2349 
2350 	lockdep_assert_held(&obj->mm.lock);
2351 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2352 
2353 	switch (obj->mm.madv) {
2354 	case I915_MADV_DONTNEED:
2355 		i915_gem_object_truncate(obj);
2356 	case __I915_MADV_PURGED:
2357 		return;
2358 	}
2359 
2360 	if (obj->base.filp == NULL)
2361 		return;
2362 
2363 	mapping = obj->base.filp->f_mapping,
2364 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2365 }
2366 
2367 static void
2368 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2369 			      struct sg_table *pages)
2370 {
2371 	struct sgt_iter sgt_iter;
2372 	struct page *page;
2373 
2374 	__i915_gem_object_release_shmem(obj, pages, true);
2375 
2376 	i915_gem_gtt_finish_pages(obj, pages);
2377 
2378 	if (i915_gem_object_needs_bit17_swizzle(obj))
2379 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2380 
2381 	for_each_sgt_page(page, sgt_iter, pages) {
2382 		if (obj->mm.dirty)
2383 			set_page_dirty(page);
2384 
2385 		if (obj->mm.madv == I915_MADV_WILLNEED)
2386 			mark_page_accessed(page);
2387 
2388 		put_page(page);
2389 	}
2390 	obj->mm.dirty = false;
2391 
2392 	sg_free_table(pages);
2393 	kfree(pages);
2394 }
2395 
2396 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2397 {
2398 	struct radix_tree_iter iter;
2399 	void __rcu **slot;
2400 
2401 	rcu_read_lock();
2402 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2403 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2404 	rcu_read_unlock();
2405 }
2406 
2407 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2408 				 enum i915_mm_subclass subclass)
2409 {
2410 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2411 	struct sg_table *pages;
2412 
2413 	if (i915_gem_object_has_pinned_pages(obj))
2414 		return;
2415 
2416 	GEM_BUG_ON(obj->bind_count);
2417 	if (!i915_gem_object_has_pages(obj))
2418 		return;
2419 
2420 	/* May be called by shrinker from within get_pages() (on another bo) */
2421 	mutex_lock_nested(&obj->mm.lock, subclass);
2422 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2423 		goto unlock;
2424 
2425 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2426 	 * array, hence protect them from being reaped by removing them from gtt
2427 	 * lists early. */
2428 	pages = fetch_and_zero(&obj->mm.pages);
2429 	GEM_BUG_ON(!pages);
2430 
2431 	spin_lock(&i915->mm.obj_lock);
2432 	list_del(&obj->mm.link);
2433 	spin_unlock(&i915->mm.obj_lock);
2434 
2435 	if (obj->mm.mapping) {
2436 		void *ptr;
2437 
2438 		ptr = page_mask_bits(obj->mm.mapping);
2439 		if (is_vmalloc_addr(ptr))
2440 			vunmap(ptr);
2441 		else
2442 			kunmap(kmap_to_page(ptr));
2443 
2444 		obj->mm.mapping = NULL;
2445 	}
2446 
2447 	__i915_gem_object_reset_page_iter(obj);
2448 
2449 	if (!IS_ERR(pages))
2450 		obj->ops->put_pages(obj, pages);
2451 
2452 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2453 
2454 unlock:
2455 	mutex_unlock(&obj->mm.lock);
2456 }
2457 
2458 static bool i915_sg_trim(struct sg_table *orig_st)
2459 {
2460 	struct sg_table new_st;
2461 	struct scatterlist *sg, *new_sg;
2462 	unsigned int i;
2463 
2464 	if (orig_st->nents == orig_st->orig_nents)
2465 		return false;
2466 
2467 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2468 		return false;
2469 
2470 	new_sg = new_st.sgl;
2471 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2472 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2473 		/* called before being DMA mapped, no need to copy sg->dma_* */
2474 		new_sg = sg_next(new_sg);
2475 	}
2476 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2477 
2478 	sg_free_table(orig_st);
2479 
2480 	*orig_st = new_st;
2481 	return true;
2482 }
2483 
2484 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2488 	unsigned long i;
2489 	struct address_space *mapping;
2490 	struct sg_table *st;
2491 	struct scatterlist *sg;
2492 	struct sgt_iter sgt_iter;
2493 	struct page *page;
2494 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2495 	unsigned int max_segment = i915_sg_segment_size();
2496 	unsigned int sg_page_sizes;
2497 	gfp_t noreclaim;
2498 	int ret;
2499 
2500 	/* Assert that the object is not currently in any GPU domain. As it
2501 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2502 	 * a GPU cache
2503 	 */
2504 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2505 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2506 
2507 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2508 	if (st == NULL)
2509 		return -ENOMEM;
2510 
2511 rebuild_st:
2512 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2513 		kfree(st);
2514 		return -ENOMEM;
2515 	}
2516 
2517 	/* Get the list of pages out of our struct file.  They'll be pinned
2518 	 * at this point until we release them.
2519 	 *
2520 	 * Fail silently without starting the shrinker
2521 	 */
2522 	mapping = obj->base.filp->f_mapping;
2523 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2524 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2525 
2526 	sg = st->sgl;
2527 	st->nents = 0;
2528 	sg_page_sizes = 0;
2529 	for (i = 0; i < page_count; i++) {
2530 		const unsigned int shrink[] = {
2531 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2532 			0,
2533 		}, *s = shrink;
2534 		gfp_t gfp = noreclaim;
2535 
2536 		do {
2537 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2538 			if (likely(!IS_ERR(page)))
2539 				break;
2540 
2541 			if (!*s) {
2542 				ret = PTR_ERR(page);
2543 				goto err_sg;
2544 			}
2545 
2546 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2547 			cond_resched();
2548 
2549 			/* We've tried hard to allocate the memory by reaping
2550 			 * our own buffer, now let the real VM do its job and
2551 			 * go down in flames if truly OOM.
2552 			 *
2553 			 * However, since graphics tend to be disposable,
2554 			 * defer the oom here by reporting the ENOMEM back
2555 			 * to userspace.
2556 			 */
2557 			if (!*s) {
2558 				/* reclaim and warn, but no oom */
2559 				gfp = mapping_gfp_mask(mapping);
2560 
2561 				/* Our bo are always dirty and so we require
2562 				 * kswapd to reclaim our pages (direct reclaim
2563 				 * does not effectively begin pageout of our
2564 				 * buffers on its own). However, direct reclaim
2565 				 * only waits for kswapd when under allocation
2566 				 * congestion. So as a result __GFP_RECLAIM is
2567 				 * unreliable and fails to actually reclaim our
2568 				 * dirty pages -- unless you try over and over
2569 				 * again with !__GFP_NORETRY. However, we still
2570 				 * want to fail this allocation rather than
2571 				 * trigger the out-of-memory killer and for
2572 				 * this we want __GFP_RETRY_MAYFAIL.
2573 				 */
2574 				gfp |= __GFP_RETRY_MAYFAIL;
2575 			}
2576 		} while (1);
2577 
2578 		if (!i ||
2579 		    sg->length >= max_segment ||
2580 		    page_to_pfn(page) != last_pfn + 1) {
2581 			if (i) {
2582 				sg_page_sizes |= sg->length;
2583 				sg = sg_next(sg);
2584 			}
2585 			st->nents++;
2586 			sg_set_page(sg, page, PAGE_SIZE, 0);
2587 		} else {
2588 			sg->length += PAGE_SIZE;
2589 		}
2590 		last_pfn = page_to_pfn(page);
2591 
2592 		/* Check that the i965g/gm workaround works. */
2593 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2594 	}
2595 	if (sg) { /* loop terminated early; short sg table */
2596 		sg_page_sizes |= sg->length;
2597 		sg_mark_end(sg);
2598 	}
2599 
2600 	/* Trim unused sg entries to avoid wasting memory. */
2601 	i915_sg_trim(st);
2602 
2603 	ret = i915_gem_gtt_prepare_pages(obj, st);
2604 	if (ret) {
2605 		/* DMA remapping failed? One possible cause is that
2606 		 * it could not reserve enough large entries, asking
2607 		 * for PAGE_SIZE chunks instead may be helpful.
2608 		 */
2609 		if (max_segment > PAGE_SIZE) {
2610 			for_each_sgt_page(page, sgt_iter, st)
2611 				put_page(page);
2612 			sg_free_table(st);
2613 
2614 			max_segment = PAGE_SIZE;
2615 			goto rebuild_st;
2616 		} else {
2617 			dev_warn(&dev_priv->drm.pdev->dev,
2618 				 "Failed to DMA remap %lu pages\n",
2619 				 page_count);
2620 			goto err_pages;
2621 		}
2622 	}
2623 
2624 	if (i915_gem_object_needs_bit17_swizzle(obj))
2625 		i915_gem_object_do_bit_17_swizzle(obj, st);
2626 
2627 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2628 
2629 	return 0;
2630 
2631 err_sg:
2632 	sg_mark_end(sg);
2633 err_pages:
2634 	for_each_sgt_page(page, sgt_iter, st)
2635 		put_page(page);
2636 	sg_free_table(st);
2637 	kfree(st);
2638 
2639 	/* shmemfs first checks if there is enough memory to allocate the page
2640 	 * and reports ENOSPC should there be insufficient, along with the usual
2641 	 * ENOMEM for a genuine allocation failure.
2642 	 *
2643 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2644 	 * space and so want to translate the error from shmemfs back to our
2645 	 * usual understanding of ENOMEM.
2646 	 */
2647 	if (ret == -ENOSPC)
2648 		ret = -ENOMEM;
2649 
2650 	return ret;
2651 }
2652 
2653 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2654 				 struct sg_table *pages,
2655 				 unsigned int sg_page_sizes)
2656 {
2657 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2658 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2659 	int i;
2660 
2661 	lockdep_assert_held(&obj->mm.lock);
2662 
2663 	obj->mm.get_page.sg_pos = pages->sgl;
2664 	obj->mm.get_page.sg_idx = 0;
2665 
2666 	obj->mm.pages = pages;
2667 
2668 	if (i915_gem_object_is_tiled(obj) &&
2669 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2670 		GEM_BUG_ON(obj->mm.quirked);
2671 		__i915_gem_object_pin_pages(obj);
2672 		obj->mm.quirked = true;
2673 	}
2674 
2675 	GEM_BUG_ON(!sg_page_sizes);
2676 	obj->mm.page_sizes.phys = sg_page_sizes;
2677 
2678 	/*
2679 	 * Calculate the supported page-sizes which fit into the given
2680 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2681 	 * to use opportunistically when later inserting into the GTT. For
2682 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2683 	 * 64K or 4K pages, although in practice this will depend on a number of
2684 	 * other factors.
2685 	 */
2686 	obj->mm.page_sizes.sg = 0;
2687 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2688 		if (obj->mm.page_sizes.phys & ~0u << i)
2689 			obj->mm.page_sizes.sg |= BIT(i);
2690 	}
2691 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2692 
2693 	spin_lock(&i915->mm.obj_lock);
2694 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2695 	spin_unlock(&i915->mm.obj_lock);
2696 }
2697 
2698 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2699 {
2700 	int err;
2701 
2702 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2703 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2704 		return -EFAULT;
2705 	}
2706 
2707 	err = obj->ops->get_pages(obj);
2708 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2709 
2710 	return err;
2711 }
2712 
2713 /* Ensure that the associated pages are gathered from the backing storage
2714  * and pinned into our object. i915_gem_object_pin_pages() may be called
2715  * multiple times before they are released by a single call to
2716  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717  * either as a result of memory pressure (reaping pages under the shrinker)
2718  * or as the object is itself released.
2719  */
2720 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721 {
2722 	int err;
2723 
2724 	err = mutex_lock_interruptible(&obj->mm.lock);
2725 	if (err)
2726 		return err;
2727 
2728 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2729 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2730 
2731 		err = ____i915_gem_object_get_pages(obj);
2732 		if (err)
2733 			goto unlock;
2734 
2735 		smp_mb__before_atomic();
2736 	}
2737 	atomic_inc(&obj->mm.pages_pin_count);
2738 
2739 unlock:
2740 	mutex_unlock(&obj->mm.lock);
2741 	return err;
2742 }
2743 
2744 /* The 'mapping' part of i915_gem_object_pin_map() below */
2745 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2746 				 enum i915_map_type type)
2747 {
2748 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2749 	struct sg_table *sgt = obj->mm.pages;
2750 	struct sgt_iter sgt_iter;
2751 	struct page *page;
2752 	struct page *stack_pages[32];
2753 	struct page **pages = stack_pages;
2754 	unsigned long i = 0;
2755 	pgprot_t pgprot;
2756 	void *addr;
2757 
2758 	/* A single page can always be kmapped */
2759 	if (n_pages == 1 && type == I915_MAP_WB)
2760 		return kmap(sg_page(sgt->sgl));
2761 
2762 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2763 		/* Too big for stack -- allocate temporary array instead */
2764 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2765 		if (!pages)
2766 			return NULL;
2767 	}
2768 
2769 	for_each_sgt_page(page, sgt_iter, sgt)
2770 		pages[i++] = page;
2771 
2772 	/* Check that we have the expected number of pages */
2773 	GEM_BUG_ON(i != n_pages);
2774 
2775 	switch (type) {
2776 	default:
2777 		MISSING_CASE(type);
2778 		/* fallthrough to use PAGE_KERNEL anyway */
2779 	case I915_MAP_WB:
2780 		pgprot = PAGE_KERNEL;
2781 		break;
2782 	case I915_MAP_WC:
2783 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2784 		break;
2785 	}
2786 	addr = vmap(pages, n_pages, 0, pgprot);
2787 
2788 	if (pages != stack_pages)
2789 		kvfree(pages);
2790 
2791 	return addr;
2792 }
2793 
2794 /* get, pin, and map the pages of the object into kernel space */
2795 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2796 			      enum i915_map_type type)
2797 {
2798 	enum i915_map_type has_type;
2799 	bool pinned;
2800 	void *ptr;
2801 	int ret;
2802 
2803 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2804 		return ERR_PTR(-ENXIO);
2805 
2806 	ret = mutex_lock_interruptible(&obj->mm.lock);
2807 	if (ret)
2808 		return ERR_PTR(ret);
2809 
2810 	pinned = !(type & I915_MAP_OVERRIDE);
2811 	type &= ~I915_MAP_OVERRIDE;
2812 
2813 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2814 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2815 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2816 
2817 			ret = ____i915_gem_object_get_pages(obj);
2818 			if (ret)
2819 				goto err_unlock;
2820 
2821 			smp_mb__before_atomic();
2822 		}
2823 		atomic_inc(&obj->mm.pages_pin_count);
2824 		pinned = false;
2825 	}
2826 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2827 
2828 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2829 	if (ptr && has_type != type) {
2830 		if (pinned) {
2831 			ret = -EBUSY;
2832 			goto err_unpin;
2833 		}
2834 
2835 		if (is_vmalloc_addr(ptr))
2836 			vunmap(ptr);
2837 		else
2838 			kunmap(kmap_to_page(ptr));
2839 
2840 		ptr = obj->mm.mapping = NULL;
2841 	}
2842 
2843 	if (!ptr) {
2844 		ptr = i915_gem_object_map(obj, type);
2845 		if (!ptr) {
2846 			ret = -ENOMEM;
2847 			goto err_unpin;
2848 		}
2849 
2850 		obj->mm.mapping = page_pack_bits(ptr, type);
2851 	}
2852 
2853 out_unlock:
2854 	mutex_unlock(&obj->mm.lock);
2855 	return ptr;
2856 
2857 err_unpin:
2858 	atomic_dec(&obj->mm.pages_pin_count);
2859 err_unlock:
2860 	ptr = ERR_PTR(ret);
2861 	goto out_unlock;
2862 }
2863 
2864 static int
2865 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2866 			   const struct drm_i915_gem_pwrite *arg)
2867 {
2868 	struct address_space *mapping = obj->base.filp->f_mapping;
2869 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2870 	u64 remain, offset;
2871 	unsigned int pg;
2872 
2873 	/* Before we instantiate/pin the backing store for our use, we
2874 	 * can prepopulate the shmemfs filp efficiently using a write into
2875 	 * the pagecache. We avoid the penalty of instantiating all the
2876 	 * pages, important if the user is just writing to a few and never
2877 	 * uses the object on the GPU, and using a direct write into shmemfs
2878 	 * allows it to avoid the cost of retrieving a page (either swapin
2879 	 * or clearing-before-use) before it is overwritten.
2880 	 */
2881 	if (i915_gem_object_has_pages(obj))
2882 		return -ENODEV;
2883 
2884 	if (obj->mm.madv != I915_MADV_WILLNEED)
2885 		return -EFAULT;
2886 
2887 	/* Before the pages are instantiated the object is treated as being
2888 	 * in the CPU domain. The pages will be clflushed as required before
2889 	 * use, and we can freely write into the pages directly. If userspace
2890 	 * races pwrite with any other operation; corruption will ensue -
2891 	 * that is userspace's prerogative!
2892 	 */
2893 
2894 	remain = arg->size;
2895 	offset = arg->offset;
2896 	pg = offset_in_page(offset);
2897 
2898 	do {
2899 		unsigned int len, unwritten;
2900 		struct page *page;
2901 		void *data, *vaddr;
2902 		int err;
2903 
2904 		len = PAGE_SIZE - pg;
2905 		if (len > remain)
2906 			len = remain;
2907 
2908 		err = pagecache_write_begin(obj->base.filp, mapping,
2909 					    offset, len, 0,
2910 					    &page, &data);
2911 		if (err < 0)
2912 			return err;
2913 
2914 		vaddr = kmap(page);
2915 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2916 		kunmap(page);
2917 
2918 		err = pagecache_write_end(obj->base.filp, mapping,
2919 					  offset, len, len - unwritten,
2920 					  page, data);
2921 		if (err < 0)
2922 			return err;
2923 
2924 		if (unwritten)
2925 			return -EFAULT;
2926 
2927 		remain -= len;
2928 		user_data += len;
2929 		offset += len;
2930 		pg = 0;
2931 	} while (remain);
2932 
2933 	return 0;
2934 }
2935 
2936 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2937 {
2938 	bool banned;
2939 
2940 	atomic_inc(&ctx->guilty_count);
2941 
2942 	banned = false;
2943 	if (i915_gem_context_is_bannable(ctx)) {
2944 		unsigned int score;
2945 
2946 		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2947 					  &ctx->ban_score);
2948 		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2949 
2950 		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2951 				 ctx->name, score, yesno(banned));
2952 	}
2953 	if (!banned)
2954 		return;
2955 
2956 	i915_gem_context_set_banned(ctx);
2957 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2958 		atomic_inc(&ctx->file_priv->context_bans);
2959 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2960 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2961 	}
2962 }
2963 
2964 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2965 {
2966 	atomic_inc(&ctx->active_count);
2967 }
2968 
2969 struct i915_request *
2970 i915_gem_find_active_request(struct intel_engine_cs *engine)
2971 {
2972 	struct i915_request *request, *active = NULL;
2973 	unsigned long flags;
2974 
2975 	/* We are called by the error capture and reset at a random
2976 	 * point in time. In particular, note that neither is crucially
2977 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2978 	 * assume that no more writes can happen (we waited long enough for
2979 	 * all writes that were in transaction to be flushed) - adding an
2980 	 * extra delay for a recent interrupt is pointless. Hence, we do
2981 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2982 	 */
2983 	spin_lock_irqsave(&engine->timeline.lock, flags);
2984 	list_for_each_entry(request, &engine->timeline.requests, link) {
2985 		if (__i915_request_completed(request, request->global_seqno))
2986 			continue;
2987 
2988 		GEM_BUG_ON(request->engine != engine);
2989 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2990 				    &request->fence.flags));
2991 
2992 		active = request;
2993 		break;
2994 	}
2995 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2996 
2997 	return active;
2998 }
2999 
3000 /*
3001  * Ensure irq handler finishes, and not run again.
3002  * Also return the active request so that we only search for it once.
3003  */
3004 struct i915_request *
3005 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3006 {
3007 	struct i915_request *request = NULL;
3008 
3009 	/*
3010 	 * During the reset sequence, we must prevent the engine from
3011 	 * entering RC6. As the context state is undefined until we restart
3012 	 * the engine, if it does enter RC6 during the reset, the state
3013 	 * written to the powercontext is undefined and so we may lose
3014 	 * GPU state upon resume, i.e. fail to restart after a reset.
3015 	 */
3016 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3017 
3018 	/*
3019 	 * Prevent the signaler thread from updating the request
3020 	 * state (by calling dma_fence_signal) as we are processing
3021 	 * the reset. The write from the GPU of the seqno is
3022 	 * asynchronous and the signaler thread may see a different
3023 	 * value to us and declare the request complete, even though
3024 	 * the reset routine have picked that request as the active
3025 	 * (incomplete) request. This conflict is not handled
3026 	 * gracefully!
3027 	 */
3028 	kthread_park(engine->breadcrumbs.signaler);
3029 
3030 	/*
3031 	 * Prevent request submission to the hardware until we have
3032 	 * completed the reset in i915_gem_reset_finish(). If a request
3033 	 * is completed by one engine, it may then queue a request
3034 	 * to a second via its execlists->tasklet *just* as we are
3035 	 * calling engine->init_hw() and also writing the ELSP.
3036 	 * Turning off the execlists->tasklet until the reset is over
3037 	 * prevents the race.
3038 	 *
3039 	 * Note that this needs to be a single atomic operation on the
3040 	 * tasklet (flush existing tasks, prevent new tasks) to prevent
3041 	 * a race between reset and set-wedged. It is not, so we do the best
3042 	 * we can atm and make sure we don't lock the machine up in the more
3043 	 * common case of recursively being called from set-wedged from inside
3044 	 * i915_reset.
3045 	 */
3046 	if (!atomic_read(&engine->execlists.tasklet.count))
3047 		tasklet_kill(&engine->execlists.tasklet);
3048 	tasklet_disable(&engine->execlists.tasklet);
3049 
3050 	/*
3051 	 * We're using worker to queue preemption requests from the tasklet in
3052 	 * GuC submission mode.
3053 	 * Even though tasklet was disabled, we may still have a worker queued.
3054 	 * Let's make sure that all workers scheduled before disabling the
3055 	 * tasklet are completed before continuing with the reset.
3056 	 */
3057 	if (engine->i915->guc.preempt_wq)
3058 		flush_workqueue(engine->i915->guc.preempt_wq);
3059 
3060 	if (engine->irq_seqno_barrier)
3061 		engine->irq_seqno_barrier(engine);
3062 
3063 	request = i915_gem_find_active_request(engine);
3064 	if (request && request->fence.error == -EIO)
3065 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3066 
3067 	return request;
3068 }
3069 
3070 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3071 {
3072 	struct intel_engine_cs *engine;
3073 	struct i915_request *request;
3074 	enum intel_engine_id id;
3075 	int err = 0;
3076 
3077 	for_each_engine(engine, dev_priv, id) {
3078 		request = i915_gem_reset_prepare_engine(engine);
3079 		if (IS_ERR(request)) {
3080 			err = PTR_ERR(request);
3081 			continue;
3082 		}
3083 
3084 		engine->hangcheck.active_request = request;
3085 	}
3086 
3087 	i915_gem_revoke_fences(dev_priv);
3088 	intel_uc_sanitize(dev_priv);
3089 
3090 	return err;
3091 }
3092 
3093 static void skip_request(struct i915_request *request)
3094 {
3095 	void *vaddr = request->ring->vaddr;
3096 	u32 head;
3097 
3098 	/* As this request likely depends on state from the lost
3099 	 * context, clear out all the user operations leaving the
3100 	 * breadcrumb at the end (so we get the fence notifications).
3101 	 */
3102 	head = request->head;
3103 	if (request->postfix < head) {
3104 		memset(vaddr + head, 0, request->ring->size - head);
3105 		head = 0;
3106 	}
3107 	memset(vaddr + head, 0, request->postfix - head);
3108 
3109 	dma_fence_set_error(&request->fence, -EIO);
3110 }
3111 
3112 static void engine_skip_context(struct i915_request *request)
3113 {
3114 	struct intel_engine_cs *engine = request->engine;
3115 	struct i915_gem_context *hung_ctx = request->ctx;
3116 	struct i915_timeline *timeline = request->timeline;
3117 	unsigned long flags;
3118 
3119 	GEM_BUG_ON(timeline == &engine->timeline);
3120 
3121 	spin_lock_irqsave(&engine->timeline.lock, flags);
3122 	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3123 
3124 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3125 		if (request->ctx == hung_ctx)
3126 			skip_request(request);
3127 
3128 	list_for_each_entry(request, &timeline->requests, link)
3129 		skip_request(request);
3130 
3131 	spin_unlock(&timeline->lock);
3132 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3133 }
3134 
3135 /* Returns the request if it was guilty of the hang */
3136 static struct i915_request *
3137 i915_gem_reset_request(struct intel_engine_cs *engine,
3138 		       struct i915_request *request,
3139 		       bool stalled)
3140 {
3141 	/* The guilty request will get skipped on a hung engine.
3142 	 *
3143 	 * Users of client default contexts do not rely on logical
3144 	 * state preserved between batches so it is safe to execute
3145 	 * queued requests following the hang. Non default contexts
3146 	 * rely on preserved state, so skipping a batch loses the
3147 	 * evolution of the state and it needs to be considered corrupted.
3148 	 * Executing more queued batches on top of corrupted state is
3149 	 * risky. But we take the risk by trying to advance through
3150 	 * the queued requests in order to make the client behaviour
3151 	 * more predictable around resets, by not throwing away random
3152 	 * amount of batches it has prepared for execution. Sophisticated
3153 	 * clients can use gem_reset_stats_ioctl and dma fence status
3154 	 * (exported via sync_file info ioctl on explicit fences) to observe
3155 	 * when it loses the context state and should rebuild accordingly.
3156 	 *
3157 	 * The context ban, and ultimately the client ban, mechanism are safety
3158 	 * valves if client submission ends up resulting in nothing more than
3159 	 * subsequent hangs.
3160 	 */
3161 
3162 	if (i915_request_completed(request)) {
3163 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3164 			  engine->name, request->global_seqno,
3165 			  request->fence.context, request->fence.seqno,
3166 			  intel_engine_get_seqno(engine));
3167 		stalled = false;
3168 	}
3169 
3170 	if (stalled) {
3171 		i915_gem_context_mark_guilty(request->ctx);
3172 		skip_request(request);
3173 
3174 		/* If this context is now banned, skip all pending requests. */
3175 		if (i915_gem_context_is_banned(request->ctx))
3176 			engine_skip_context(request);
3177 	} else {
3178 		/*
3179 		 * Since this is not the hung engine, it may have advanced
3180 		 * since the hang declaration. Double check by refinding
3181 		 * the active request at the time of the reset.
3182 		 */
3183 		request = i915_gem_find_active_request(engine);
3184 		if (request) {
3185 			i915_gem_context_mark_innocent(request->ctx);
3186 			dma_fence_set_error(&request->fence, -EAGAIN);
3187 
3188 			/* Rewind the engine to replay the incomplete rq */
3189 			spin_lock_irq(&engine->timeline.lock);
3190 			request = list_prev_entry(request, link);
3191 			if (&request->link == &engine->timeline.requests)
3192 				request = NULL;
3193 			spin_unlock_irq(&engine->timeline.lock);
3194 		}
3195 	}
3196 
3197 	return request;
3198 }
3199 
3200 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3201 			   struct i915_request *request,
3202 			   bool stalled)
3203 {
3204 	/*
3205 	 * Make sure this write is visible before we re-enable the interrupt
3206 	 * handlers on another CPU, as tasklet_enable() resolves to just
3207 	 * a compiler barrier which is insufficient for our purpose here.
3208 	 */
3209 	smp_store_mb(engine->irq_posted, 0);
3210 
3211 	if (request)
3212 		request = i915_gem_reset_request(engine, request, stalled);
3213 
3214 	if (request) {
3215 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3216 				 engine->name, request->global_seqno);
3217 	}
3218 
3219 	/* Setup the CS to resume from the breadcrumb of the hung request */
3220 	engine->reset_hw(engine, request);
3221 }
3222 
3223 void i915_gem_reset(struct drm_i915_private *dev_priv,
3224 		    unsigned int stalled_mask)
3225 {
3226 	struct intel_engine_cs *engine;
3227 	enum intel_engine_id id;
3228 
3229 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3230 
3231 	i915_retire_requests(dev_priv);
3232 
3233 	for_each_engine(engine, dev_priv, id) {
3234 		struct i915_gem_context *ctx;
3235 
3236 		i915_gem_reset_engine(engine,
3237 				      engine->hangcheck.active_request,
3238 				      stalled_mask & ENGINE_MASK(id));
3239 		ctx = fetch_and_zero(&engine->last_retired_context);
3240 		if (ctx)
3241 			intel_context_unpin(ctx, engine);
3242 
3243 		/*
3244 		 * Ostensibily, we always want a context loaded for powersaving,
3245 		 * so if the engine is idle after the reset, send a request
3246 		 * to load our scratch kernel_context.
3247 		 *
3248 		 * More mysteriously, if we leave the engine idle after a reset,
3249 		 * the next userspace batch may hang, with what appears to be
3250 		 * an incoherent read by the CS (presumably stale TLB). An
3251 		 * empty request appears sufficient to paper over the glitch.
3252 		 */
3253 		if (intel_engine_is_idle(engine)) {
3254 			struct i915_request *rq;
3255 
3256 			rq = i915_request_alloc(engine,
3257 						dev_priv->kernel_context);
3258 			if (!IS_ERR(rq))
3259 				__i915_request_add(rq, false);
3260 		}
3261 	}
3262 
3263 	i915_gem_restore_fences(dev_priv);
3264 }
3265 
3266 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3267 {
3268 	tasklet_enable(&engine->execlists.tasklet);
3269 	kthread_unpark(engine->breadcrumbs.signaler);
3270 
3271 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3272 }
3273 
3274 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3275 {
3276 	struct intel_engine_cs *engine;
3277 	enum intel_engine_id id;
3278 
3279 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3280 
3281 	for_each_engine(engine, dev_priv, id) {
3282 		engine->hangcheck.active_request = NULL;
3283 		i915_gem_reset_finish_engine(engine);
3284 	}
3285 }
3286 
3287 static void nop_submit_request(struct i915_request *request)
3288 {
3289 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3290 		  request->engine->name,
3291 		  request->fence.context, request->fence.seqno);
3292 	dma_fence_set_error(&request->fence, -EIO);
3293 
3294 	i915_request_submit(request);
3295 }
3296 
3297 static void nop_complete_submit_request(struct i915_request *request)
3298 {
3299 	unsigned long flags;
3300 
3301 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3302 		  request->engine->name,
3303 		  request->fence.context, request->fence.seqno);
3304 	dma_fence_set_error(&request->fence, -EIO);
3305 
3306 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3307 	__i915_request_submit(request);
3308 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3309 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3310 }
3311 
3312 void i915_gem_set_wedged(struct drm_i915_private *i915)
3313 {
3314 	struct intel_engine_cs *engine;
3315 	enum intel_engine_id id;
3316 
3317 	GEM_TRACE("start\n");
3318 
3319 	if (GEM_SHOW_DEBUG()) {
3320 		struct drm_printer p = drm_debug_printer(__func__);
3321 
3322 		for_each_engine(engine, i915, id)
3323 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3324 	}
3325 
3326 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3327 	smp_mb__after_atomic();
3328 
3329 	/*
3330 	 * First, stop submission to hw, but do not yet complete requests by
3331 	 * rolling the global seqno forward (since this would complete requests
3332 	 * for which we haven't set the fence error to EIO yet).
3333 	 */
3334 	for_each_engine(engine, i915, id) {
3335 		i915_gem_reset_prepare_engine(engine);
3336 
3337 		engine->submit_request = nop_submit_request;
3338 		engine->schedule = NULL;
3339 	}
3340 	i915->caps.scheduler = 0;
3341 
3342 	/* Even if the GPU reset fails, it should still stop the engines */
3343 	intel_gpu_reset(i915, ALL_ENGINES);
3344 
3345 	/*
3346 	 * Make sure no one is running the old callback before we proceed with
3347 	 * cancelling requests and resetting the completion tracking. Otherwise
3348 	 * we might submit a request to the hardware which never completes.
3349 	 */
3350 	synchronize_rcu();
3351 
3352 	for_each_engine(engine, i915, id) {
3353 		/* Mark all executing requests as skipped */
3354 		engine->cancel_requests(engine);
3355 
3356 		/*
3357 		 * Only once we've force-cancelled all in-flight requests can we
3358 		 * start to complete all requests.
3359 		 */
3360 		engine->submit_request = nop_complete_submit_request;
3361 	}
3362 
3363 	/*
3364 	 * Make sure no request can slip through without getting completed by
3365 	 * either this call here to intel_engine_init_global_seqno, or the one
3366 	 * in nop_complete_submit_request.
3367 	 */
3368 	synchronize_rcu();
3369 
3370 	for_each_engine(engine, i915, id) {
3371 		unsigned long flags;
3372 
3373 		/*
3374 		 * Mark all pending requests as complete so that any concurrent
3375 		 * (lockless) lookup doesn't try and wait upon the request as we
3376 		 * reset it.
3377 		 */
3378 		spin_lock_irqsave(&engine->timeline.lock, flags);
3379 		intel_engine_init_global_seqno(engine,
3380 					       intel_engine_last_submit(engine));
3381 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3382 
3383 		i915_gem_reset_finish_engine(engine);
3384 	}
3385 
3386 	GEM_TRACE("end\n");
3387 
3388 	wake_up_all(&i915->gpu_error.reset_queue);
3389 }
3390 
3391 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3392 {
3393 	struct i915_timeline *tl;
3394 
3395 	lockdep_assert_held(&i915->drm.struct_mutex);
3396 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3397 		return true;
3398 
3399 	GEM_TRACE("start\n");
3400 
3401 	/*
3402 	 * Before unwedging, make sure that all pending operations
3403 	 * are flushed and errored out - we may have requests waiting upon
3404 	 * third party fences. We marked all inflight requests as EIO, and
3405 	 * every execbuf since returned EIO, for consistency we want all
3406 	 * the currently pending requests to also be marked as EIO, which
3407 	 * is done inside our nop_submit_request - and so we must wait.
3408 	 *
3409 	 * No more can be submitted until we reset the wedged bit.
3410 	 */
3411 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3412 		struct i915_request *rq;
3413 
3414 		rq = i915_gem_active_peek(&tl->last_request,
3415 					  &i915->drm.struct_mutex);
3416 		if (!rq)
3417 			continue;
3418 
3419 		/*
3420 		 * We can't use our normal waiter as we want to
3421 		 * avoid recursively trying to handle the current
3422 		 * reset. The basic dma_fence_default_wait() installs
3423 		 * a callback for dma_fence_signal(), which is
3424 		 * triggered by our nop handler (indirectly, the
3425 		 * callback enables the signaler thread which is
3426 		 * woken by the nop_submit_request() advancing the seqno
3427 		 * and when the seqno passes the fence, the signaler
3428 		 * then signals the fence waking us up).
3429 		 */
3430 		if (dma_fence_default_wait(&rq->fence, true,
3431 					   MAX_SCHEDULE_TIMEOUT) < 0)
3432 			return false;
3433 	}
3434 	i915_retire_requests(i915);
3435 	GEM_BUG_ON(i915->gt.active_requests);
3436 
3437 	/*
3438 	 * Undo nop_submit_request. We prevent all new i915 requests from
3439 	 * being queued (by disallowing execbuf whilst wedged) so having
3440 	 * waited for all active requests above, we know the system is idle
3441 	 * and do not have to worry about a thread being inside
3442 	 * engine->submit_request() as we swap over. So unlike installing
3443 	 * the nop_submit_request on reset, we can do this from normal
3444 	 * context and do not require stop_machine().
3445 	 */
3446 	intel_engines_reset_default_submission(i915);
3447 	i915_gem_contexts_lost(i915);
3448 
3449 	GEM_TRACE("end\n");
3450 
3451 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3452 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3453 
3454 	return true;
3455 }
3456 
3457 static void
3458 i915_gem_retire_work_handler(struct work_struct *work)
3459 {
3460 	struct drm_i915_private *dev_priv =
3461 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3462 	struct drm_device *dev = &dev_priv->drm;
3463 
3464 	/* Come back later if the device is busy... */
3465 	if (mutex_trylock(&dev->struct_mutex)) {
3466 		i915_retire_requests(dev_priv);
3467 		mutex_unlock(&dev->struct_mutex);
3468 	}
3469 
3470 	/*
3471 	 * Keep the retire handler running until we are finally idle.
3472 	 * We do not need to do this test under locking as in the worst-case
3473 	 * we queue the retire worker once too often.
3474 	 */
3475 	if (READ_ONCE(dev_priv->gt.awake))
3476 		queue_delayed_work(dev_priv->wq,
3477 				   &dev_priv->gt.retire_work,
3478 				   round_jiffies_up_relative(HZ));
3479 }
3480 
3481 static void shrink_caches(struct drm_i915_private *i915)
3482 {
3483 	/*
3484 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3485 	 * filled slabs to prioritise allocating from the mostly full slabs,
3486 	 * with the aim of reducing fragmentation.
3487 	 */
3488 	kmem_cache_shrink(i915->priorities);
3489 	kmem_cache_shrink(i915->dependencies);
3490 	kmem_cache_shrink(i915->requests);
3491 	kmem_cache_shrink(i915->luts);
3492 	kmem_cache_shrink(i915->vmas);
3493 	kmem_cache_shrink(i915->objects);
3494 }
3495 
3496 struct sleep_rcu_work {
3497 	union {
3498 		struct rcu_head rcu;
3499 		struct work_struct work;
3500 	};
3501 	struct drm_i915_private *i915;
3502 	unsigned int epoch;
3503 };
3504 
3505 static inline bool
3506 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3507 {
3508 	/*
3509 	 * There is a small chance that the epoch wrapped since we started
3510 	 * sleeping. If we assume that epoch is at least a u32, then it will
3511 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3512 	 */
3513 	return epoch == READ_ONCE(i915->gt.epoch);
3514 }
3515 
3516 static void __sleep_work(struct work_struct *work)
3517 {
3518 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3519 	struct drm_i915_private *i915 = s->i915;
3520 	unsigned int epoch = s->epoch;
3521 
3522 	kfree(s);
3523 	if (same_epoch(i915, epoch))
3524 		shrink_caches(i915);
3525 }
3526 
3527 static void __sleep_rcu(struct rcu_head *rcu)
3528 {
3529 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3530 	struct drm_i915_private *i915 = s->i915;
3531 
3532 	if (same_epoch(i915, s->epoch)) {
3533 		INIT_WORK(&s->work, __sleep_work);
3534 		queue_work(i915->wq, &s->work);
3535 	} else {
3536 		kfree(s);
3537 	}
3538 }
3539 
3540 static inline bool
3541 new_requests_since_last_retire(const struct drm_i915_private *i915)
3542 {
3543 	return (READ_ONCE(i915->gt.active_requests) ||
3544 		work_pending(&i915->gt.idle_work.work));
3545 }
3546 
3547 static void
3548 i915_gem_idle_work_handler(struct work_struct *work)
3549 {
3550 	struct drm_i915_private *dev_priv =
3551 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3552 	unsigned int epoch = I915_EPOCH_INVALID;
3553 	bool rearm_hangcheck;
3554 
3555 	if (!READ_ONCE(dev_priv->gt.awake))
3556 		return;
3557 
3558 	/*
3559 	 * Wait for last execlists context complete, but bail out in case a
3560 	 * new request is submitted. As we don't trust the hardware, we
3561 	 * continue on if the wait times out. This is necessary to allow
3562 	 * the machine to suspend even if the hardware dies, and we will
3563 	 * try to recover in resume (after depriving the hardware of power,
3564 	 * it may be in a better mmod).
3565 	 */
3566 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3567 		   intel_engines_are_idle(dev_priv),
3568 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3569 		   10, 500);
3570 
3571 	rearm_hangcheck =
3572 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3573 
3574 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3575 		/* Currently busy, come back later */
3576 		mod_delayed_work(dev_priv->wq,
3577 				 &dev_priv->gt.idle_work,
3578 				 msecs_to_jiffies(50));
3579 		goto out_rearm;
3580 	}
3581 
3582 	/*
3583 	 * New request retired after this work handler started, extend active
3584 	 * period until next instance of the work.
3585 	 */
3586 	if (new_requests_since_last_retire(dev_priv))
3587 		goto out_unlock;
3588 
3589 	epoch = __i915_gem_park(dev_priv);
3590 
3591 	rearm_hangcheck = false;
3592 out_unlock:
3593 	mutex_unlock(&dev_priv->drm.struct_mutex);
3594 
3595 out_rearm:
3596 	if (rearm_hangcheck) {
3597 		GEM_BUG_ON(!dev_priv->gt.awake);
3598 		i915_queue_hangcheck(dev_priv);
3599 	}
3600 
3601 	/*
3602 	 * When we are idle, it is an opportune time to reap our caches.
3603 	 * However, we have many objects that utilise RCU and the ordered
3604 	 * i915->wq that this work is executing on. To try and flush any
3605 	 * pending frees now we are idle, we first wait for an RCU grace
3606 	 * period, and then queue a task (that will run last on the wq) to
3607 	 * shrink and re-optimize the caches.
3608 	 */
3609 	if (same_epoch(dev_priv, epoch)) {
3610 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3611 		if (s) {
3612 			s->i915 = dev_priv;
3613 			s->epoch = epoch;
3614 			call_rcu(&s->rcu, __sleep_rcu);
3615 		}
3616 	}
3617 }
3618 
3619 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3620 {
3621 	struct drm_i915_private *i915 = to_i915(gem->dev);
3622 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3623 	struct drm_i915_file_private *fpriv = file->driver_priv;
3624 	struct i915_lut_handle *lut, *ln;
3625 
3626 	mutex_lock(&i915->drm.struct_mutex);
3627 
3628 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3629 		struct i915_gem_context *ctx = lut->ctx;
3630 		struct i915_vma *vma;
3631 
3632 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3633 		if (ctx->file_priv != fpriv)
3634 			continue;
3635 
3636 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3637 		GEM_BUG_ON(vma->obj != obj);
3638 
3639 		/* We allow the process to have multiple handles to the same
3640 		 * vma, in the same fd namespace, by virtue of flink/open.
3641 		 */
3642 		GEM_BUG_ON(!vma->open_count);
3643 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3644 			i915_vma_close(vma);
3645 
3646 		list_del(&lut->obj_link);
3647 		list_del(&lut->ctx_link);
3648 
3649 		kmem_cache_free(i915->luts, lut);
3650 		__i915_gem_object_release_unless_active(obj);
3651 	}
3652 
3653 	mutex_unlock(&i915->drm.struct_mutex);
3654 }
3655 
3656 static unsigned long to_wait_timeout(s64 timeout_ns)
3657 {
3658 	if (timeout_ns < 0)
3659 		return MAX_SCHEDULE_TIMEOUT;
3660 
3661 	if (timeout_ns == 0)
3662 		return 0;
3663 
3664 	return nsecs_to_jiffies_timeout(timeout_ns);
3665 }
3666 
3667 /**
3668  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3669  * @dev: drm device pointer
3670  * @data: ioctl data blob
3671  * @file: drm file pointer
3672  *
3673  * Returns 0 if successful, else an error is returned with the remaining time in
3674  * the timeout parameter.
3675  *  -ETIME: object is still busy after timeout
3676  *  -ERESTARTSYS: signal interrupted the wait
3677  *  -ENONENT: object doesn't exist
3678  * Also possible, but rare:
3679  *  -EAGAIN: incomplete, restart syscall
3680  *  -ENOMEM: damn
3681  *  -ENODEV: Internal IRQ fail
3682  *  -E?: The add request failed
3683  *
3684  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3685  * non-zero timeout parameter the wait ioctl will wait for the given number of
3686  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3687  * without holding struct_mutex the object may become re-busied before this
3688  * function completes. A similar but shorter * race condition exists in the busy
3689  * ioctl
3690  */
3691 int
3692 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3693 {
3694 	struct drm_i915_gem_wait *args = data;
3695 	struct drm_i915_gem_object *obj;
3696 	ktime_t start;
3697 	long ret;
3698 
3699 	if (args->flags != 0)
3700 		return -EINVAL;
3701 
3702 	obj = i915_gem_object_lookup(file, args->bo_handle);
3703 	if (!obj)
3704 		return -ENOENT;
3705 
3706 	start = ktime_get();
3707 
3708 	ret = i915_gem_object_wait(obj,
3709 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3710 				   to_wait_timeout(args->timeout_ns),
3711 				   to_rps_client(file));
3712 
3713 	if (args->timeout_ns > 0) {
3714 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3715 		if (args->timeout_ns < 0)
3716 			args->timeout_ns = 0;
3717 
3718 		/*
3719 		 * Apparently ktime isn't accurate enough and occasionally has a
3720 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3721 		 * things up to make the test happy. We allow up to 1 jiffy.
3722 		 *
3723 		 * This is a regression from the timespec->ktime conversion.
3724 		 */
3725 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3726 			args->timeout_ns = 0;
3727 
3728 		/* Asked to wait beyond the jiffie/scheduler precision? */
3729 		if (ret == -ETIME && args->timeout_ns)
3730 			ret = -EAGAIN;
3731 	}
3732 
3733 	i915_gem_object_put(obj);
3734 	return ret;
3735 }
3736 
3737 static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3738 {
3739 	return i915_gem_active_wait(&tl->last_request, flags);
3740 }
3741 
3742 static int wait_for_engines(struct drm_i915_private *i915)
3743 {
3744 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3745 		dev_err(i915->drm.dev,
3746 			"Failed to idle engines, declaring wedged!\n");
3747 		GEM_TRACE_DUMP();
3748 		i915_gem_set_wedged(i915);
3749 		return -EIO;
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3756 {
3757 	/* If the device is asleep, we have no requests outstanding */
3758 	if (!READ_ONCE(i915->gt.awake))
3759 		return 0;
3760 
3761 	if (flags & I915_WAIT_LOCKED) {
3762 		struct i915_timeline *tl;
3763 		int err;
3764 
3765 		lockdep_assert_held(&i915->drm.struct_mutex);
3766 
3767 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3768 			err = wait_for_timeline(tl, flags);
3769 			if (err)
3770 				return err;
3771 		}
3772 		i915_retire_requests(i915);
3773 
3774 		return wait_for_engines(i915);
3775 	} else {
3776 		struct intel_engine_cs *engine;
3777 		enum intel_engine_id id;
3778 		int err;
3779 
3780 		for_each_engine(engine, i915, id) {
3781 			err = wait_for_timeline(&engine->timeline, flags);
3782 			if (err)
3783 				return err;
3784 		}
3785 
3786 		return 0;
3787 	}
3788 }
3789 
3790 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3791 {
3792 	/*
3793 	 * We manually flush the CPU domain so that we can override and
3794 	 * force the flush for the display, and perform it asyncrhonously.
3795 	 */
3796 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3797 	if (obj->cache_dirty)
3798 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3799 	obj->write_domain = 0;
3800 }
3801 
3802 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3803 {
3804 	if (!READ_ONCE(obj->pin_global))
3805 		return;
3806 
3807 	mutex_lock(&obj->base.dev->struct_mutex);
3808 	__i915_gem_object_flush_for_display(obj);
3809 	mutex_unlock(&obj->base.dev->struct_mutex);
3810 }
3811 
3812 /**
3813  * Moves a single object to the WC read, and possibly write domain.
3814  * @obj: object to act on
3815  * @write: ask for write access or read only
3816  *
3817  * This function returns when the move is complete, including waiting on
3818  * flushes to occur.
3819  */
3820 int
3821 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3822 {
3823 	int ret;
3824 
3825 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3826 
3827 	ret = i915_gem_object_wait(obj,
3828 				   I915_WAIT_INTERRUPTIBLE |
3829 				   I915_WAIT_LOCKED |
3830 				   (write ? I915_WAIT_ALL : 0),
3831 				   MAX_SCHEDULE_TIMEOUT,
3832 				   NULL);
3833 	if (ret)
3834 		return ret;
3835 
3836 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3837 		return 0;
3838 
3839 	/* Flush and acquire obj->pages so that we are coherent through
3840 	 * direct access in memory with previous cached writes through
3841 	 * shmemfs and that our cache domain tracking remains valid.
3842 	 * For example, if the obj->filp was moved to swap without us
3843 	 * being notified and releasing the pages, we would mistakenly
3844 	 * continue to assume that the obj remained out of the CPU cached
3845 	 * domain.
3846 	 */
3847 	ret = i915_gem_object_pin_pages(obj);
3848 	if (ret)
3849 		return ret;
3850 
3851 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3852 
3853 	/* Serialise direct access to this object with the barriers for
3854 	 * coherent writes from the GPU, by effectively invalidating the
3855 	 * WC domain upon first access.
3856 	 */
3857 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3858 		mb();
3859 
3860 	/* It should now be out of any other write domains, and we can update
3861 	 * the domain values for our changes.
3862 	 */
3863 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3864 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3865 	if (write) {
3866 		obj->read_domains = I915_GEM_DOMAIN_WC;
3867 		obj->write_domain = I915_GEM_DOMAIN_WC;
3868 		obj->mm.dirty = true;
3869 	}
3870 
3871 	i915_gem_object_unpin_pages(obj);
3872 	return 0;
3873 }
3874 
3875 /**
3876  * Moves a single object to the GTT read, and possibly write domain.
3877  * @obj: object to act on
3878  * @write: ask for write access or read only
3879  *
3880  * This function returns when the move is complete, including waiting on
3881  * flushes to occur.
3882  */
3883 int
3884 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3885 {
3886 	int ret;
3887 
3888 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3889 
3890 	ret = i915_gem_object_wait(obj,
3891 				   I915_WAIT_INTERRUPTIBLE |
3892 				   I915_WAIT_LOCKED |
3893 				   (write ? I915_WAIT_ALL : 0),
3894 				   MAX_SCHEDULE_TIMEOUT,
3895 				   NULL);
3896 	if (ret)
3897 		return ret;
3898 
3899 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3900 		return 0;
3901 
3902 	/* Flush and acquire obj->pages so that we are coherent through
3903 	 * direct access in memory with previous cached writes through
3904 	 * shmemfs and that our cache domain tracking remains valid.
3905 	 * For example, if the obj->filp was moved to swap without us
3906 	 * being notified and releasing the pages, we would mistakenly
3907 	 * continue to assume that the obj remained out of the CPU cached
3908 	 * domain.
3909 	 */
3910 	ret = i915_gem_object_pin_pages(obj);
3911 	if (ret)
3912 		return ret;
3913 
3914 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3915 
3916 	/* Serialise direct access to this object with the barriers for
3917 	 * coherent writes from the GPU, by effectively invalidating the
3918 	 * GTT domain upon first access.
3919 	 */
3920 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3921 		mb();
3922 
3923 	/* It should now be out of any other write domains, and we can update
3924 	 * the domain values for our changes.
3925 	 */
3926 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3927 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3928 	if (write) {
3929 		obj->read_domains = I915_GEM_DOMAIN_GTT;
3930 		obj->write_domain = I915_GEM_DOMAIN_GTT;
3931 		obj->mm.dirty = true;
3932 	}
3933 
3934 	i915_gem_object_unpin_pages(obj);
3935 	return 0;
3936 }
3937 
3938 /**
3939  * Changes the cache-level of an object across all VMA.
3940  * @obj: object to act on
3941  * @cache_level: new cache level to set for the object
3942  *
3943  * After this function returns, the object will be in the new cache-level
3944  * across all GTT and the contents of the backing storage will be coherent,
3945  * with respect to the new cache-level. In order to keep the backing storage
3946  * coherent for all users, we only allow a single cache level to be set
3947  * globally on the object and prevent it from being changed whilst the
3948  * hardware is reading from the object. That is if the object is currently
3949  * on the scanout it will be set to uncached (or equivalent display
3950  * cache coherency) and all non-MOCS GPU access will also be uncached so
3951  * that all direct access to the scanout remains coherent.
3952  */
3953 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3954 				    enum i915_cache_level cache_level)
3955 {
3956 	struct i915_vma *vma;
3957 	int ret;
3958 
3959 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3960 
3961 	if (obj->cache_level == cache_level)
3962 		return 0;
3963 
3964 	/* Inspect the list of currently bound VMA and unbind any that would
3965 	 * be invalid given the new cache-level. This is principally to
3966 	 * catch the issue of the CS prefetch crossing page boundaries and
3967 	 * reading an invalid PTE on older architectures.
3968 	 */
3969 restart:
3970 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3971 		if (!drm_mm_node_allocated(&vma->node))
3972 			continue;
3973 
3974 		if (i915_vma_is_pinned(vma)) {
3975 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3976 			return -EBUSY;
3977 		}
3978 
3979 		if (!i915_vma_is_closed(vma) &&
3980 		    i915_gem_valid_gtt_space(vma, cache_level))
3981 			continue;
3982 
3983 		ret = i915_vma_unbind(vma);
3984 		if (ret)
3985 			return ret;
3986 
3987 		/* As unbinding may affect other elements in the
3988 		 * obj->vma_list (due to side-effects from retiring
3989 		 * an active vma), play safe and restart the iterator.
3990 		 */
3991 		goto restart;
3992 	}
3993 
3994 	/* We can reuse the existing drm_mm nodes but need to change the
3995 	 * cache-level on the PTE. We could simply unbind them all and
3996 	 * rebind with the correct cache-level on next use. However since
3997 	 * we already have a valid slot, dma mapping, pages etc, we may as
3998 	 * rewrite the PTE in the belief that doing so tramples upon less
3999 	 * state and so involves less work.
4000 	 */
4001 	if (obj->bind_count) {
4002 		/* Before we change the PTE, the GPU must not be accessing it.
4003 		 * If we wait upon the object, we know that all the bound
4004 		 * VMA are no longer active.
4005 		 */
4006 		ret = i915_gem_object_wait(obj,
4007 					   I915_WAIT_INTERRUPTIBLE |
4008 					   I915_WAIT_LOCKED |
4009 					   I915_WAIT_ALL,
4010 					   MAX_SCHEDULE_TIMEOUT,
4011 					   NULL);
4012 		if (ret)
4013 			return ret;
4014 
4015 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4016 		    cache_level != I915_CACHE_NONE) {
4017 			/* Access to snoopable pages through the GTT is
4018 			 * incoherent and on some machines causes a hard
4019 			 * lockup. Relinquish the CPU mmaping to force
4020 			 * userspace to refault in the pages and we can
4021 			 * then double check if the GTT mapping is still
4022 			 * valid for that pointer access.
4023 			 */
4024 			i915_gem_release_mmap(obj);
4025 
4026 			/* As we no longer need a fence for GTT access,
4027 			 * we can relinquish it now (and so prevent having
4028 			 * to steal a fence from someone else on the next
4029 			 * fence request). Note GPU activity would have
4030 			 * dropped the fence as all snoopable access is
4031 			 * supposed to be linear.
4032 			 */
4033 			for_each_ggtt_vma(vma, obj) {
4034 				ret = i915_vma_put_fence(vma);
4035 				if (ret)
4036 					return ret;
4037 			}
4038 		} else {
4039 			/* We either have incoherent backing store and
4040 			 * so no GTT access or the architecture is fully
4041 			 * coherent. In such cases, existing GTT mmaps
4042 			 * ignore the cache bit in the PTE and we can
4043 			 * rewrite it without confusing the GPU or having
4044 			 * to force userspace to fault back in its mmaps.
4045 			 */
4046 		}
4047 
4048 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4049 			if (!drm_mm_node_allocated(&vma->node))
4050 				continue;
4051 
4052 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4053 			if (ret)
4054 				return ret;
4055 		}
4056 	}
4057 
4058 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4059 		vma->node.color = cache_level;
4060 	i915_gem_object_set_cache_coherency(obj, cache_level);
4061 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4062 
4063 	return 0;
4064 }
4065 
4066 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4067 			       struct drm_file *file)
4068 {
4069 	struct drm_i915_gem_caching *args = data;
4070 	struct drm_i915_gem_object *obj;
4071 	int err = 0;
4072 
4073 	rcu_read_lock();
4074 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4075 	if (!obj) {
4076 		err = -ENOENT;
4077 		goto out;
4078 	}
4079 
4080 	switch (obj->cache_level) {
4081 	case I915_CACHE_LLC:
4082 	case I915_CACHE_L3_LLC:
4083 		args->caching = I915_CACHING_CACHED;
4084 		break;
4085 
4086 	case I915_CACHE_WT:
4087 		args->caching = I915_CACHING_DISPLAY;
4088 		break;
4089 
4090 	default:
4091 		args->caching = I915_CACHING_NONE;
4092 		break;
4093 	}
4094 out:
4095 	rcu_read_unlock();
4096 	return err;
4097 }
4098 
4099 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4100 			       struct drm_file *file)
4101 {
4102 	struct drm_i915_private *i915 = to_i915(dev);
4103 	struct drm_i915_gem_caching *args = data;
4104 	struct drm_i915_gem_object *obj;
4105 	enum i915_cache_level level;
4106 	int ret = 0;
4107 
4108 	switch (args->caching) {
4109 	case I915_CACHING_NONE:
4110 		level = I915_CACHE_NONE;
4111 		break;
4112 	case I915_CACHING_CACHED:
4113 		/*
4114 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4115 		 * snooped mapping may leave stale data in a corresponding CPU
4116 		 * cacheline, whereas normally such cachelines would get
4117 		 * invalidated.
4118 		 */
4119 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4120 			return -ENODEV;
4121 
4122 		level = I915_CACHE_LLC;
4123 		break;
4124 	case I915_CACHING_DISPLAY:
4125 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4126 		break;
4127 	default:
4128 		return -EINVAL;
4129 	}
4130 
4131 	obj = i915_gem_object_lookup(file, args->handle);
4132 	if (!obj)
4133 		return -ENOENT;
4134 
4135 	/*
4136 	 * The caching mode of proxy object is handled by its generator, and
4137 	 * not allowed to be changed by userspace.
4138 	 */
4139 	if (i915_gem_object_is_proxy(obj)) {
4140 		ret = -ENXIO;
4141 		goto out;
4142 	}
4143 
4144 	if (obj->cache_level == level)
4145 		goto out;
4146 
4147 	ret = i915_gem_object_wait(obj,
4148 				   I915_WAIT_INTERRUPTIBLE,
4149 				   MAX_SCHEDULE_TIMEOUT,
4150 				   to_rps_client(file));
4151 	if (ret)
4152 		goto out;
4153 
4154 	ret = i915_mutex_lock_interruptible(dev);
4155 	if (ret)
4156 		goto out;
4157 
4158 	ret = i915_gem_object_set_cache_level(obj, level);
4159 	mutex_unlock(&dev->struct_mutex);
4160 
4161 out:
4162 	i915_gem_object_put(obj);
4163 	return ret;
4164 }
4165 
4166 /*
4167  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4168  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4169  * (for pageflips). We only flush the caches while preparing the buffer for
4170  * display, the callers are responsible for frontbuffer flush.
4171  */
4172 struct i915_vma *
4173 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4174 				     u32 alignment,
4175 				     const struct i915_ggtt_view *view,
4176 				     unsigned int flags)
4177 {
4178 	struct i915_vma *vma;
4179 	int ret;
4180 
4181 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4182 
4183 	/* Mark the global pin early so that we account for the
4184 	 * display coherency whilst setting up the cache domains.
4185 	 */
4186 	obj->pin_global++;
4187 
4188 	/* The display engine is not coherent with the LLC cache on gen6.  As
4189 	 * a result, we make sure that the pinning that is about to occur is
4190 	 * done with uncached PTEs. This is lowest common denominator for all
4191 	 * chipsets.
4192 	 *
4193 	 * However for gen6+, we could do better by using the GFDT bit instead
4194 	 * of uncaching, which would allow us to flush all the LLC-cached data
4195 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4196 	 */
4197 	ret = i915_gem_object_set_cache_level(obj,
4198 					      HAS_WT(to_i915(obj->base.dev)) ?
4199 					      I915_CACHE_WT : I915_CACHE_NONE);
4200 	if (ret) {
4201 		vma = ERR_PTR(ret);
4202 		goto err_unpin_global;
4203 	}
4204 
4205 	/* As the user may map the buffer once pinned in the display plane
4206 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4207 	 * always use map_and_fenceable for all scanout buffers. However,
4208 	 * it may simply be too big to fit into mappable, in which case
4209 	 * put it anyway and hope that userspace can cope (but always first
4210 	 * try to preserve the existing ABI).
4211 	 */
4212 	vma = ERR_PTR(-ENOSPC);
4213 	if ((flags & PIN_MAPPABLE) == 0 &&
4214 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4215 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4216 					       flags |
4217 					       PIN_MAPPABLE |
4218 					       PIN_NONBLOCK);
4219 	if (IS_ERR(vma))
4220 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4221 	if (IS_ERR(vma))
4222 		goto err_unpin_global;
4223 
4224 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4225 
4226 	__i915_gem_object_flush_for_display(obj);
4227 
4228 	/* It should now be out of any other write domains, and we can update
4229 	 * the domain values for our changes.
4230 	 */
4231 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4232 
4233 	return vma;
4234 
4235 err_unpin_global:
4236 	obj->pin_global--;
4237 	return vma;
4238 }
4239 
4240 void
4241 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4242 {
4243 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4244 
4245 	if (WARN_ON(vma->obj->pin_global == 0))
4246 		return;
4247 
4248 	if (--vma->obj->pin_global == 0)
4249 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4250 
4251 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4252 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4253 
4254 	i915_vma_unpin(vma);
4255 }
4256 
4257 /**
4258  * Moves a single object to the CPU read, and possibly write domain.
4259  * @obj: object to act on
4260  * @write: requesting write or read-only access
4261  *
4262  * This function returns when the move is complete, including waiting on
4263  * flushes to occur.
4264  */
4265 int
4266 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4267 {
4268 	int ret;
4269 
4270 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4271 
4272 	ret = i915_gem_object_wait(obj,
4273 				   I915_WAIT_INTERRUPTIBLE |
4274 				   I915_WAIT_LOCKED |
4275 				   (write ? I915_WAIT_ALL : 0),
4276 				   MAX_SCHEDULE_TIMEOUT,
4277 				   NULL);
4278 	if (ret)
4279 		return ret;
4280 
4281 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4282 
4283 	/* Flush the CPU cache if it's still invalid. */
4284 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4285 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4286 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4287 	}
4288 
4289 	/* It should now be out of any other write domains, and we can update
4290 	 * the domain values for our changes.
4291 	 */
4292 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4293 
4294 	/* If we're writing through the CPU, then the GPU read domains will
4295 	 * need to be invalidated at next use.
4296 	 */
4297 	if (write)
4298 		__start_cpu_write(obj);
4299 
4300 	return 0;
4301 }
4302 
4303 /* Throttle our rendering by waiting until the ring has completed our requests
4304  * emitted over 20 msec ago.
4305  *
4306  * Note that if we were to use the current jiffies each time around the loop,
4307  * we wouldn't escape the function with any frames outstanding if the time to
4308  * render a frame was over 20ms.
4309  *
4310  * This should get us reasonable parallelism between CPU and GPU but also
4311  * relatively low latency when blocking on a particular request to finish.
4312  */
4313 static int
4314 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4315 {
4316 	struct drm_i915_private *dev_priv = to_i915(dev);
4317 	struct drm_i915_file_private *file_priv = file->driver_priv;
4318 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4319 	struct i915_request *request, *target = NULL;
4320 	long ret;
4321 
4322 	/* ABI: return -EIO if already wedged */
4323 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4324 		return -EIO;
4325 
4326 	spin_lock(&file_priv->mm.lock);
4327 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4328 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4329 			break;
4330 
4331 		if (target) {
4332 			list_del(&target->client_link);
4333 			target->file_priv = NULL;
4334 		}
4335 
4336 		target = request;
4337 	}
4338 	if (target)
4339 		i915_request_get(target);
4340 	spin_unlock(&file_priv->mm.lock);
4341 
4342 	if (target == NULL)
4343 		return 0;
4344 
4345 	ret = i915_request_wait(target,
4346 				I915_WAIT_INTERRUPTIBLE,
4347 				MAX_SCHEDULE_TIMEOUT);
4348 	i915_request_put(target);
4349 
4350 	return ret < 0 ? ret : 0;
4351 }
4352 
4353 struct i915_vma *
4354 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4355 			 const struct i915_ggtt_view *view,
4356 			 u64 size,
4357 			 u64 alignment,
4358 			 u64 flags)
4359 {
4360 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4361 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4362 	struct i915_vma *vma;
4363 	int ret;
4364 
4365 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4366 
4367 	if (flags & PIN_MAPPABLE &&
4368 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4369 		/* If the required space is larger than the available
4370 		 * aperture, we will not able to find a slot for the
4371 		 * object and unbinding the object now will be in
4372 		 * vain. Worse, doing so may cause us to ping-pong
4373 		 * the object in and out of the Global GTT and
4374 		 * waste a lot of cycles under the mutex.
4375 		 */
4376 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4377 			return ERR_PTR(-E2BIG);
4378 
4379 		/* If NONBLOCK is set the caller is optimistically
4380 		 * trying to cache the full object within the mappable
4381 		 * aperture, and *must* have a fallback in place for
4382 		 * situations where we cannot bind the object. We
4383 		 * can be a little more lax here and use the fallback
4384 		 * more often to avoid costly migrations of ourselves
4385 		 * and other objects within the aperture.
4386 		 *
4387 		 * Half-the-aperture is used as a simple heuristic.
4388 		 * More interesting would to do search for a free
4389 		 * block prior to making the commitment to unbind.
4390 		 * That caters for the self-harm case, and with a
4391 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4392 		 * we could try to minimise harm to others.
4393 		 */
4394 		if (flags & PIN_NONBLOCK &&
4395 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4396 			return ERR_PTR(-ENOSPC);
4397 	}
4398 
4399 	vma = i915_vma_instance(obj, vm, view);
4400 	if (unlikely(IS_ERR(vma)))
4401 		return vma;
4402 
4403 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4404 		if (flags & PIN_NONBLOCK) {
4405 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4406 				return ERR_PTR(-ENOSPC);
4407 
4408 			if (flags & PIN_MAPPABLE &&
4409 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4410 				return ERR_PTR(-ENOSPC);
4411 		}
4412 
4413 		WARN(i915_vma_is_pinned(vma),
4414 		     "bo is already pinned in ggtt with incorrect alignment:"
4415 		     " offset=%08x, req.alignment=%llx,"
4416 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4417 		     i915_ggtt_offset(vma), alignment,
4418 		     !!(flags & PIN_MAPPABLE),
4419 		     i915_vma_is_map_and_fenceable(vma));
4420 		ret = i915_vma_unbind(vma);
4421 		if (ret)
4422 			return ERR_PTR(ret);
4423 	}
4424 
4425 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4426 	if (ret)
4427 		return ERR_PTR(ret);
4428 
4429 	return vma;
4430 }
4431 
4432 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4433 {
4434 	/* Note that we could alias engines in the execbuf API, but
4435 	 * that would be very unwise as it prevents userspace from
4436 	 * fine control over engine selection. Ahem.
4437 	 *
4438 	 * This should be something like EXEC_MAX_ENGINE instead of
4439 	 * I915_NUM_ENGINES.
4440 	 */
4441 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4442 	return 0x10000 << id;
4443 }
4444 
4445 static __always_inline unsigned int __busy_write_id(unsigned int id)
4446 {
4447 	/* The uABI guarantees an active writer is also amongst the read
4448 	 * engines. This would be true if we accessed the activity tracking
4449 	 * under the lock, but as we perform the lookup of the object and
4450 	 * its activity locklessly we can not guarantee that the last_write
4451 	 * being active implies that we have set the same engine flag from
4452 	 * last_read - hence we always set both read and write busy for
4453 	 * last_write.
4454 	 */
4455 	return id | __busy_read_flag(id);
4456 }
4457 
4458 static __always_inline unsigned int
4459 __busy_set_if_active(const struct dma_fence *fence,
4460 		     unsigned int (*flag)(unsigned int id))
4461 {
4462 	struct i915_request *rq;
4463 
4464 	/* We have to check the current hw status of the fence as the uABI
4465 	 * guarantees forward progress. We could rely on the idle worker
4466 	 * to eventually flush us, but to minimise latency just ask the
4467 	 * hardware.
4468 	 *
4469 	 * Note we only report on the status of native fences.
4470 	 */
4471 	if (!dma_fence_is_i915(fence))
4472 		return 0;
4473 
4474 	/* opencode to_request() in order to avoid const warnings */
4475 	rq = container_of(fence, struct i915_request, fence);
4476 	if (i915_request_completed(rq))
4477 		return 0;
4478 
4479 	return flag(rq->engine->uabi_id);
4480 }
4481 
4482 static __always_inline unsigned int
4483 busy_check_reader(const struct dma_fence *fence)
4484 {
4485 	return __busy_set_if_active(fence, __busy_read_flag);
4486 }
4487 
4488 static __always_inline unsigned int
4489 busy_check_writer(const struct dma_fence *fence)
4490 {
4491 	if (!fence)
4492 		return 0;
4493 
4494 	return __busy_set_if_active(fence, __busy_write_id);
4495 }
4496 
4497 int
4498 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4499 		    struct drm_file *file)
4500 {
4501 	struct drm_i915_gem_busy *args = data;
4502 	struct drm_i915_gem_object *obj;
4503 	struct reservation_object_list *list;
4504 	unsigned int seq;
4505 	int err;
4506 
4507 	err = -ENOENT;
4508 	rcu_read_lock();
4509 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4510 	if (!obj)
4511 		goto out;
4512 
4513 	/* A discrepancy here is that we do not report the status of
4514 	 * non-i915 fences, i.e. even though we may report the object as idle,
4515 	 * a call to set-domain may still stall waiting for foreign rendering.
4516 	 * This also means that wait-ioctl may report an object as busy,
4517 	 * where busy-ioctl considers it idle.
4518 	 *
4519 	 * We trade the ability to warn of foreign fences to report on which
4520 	 * i915 engines are active for the object.
4521 	 *
4522 	 * Alternatively, we can trade that extra information on read/write
4523 	 * activity with
4524 	 *	args->busy =
4525 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4526 	 * to report the overall busyness. This is what the wait-ioctl does.
4527 	 *
4528 	 */
4529 retry:
4530 	seq = raw_read_seqcount(&obj->resv->seq);
4531 
4532 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4533 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4534 
4535 	/* Translate shared fences to READ set of engines */
4536 	list = rcu_dereference(obj->resv->fence);
4537 	if (list) {
4538 		unsigned int shared_count = list->shared_count, i;
4539 
4540 		for (i = 0; i < shared_count; ++i) {
4541 			struct dma_fence *fence =
4542 				rcu_dereference(list->shared[i]);
4543 
4544 			args->busy |= busy_check_reader(fence);
4545 		}
4546 	}
4547 
4548 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4549 		goto retry;
4550 
4551 	err = 0;
4552 out:
4553 	rcu_read_unlock();
4554 	return err;
4555 }
4556 
4557 int
4558 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4559 			struct drm_file *file_priv)
4560 {
4561 	return i915_gem_ring_throttle(dev, file_priv);
4562 }
4563 
4564 int
4565 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4566 		       struct drm_file *file_priv)
4567 {
4568 	struct drm_i915_private *dev_priv = to_i915(dev);
4569 	struct drm_i915_gem_madvise *args = data;
4570 	struct drm_i915_gem_object *obj;
4571 	int err;
4572 
4573 	switch (args->madv) {
4574 	case I915_MADV_DONTNEED:
4575 	case I915_MADV_WILLNEED:
4576 	    break;
4577 	default:
4578 	    return -EINVAL;
4579 	}
4580 
4581 	obj = i915_gem_object_lookup(file_priv, args->handle);
4582 	if (!obj)
4583 		return -ENOENT;
4584 
4585 	err = mutex_lock_interruptible(&obj->mm.lock);
4586 	if (err)
4587 		goto out;
4588 
4589 	if (i915_gem_object_has_pages(obj) &&
4590 	    i915_gem_object_is_tiled(obj) &&
4591 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4592 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4593 			GEM_BUG_ON(!obj->mm.quirked);
4594 			__i915_gem_object_unpin_pages(obj);
4595 			obj->mm.quirked = false;
4596 		}
4597 		if (args->madv == I915_MADV_WILLNEED) {
4598 			GEM_BUG_ON(obj->mm.quirked);
4599 			__i915_gem_object_pin_pages(obj);
4600 			obj->mm.quirked = true;
4601 		}
4602 	}
4603 
4604 	if (obj->mm.madv != __I915_MADV_PURGED)
4605 		obj->mm.madv = args->madv;
4606 
4607 	/* if the object is no longer attached, discard its backing storage */
4608 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4609 	    !i915_gem_object_has_pages(obj))
4610 		i915_gem_object_truncate(obj);
4611 
4612 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4613 	mutex_unlock(&obj->mm.lock);
4614 
4615 out:
4616 	i915_gem_object_put(obj);
4617 	return err;
4618 }
4619 
4620 static void
4621 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4622 {
4623 	struct drm_i915_gem_object *obj =
4624 		container_of(active, typeof(*obj), frontbuffer_write);
4625 
4626 	intel_fb_obj_flush(obj, ORIGIN_CS);
4627 }
4628 
4629 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4630 			  const struct drm_i915_gem_object_ops *ops)
4631 {
4632 	mutex_init(&obj->mm.lock);
4633 
4634 	INIT_LIST_HEAD(&obj->vma_list);
4635 	INIT_LIST_HEAD(&obj->lut_list);
4636 	INIT_LIST_HEAD(&obj->batch_pool_link);
4637 
4638 	obj->ops = ops;
4639 
4640 	reservation_object_init(&obj->__builtin_resv);
4641 	obj->resv = &obj->__builtin_resv;
4642 
4643 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4644 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4645 
4646 	obj->mm.madv = I915_MADV_WILLNEED;
4647 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4648 	mutex_init(&obj->mm.get_page.lock);
4649 
4650 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4651 }
4652 
4653 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4654 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4655 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4656 
4657 	.get_pages = i915_gem_object_get_pages_gtt,
4658 	.put_pages = i915_gem_object_put_pages_gtt,
4659 
4660 	.pwrite = i915_gem_object_pwrite_gtt,
4661 };
4662 
4663 static int i915_gem_object_create_shmem(struct drm_device *dev,
4664 					struct drm_gem_object *obj,
4665 					size_t size)
4666 {
4667 	struct drm_i915_private *i915 = to_i915(dev);
4668 	unsigned long flags = VM_NORESERVE;
4669 	struct file *filp;
4670 
4671 	drm_gem_private_object_init(dev, obj, size);
4672 
4673 	if (i915->mm.gemfs)
4674 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4675 						 flags);
4676 	else
4677 		filp = shmem_file_setup("i915", size, flags);
4678 
4679 	if (IS_ERR(filp))
4680 		return PTR_ERR(filp);
4681 
4682 	obj->filp = filp;
4683 
4684 	return 0;
4685 }
4686 
4687 struct drm_i915_gem_object *
4688 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4689 {
4690 	struct drm_i915_gem_object *obj;
4691 	struct address_space *mapping;
4692 	unsigned int cache_level;
4693 	gfp_t mask;
4694 	int ret;
4695 
4696 	/* There is a prevalence of the assumption that we fit the object's
4697 	 * page count inside a 32bit _signed_ variable. Let's document this and
4698 	 * catch if we ever need to fix it. In the meantime, if you do spot
4699 	 * such a local variable, please consider fixing!
4700 	 */
4701 	if (size >> PAGE_SHIFT > INT_MAX)
4702 		return ERR_PTR(-E2BIG);
4703 
4704 	if (overflows_type(size, obj->base.size))
4705 		return ERR_PTR(-E2BIG);
4706 
4707 	obj = i915_gem_object_alloc(dev_priv);
4708 	if (obj == NULL)
4709 		return ERR_PTR(-ENOMEM);
4710 
4711 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4712 	if (ret)
4713 		goto fail;
4714 
4715 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4716 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4717 		/* 965gm cannot relocate objects above 4GiB. */
4718 		mask &= ~__GFP_HIGHMEM;
4719 		mask |= __GFP_DMA32;
4720 	}
4721 
4722 	mapping = obj->base.filp->f_mapping;
4723 	mapping_set_gfp_mask(mapping, mask);
4724 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4725 
4726 	i915_gem_object_init(obj, &i915_gem_object_ops);
4727 
4728 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4729 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4730 
4731 	if (HAS_LLC(dev_priv))
4732 		/* On some devices, we can have the GPU use the LLC (the CPU
4733 		 * cache) for about a 10% performance improvement
4734 		 * compared to uncached.  Graphics requests other than
4735 		 * display scanout are coherent with the CPU in
4736 		 * accessing this cache.  This means in this mode we
4737 		 * don't need to clflush on the CPU side, and on the
4738 		 * GPU side we only need to flush internal caches to
4739 		 * get data visible to the CPU.
4740 		 *
4741 		 * However, we maintain the display planes as UC, and so
4742 		 * need to rebind when first used as such.
4743 		 */
4744 		cache_level = I915_CACHE_LLC;
4745 	else
4746 		cache_level = I915_CACHE_NONE;
4747 
4748 	i915_gem_object_set_cache_coherency(obj, cache_level);
4749 
4750 	trace_i915_gem_object_create(obj);
4751 
4752 	return obj;
4753 
4754 fail:
4755 	i915_gem_object_free(obj);
4756 	return ERR_PTR(ret);
4757 }
4758 
4759 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4760 {
4761 	/* If we are the last user of the backing storage (be it shmemfs
4762 	 * pages or stolen etc), we know that the pages are going to be
4763 	 * immediately released. In this case, we can then skip copying
4764 	 * back the contents from the GPU.
4765 	 */
4766 
4767 	if (obj->mm.madv != I915_MADV_WILLNEED)
4768 		return false;
4769 
4770 	if (obj->base.filp == NULL)
4771 		return true;
4772 
4773 	/* At first glance, this looks racy, but then again so would be
4774 	 * userspace racing mmap against close. However, the first external
4775 	 * reference to the filp can only be obtained through the
4776 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4777 	 * acquiring such a reference whilst we are in the middle of
4778 	 * freeing the object.
4779 	 */
4780 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4781 }
4782 
4783 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4784 				    struct llist_node *freed)
4785 {
4786 	struct drm_i915_gem_object *obj, *on;
4787 
4788 	intel_runtime_pm_get(i915);
4789 	llist_for_each_entry_safe(obj, on, freed, freed) {
4790 		struct i915_vma *vma, *vn;
4791 
4792 		trace_i915_gem_object_destroy(obj);
4793 
4794 		mutex_lock(&i915->drm.struct_mutex);
4795 
4796 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4797 		list_for_each_entry_safe(vma, vn,
4798 					 &obj->vma_list, obj_link) {
4799 			GEM_BUG_ON(i915_vma_is_active(vma));
4800 			vma->flags &= ~I915_VMA_PIN_MASK;
4801 			i915_vma_destroy(vma);
4802 		}
4803 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4804 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4805 
4806 		/* This serializes freeing with the shrinker. Since the free
4807 		 * is delayed, first by RCU then by the workqueue, we want the
4808 		 * shrinker to be able to free pages of unreferenced objects,
4809 		 * or else we may oom whilst there are plenty of deferred
4810 		 * freed objects.
4811 		 */
4812 		if (i915_gem_object_has_pages(obj)) {
4813 			spin_lock(&i915->mm.obj_lock);
4814 			list_del_init(&obj->mm.link);
4815 			spin_unlock(&i915->mm.obj_lock);
4816 		}
4817 
4818 		mutex_unlock(&i915->drm.struct_mutex);
4819 
4820 		GEM_BUG_ON(obj->bind_count);
4821 		GEM_BUG_ON(obj->userfault_count);
4822 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4823 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4824 
4825 		if (obj->ops->release)
4826 			obj->ops->release(obj);
4827 
4828 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4829 			atomic_set(&obj->mm.pages_pin_count, 0);
4830 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4831 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4832 
4833 		if (obj->base.import_attach)
4834 			drm_prime_gem_destroy(&obj->base, NULL);
4835 
4836 		reservation_object_fini(&obj->__builtin_resv);
4837 		drm_gem_object_release(&obj->base);
4838 		i915_gem_info_remove_obj(i915, obj->base.size);
4839 
4840 		kfree(obj->bit_17);
4841 		i915_gem_object_free(obj);
4842 
4843 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4844 		atomic_dec(&i915->mm.free_count);
4845 
4846 		if (on)
4847 			cond_resched();
4848 	}
4849 	intel_runtime_pm_put(i915);
4850 }
4851 
4852 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4853 {
4854 	struct llist_node *freed;
4855 
4856 	/* Free the oldest, most stale object to keep the free_list short */
4857 	freed = NULL;
4858 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4859 		/* Only one consumer of llist_del_first() allowed */
4860 		spin_lock(&i915->mm.free_lock);
4861 		freed = llist_del_first(&i915->mm.free_list);
4862 		spin_unlock(&i915->mm.free_lock);
4863 	}
4864 	if (unlikely(freed)) {
4865 		freed->next = NULL;
4866 		__i915_gem_free_objects(i915, freed);
4867 	}
4868 }
4869 
4870 static void __i915_gem_free_work(struct work_struct *work)
4871 {
4872 	struct drm_i915_private *i915 =
4873 		container_of(work, struct drm_i915_private, mm.free_work);
4874 	struct llist_node *freed;
4875 
4876 	/*
4877 	 * All file-owned VMA should have been released by this point through
4878 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4879 	 * However, the object may also be bound into the global GTT (e.g.
4880 	 * older GPUs without per-process support, or for direct access through
4881 	 * the GTT either for the user or for scanout). Those VMA still need to
4882 	 * unbound now.
4883 	 */
4884 
4885 	spin_lock(&i915->mm.free_lock);
4886 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4887 		spin_unlock(&i915->mm.free_lock);
4888 
4889 		__i915_gem_free_objects(i915, freed);
4890 		if (need_resched())
4891 			return;
4892 
4893 		spin_lock(&i915->mm.free_lock);
4894 	}
4895 	spin_unlock(&i915->mm.free_lock);
4896 }
4897 
4898 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4899 {
4900 	struct drm_i915_gem_object *obj =
4901 		container_of(head, typeof(*obj), rcu);
4902 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4903 
4904 	/*
4905 	 * Since we require blocking on struct_mutex to unbind the freed
4906 	 * object from the GPU before releasing resources back to the
4907 	 * system, we can not do that directly from the RCU callback (which may
4908 	 * be a softirq context), but must instead then defer that work onto a
4909 	 * kthread. We use the RCU callback rather than move the freed object
4910 	 * directly onto the work queue so that we can mix between using the
4911 	 * worker and performing frees directly from subsequent allocations for
4912 	 * crude but effective memory throttling.
4913 	 */
4914 	if (llist_add(&obj->freed, &i915->mm.free_list))
4915 		queue_work(i915->wq, &i915->mm.free_work);
4916 }
4917 
4918 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4919 {
4920 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4921 
4922 	if (obj->mm.quirked)
4923 		__i915_gem_object_unpin_pages(obj);
4924 
4925 	if (discard_backing_storage(obj))
4926 		obj->mm.madv = I915_MADV_DONTNEED;
4927 
4928 	/*
4929 	 * Before we free the object, make sure any pure RCU-only
4930 	 * read-side critical sections are complete, e.g.
4931 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4932 	 * lookup see i915_gem_object_lookup_rcu().
4933 	 */
4934 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4935 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4936 }
4937 
4938 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4939 {
4940 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4941 
4942 	if (!i915_gem_object_has_active_reference(obj) &&
4943 	    i915_gem_object_is_active(obj))
4944 		i915_gem_object_set_active_reference(obj);
4945 	else
4946 		i915_gem_object_put(obj);
4947 }
4948 
4949 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4950 {
4951 	struct i915_gem_context *kernel_context = i915->kernel_context;
4952 	struct intel_engine_cs *engine;
4953 	enum intel_engine_id id;
4954 
4955 	for_each_engine(engine, i915, id) {
4956 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4957 		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4958 	}
4959 }
4960 
4961 void i915_gem_sanitize(struct drm_i915_private *i915)
4962 {
4963 	if (i915_terminally_wedged(&i915->gpu_error)) {
4964 		mutex_lock(&i915->drm.struct_mutex);
4965 		i915_gem_unset_wedged(i915);
4966 		mutex_unlock(&i915->drm.struct_mutex);
4967 	}
4968 
4969 	/*
4970 	 * If we inherit context state from the BIOS or earlier occupants
4971 	 * of the GPU, the GPU may be in an inconsistent state when we
4972 	 * try to take over. The only way to remove the earlier state
4973 	 * is by resetting. However, resetting on earlier gen is tricky as
4974 	 * it may impact the display and we are uncertain about the stability
4975 	 * of the reset, so this could be applied to even earlier gen.
4976 	 */
4977 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4978 		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4979 }
4980 
4981 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4982 {
4983 	struct drm_device *dev = &dev_priv->drm;
4984 	int ret;
4985 
4986 	intel_runtime_pm_get(dev_priv);
4987 	intel_suspend_gt_powersave(dev_priv);
4988 
4989 	mutex_lock(&dev->struct_mutex);
4990 
4991 	/* We have to flush all the executing contexts to main memory so
4992 	 * that they can saved in the hibernation image. To ensure the last
4993 	 * context image is coherent, we have to switch away from it. That
4994 	 * leaves the dev_priv->kernel_context still active when
4995 	 * we actually suspend, and its image in memory may not match the GPU
4996 	 * state. Fortunately, the kernel_context is disposable and we do
4997 	 * not rely on its state.
4998 	 */
4999 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5000 		ret = i915_gem_switch_to_kernel_context(dev_priv);
5001 		if (ret)
5002 			goto err_unlock;
5003 
5004 		ret = i915_gem_wait_for_idle(dev_priv,
5005 					     I915_WAIT_INTERRUPTIBLE |
5006 					     I915_WAIT_LOCKED);
5007 		if (ret && ret != -EIO)
5008 			goto err_unlock;
5009 
5010 		assert_kernel_context_is_current(dev_priv);
5011 	}
5012 	i915_gem_contexts_lost(dev_priv);
5013 	mutex_unlock(&dev->struct_mutex);
5014 
5015 	intel_uc_suspend(dev_priv);
5016 
5017 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5018 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5019 
5020 	/* As the idle_work is rearming if it detects a race, play safe and
5021 	 * repeat the flush until it is definitely idle.
5022 	 */
5023 	drain_delayed_work(&dev_priv->gt.idle_work);
5024 
5025 	/* Assert that we sucessfully flushed all the work and
5026 	 * reset the GPU back to its idle, low power state.
5027 	 */
5028 	WARN_ON(dev_priv->gt.awake);
5029 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
5030 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5031 
5032 	/*
5033 	 * Neither the BIOS, ourselves or any other kernel
5034 	 * expects the system to be in execlists mode on startup,
5035 	 * so we need to reset the GPU back to legacy mode. And the only
5036 	 * known way to disable logical contexts is through a GPU reset.
5037 	 *
5038 	 * So in order to leave the system in a known default configuration,
5039 	 * always reset the GPU upon unload and suspend. Afterwards we then
5040 	 * clean up the GEM state tracking, flushing off the requests and
5041 	 * leaving the system in a known idle state.
5042 	 *
5043 	 * Note that is of the upmost importance that the GPU is idle and
5044 	 * all stray writes are flushed *before* we dismantle the backing
5045 	 * storage for the pinned objects.
5046 	 *
5047 	 * However, since we are uncertain that resetting the GPU on older
5048 	 * machines is a good idea, we don't - just in case it leaves the
5049 	 * machine in an unusable condition.
5050 	 */
5051 	intel_uc_sanitize(dev_priv);
5052 	i915_gem_sanitize(dev_priv);
5053 
5054 	intel_runtime_pm_put(dev_priv);
5055 	return 0;
5056 
5057 err_unlock:
5058 	mutex_unlock(&dev->struct_mutex);
5059 	intel_runtime_pm_put(dev_priv);
5060 	return ret;
5061 }
5062 
5063 void i915_gem_resume(struct drm_i915_private *i915)
5064 {
5065 	WARN_ON(i915->gt.awake);
5066 
5067 	mutex_lock(&i915->drm.struct_mutex);
5068 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5069 
5070 	i915_gem_restore_gtt_mappings(i915);
5071 	i915_gem_restore_fences(i915);
5072 
5073 	/*
5074 	 * As we didn't flush the kernel context before suspend, we cannot
5075 	 * guarantee that the context image is complete. So let's just reset
5076 	 * it and start again.
5077 	 */
5078 	i915->gt.resume(i915);
5079 
5080 	if (i915_gem_init_hw(i915))
5081 		goto err_wedged;
5082 
5083 	intel_uc_resume(i915);
5084 
5085 	/* Always reload a context for powersaving. */
5086 	if (i915_gem_switch_to_kernel_context(i915))
5087 		goto err_wedged;
5088 
5089 out_unlock:
5090 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5091 	mutex_unlock(&i915->drm.struct_mutex);
5092 	return;
5093 
5094 err_wedged:
5095 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5096 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5097 		i915_gem_set_wedged(i915);
5098 	}
5099 	goto out_unlock;
5100 }
5101 
5102 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5103 {
5104 	if (INTEL_GEN(dev_priv) < 5 ||
5105 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5106 		return;
5107 
5108 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5109 				 DISP_TILE_SURFACE_SWIZZLING);
5110 
5111 	if (IS_GEN5(dev_priv))
5112 		return;
5113 
5114 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5115 	if (IS_GEN6(dev_priv))
5116 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5117 	else if (IS_GEN7(dev_priv))
5118 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5119 	else if (IS_GEN8(dev_priv))
5120 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5121 	else
5122 		BUG();
5123 }
5124 
5125 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5126 {
5127 	I915_WRITE(RING_CTL(base), 0);
5128 	I915_WRITE(RING_HEAD(base), 0);
5129 	I915_WRITE(RING_TAIL(base), 0);
5130 	I915_WRITE(RING_START(base), 0);
5131 }
5132 
5133 static void init_unused_rings(struct drm_i915_private *dev_priv)
5134 {
5135 	if (IS_I830(dev_priv)) {
5136 		init_unused_ring(dev_priv, PRB1_BASE);
5137 		init_unused_ring(dev_priv, SRB0_BASE);
5138 		init_unused_ring(dev_priv, SRB1_BASE);
5139 		init_unused_ring(dev_priv, SRB2_BASE);
5140 		init_unused_ring(dev_priv, SRB3_BASE);
5141 	} else if (IS_GEN2(dev_priv)) {
5142 		init_unused_ring(dev_priv, SRB0_BASE);
5143 		init_unused_ring(dev_priv, SRB1_BASE);
5144 	} else if (IS_GEN3(dev_priv)) {
5145 		init_unused_ring(dev_priv, PRB1_BASE);
5146 		init_unused_ring(dev_priv, PRB2_BASE);
5147 	}
5148 }
5149 
5150 static int __i915_gem_restart_engines(void *data)
5151 {
5152 	struct drm_i915_private *i915 = data;
5153 	struct intel_engine_cs *engine;
5154 	enum intel_engine_id id;
5155 	int err;
5156 
5157 	for_each_engine(engine, i915, id) {
5158 		err = engine->init_hw(engine);
5159 		if (err) {
5160 			DRM_ERROR("Failed to restart %s (%d)\n",
5161 				  engine->name, err);
5162 			return err;
5163 		}
5164 	}
5165 
5166 	return 0;
5167 }
5168 
5169 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5170 {
5171 	int ret;
5172 
5173 	dev_priv->gt.last_init_time = ktime_get();
5174 
5175 	/* Double layer security blanket, see i915_gem_init() */
5176 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5177 
5178 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5179 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5180 
5181 	if (IS_HASWELL(dev_priv))
5182 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5183 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5184 
5185 	if (HAS_PCH_NOP(dev_priv)) {
5186 		if (IS_IVYBRIDGE(dev_priv)) {
5187 			u32 temp = I915_READ(GEN7_MSG_CTL);
5188 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5189 			I915_WRITE(GEN7_MSG_CTL, temp);
5190 		} else if (INTEL_GEN(dev_priv) >= 7) {
5191 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5192 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5193 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5194 		}
5195 	}
5196 
5197 	intel_gt_workarounds_apply(dev_priv);
5198 
5199 	i915_gem_init_swizzling(dev_priv);
5200 
5201 	/*
5202 	 * At least 830 can leave some of the unused rings
5203 	 * "active" (ie. head != tail) after resume which
5204 	 * will prevent c3 entry. Makes sure all unused rings
5205 	 * are totally idle.
5206 	 */
5207 	init_unused_rings(dev_priv);
5208 
5209 	BUG_ON(!dev_priv->kernel_context);
5210 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5211 		ret = -EIO;
5212 		goto out;
5213 	}
5214 
5215 	ret = i915_ppgtt_init_hw(dev_priv);
5216 	if (ret) {
5217 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5218 		goto out;
5219 	}
5220 
5221 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5222 	if (ret) {
5223 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5224 		goto out;
5225 	}
5226 
5227 	/* We can't enable contexts until all firmware is loaded */
5228 	ret = intel_uc_init_hw(dev_priv);
5229 	if (ret) {
5230 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5231 		goto out;
5232 	}
5233 
5234 	intel_mocs_init_l3cc_table(dev_priv);
5235 
5236 	/* Only when the HW is re-initialised, can we replay the requests */
5237 	ret = __i915_gem_restart_engines(dev_priv);
5238 out:
5239 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5240 	return ret;
5241 }
5242 
5243 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5244 {
5245 	struct i915_gem_context *ctx;
5246 	struct intel_engine_cs *engine;
5247 	enum intel_engine_id id;
5248 	int err;
5249 
5250 	/*
5251 	 * As we reset the gpu during very early sanitisation, the current
5252 	 * register state on the GPU should reflect its defaults values.
5253 	 * We load a context onto the hw (with restore-inhibit), then switch
5254 	 * over to a second context to save that default register state. We
5255 	 * can then prime every new context with that state so they all start
5256 	 * from the same default HW values.
5257 	 */
5258 
5259 	ctx = i915_gem_context_create_kernel(i915, 0);
5260 	if (IS_ERR(ctx))
5261 		return PTR_ERR(ctx);
5262 
5263 	for_each_engine(engine, i915, id) {
5264 		struct i915_request *rq;
5265 
5266 		rq = i915_request_alloc(engine, ctx);
5267 		if (IS_ERR(rq)) {
5268 			err = PTR_ERR(rq);
5269 			goto out_ctx;
5270 		}
5271 
5272 		err = 0;
5273 		if (engine->init_context)
5274 			err = engine->init_context(rq);
5275 
5276 		__i915_request_add(rq, true);
5277 		if (err)
5278 			goto err_active;
5279 	}
5280 
5281 	err = i915_gem_switch_to_kernel_context(i915);
5282 	if (err)
5283 		goto err_active;
5284 
5285 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5286 	if (err)
5287 		goto err_active;
5288 
5289 	assert_kernel_context_is_current(i915);
5290 
5291 	for_each_engine(engine, i915, id) {
5292 		struct i915_vma *state;
5293 
5294 		state = to_intel_context(ctx, engine)->state;
5295 		if (!state)
5296 			continue;
5297 
5298 		/*
5299 		 * As we will hold a reference to the logical state, it will
5300 		 * not be torn down with the context, and importantly the
5301 		 * object will hold onto its vma (making it possible for a
5302 		 * stray GTT write to corrupt our defaults). Unmap the vma
5303 		 * from the GTT to prevent such accidents and reclaim the
5304 		 * space.
5305 		 */
5306 		err = i915_vma_unbind(state);
5307 		if (err)
5308 			goto err_active;
5309 
5310 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5311 		if (err)
5312 			goto err_active;
5313 
5314 		engine->default_state = i915_gem_object_get(state->obj);
5315 	}
5316 
5317 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5318 		unsigned int found = intel_engines_has_context_isolation(i915);
5319 
5320 		/*
5321 		 * Make sure that classes with multiple engine instances all
5322 		 * share the same basic configuration.
5323 		 */
5324 		for_each_engine(engine, i915, id) {
5325 			unsigned int bit = BIT(engine->uabi_class);
5326 			unsigned int expected = engine->default_state ? bit : 0;
5327 
5328 			if ((found & bit) != expected) {
5329 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5330 					  engine->uabi_class, engine->name);
5331 			}
5332 		}
5333 	}
5334 
5335 out_ctx:
5336 	i915_gem_context_set_closed(ctx);
5337 	i915_gem_context_put(ctx);
5338 	return err;
5339 
5340 err_active:
5341 	/*
5342 	 * If we have to abandon now, we expect the engines to be idle
5343 	 * and ready to be torn-down. First try to flush any remaining
5344 	 * request, ensure we are pointing at the kernel context and
5345 	 * then remove it.
5346 	 */
5347 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5348 		goto out_ctx;
5349 
5350 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5351 		goto out_ctx;
5352 
5353 	i915_gem_contexts_lost(i915);
5354 	goto out_ctx;
5355 }
5356 
5357 int i915_gem_init(struct drm_i915_private *dev_priv)
5358 {
5359 	int ret;
5360 
5361 	/*
5362 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5363 	 * support huge page entries - we will need to check either hypervisor
5364 	 * mm can support huge guest page or just do emulation in gvt.
5365 	 */
5366 	if (intel_vgpu_active(dev_priv))
5367 		mkwrite_device_info(dev_priv)->page_sizes =
5368 			I915_GTT_PAGE_SIZE_4K;
5369 
5370 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5371 
5372 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5373 		dev_priv->gt.resume = intel_lr_context_resume;
5374 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5375 	} else {
5376 		dev_priv->gt.resume = intel_legacy_submission_resume;
5377 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5378 	}
5379 
5380 	ret = i915_gem_init_userptr(dev_priv);
5381 	if (ret)
5382 		return ret;
5383 
5384 	ret = intel_wopcm_init(&dev_priv->wopcm);
5385 	if (ret)
5386 		return ret;
5387 
5388 	ret = intel_uc_init_misc(dev_priv);
5389 	if (ret)
5390 		return ret;
5391 
5392 	/* This is just a security blanket to placate dragons.
5393 	 * On some systems, we very sporadically observe that the first TLBs
5394 	 * used by the CS may be stale, despite us poking the TLB reset. If
5395 	 * we hold the forcewake during initialisation these problems
5396 	 * just magically go away.
5397 	 */
5398 	mutex_lock(&dev_priv->drm.struct_mutex);
5399 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5400 
5401 	ret = i915_gem_init_ggtt(dev_priv);
5402 	if (ret) {
5403 		GEM_BUG_ON(ret == -EIO);
5404 		goto err_unlock;
5405 	}
5406 
5407 	ret = i915_gem_contexts_init(dev_priv);
5408 	if (ret) {
5409 		GEM_BUG_ON(ret == -EIO);
5410 		goto err_ggtt;
5411 	}
5412 
5413 	ret = intel_engines_init(dev_priv);
5414 	if (ret) {
5415 		GEM_BUG_ON(ret == -EIO);
5416 		goto err_context;
5417 	}
5418 
5419 	intel_init_gt_powersave(dev_priv);
5420 
5421 	ret = intel_uc_init(dev_priv);
5422 	if (ret)
5423 		goto err_pm;
5424 
5425 	ret = i915_gem_init_hw(dev_priv);
5426 	if (ret)
5427 		goto err_uc_init;
5428 
5429 	/*
5430 	 * Despite its name intel_init_clock_gating applies both display
5431 	 * clock gating workarounds; GT mmio workarounds and the occasional
5432 	 * GT power context workaround. Worse, sometimes it includes a context
5433 	 * register workaround which we need to apply before we record the
5434 	 * default HW state for all contexts.
5435 	 *
5436 	 * FIXME: break up the workarounds and apply them at the right time!
5437 	 */
5438 	intel_init_clock_gating(dev_priv);
5439 
5440 	ret = __intel_engines_record_defaults(dev_priv);
5441 	if (ret)
5442 		goto err_init_hw;
5443 
5444 	if (i915_inject_load_failure()) {
5445 		ret = -ENODEV;
5446 		goto err_init_hw;
5447 	}
5448 
5449 	if (i915_inject_load_failure()) {
5450 		ret = -EIO;
5451 		goto err_init_hw;
5452 	}
5453 
5454 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5455 	mutex_unlock(&dev_priv->drm.struct_mutex);
5456 
5457 	return 0;
5458 
5459 	/*
5460 	 * Unwinding is complicated by that we want to handle -EIO to mean
5461 	 * disable GPU submission but keep KMS alive. We want to mark the
5462 	 * HW as irrevisibly wedged, but keep enough state around that the
5463 	 * driver doesn't explode during runtime.
5464 	 */
5465 err_init_hw:
5466 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5467 	i915_gem_contexts_lost(dev_priv);
5468 	intel_uc_fini_hw(dev_priv);
5469 err_uc_init:
5470 	intel_uc_fini(dev_priv);
5471 err_pm:
5472 	if (ret != -EIO) {
5473 		intel_cleanup_gt_powersave(dev_priv);
5474 		i915_gem_cleanup_engines(dev_priv);
5475 	}
5476 err_context:
5477 	if (ret != -EIO)
5478 		i915_gem_contexts_fini(dev_priv);
5479 err_ggtt:
5480 err_unlock:
5481 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5482 	mutex_unlock(&dev_priv->drm.struct_mutex);
5483 
5484 	intel_uc_fini_misc(dev_priv);
5485 
5486 	if (ret != -EIO)
5487 		i915_gem_cleanup_userptr(dev_priv);
5488 
5489 	if (ret == -EIO) {
5490 		/*
5491 		 * Allow engine initialisation to fail by marking the GPU as
5492 		 * wedged. But we only want to do this where the GPU is angry,
5493 		 * for all other failure, such as an allocation failure, bail.
5494 		 */
5495 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5496 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5497 			i915_gem_set_wedged(dev_priv);
5498 		}
5499 		ret = 0;
5500 	}
5501 
5502 	i915_gem_drain_freed_objects(dev_priv);
5503 	return ret;
5504 }
5505 
5506 void i915_gem_init_mmio(struct drm_i915_private *i915)
5507 {
5508 	i915_gem_sanitize(i915);
5509 }
5510 
5511 void
5512 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5513 {
5514 	struct intel_engine_cs *engine;
5515 	enum intel_engine_id id;
5516 
5517 	for_each_engine(engine, dev_priv, id)
5518 		dev_priv->gt.cleanup_engine(engine);
5519 }
5520 
5521 void
5522 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5523 {
5524 	int i;
5525 
5526 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5527 	    !IS_CHERRYVIEW(dev_priv))
5528 		dev_priv->num_fence_regs = 32;
5529 	else if (INTEL_GEN(dev_priv) >= 4 ||
5530 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5531 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5532 		dev_priv->num_fence_regs = 16;
5533 	else
5534 		dev_priv->num_fence_regs = 8;
5535 
5536 	if (intel_vgpu_active(dev_priv))
5537 		dev_priv->num_fence_regs =
5538 				I915_READ(vgtif_reg(avail_rs.fence_num));
5539 
5540 	/* Initialize fence registers to zero */
5541 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5542 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5543 
5544 		fence->i915 = dev_priv;
5545 		fence->id = i;
5546 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5547 	}
5548 	i915_gem_restore_fences(dev_priv);
5549 
5550 	i915_gem_detect_bit_6_swizzle(dev_priv);
5551 }
5552 
5553 static void i915_gem_init__mm(struct drm_i915_private *i915)
5554 {
5555 	spin_lock_init(&i915->mm.object_stat_lock);
5556 	spin_lock_init(&i915->mm.obj_lock);
5557 	spin_lock_init(&i915->mm.free_lock);
5558 
5559 	init_llist_head(&i915->mm.free_list);
5560 
5561 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5562 	INIT_LIST_HEAD(&i915->mm.bound_list);
5563 	INIT_LIST_HEAD(&i915->mm.fence_list);
5564 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5565 
5566 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5567 }
5568 
5569 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5570 {
5571 	int err = -ENOMEM;
5572 
5573 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5574 	if (!dev_priv->objects)
5575 		goto err_out;
5576 
5577 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5578 	if (!dev_priv->vmas)
5579 		goto err_objects;
5580 
5581 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5582 	if (!dev_priv->luts)
5583 		goto err_vmas;
5584 
5585 	dev_priv->requests = KMEM_CACHE(i915_request,
5586 					SLAB_HWCACHE_ALIGN |
5587 					SLAB_RECLAIM_ACCOUNT |
5588 					SLAB_TYPESAFE_BY_RCU);
5589 	if (!dev_priv->requests)
5590 		goto err_luts;
5591 
5592 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5593 					    SLAB_HWCACHE_ALIGN |
5594 					    SLAB_RECLAIM_ACCOUNT);
5595 	if (!dev_priv->dependencies)
5596 		goto err_requests;
5597 
5598 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5599 	if (!dev_priv->priorities)
5600 		goto err_dependencies;
5601 
5602 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5603 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5604 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5605 
5606 	i915_gem_init__mm(dev_priv);
5607 
5608 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5609 			  i915_gem_retire_work_handler);
5610 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5611 			  i915_gem_idle_work_handler);
5612 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5613 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5614 
5615 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5616 
5617 	spin_lock_init(&dev_priv->fb_tracking.lock);
5618 
5619 	err = i915_gemfs_init(dev_priv);
5620 	if (err)
5621 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5622 
5623 	return 0;
5624 
5625 err_dependencies:
5626 	kmem_cache_destroy(dev_priv->dependencies);
5627 err_requests:
5628 	kmem_cache_destroy(dev_priv->requests);
5629 err_luts:
5630 	kmem_cache_destroy(dev_priv->luts);
5631 err_vmas:
5632 	kmem_cache_destroy(dev_priv->vmas);
5633 err_objects:
5634 	kmem_cache_destroy(dev_priv->objects);
5635 err_out:
5636 	return err;
5637 }
5638 
5639 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5640 {
5641 	i915_gem_drain_freed_objects(dev_priv);
5642 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5643 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5644 	WARN_ON(dev_priv->mm.object_count);
5645 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5646 
5647 	kmem_cache_destroy(dev_priv->priorities);
5648 	kmem_cache_destroy(dev_priv->dependencies);
5649 	kmem_cache_destroy(dev_priv->requests);
5650 	kmem_cache_destroy(dev_priv->luts);
5651 	kmem_cache_destroy(dev_priv->vmas);
5652 	kmem_cache_destroy(dev_priv->objects);
5653 
5654 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5655 	rcu_barrier();
5656 
5657 	i915_gemfs_fini(dev_priv);
5658 }
5659 
5660 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5661 {
5662 	/* Discard all purgeable objects, let userspace recover those as
5663 	 * required after resuming.
5664 	 */
5665 	i915_gem_shrink_all(dev_priv);
5666 
5667 	return 0;
5668 }
5669 
5670 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5671 {
5672 	struct drm_i915_gem_object *obj;
5673 	struct list_head *phases[] = {
5674 		&dev_priv->mm.unbound_list,
5675 		&dev_priv->mm.bound_list,
5676 		NULL
5677 	}, **p;
5678 
5679 	/* Called just before we write the hibernation image.
5680 	 *
5681 	 * We need to update the domain tracking to reflect that the CPU
5682 	 * will be accessing all the pages to create and restore from the
5683 	 * hibernation, and so upon restoration those pages will be in the
5684 	 * CPU domain.
5685 	 *
5686 	 * To make sure the hibernation image contains the latest state,
5687 	 * we update that state just before writing out the image.
5688 	 *
5689 	 * To try and reduce the hibernation image, we manually shrink
5690 	 * the objects as well, see i915_gem_freeze()
5691 	 */
5692 
5693 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5694 	i915_gem_drain_freed_objects(dev_priv);
5695 
5696 	spin_lock(&dev_priv->mm.obj_lock);
5697 	for (p = phases; *p; p++) {
5698 		list_for_each_entry(obj, *p, mm.link)
5699 			__start_cpu_write(obj);
5700 	}
5701 	spin_unlock(&dev_priv->mm.obj_lock);
5702 
5703 	return 0;
5704 }
5705 
5706 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5707 {
5708 	struct drm_i915_file_private *file_priv = file->driver_priv;
5709 	struct i915_request *request;
5710 
5711 	/* Clean up our request list when the client is going away, so that
5712 	 * later retire_requests won't dereference our soon-to-be-gone
5713 	 * file_priv.
5714 	 */
5715 	spin_lock(&file_priv->mm.lock);
5716 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5717 		request->file_priv = NULL;
5718 	spin_unlock(&file_priv->mm.lock);
5719 }
5720 
5721 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5722 {
5723 	struct drm_i915_file_private *file_priv;
5724 	int ret;
5725 
5726 	DRM_DEBUG("\n");
5727 
5728 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5729 	if (!file_priv)
5730 		return -ENOMEM;
5731 
5732 	file->driver_priv = file_priv;
5733 	file_priv->dev_priv = i915;
5734 	file_priv->file = file;
5735 
5736 	spin_lock_init(&file_priv->mm.lock);
5737 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5738 
5739 	file_priv->bsd_engine = -1;
5740 
5741 	ret = i915_gem_context_open(i915, file);
5742 	if (ret)
5743 		kfree(file_priv);
5744 
5745 	return ret;
5746 }
5747 
5748 /**
5749  * i915_gem_track_fb - update frontbuffer tracking
5750  * @old: current GEM buffer for the frontbuffer slots
5751  * @new: new GEM buffer for the frontbuffer slots
5752  * @frontbuffer_bits: bitmask of frontbuffer slots
5753  *
5754  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5755  * from @old and setting them in @new. Both @old and @new can be NULL.
5756  */
5757 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5758 		       struct drm_i915_gem_object *new,
5759 		       unsigned frontbuffer_bits)
5760 {
5761 	/* Control of individual bits within the mask are guarded by
5762 	 * the owning plane->mutex, i.e. we can never see concurrent
5763 	 * manipulation of individual bits. But since the bitfield as a whole
5764 	 * is updated using RMW, we need to use atomics in order to update
5765 	 * the bits.
5766 	 */
5767 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5768 		     sizeof(atomic_t) * BITS_PER_BYTE);
5769 
5770 	if (old) {
5771 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5772 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5773 	}
5774 
5775 	if (new) {
5776 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5777 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5778 	}
5779 }
5780 
5781 /* Allocate a new GEM object and fill it with the supplied data */
5782 struct drm_i915_gem_object *
5783 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5784 			         const void *data, size_t size)
5785 {
5786 	struct drm_i915_gem_object *obj;
5787 	struct file *file;
5788 	size_t offset;
5789 	int err;
5790 
5791 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5792 	if (IS_ERR(obj))
5793 		return obj;
5794 
5795 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5796 
5797 	file = obj->base.filp;
5798 	offset = 0;
5799 	do {
5800 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5801 		struct page *page;
5802 		void *pgdata, *vaddr;
5803 
5804 		err = pagecache_write_begin(file, file->f_mapping,
5805 					    offset, len, 0,
5806 					    &page, &pgdata);
5807 		if (err < 0)
5808 			goto fail;
5809 
5810 		vaddr = kmap(page);
5811 		memcpy(vaddr, data, len);
5812 		kunmap(page);
5813 
5814 		err = pagecache_write_end(file, file->f_mapping,
5815 					  offset, len, len,
5816 					  page, pgdata);
5817 		if (err < 0)
5818 			goto fail;
5819 
5820 		size -= len;
5821 		data += len;
5822 		offset += len;
5823 	} while (size);
5824 
5825 	return obj;
5826 
5827 fail:
5828 	i915_gem_object_put(obj);
5829 	return ERR_PTR(err);
5830 }
5831 
5832 struct scatterlist *
5833 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5834 		       unsigned int n,
5835 		       unsigned int *offset)
5836 {
5837 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5838 	struct scatterlist *sg;
5839 	unsigned int idx, count;
5840 
5841 	might_sleep();
5842 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5843 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5844 
5845 	/* As we iterate forward through the sg, we record each entry in a
5846 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5847 	 * this index previously, we will have an entry for it.
5848 	 *
5849 	 * Initial lookup is O(N), but this is amortized to O(1) for
5850 	 * sequential page access (where each new request is consecutive
5851 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5852 	 * i.e. O(1) with a large constant!
5853 	 */
5854 	if (n < READ_ONCE(iter->sg_idx))
5855 		goto lookup;
5856 
5857 	mutex_lock(&iter->lock);
5858 
5859 	/* We prefer to reuse the last sg so that repeated lookup of this
5860 	 * (or the subsequent) sg are fast - comparing against the last
5861 	 * sg is faster than going through the radixtree.
5862 	 */
5863 
5864 	sg = iter->sg_pos;
5865 	idx = iter->sg_idx;
5866 	count = __sg_page_count(sg);
5867 
5868 	while (idx + count <= n) {
5869 		unsigned long exception, i;
5870 		int ret;
5871 
5872 		/* If we cannot allocate and insert this entry, or the
5873 		 * individual pages from this range, cancel updating the
5874 		 * sg_idx so that on this lookup we are forced to linearly
5875 		 * scan onwards, but on future lookups we will try the
5876 		 * insertion again (in which case we need to be careful of
5877 		 * the error return reporting that we have already inserted
5878 		 * this index).
5879 		 */
5880 		ret = radix_tree_insert(&iter->radix, idx, sg);
5881 		if (ret && ret != -EEXIST)
5882 			goto scan;
5883 
5884 		exception =
5885 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5886 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5887 		for (i = 1; i < count; i++) {
5888 			ret = radix_tree_insert(&iter->radix, idx + i,
5889 						(void *)exception);
5890 			if (ret && ret != -EEXIST)
5891 				goto scan;
5892 		}
5893 
5894 		idx += count;
5895 		sg = ____sg_next(sg);
5896 		count = __sg_page_count(sg);
5897 	}
5898 
5899 scan:
5900 	iter->sg_pos = sg;
5901 	iter->sg_idx = idx;
5902 
5903 	mutex_unlock(&iter->lock);
5904 
5905 	if (unlikely(n < idx)) /* insertion completed by another thread */
5906 		goto lookup;
5907 
5908 	/* In case we failed to insert the entry into the radixtree, we need
5909 	 * to look beyond the current sg.
5910 	 */
5911 	while (idx + count <= n) {
5912 		idx += count;
5913 		sg = ____sg_next(sg);
5914 		count = __sg_page_count(sg);
5915 	}
5916 
5917 	*offset = n - idx;
5918 	return sg;
5919 
5920 lookup:
5921 	rcu_read_lock();
5922 
5923 	sg = radix_tree_lookup(&iter->radix, n);
5924 	GEM_BUG_ON(!sg);
5925 
5926 	/* If this index is in the middle of multi-page sg entry,
5927 	 * the radixtree will contain an exceptional entry that points
5928 	 * to the start of that range. We will return the pointer to
5929 	 * the base page and the offset of this page within the
5930 	 * sg entry's range.
5931 	 */
5932 	*offset = 0;
5933 	if (unlikely(radix_tree_exception(sg))) {
5934 		unsigned long base =
5935 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5936 
5937 		sg = radix_tree_lookup(&iter->radix, base);
5938 		GEM_BUG_ON(!sg);
5939 
5940 		*offset = n - base;
5941 	}
5942 
5943 	rcu_read_unlock();
5944 
5945 	return sg;
5946 }
5947 
5948 struct page *
5949 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5950 {
5951 	struct scatterlist *sg;
5952 	unsigned int offset;
5953 
5954 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5955 
5956 	sg = i915_gem_object_get_sg(obj, n, &offset);
5957 	return nth_page(sg_page(sg), offset);
5958 }
5959 
5960 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5961 struct page *
5962 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5963 			       unsigned int n)
5964 {
5965 	struct page *page;
5966 
5967 	page = i915_gem_object_get_page(obj, n);
5968 	if (!obj->mm.dirty)
5969 		set_page_dirty(page);
5970 
5971 	return page;
5972 }
5973 
5974 dma_addr_t
5975 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5976 				unsigned long n)
5977 {
5978 	struct scatterlist *sg;
5979 	unsigned int offset;
5980 
5981 	sg = i915_gem_object_get_sg(obj, n, &offset);
5982 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5983 }
5984 
5985 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5986 {
5987 	struct sg_table *pages;
5988 	int err;
5989 
5990 	if (align > obj->base.size)
5991 		return -EINVAL;
5992 
5993 	if (obj->ops == &i915_gem_phys_ops)
5994 		return 0;
5995 
5996 	if (obj->ops != &i915_gem_object_ops)
5997 		return -EINVAL;
5998 
5999 	err = i915_gem_object_unbind(obj);
6000 	if (err)
6001 		return err;
6002 
6003 	mutex_lock(&obj->mm.lock);
6004 
6005 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6006 		err = -EFAULT;
6007 		goto err_unlock;
6008 	}
6009 
6010 	if (obj->mm.quirked) {
6011 		err = -EFAULT;
6012 		goto err_unlock;
6013 	}
6014 
6015 	if (obj->mm.mapping) {
6016 		err = -EBUSY;
6017 		goto err_unlock;
6018 	}
6019 
6020 	pages = fetch_and_zero(&obj->mm.pages);
6021 	if (pages) {
6022 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
6023 
6024 		__i915_gem_object_reset_page_iter(obj);
6025 
6026 		spin_lock(&i915->mm.obj_lock);
6027 		list_del(&obj->mm.link);
6028 		spin_unlock(&i915->mm.obj_lock);
6029 	}
6030 
6031 	obj->ops = &i915_gem_phys_ops;
6032 
6033 	err = ____i915_gem_object_get_pages(obj);
6034 	if (err)
6035 		goto err_xfer;
6036 
6037 	/* Perma-pin (until release) the physical set of pages */
6038 	__i915_gem_object_pin_pages(obj);
6039 
6040 	if (!IS_ERR_OR_NULL(pages))
6041 		i915_gem_object_ops.put_pages(obj, pages);
6042 	mutex_unlock(&obj->mm.lock);
6043 	return 0;
6044 
6045 err_xfer:
6046 	obj->ops = &i915_gem_object_ops;
6047 	obj->mm.pages = pages;
6048 err_unlock:
6049 	mutex_unlock(&obj->mm.lock);
6050 	return err;
6051 }
6052 
6053 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6054 #include "selftests/scatterlist.c"
6055 #include "selftests/mock_gem_device.c"
6056 #include "selftests/huge_gem_object.c"
6057 #include "selftests/huge_pages.c"
6058 #include "selftests/i915_gem_object.c"
6059 #include "selftests/i915_gem_coherency.c"
6060 #endif
6061