xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 						   size, 0, -1,
73 						   0, ggtt->mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  u64 size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     u64 size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	might_sleep();
109 
110 	if (!i915_reset_in_progress(error))
111 		return 0;
112 
113 	/*
114 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 	 * userspace. If it takes that long something really bad is going on and
116 	 * we should simply try to bail out and fail as gracefully as possible.
117 	 */
118 	ret = wait_event_interruptible_timeout(error->reset_queue,
119 					       !i915_reset_in_progress(error),
120 					       I915_RESET_TIMEOUT);
121 	if (ret == 0) {
122 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 		return -EIO;
124 	} else if (ret < 0) {
125 		return ret;
126 	} else {
127 		return 0;
128 	}
129 }
130 
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	int ret;
135 
136 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 	if (ret)
138 		return ret;
139 
140 	ret = mutex_lock_interruptible(&dev->struct_mutex);
141 	if (ret)
142 		return ret;
143 
144 	return 0;
145 }
146 
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 			    struct drm_file *file)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 	struct drm_i915_gem_get_aperture *args = data;
154 	struct i915_vma *vma;
155 	size_t pinned;
156 
157 	pinned = 0;
158 	mutex_lock(&dev->struct_mutex);
159 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 		if (i915_vma_is_pinned(vma))
164 			pinned += vma->node.size;
165 	mutex_unlock(&dev->struct_mutex);
166 
167 	args->aper_size = ggtt->base.total;
168 	args->aper_available_size = args->aper_size - pinned;
169 
170 	return 0;
171 }
172 
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 	struct address_space *mapping = obj->base.filp->f_mapping;
177 	char *vaddr = obj->phys_handle->vaddr;
178 	struct sg_table *st;
179 	struct scatterlist *sg;
180 	int i;
181 
182 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
183 		return ERR_PTR(-EINVAL);
184 
185 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
186 		struct page *page;
187 		char *src;
188 
189 		page = shmem_read_mapping_page(mapping, i);
190 		if (IS_ERR(page))
191 			return ERR_CAST(page);
192 
193 		src = kmap_atomic(page);
194 		memcpy(vaddr, src, PAGE_SIZE);
195 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
196 		kunmap_atomic(src);
197 
198 		put_page(page);
199 		vaddr += PAGE_SIZE;
200 	}
201 
202 	i915_gem_chipset_flush(to_i915(obj->base.dev));
203 
204 	st = kmalloc(sizeof(*st), GFP_KERNEL);
205 	if (st == NULL)
206 		return ERR_PTR(-ENOMEM);
207 
208 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
209 		kfree(st);
210 		return ERR_PTR(-ENOMEM);
211 	}
212 
213 	sg = st->sgl;
214 	sg->offset = 0;
215 	sg->length = obj->base.size;
216 
217 	sg_dma_address(sg) = obj->phys_handle->busaddr;
218 	sg_dma_len(sg) = obj->base.size;
219 
220 	return st;
221 }
222 
223 static void
224 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
225 				struct sg_table *pages)
226 {
227 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
228 
229 	if (obj->mm.madv == I915_MADV_DONTNEED)
230 		obj->mm.dirty = false;
231 
232 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
233 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
234 		drm_clflush_sg(pages);
235 
236 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
237 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239 
240 static void
241 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
242 			       struct sg_table *pages)
243 {
244 	__i915_gem_object_release_shmem(obj, pages);
245 
246 	if (obj->mm.dirty) {
247 		struct address_space *mapping = obj->base.filp->f_mapping;
248 		char *vaddr = obj->phys_handle->vaddr;
249 		int i;
250 
251 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
252 			struct page *page;
253 			char *dst;
254 
255 			page = shmem_read_mapping_page(mapping, i);
256 			if (IS_ERR(page))
257 				continue;
258 
259 			dst = kmap_atomic(page);
260 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
261 			memcpy(dst, vaddr, PAGE_SIZE);
262 			kunmap_atomic(dst);
263 
264 			set_page_dirty(page);
265 			if (obj->mm.madv == I915_MADV_WILLNEED)
266 				mark_page_accessed(page);
267 			put_page(page);
268 			vaddr += PAGE_SIZE;
269 		}
270 		obj->mm.dirty = false;
271 	}
272 
273 	sg_free_table(pages);
274 	kfree(pages);
275 }
276 
277 static void
278 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
279 {
280 	drm_pci_free(obj->base.dev, obj->phys_handle);
281 	i915_gem_object_unpin_pages(obj);
282 }
283 
284 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
285 	.get_pages = i915_gem_object_get_pages_phys,
286 	.put_pages = i915_gem_object_put_pages_phys,
287 	.release = i915_gem_object_release_phys,
288 };
289 
290 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
291 {
292 	struct i915_vma *vma;
293 	LIST_HEAD(still_in_list);
294 	int ret;
295 
296 	lockdep_assert_held(&obj->base.dev->struct_mutex);
297 
298 	/* Closed vma are removed from the obj->vma_list - but they may
299 	 * still have an active binding on the object. To remove those we
300 	 * must wait for all rendering to complete to the object (as unbinding
301 	 * must anyway), and retire the requests.
302 	 */
303 	ret = i915_gem_object_wait(obj,
304 				   I915_WAIT_INTERRUPTIBLE |
305 				   I915_WAIT_LOCKED |
306 				   I915_WAIT_ALL,
307 				   MAX_SCHEDULE_TIMEOUT,
308 				   NULL);
309 	if (ret)
310 		return ret;
311 
312 	i915_gem_retire_requests(to_i915(obj->base.dev));
313 
314 	while ((vma = list_first_entry_or_null(&obj->vma_list,
315 					       struct i915_vma,
316 					       obj_link))) {
317 		list_move_tail(&vma->obj_link, &still_in_list);
318 		ret = i915_vma_unbind(vma);
319 		if (ret)
320 			break;
321 	}
322 	list_splice(&still_in_list, &obj->vma_list);
323 
324 	return ret;
325 }
326 
327 static long
328 i915_gem_object_wait_fence(struct dma_fence *fence,
329 			   unsigned int flags,
330 			   long timeout,
331 			   struct intel_rps_client *rps)
332 {
333 	struct drm_i915_gem_request *rq;
334 
335 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
336 
337 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
338 		return timeout;
339 
340 	if (!dma_fence_is_i915(fence))
341 		return dma_fence_wait_timeout(fence,
342 					      flags & I915_WAIT_INTERRUPTIBLE,
343 					      timeout);
344 
345 	rq = to_request(fence);
346 	if (i915_gem_request_completed(rq))
347 		goto out;
348 
349 	/* This client is about to stall waiting for the GPU. In many cases
350 	 * this is undesirable and limits the throughput of the system, as
351 	 * many clients cannot continue processing user input/output whilst
352 	 * blocked. RPS autotuning may take tens of milliseconds to respond
353 	 * to the GPU load and thus incurs additional latency for the client.
354 	 * We can circumvent that by promoting the GPU frequency to maximum
355 	 * before we wait. This makes the GPU throttle up much more quickly
356 	 * (good for benchmarks and user experience, e.g. window animations),
357 	 * but at a cost of spending more power processing the workload
358 	 * (bad for battery). Not all clients even want their results
359 	 * immediately and for them we should just let the GPU select its own
360 	 * frequency to maximise efficiency. To prevent a single client from
361 	 * forcing the clocks too high for the whole system, we only allow
362 	 * each client to waitboost once in a busy period.
363 	 */
364 	if (rps) {
365 		if (INTEL_GEN(rq->i915) >= 6)
366 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
367 		else
368 			rps = NULL;
369 	}
370 
371 	timeout = i915_wait_request(rq, flags, timeout);
372 
373 out:
374 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
375 		i915_gem_request_retire_upto(rq);
376 
377 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
378 		/* The GPU is now idle and this client has stalled.
379 		 * Since no other client has submitted a request in the
380 		 * meantime, assume that this client is the only one
381 		 * supplying work to the GPU but is unable to keep that
382 		 * work supplied because it is waiting. Since the GPU is
383 		 * then never kept fully busy, RPS autoclocking will
384 		 * keep the clocks relatively low, causing further delays.
385 		 * Compensate by giving the synchronous client credit for
386 		 * a waitboost next time.
387 		 */
388 		spin_lock(&rq->i915->rps.client_lock);
389 		list_del_init(&rps->link);
390 		spin_unlock(&rq->i915->rps.client_lock);
391 	}
392 
393 	return timeout;
394 }
395 
396 static long
397 i915_gem_object_wait_reservation(struct reservation_object *resv,
398 				 unsigned int flags,
399 				 long timeout,
400 				 struct intel_rps_client *rps)
401 {
402 	struct dma_fence *excl;
403 
404 	if (flags & I915_WAIT_ALL) {
405 		struct dma_fence **shared;
406 		unsigned int count, i;
407 		int ret;
408 
409 		ret = reservation_object_get_fences_rcu(resv,
410 							&excl, &count, &shared);
411 		if (ret)
412 			return ret;
413 
414 		for (i = 0; i < count; i++) {
415 			timeout = i915_gem_object_wait_fence(shared[i],
416 							     flags, timeout,
417 							     rps);
418 			if (timeout <= 0)
419 				break;
420 
421 			dma_fence_put(shared[i]);
422 		}
423 
424 		for (; i < count; i++)
425 			dma_fence_put(shared[i]);
426 		kfree(shared);
427 	} else {
428 		excl = reservation_object_get_excl_rcu(resv);
429 	}
430 
431 	if (excl && timeout > 0)
432 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
433 
434 	dma_fence_put(excl);
435 
436 	return timeout;
437 }
438 
439 static void __fence_set_priority(struct dma_fence *fence, int prio)
440 {
441 	struct drm_i915_gem_request *rq;
442 	struct intel_engine_cs *engine;
443 
444 	if (!dma_fence_is_i915(fence))
445 		return;
446 
447 	rq = to_request(fence);
448 	engine = rq->engine;
449 	if (!engine->schedule)
450 		return;
451 
452 	engine->schedule(rq, prio);
453 }
454 
455 static void fence_set_priority(struct dma_fence *fence, int prio)
456 {
457 	/* Recurse once into a fence-array */
458 	if (dma_fence_is_array(fence)) {
459 		struct dma_fence_array *array = to_dma_fence_array(fence);
460 		int i;
461 
462 		for (i = 0; i < array->num_fences; i++)
463 			__fence_set_priority(array->fences[i], prio);
464 	} else {
465 		__fence_set_priority(fence, prio);
466 	}
467 }
468 
469 int
470 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
471 			      unsigned int flags,
472 			      int prio)
473 {
474 	struct dma_fence *excl;
475 
476 	if (flags & I915_WAIT_ALL) {
477 		struct dma_fence **shared;
478 		unsigned int count, i;
479 		int ret;
480 
481 		ret = reservation_object_get_fences_rcu(obj->resv,
482 							&excl, &count, &shared);
483 		if (ret)
484 			return ret;
485 
486 		for (i = 0; i < count; i++) {
487 			fence_set_priority(shared[i], prio);
488 			dma_fence_put(shared[i]);
489 		}
490 
491 		kfree(shared);
492 	} else {
493 		excl = reservation_object_get_excl_rcu(obj->resv);
494 	}
495 
496 	if (excl) {
497 		fence_set_priority(excl, prio);
498 		dma_fence_put(excl);
499 	}
500 	return 0;
501 }
502 
503 /**
504  * Waits for rendering to the object to be completed
505  * @obj: i915 gem object
506  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
507  * @timeout: how long to wait
508  * @rps: client (user process) to charge for any waitboosting
509  */
510 int
511 i915_gem_object_wait(struct drm_i915_gem_object *obj,
512 		     unsigned int flags,
513 		     long timeout,
514 		     struct intel_rps_client *rps)
515 {
516 	might_sleep();
517 #if IS_ENABLED(CONFIG_LOCKDEP)
518 	GEM_BUG_ON(debug_locks &&
519 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
520 		   !!(flags & I915_WAIT_LOCKED));
521 #endif
522 	GEM_BUG_ON(timeout < 0);
523 
524 	timeout = i915_gem_object_wait_reservation(obj->resv,
525 						   flags, timeout,
526 						   rps);
527 	return timeout < 0 ? timeout : 0;
528 }
529 
530 static struct intel_rps_client *to_rps_client(struct drm_file *file)
531 {
532 	struct drm_i915_file_private *fpriv = file->driver_priv;
533 
534 	return &fpriv->rps;
535 }
536 
537 int
538 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
539 			    int align)
540 {
541 	drm_dma_handle_t *phys;
542 	int ret;
543 
544 	if (obj->phys_handle) {
545 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
546 			return -EBUSY;
547 
548 		return 0;
549 	}
550 
551 	if (obj->mm.madv != I915_MADV_WILLNEED)
552 		return -EFAULT;
553 
554 	if (obj->base.filp == NULL)
555 		return -EINVAL;
556 
557 	ret = i915_gem_object_unbind(obj);
558 	if (ret)
559 		return ret;
560 
561 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
562 	if (obj->mm.pages)
563 		return -EBUSY;
564 
565 	/* create a new object */
566 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
567 	if (!phys)
568 		return -ENOMEM;
569 
570 	obj->phys_handle = phys;
571 	obj->ops = &i915_gem_phys_ops;
572 
573 	return i915_gem_object_pin_pages(obj);
574 }
575 
576 static int
577 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
578 		     struct drm_i915_gem_pwrite *args,
579 		     struct drm_file *file)
580 {
581 	struct drm_device *dev = obj->base.dev;
582 	void *vaddr = obj->phys_handle->vaddr + args->offset;
583 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
584 	int ret;
585 
586 	/* We manually control the domain here and pretend that it
587 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
588 	 */
589 	lockdep_assert_held(&obj->base.dev->struct_mutex);
590 	ret = i915_gem_object_wait(obj,
591 				   I915_WAIT_INTERRUPTIBLE |
592 				   I915_WAIT_LOCKED |
593 				   I915_WAIT_ALL,
594 				   MAX_SCHEDULE_TIMEOUT,
595 				   to_rps_client(file));
596 	if (ret)
597 		return ret;
598 
599 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
600 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
601 		unsigned long unwritten;
602 
603 		/* The physical object once assigned is fixed for the lifetime
604 		 * of the obj, so we can safely drop the lock and continue
605 		 * to access vaddr.
606 		 */
607 		mutex_unlock(&dev->struct_mutex);
608 		unwritten = copy_from_user(vaddr, user_data, args->size);
609 		mutex_lock(&dev->struct_mutex);
610 		if (unwritten) {
611 			ret = -EFAULT;
612 			goto out;
613 		}
614 	}
615 
616 	drm_clflush_virt_range(vaddr, args->size);
617 	i915_gem_chipset_flush(to_i915(dev));
618 
619 out:
620 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
621 	return ret;
622 }
623 
624 void *i915_gem_object_alloc(struct drm_device *dev)
625 {
626 	struct drm_i915_private *dev_priv = to_i915(dev);
627 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
628 }
629 
630 void i915_gem_object_free(struct drm_i915_gem_object *obj)
631 {
632 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
633 	kmem_cache_free(dev_priv->objects, obj);
634 }
635 
636 static int
637 i915_gem_create(struct drm_file *file,
638 		struct drm_device *dev,
639 		uint64_t size,
640 		uint32_t *handle_p)
641 {
642 	struct drm_i915_gem_object *obj;
643 	int ret;
644 	u32 handle;
645 
646 	size = roundup(size, PAGE_SIZE);
647 	if (size == 0)
648 		return -EINVAL;
649 
650 	/* Allocate the new object */
651 	obj = i915_gem_object_create(dev, size);
652 	if (IS_ERR(obj))
653 		return PTR_ERR(obj);
654 
655 	ret = drm_gem_handle_create(file, &obj->base, &handle);
656 	/* drop reference from allocate - handle holds it now */
657 	i915_gem_object_put(obj);
658 	if (ret)
659 		return ret;
660 
661 	*handle_p = handle;
662 	return 0;
663 }
664 
665 int
666 i915_gem_dumb_create(struct drm_file *file,
667 		     struct drm_device *dev,
668 		     struct drm_mode_create_dumb *args)
669 {
670 	/* have to work out size/pitch and return them */
671 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
672 	args->size = args->pitch * args->height;
673 	return i915_gem_create(file, dev,
674 			       args->size, &args->handle);
675 }
676 
677 /**
678  * Creates a new mm object and returns a handle to it.
679  * @dev: drm device pointer
680  * @data: ioctl data blob
681  * @file: drm file pointer
682  */
683 int
684 i915_gem_create_ioctl(struct drm_device *dev, void *data,
685 		      struct drm_file *file)
686 {
687 	struct drm_i915_gem_create *args = data;
688 
689 	i915_gem_flush_free_objects(to_i915(dev));
690 
691 	return i915_gem_create(file, dev,
692 			       args->size, &args->handle);
693 }
694 
695 static inline int
696 __copy_to_user_swizzled(char __user *cpu_vaddr,
697 			const char *gpu_vaddr, int gpu_offset,
698 			int length)
699 {
700 	int ret, cpu_offset = 0;
701 
702 	while (length > 0) {
703 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
704 		int this_length = min(cacheline_end - gpu_offset, length);
705 		int swizzled_gpu_offset = gpu_offset ^ 64;
706 
707 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
708 				     gpu_vaddr + swizzled_gpu_offset,
709 				     this_length);
710 		if (ret)
711 			return ret + length;
712 
713 		cpu_offset += this_length;
714 		gpu_offset += this_length;
715 		length -= this_length;
716 	}
717 
718 	return 0;
719 }
720 
721 static inline int
722 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
723 			  const char __user *cpu_vaddr,
724 			  int length)
725 {
726 	int ret, cpu_offset = 0;
727 
728 	while (length > 0) {
729 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 		int this_length = min(cacheline_end - gpu_offset, length);
731 		int swizzled_gpu_offset = gpu_offset ^ 64;
732 
733 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
734 				       cpu_vaddr + cpu_offset,
735 				       this_length);
736 		if (ret)
737 			return ret + length;
738 
739 		cpu_offset += this_length;
740 		gpu_offset += this_length;
741 		length -= this_length;
742 	}
743 
744 	return 0;
745 }
746 
747 /*
748  * Pins the specified object's pages and synchronizes the object with
749  * GPU accesses. Sets needs_clflush to non-zero if the caller should
750  * flush the object from the CPU cache.
751  */
752 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
753 				    unsigned int *needs_clflush)
754 {
755 	int ret;
756 
757 	lockdep_assert_held(&obj->base.dev->struct_mutex);
758 
759 	*needs_clflush = 0;
760 	if (!i915_gem_object_has_struct_page(obj))
761 		return -ENODEV;
762 
763 	ret = i915_gem_object_wait(obj,
764 				   I915_WAIT_INTERRUPTIBLE |
765 				   I915_WAIT_LOCKED,
766 				   MAX_SCHEDULE_TIMEOUT,
767 				   NULL);
768 	if (ret)
769 		return ret;
770 
771 	ret = i915_gem_object_pin_pages(obj);
772 	if (ret)
773 		return ret;
774 
775 	i915_gem_object_flush_gtt_write_domain(obj);
776 
777 	/* If we're not in the cpu read domain, set ourself into the gtt
778 	 * read domain and manually flush cachelines (if required). This
779 	 * optimizes for the case when the gpu will dirty the data
780 	 * anyway again before the next pread happens.
781 	 */
782 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
783 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
784 							obj->cache_level);
785 
786 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
787 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
788 		if (ret)
789 			goto err_unpin;
790 
791 		*needs_clflush = 0;
792 	}
793 
794 	/* return with the pages pinned */
795 	return 0;
796 
797 err_unpin:
798 	i915_gem_object_unpin_pages(obj);
799 	return ret;
800 }
801 
802 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
803 				     unsigned int *needs_clflush)
804 {
805 	int ret;
806 
807 	lockdep_assert_held(&obj->base.dev->struct_mutex);
808 
809 	*needs_clflush = 0;
810 	if (!i915_gem_object_has_struct_page(obj))
811 		return -ENODEV;
812 
813 	ret = i915_gem_object_wait(obj,
814 				   I915_WAIT_INTERRUPTIBLE |
815 				   I915_WAIT_LOCKED |
816 				   I915_WAIT_ALL,
817 				   MAX_SCHEDULE_TIMEOUT,
818 				   NULL);
819 	if (ret)
820 		return ret;
821 
822 	ret = i915_gem_object_pin_pages(obj);
823 	if (ret)
824 		return ret;
825 
826 	i915_gem_object_flush_gtt_write_domain(obj);
827 
828 	/* If we're not in the cpu write domain, set ourself into the
829 	 * gtt write domain and manually flush cachelines (as required).
830 	 * This optimizes for the case when the gpu will use the data
831 	 * right away and we therefore have to clflush anyway.
832 	 */
833 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
834 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
835 
836 	/* Same trick applies to invalidate partially written cachelines read
837 	 * before writing.
838 	 */
839 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
840 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
841 							 obj->cache_level);
842 
843 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
845 		if (ret)
846 			goto err_unpin;
847 
848 		*needs_clflush = 0;
849 	}
850 
851 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
852 		obj->cache_dirty = true;
853 
854 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
855 	obj->mm.dirty = true;
856 	/* return with the pages pinned */
857 	return 0;
858 
859 err_unpin:
860 	i915_gem_object_unpin_pages(obj);
861 	return ret;
862 }
863 
864 static void
865 shmem_clflush_swizzled_range(char *addr, unsigned long length,
866 			     bool swizzled)
867 {
868 	if (unlikely(swizzled)) {
869 		unsigned long start = (unsigned long) addr;
870 		unsigned long end = (unsigned long) addr + length;
871 
872 		/* For swizzling simply ensure that we always flush both
873 		 * channels. Lame, but simple and it works. Swizzled
874 		 * pwrite/pread is far from a hotpath - current userspace
875 		 * doesn't use it at all. */
876 		start = round_down(start, 128);
877 		end = round_up(end, 128);
878 
879 		drm_clflush_virt_range((void *)start, end - start);
880 	} else {
881 		drm_clflush_virt_range(addr, length);
882 	}
883 
884 }
885 
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pread_slow(struct page *page, int offset, int length,
890 		 char __user *user_data,
891 		 bool page_do_bit17_swizzling, bool needs_clflush)
892 {
893 	char *vaddr;
894 	int ret;
895 
896 	vaddr = kmap(page);
897 	if (needs_clflush)
898 		shmem_clflush_swizzled_range(vaddr + offset, length,
899 					     page_do_bit17_swizzling);
900 
901 	if (page_do_bit17_swizzling)
902 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
903 	else
904 		ret = __copy_to_user(user_data, vaddr + offset, length);
905 	kunmap(page);
906 
907 	return ret ? - EFAULT : 0;
908 }
909 
910 static int
911 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
912 	    bool page_do_bit17_swizzling, bool needs_clflush)
913 {
914 	int ret;
915 
916 	ret = -ENODEV;
917 	if (!page_do_bit17_swizzling) {
918 		char *vaddr = kmap_atomic(page);
919 
920 		if (needs_clflush)
921 			drm_clflush_virt_range(vaddr + offset, length);
922 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
923 		kunmap_atomic(vaddr);
924 	}
925 	if (ret == 0)
926 		return 0;
927 
928 	return shmem_pread_slow(page, offset, length, user_data,
929 				page_do_bit17_swizzling, needs_clflush);
930 }
931 
932 static int
933 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
934 		     struct drm_i915_gem_pread *args)
935 {
936 	char __user *user_data;
937 	u64 remain;
938 	unsigned int obj_do_bit17_swizzling;
939 	unsigned int needs_clflush;
940 	unsigned int idx, offset;
941 	int ret;
942 
943 	obj_do_bit17_swizzling = 0;
944 	if (i915_gem_object_needs_bit17_swizzle(obj))
945 		obj_do_bit17_swizzling = BIT(17);
946 
947 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
948 	if (ret)
949 		return ret;
950 
951 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
952 	mutex_unlock(&obj->base.dev->struct_mutex);
953 	if (ret)
954 		return ret;
955 
956 	remain = args->size;
957 	user_data = u64_to_user_ptr(args->data_ptr);
958 	offset = offset_in_page(args->offset);
959 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
960 		struct page *page = i915_gem_object_get_page(obj, idx);
961 		int length;
962 
963 		length = remain;
964 		if (offset + length > PAGE_SIZE)
965 			length = PAGE_SIZE - offset;
966 
967 		ret = shmem_pread(page, offset, length, user_data,
968 				  page_to_phys(page) & obj_do_bit17_swizzling,
969 				  needs_clflush);
970 		if (ret)
971 			break;
972 
973 		remain -= length;
974 		user_data += length;
975 		offset = 0;
976 	}
977 
978 	i915_gem_obj_finish_shmem_access(obj);
979 	return ret;
980 }
981 
982 static inline bool
983 gtt_user_read(struct io_mapping *mapping,
984 	      loff_t base, int offset,
985 	      char __user *user_data, int length)
986 {
987 	void *vaddr;
988 	unsigned long unwritten;
989 
990 	/* We can use the cpu mem copy function because this is X86. */
991 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
992 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
993 	io_mapping_unmap_atomic(vaddr);
994 	if (unwritten) {
995 		vaddr = (void __force *)
996 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
997 		unwritten = copy_to_user(user_data, vaddr + offset, length);
998 		io_mapping_unmap(vaddr);
999 	}
1000 	return unwritten;
1001 }
1002 
1003 static int
1004 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1005 		   const struct drm_i915_gem_pread *args)
1006 {
1007 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1008 	struct i915_ggtt *ggtt = &i915->ggtt;
1009 	struct drm_mm_node node;
1010 	struct i915_vma *vma;
1011 	void __user *user_data;
1012 	u64 remain, offset;
1013 	int ret;
1014 
1015 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1016 	if (ret)
1017 		return ret;
1018 
1019 	intel_runtime_pm_get(i915);
1020 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1021 				       PIN_MAPPABLE | PIN_NONBLOCK);
1022 	if (!IS_ERR(vma)) {
1023 		node.start = i915_ggtt_offset(vma);
1024 		node.allocated = false;
1025 		ret = i915_vma_put_fence(vma);
1026 		if (ret) {
1027 			i915_vma_unpin(vma);
1028 			vma = ERR_PTR(ret);
1029 		}
1030 	}
1031 	if (IS_ERR(vma)) {
1032 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1033 		if (ret)
1034 			goto out_unlock;
1035 		GEM_BUG_ON(!node.allocated);
1036 	}
1037 
1038 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1039 	if (ret)
1040 		goto out_unpin;
1041 
1042 	mutex_unlock(&i915->drm.struct_mutex);
1043 
1044 	user_data = u64_to_user_ptr(args->data_ptr);
1045 	remain = args->size;
1046 	offset = args->offset;
1047 
1048 	while (remain > 0) {
1049 		/* Operation in this page
1050 		 *
1051 		 * page_base = page offset within aperture
1052 		 * page_offset = offset within page
1053 		 * page_length = bytes to copy for this page
1054 		 */
1055 		u32 page_base = node.start;
1056 		unsigned page_offset = offset_in_page(offset);
1057 		unsigned page_length = PAGE_SIZE - page_offset;
1058 		page_length = remain < page_length ? remain : page_length;
1059 		if (node.allocated) {
1060 			wmb();
1061 			ggtt->base.insert_page(&ggtt->base,
1062 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1063 					       node.start, I915_CACHE_NONE, 0);
1064 			wmb();
1065 		} else {
1066 			page_base += offset & PAGE_MASK;
1067 		}
1068 
1069 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1070 				  user_data, page_length)) {
1071 			ret = -EFAULT;
1072 			break;
1073 		}
1074 
1075 		remain -= page_length;
1076 		user_data += page_length;
1077 		offset += page_length;
1078 	}
1079 
1080 	mutex_lock(&i915->drm.struct_mutex);
1081 out_unpin:
1082 	if (node.allocated) {
1083 		wmb();
1084 		ggtt->base.clear_range(&ggtt->base,
1085 				       node.start, node.size);
1086 		remove_mappable_node(&node);
1087 	} else {
1088 		i915_vma_unpin(vma);
1089 	}
1090 out_unlock:
1091 	intel_runtime_pm_put(i915);
1092 	mutex_unlock(&i915->drm.struct_mutex);
1093 
1094 	return ret;
1095 }
1096 
1097 /**
1098  * Reads data from the object referenced by handle.
1099  * @dev: drm device pointer
1100  * @data: ioctl data blob
1101  * @file: drm file pointer
1102  *
1103  * On error, the contents of *data are undefined.
1104  */
1105 int
1106 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1107 		     struct drm_file *file)
1108 {
1109 	struct drm_i915_gem_pread *args = data;
1110 	struct drm_i915_gem_object *obj;
1111 	int ret;
1112 
1113 	if (args->size == 0)
1114 		return 0;
1115 
1116 	if (!access_ok(VERIFY_WRITE,
1117 		       u64_to_user_ptr(args->data_ptr),
1118 		       args->size))
1119 		return -EFAULT;
1120 
1121 	obj = i915_gem_object_lookup(file, args->handle);
1122 	if (!obj)
1123 		return -ENOENT;
1124 
1125 	/* Bounds check source.  */
1126 	if (args->offset > obj->base.size ||
1127 	    args->size > obj->base.size - args->offset) {
1128 		ret = -EINVAL;
1129 		goto out;
1130 	}
1131 
1132 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1133 
1134 	ret = i915_gem_object_wait(obj,
1135 				   I915_WAIT_INTERRUPTIBLE,
1136 				   MAX_SCHEDULE_TIMEOUT,
1137 				   to_rps_client(file));
1138 	if (ret)
1139 		goto out;
1140 
1141 	ret = i915_gem_object_pin_pages(obj);
1142 	if (ret)
1143 		goto out;
1144 
1145 	ret = i915_gem_shmem_pread(obj, args);
1146 	if (ret == -EFAULT || ret == -ENODEV)
1147 		ret = i915_gem_gtt_pread(obj, args);
1148 
1149 	i915_gem_object_unpin_pages(obj);
1150 out:
1151 	i915_gem_object_put(obj);
1152 	return ret;
1153 }
1154 
1155 /* This is the fast write path which cannot handle
1156  * page faults in the source data
1157  */
1158 
1159 static inline bool
1160 ggtt_write(struct io_mapping *mapping,
1161 	   loff_t base, int offset,
1162 	   char __user *user_data, int length)
1163 {
1164 	void *vaddr;
1165 	unsigned long unwritten;
1166 
1167 	/* We can use the cpu mem copy function because this is X86. */
1168 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1169 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1170 						      user_data, length);
1171 	io_mapping_unmap_atomic(vaddr);
1172 	if (unwritten) {
1173 		vaddr = (void __force *)
1174 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1175 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1176 		io_mapping_unmap(vaddr);
1177 	}
1178 
1179 	return unwritten;
1180 }
1181 
1182 /**
1183  * This is the fast pwrite path, where we copy the data directly from the
1184  * user into the GTT, uncached.
1185  * @obj: i915 GEM object
1186  * @args: pwrite arguments structure
1187  */
1188 static int
1189 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1190 			 const struct drm_i915_gem_pwrite *args)
1191 {
1192 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1193 	struct i915_ggtt *ggtt = &i915->ggtt;
1194 	struct drm_mm_node node;
1195 	struct i915_vma *vma;
1196 	u64 remain, offset;
1197 	void __user *user_data;
1198 	int ret;
1199 
1200 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1201 	if (ret)
1202 		return ret;
1203 
1204 	intel_runtime_pm_get(i915);
1205 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1206 				       PIN_MAPPABLE | PIN_NONBLOCK);
1207 	if (!IS_ERR(vma)) {
1208 		node.start = i915_ggtt_offset(vma);
1209 		node.allocated = false;
1210 		ret = i915_vma_put_fence(vma);
1211 		if (ret) {
1212 			i915_vma_unpin(vma);
1213 			vma = ERR_PTR(ret);
1214 		}
1215 	}
1216 	if (IS_ERR(vma)) {
1217 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1218 		if (ret)
1219 			goto out_unlock;
1220 		GEM_BUG_ON(!node.allocated);
1221 	}
1222 
1223 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1224 	if (ret)
1225 		goto out_unpin;
1226 
1227 	mutex_unlock(&i915->drm.struct_mutex);
1228 
1229 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1230 
1231 	user_data = u64_to_user_ptr(args->data_ptr);
1232 	offset = args->offset;
1233 	remain = args->size;
1234 	while (remain) {
1235 		/* Operation in this page
1236 		 *
1237 		 * page_base = page offset within aperture
1238 		 * page_offset = offset within page
1239 		 * page_length = bytes to copy for this page
1240 		 */
1241 		u32 page_base = node.start;
1242 		unsigned int page_offset = offset_in_page(offset);
1243 		unsigned int page_length = PAGE_SIZE - page_offset;
1244 		page_length = remain < page_length ? remain : page_length;
1245 		if (node.allocated) {
1246 			wmb(); /* flush the write before we modify the GGTT */
1247 			ggtt->base.insert_page(&ggtt->base,
1248 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1249 					       node.start, I915_CACHE_NONE, 0);
1250 			wmb(); /* flush modifications to the GGTT (insert_page) */
1251 		} else {
1252 			page_base += offset & PAGE_MASK;
1253 		}
1254 		/* If we get a fault while copying data, then (presumably) our
1255 		 * source page isn't available.  Return the error and we'll
1256 		 * retry in the slow path.
1257 		 * If the object is non-shmem backed, we retry again with the
1258 		 * path that handles page fault.
1259 		 */
1260 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1261 			       user_data, page_length)) {
1262 			ret = -EFAULT;
1263 			break;
1264 		}
1265 
1266 		remain -= page_length;
1267 		user_data += page_length;
1268 		offset += page_length;
1269 	}
1270 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1271 
1272 	mutex_lock(&i915->drm.struct_mutex);
1273 out_unpin:
1274 	if (node.allocated) {
1275 		wmb();
1276 		ggtt->base.clear_range(&ggtt->base,
1277 				       node.start, node.size);
1278 		remove_mappable_node(&node);
1279 	} else {
1280 		i915_vma_unpin(vma);
1281 	}
1282 out_unlock:
1283 	intel_runtime_pm_put(i915);
1284 	mutex_unlock(&i915->drm.struct_mutex);
1285 	return ret;
1286 }
1287 
1288 static int
1289 shmem_pwrite_slow(struct page *page, int offset, int length,
1290 		  char __user *user_data,
1291 		  bool page_do_bit17_swizzling,
1292 		  bool needs_clflush_before,
1293 		  bool needs_clflush_after)
1294 {
1295 	char *vaddr;
1296 	int ret;
1297 
1298 	vaddr = kmap(page);
1299 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1300 		shmem_clflush_swizzled_range(vaddr + offset, length,
1301 					     page_do_bit17_swizzling);
1302 	if (page_do_bit17_swizzling)
1303 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1304 						length);
1305 	else
1306 		ret = __copy_from_user(vaddr + offset, user_data, length);
1307 	if (needs_clflush_after)
1308 		shmem_clflush_swizzled_range(vaddr + offset, length,
1309 					     page_do_bit17_swizzling);
1310 	kunmap(page);
1311 
1312 	return ret ? -EFAULT : 0;
1313 }
1314 
1315 /* Per-page copy function for the shmem pwrite fastpath.
1316  * Flushes invalid cachelines before writing to the target if
1317  * needs_clflush_before is set and flushes out any written cachelines after
1318  * writing if needs_clflush is set.
1319  */
1320 static int
1321 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1322 	     bool page_do_bit17_swizzling,
1323 	     bool needs_clflush_before,
1324 	     bool needs_clflush_after)
1325 {
1326 	int ret;
1327 
1328 	ret = -ENODEV;
1329 	if (!page_do_bit17_swizzling) {
1330 		char *vaddr = kmap_atomic(page);
1331 
1332 		if (needs_clflush_before)
1333 			drm_clflush_virt_range(vaddr + offset, len);
1334 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1335 		if (needs_clflush_after)
1336 			drm_clflush_virt_range(vaddr + offset, len);
1337 
1338 		kunmap_atomic(vaddr);
1339 	}
1340 	if (ret == 0)
1341 		return ret;
1342 
1343 	return shmem_pwrite_slow(page, offset, len, user_data,
1344 				 page_do_bit17_swizzling,
1345 				 needs_clflush_before,
1346 				 needs_clflush_after);
1347 }
1348 
1349 static int
1350 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1351 		      const struct drm_i915_gem_pwrite *args)
1352 {
1353 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1354 	void __user *user_data;
1355 	u64 remain;
1356 	unsigned int obj_do_bit17_swizzling;
1357 	unsigned int partial_cacheline_write;
1358 	unsigned int needs_clflush;
1359 	unsigned int offset, idx;
1360 	int ret;
1361 
1362 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1363 	if (ret)
1364 		return ret;
1365 
1366 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1367 	mutex_unlock(&i915->drm.struct_mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	obj_do_bit17_swizzling = 0;
1372 	if (i915_gem_object_needs_bit17_swizzle(obj))
1373 		obj_do_bit17_swizzling = BIT(17);
1374 
1375 	/* If we don't overwrite a cacheline completely we need to be
1376 	 * careful to have up-to-date data by first clflushing. Don't
1377 	 * overcomplicate things and flush the entire patch.
1378 	 */
1379 	partial_cacheline_write = 0;
1380 	if (needs_clflush & CLFLUSH_BEFORE)
1381 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1382 
1383 	user_data = u64_to_user_ptr(args->data_ptr);
1384 	remain = args->size;
1385 	offset = offset_in_page(args->offset);
1386 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1387 		struct page *page = i915_gem_object_get_page(obj, idx);
1388 		int length;
1389 
1390 		length = remain;
1391 		if (offset + length > PAGE_SIZE)
1392 			length = PAGE_SIZE - offset;
1393 
1394 		ret = shmem_pwrite(page, offset, length, user_data,
1395 				   page_to_phys(page) & obj_do_bit17_swizzling,
1396 				   (offset | length) & partial_cacheline_write,
1397 				   needs_clflush & CLFLUSH_AFTER);
1398 		if (ret)
1399 			break;
1400 
1401 		remain -= length;
1402 		user_data += length;
1403 		offset = 0;
1404 	}
1405 
1406 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1407 	i915_gem_obj_finish_shmem_access(obj);
1408 	return ret;
1409 }
1410 
1411 /**
1412  * Writes data to the object referenced by handle.
1413  * @dev: drm device
1414  * @data: ioctl data blob
1415  * @file: drm file
1416  *
1417  * On error, the contents of the buffer that were to be modified are undefined.
1418  */
1419 int
1420 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1421 		      struct drm_file *file)
1422 {
1423 	struct drm_i915_gem_pwrite *args = data;
1424 	struct drm_i915_gem_object *obj;
1425 	int ret;
1426 
1427 	if (args->size == 0)
1428 		return 0;
1429 
1430 	if (!access_ok(VERIFY_READ,
1431 		       u64_to_user_ptr(args->data_ptr),
1432 		       args->size))
1433 		return -EFAULT;
1434 
1435 	obj = i915_gem_object_lookup(file, args->handle);
1436 	if (!obj)
1437 		return -ENOENT;
1438 
1439 	/* Bounds check destination. */
1440 	if (args->offset > obj->base.size ||
1441 	    args->size > obj->base.size - args->offset) {
1442 		ret = -EINVAL;
1443 		goto err;
1444 	}
1445 
1446 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1447 
1448 	ret = i915_gem_object_wait(obj,
1449 				   I915_WAIT_INTERRUPTIBLE |
1450 				   I915_WAIT_ALL,
1451 				   MAX_SCHEDULE_TIMEOUT,
1452 				   to_rps_client(file));
1453 	if (ret)
1454 		goto err;
1455 
1456 	ret = i915_gem_object_pin_pages(obj);
1457 	if (ret)
1458 		goto err;
1459 
1460 	ret = -EFAULT;
1461 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1462 	 * it would end up going through the fenced access, and we'll get
1463 	 * different detiling behavior between reading and writing.
1464 	 * pread/pwrite currently are reading and writing from the CPU
1465 	 * perspective, requiring manual detiling by the client.
1466 	 */
1467 	if (!i915_gem_object_has_struct_page(obj) ||
1468 	    cpu_write_needs_clflush(obj))
1469 		/* Note that the gtt paths might fail with non-page-backed user
1470 		 * pointers (e.g. gtt mappings when moving data between
1471 		 * textures). Fallback to the shmem path in that case.
1472 		 */
1473 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1474 
1475 	if (ret == -EFAULT || ret == -ENOSPC) {
1476 		if (obj->phys_handle)
1477 			ret = i915_gem_phys_pwrite(obj, args, file);
1478 		else
1479 			ret = i915_gem_shmem_pwrite(obj, args);
1480 	}
1481 
1482 	i915_gem_object_unpin_pages(obj);
1483 err:
1484 	i915_gem_object_put(obj);
1485 	return ret;
1486 }
1487 
1488 static inline enum fb_op_origin
1489 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1490 {
1491 	return (domain == I915_GEM_DOMAIN_GTT ?
1492 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1493 }
1494 
1495 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1496 {
1497 	struct drm_i915_private *i915;
1498 	struct list_head *list;
1499 	struct i915_vma *vma;
1500 
1501 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1502 		if (!i915_vma_is_ggtt(vma))
1503 			continue;
1504 
1505 		if (i915_vma_is_active(vma))
1506 			continue;
1507 
1508 		if (!drm_mm_node_allocated(&vma->node))
1509 			continue;
1510 
1511 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1512 	}
1513 
1514 	i915 = to_i915(obj->base.dev);
1515 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1516 	list_move_tail(&obj->global_link, list);
1517 }
1518 
1519 /**
1520  * Called when user space prepares to use an object with the CPU, either
1521  * through the mmap ioctl's mapping or a GTT mapping.
1522  * @dev: drm device
1523  * @data: ioctl data blob
1524  * @file: drm file
1525  */
1526 int
1527 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1528 			  struct drm_file *file)
1529 {
1530 	struct drm_i915_gem_set_domain *args = data;
1531 	struct drm_i915_gem_object *obj;
1532 	uint32_t read_domains = args->read_domains;
1533 	uint32_t write_domain = args->write_domain;
1534 	int err;
1535 
1536 	/* Only handle setting domains to types used by the CPU. */
1537 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1538 		return -EINVAL;
1539 
1540 	/* Having something in the write domain implies it's in the read
1541 	 * domain, and only that read domain.  Enforce that in the request.
1542 	 */
1543 	if (write_domain != 0 && read_domains != write_domain)
1544 		return -EINVAL;
1545 
1546 	obj = i915_gem_object_lookup(file, args->handle);
1547 	if (!obj)
1548 		return -ENOENT;
1549 
1550 	/* Try to flush the object off the GPU without holding the lock.
1551 	 * We will repeat the flush holding the lock in the normal manner
1552 	 * to catch cases where we are gazumped.
1553 	 */
1554 	err = i915_gem_object_wait(obj,
1555 				   I915_WAIT_INTERRUPTIBLE |
1556 				   (write_domain ? I915_WAIT_ALL : 0),
1557 				   MAX_SCHEDULE_TIMEOUT,
1558 				   to_rps_client(file));
1559 	if (err)
1560 		goto out;
1561 
1562 	/* Flush and acquire obj->pages so that we are coherent through
1563 	 * direct access in memory with previous cached writes through
1564 	 * shmemfs and that our cache domain tracking remains valid.
1565 	 * For example, if the obj->filp was moved to swap without us
1566 	 * being notified and releasing the pages, we would mistakenly
1567 	 * continue to assume that the obj remained out of the CPU cached
1568 	 * domain.
1569 	 */
1570 	err = i915_gem_object_pin_pages(obj);
1571 	if (err)
1572 		goto out;
1573 
1574 	err = i915_mutex_lock_interruptible(dev);
1575 	if (err)
1576 		goto out_unpin;
1577 
1578 	if (read_domains & I915_GEM_DOMAIN_GTT)
1579 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1580 	else
1581 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1582 
1583 	/* And bump the LRU for this access */
1584 	i915_gem_object_bump_inactive_ggtt(obj);
1585 
1586 	mutex_unlock(&dev->struct_mutex);
1587 
1588 	if (write_domain != 0)
1589 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1590 
1591 out_unpin:
1592 	i915_gem_object_unpin_pages(obj);
1593 out:
1594 	i915_gem_object_put(obj);
1595 	return err;
1596 }
1597 
1598 /**
1599  * Called when user space has done writes to this buffer
1600  * @dev: drm device
1601  * @data: ioctl data blob
1602  * @file: drm file
1603  */
1604 int
1605 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1606 			 struct drm_file *file)
1607 {
1608 	struct drm_i915_gem_sw_finish *args = data;
1609 	struct drm_i915_gem_object *obj;
1610 	int err = 0;
1611 
1612 	obj = i915_gem_object_lookup(file, args->handle);
1613 	if (!obj)
1614 		return -ENOENT;
1615 
1616 	/* Pinned buffers may be scanout, so flush the cache */
1617 	if (READ_ONCE(obj->pin_display)) {
1618 		err = i915_mutex_lock_interruptible(dev);
1619 		if (!err) {
1620 			i915_gem_object_flush_cpu_write_domain(obj);
1621 			mutex_unlock(&dev->struct_mutex);
1622 		}
1623 	}
1624 
1625 	i915_gem_object_put(obj);
1626 	return err;
1627 }
1628 
1629 /**
1630  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1631  *			 it is mapped to.
1632  * @dev: drm device
1633  * @data: ioctl data blob
1634  * @file: drm file
1635  *
1636  * While the mapping holds a reference on the contents of the object, it doesn't
1637  * imply a ref on the object itself.
1638  *
1639  * IMPORTANT:
1640  *
1641  * DRM driver writers who look a this function as an example for how to do GEM
1642  * mmap support, please don't implement mmap support like here. The modern way
1643  * to implement DRM mmap support is with an mmap offset ioctl (like
1644  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1645  * That way debug tooling like valgrind will understand what's going on, hiding
1646  * the mmap call in a driver private ioctl will break that. The i915 driver only
1647  * does cpu mmaps this way because we didn't know better.
1648  */
1649 int
1650 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1651 		    struct drm_file *file)
1652 {
1653 	struct drm_i915_gem_mmap *args = data;
1654 	struct drm_i915_gem_object *obj;
1655 	unsigned long addr;
1656 
1657 	if (args->flags & ~(I915_MMAP_WC))
1658 		return -EINVAL;
1659 
1660 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1661 		return -ENODEV;
1662 
1663 	obj = i915_gem_object_lookup(file, args->handle);
1664 	if (!obj)
1665 		return -ENOENT;
1666 
1667 	/* prime objects have no backing filp to GEM mmap
1668 	 * pages from.
1669 	 */
1670 	if (!obj->base.filp) {
1671 		i915_gem_object_put(obj);
1672 		return -EINVAL;
1673 	}
1674 
1675 	addr = vm_mmap(obj->base.filp, 0, args->size,
1676 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1677 		       args->offset);
1678 	if (args->flags & I915_MMAP_WC) {
1679 		struct mm_struct *mm = current->mm;
1680 		struct vm_area_struct *vma;
1681 
1682 		if (down_write_killable(&mm->mmap_sem)) {
1683 			i915_gem_object_put(obj);
1684 			return -EINTR;
1685 		}
1686 		vma = find_vma(mm, addr);
1687 		if (vma)
1688 			vma->vm_page_prot =
1689 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1690 		else
1691 			addr = -ENOMEM;
1692 		up_write(&mm->mmap_sem);
1693 
1694 		/* This may race, but that's ok, it only gets set */
1695 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1696 	}
1697 	i915_gem_object_put(obj);
1698 	if (IS_ERR((void *)addr))
1699 		return addr;
1700 
1701 	args->addr_ptr = (uint64_t) addr;
1702 
1703 	return 0;
1704 }
1705 
1706 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1707 {
1708 	u64 size;
1709 
1710 	size = i915_gem_object_get_stride(obj);
1711 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1712 
1713 	return size >> PAGE_SHIFT;
1714 }
1715 
1716 /**
1717  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1718  *
1719  * A history of the GTT mmap interface:
1720  *
1721  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1722  *     aligned and suitable for fencing, and still fit into the available
1723  *     mappable space left by the pinned display objects. A classic problem
1724  *     we called the page-fault-of-doom where we would ping-pong between
1725  *     two objects that could not fit inside the GTT and so the memcpy
1726  *     would page one object in at the expense of the other between every
1727  *     single byte.
1728  *
1729  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1730  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1731  *     object is too large for the available space (or simply too large
1732  *     for the mappable aperture!), a view is created instead and faulted
1733  *     into userspace. (This view is aligned and sized appropriately for
1734  *     fenced access.)
1735  *
1736  * Restrictions:
1737  *
1738  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1739  *    hangs on some architectures, corruption on others. An attempt to service
1740  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1741  *
1742  *  * the object must be able to fit into RAM (physical memory, though no
1743  *    limited to the mappable aperture).
1744  *
1745  *
1746  * Caveats:
1747  *
1748  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1749  *    all data to system memory. Subsequent access will not be synchronized.
1750  *
1751  *  * all mappings are revoked on runtime device suspend.
1752  *
1753  *  * there are only 8, 16 or 32 fence registers to share between all users
1754  *    (older machines require fence register for display and blitter access
1755  *    as well). Contention of the fence registers will cause the previous users
1756  *    to be unmapped and any new access will generate new page faults.
1757  *
1758  *  * running out of memory while servicing a fault may generate a SIGBUS,
1759  *    rather than the expected SIGSEGV.
1760  */
1761 int i915_gem_mmap_gtt_version(void)
1762 {
1763 	return 1;
1764 }
1765 
1766 /**
1767  * i915_gem_fault - fault a page into the GTT
1768  * @area: CPU VMA in question
1769  * @vmf: fault info
1770  *
1771  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1772  * from userspace.  The fault handler takes care of binding the object to
1773  * the GTT (if needed), allocating and programming a fence register (again,
1774  * only if needed based on whether the old reg is still valid or the object
1775  * is tiled) and inserting a new PTE into the faulting process.
1776  *
1777  * Note that the faulting process may involve evicting existing objects
1778  * from the GTT and/or fence registers to make room.  So performance may
1779  * suffer if the GTT working set is large or there are few fence registers
1780  * left.
1781  *
1782  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1783  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1784  */
1785 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1786 {
1787 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1788 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1789 	struct drm_device *dev = obj->base.dev;
1790 	struct drm_i915_private *dev_priv = to_i915(dev);
1791 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1792 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1793 	struct i915_vma *vma;
1794 	pgoff_t page_offset;
1795 	unsigned int flags;
1796 	int ret;
1797 
1798 	/* We don't use vmf->pgoff since that has the fake offset */
1799 	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1800 		PAGE_SHIFT;
1801 
1802 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1803 
1804 	/* Try to flush the object off the GPU first without holding the lock.
1805 	 * Upon acquiring the lock, we will perform our sanity checks and then
1806 	 * repeat the flush holding the lock in the normal manner to catch cases
1807 	 * where we are gazumped.
1808 	 */
1809 	ret = i915_gem_object_wait(obj,
1810 				   I915_WAIT_INTERRUPTIBLE,
1811 				   MAX_SCHEDULE_TIMEOUT,
1812 				   NULL);
1813 	if (ret)
1814 		goto err;
1815 
1816 	ret = i915_gem_object_pin_pages(obj);
1817 	if (ret)
1818 		goto err;
1819 
1820 	intel_runtime_pm_get(dev_priv);
1821 
1822 	ret = i915_mutex_lock_interruptible(dev);
1823 	if (ret)
1824 		goto err_rpm;
1825 
1826 	/* Access to snoopable pages through the GTT is incoherent. */
1827 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1828 		ret = -EFAULT;
1829 		goto err_unlock;
1830 	}
1831 
1832 	/* If the object is smaller than a couple of partial vma, it is
1833 	 * not worth only creating a single partial vma - we may as well
1834 	 * clear enough space for the full object.
1835 	 */
1836 	flags = PIN_MAPPABLE;
1837 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1838 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1839 
1840 	/* Now pin it into the GTT as needed */
1841 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1842 	if (IS_ERR(vma)) {
1843 		struct i915_ggtt_view view;
1844 		unsigned int chunk_size;
1845 
1846 		/* Use a partial view if it is bigger than available space */
1847 		chunk_size = MIN_CHUNK_PAGES;
1848 		if (i915_gem_object_is_tiled(obj))
1849 			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1850 
1851 		memset(&view, 0, sizeof(view));
1852 		view.type = I915_GGTT_VIEW_PARTIAL;
1853 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1854 		view.params.partial.size =
1855 			min_t(unsigned int, chunk_size,
1856 			      vma_pages(area) - view.params.partial.offset);
1857 
1858 		/* If the partial covers the entire object, just create a
1859 		 * normal VMA.
1860 		 */
1861 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1862 			view.type = I915_GGTT_VIEW_NORMAL;
1863 
1864 		/* Userspace is now writing through an untracked VMA, abandon
1865 		 * all hope that the hardware is able to track future writes.
1866 		 */
1867 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1868 
1869 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1870 	}
1871 	if (IS_ERR(vma)) {
1872 		ret = PTR_ERR(vma);
1873 		goto err_unlock;
1874 	}
1875 
1876 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1877 	if (ret)
1878 		goto err_unpin;
1879 
1880 	ret = i915_vma_get_fence(vma);
1881 	if (ret)
1882 		goto err_unpin;
1883 
1884 	/* Mark as being mmapped into userspace for later revocation */
1885 	assert_rpm_wakelock_held(dev_priv);
1886 	if (list_empty(&obj->userfault_link))
1887 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1888 
1889 	/* Finally, remap it using the new GTT offset */
1890 	ret = remap_io_mapping(area,
1891 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1892 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1893 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1894 			       &ggtt->mappable);
1895 
1896 err_unpin:
1897 	__i915_vma_unpin(vma);
1898 err_unlock:
1899 	mutex_unlock(&dev->struct_mutex);
1900 err_rpm:
1901 	intel_runtime_pm_put(dev_priv);
1902 	i915_gem_object_unpin_pages(obj);
1903 err:
1904 	switch (ret) {
1905 	case -EIO:
1906 		/*
1907 		 * We eat errors when the gpu is terminally wedged to avoid
1908 		 * userspace unduly crashing (gl has no provisions for mmaps to
1909 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1910 		 * and so needs to be reported.
1911 		 */
1912 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1913 			ret = VM_FAULT_SIGBUS;
1914 			break;
1915 		}
1916 	case -EAGAIN:
1917 		/*
1918 		 * EAGAIN means the gpu is hung and we'll wait for the error
1919 		 * handler to reset everything when re-faulting in
1920 		 * i915_mutex_lock_interruptible.
1921 		 */
1922 	case 0:
1923 	case -ERESTARTSYS:
1924 	case -EINTR:
1925 	case -EBUSY:
1926 		/*
1927 		 * EBUSY is ok: this just means that another thread
1928 		 * already did the job.
1929 		 */
1930 		ret = VM_FAULT_NOPAGE;
1931 		break;
1932 	case -ENOMEM:
1933 		ret = VM_FAULT_OOM;
1934 		break;
1935 	case -ENOSPC:
1936 	case -EFAULT:
1937 		ret = VM_FAULT_SIGBUS;
1938 		break;
1939 	default:
1940 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1941 		ret = VM_FAULT_SIGBUS;
1942 		break;
1943 	}
1944 	return ret;
1945 }
1946 
1947 /**
1948  * i915_gem_release_mmap - remove physical page mappings
1949  * @obj: obj in question
1950  *
1951  * Preserve the reservation of the mmapping with the DRM core code, but
1952  * relinquish ownership of the pages back to the system.
1953  *
1954  * It is vital that we remove the page mapping if we have mapped a tiled
1955  * object through the GTT and then lose the fence register due to
1956  * resource pressure. Similarly if the object has been moved out of the
1957  * aperture, than pages mapped into userspace must be revoked. Removing the
1958  * mapping will then trigger a page fault on the next user access, allowing
1959  * fixup by i915_gem_fault().
1960  */
1961 void
1962 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1963 {
1964 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1965 
1966 	/* Serialisation between user GTT access and our code depends upon
1967 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1968 	 * pagefault then has to wait until we release the mutex.
1969 	 *
1970 	 * Note that RPM complicates somewhat by adding an additional
1971 	 * requirement that operations to the GGTT be made holding the RPM
1972 	 * wakeref.
1973 	 */
1974 	lockdep_assert_held(&i915->drm.struct_mutex);
1975 	intel_runtime_pm_get(i915);
1976 
1977 	if (list_empty(&obj->userfault_link))
1978 		goto out;
1979 
1980 	list_del_init(&obj->userfault_link);
1981 	drm_vma_node_unmap(&obj->base.vma_node,
1982 			   obj->base.dev->anon_inode->i_mapping);
1983 
1984 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1985 	 * memory transactions from userspace before we return. The TLB
1986 	 * flushing implied above by changing the PTE above *should* be
1987 	 * sufficient, an extra barrier here just provides us with a bit
1988 	 * of paranoid documentation about our requirement to serialise
1989 	 * memory writes before touching registers / GSM.
1990 	 */
1991 	wmb();
1992 
1993 out:
1994 	intel_runtime_pm_put(i915);
1995 }
1996 
1997 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1998 {
1999 	struct drm_i915_gem_object *obj, *on;
2000 	int i;
2001 
2002 	/*
2003 	 * Only called during RPM suspend. All users of the userfault_list
2004 	 * must be holding an RPM wakeref to ensure that this can not
2005 	 * run concurrently with themselves (and use the struct_mutex for
2006 	 * protection between themselves).
2007 	 */
2008 
2009 	list_for_each_entry_safe(obj, on,
2010 				 &dev_priv->mm.userfault_list, userfault_link) {
2011 		list_del_init(&obj->userfault_link);
2012 		drm_vma_node_unmap(&obj->base.vma_node,
2013 				   obj->base.dev->anon_inode->i_mapping);
2014 	}
2015 
2016 	/* The fence will be lost when the device powers down. If any were
2017 	 * in use by hardware (i.e. they are pinned), we should not be powering
2018 	 * down! All other fences will be reacquired by the user upon waking.
2019 	 */
2020 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2021 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2022 
2023 		if (WARN_ON(reg->pin_count))
2024 			continue;
2025 
2026 		if (!reg->vma)
2027 			continue;
2028 
2029 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2030 		reg->dirty = true;
2031 	}
2032 }
2033 
2034 /**
2035  * i915_gem_get_ggtt_size - return required global GTT size for an object
2036  * @dev_priv: i915 device
2037  * @size: object size
2038  * @tiling_mode: tiling mode
2039  *
2040  * Return the required global GTT size for an object, taking into account
2041  * potential fence register mapping.
2042  */
2043 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2044 			   u64 size, int tiling_mode)
2045 {
2046 	u64 ggtt_size;
2047 
2048 	GEM_BUG_ON(size == 0);
2049 
2050 	if (INTEL_GEN(dev_priv) >= 4 ||
2051 	    tiling_mode == I915_TILING_NONE)
2052 		return size;
2053 
2054 	/* Previous chips need a power-of-two fence region when tiling */
2055 	if (IS_GEN3(dev_priv))
2056 		ggtt_size = 1024*1024;
2057 	else
2058 		ggtt_size = 512*1024;
2059 
2060 	while (ggtt_size < size)
2061 		ggtt_size <<= 1;
2062 
2063 	return ggtt_size;
2064 }
2065 
2066 /**
2067  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2068  * @dev_priv: i915 device
2069  * @size: object size
2070  * @tiling_mode: tiling mode
2071  * @fenced: is fenced alignment required or not
2072  *
2073  * Return the required global GTT alignment for an object, taking into account
2074  * potential fence register mapping.
2075  */
2076 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2077 				int tiling_mode, bool fenced)
2078 {
2079 	GEM_BUG_ON(size == 0);
2080 
2081 	/*
2082 	 * Minimum alignment is 4k (GTT page size), but might be greater
2083 	 * if a fence register is needed for the object.
2084 	 */
2085 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2086 	    tiling_mode == I915_TILING_NONE)
2087 		return 4096;
2088 
2089 	/*
2090 	 * Previous chips need to be aligned to the size of the smallest
2091 	 * fence register that can contain the object.
2092 	 */
2093 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2094 }
2095 
2096 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2097 {
2098 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2099 	int err;
2100 
2101 	err = drm_gem_create_mmap_offset(&obj->base);
2102 	if (!err)
2103 		return 0;
2104 
2105 	/* We can idle the GPU locklessly to flush stale objects, but in order
2106 	 * to claim that space for ourselves, we need to take the big
2107 	 * struct_mutex to free the requests+objects and allocate our slot.
2108 	 */
2109 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2110 	if (err)
2111 		return err;
2112 
2113 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2114 	if (!err) {
2115 		i915_gem_retire_requests(dev_priv);
2116 		err = drm_gem_create_mmap_offset(&obj->base);
2117 		mutex_unlock(&dev_priv->drm.struct_mutex);
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2124 {
2125 	drm_gem_free_mmap_offset(&obj->base);
2126 }
2127 
2128 int
2129 i915_gem_mmap_gtt(struct drm_file *file,
2130 		  struct drm_device *dev,
2131 		  uint32_t handle,
2132 		  uint64_t *offset)
2133 {
2134 	struct drm_i915_gem_object *obj;
2135 	int ret;
2136 
2137 	obj = i915_gem_object_lookup(file, handle);
2138 	if (!obj)
2139 		return -ENOENT;
2140 
2141 	ret = i915_gem_object_create_mmap_offset(obj);
2142 	if (ret == 0)
2143 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2144 
2145 	i915_gem_object_put(obj);
2146 	return ret;
2147 }
2148 
2149 /**
2150  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2151  * @dev: DRM device
2152  * @data: GTT mapping ioctl data
2153  * @file: GEM object info
2154  *
2155  * Simply returns the fake offset to userspace so it can mmap it.
2156  * The mmap call will end up in drm_gem_mmap(), which will set things
2157  * up so we can get faults in the handler above.
2158  *
2159  * The fault handler will take care of binding the object into the GTT
2160  * (since it may have been evicted to make room for something), allocating
2161  * a fence register, and mapping the appropriate aperture address into
2162  * userspace.
2163  */
2164 int
2165 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2166 			struct drm_file *file)
2167 {
2168 	struct drm_i915_gem_mmap_gtt *args = data;
2169 
2170 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2171 }
2172 
2173 /* Immediately discard the backing storage */
2174 static void
2175 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2176 {
2177 	i915_gem_object_free_mmap_offset(obj);
2178 
2179 	if (obj->base.filp == NULL)
2180 		return;
2181 
2182 	/* Our goal here is to return as much of the memory as
2183 	 * is possible back to the system as we are called from OOM.
2184 	 * To do this we must instruct the shmfs to drop all of its
2185 	 * backing pages, *now*.
2186 	 */
2187 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2188 	obj->mm.madv = __I915_MADV_PURGED;
2189 }
2190 
2191 /* Try to discard unwanted pages */
2192 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2193 {
2194 	struct address_space *mapping;
2195 
2196 	lockdep_assert_held(&obj->mm.lock);
2197 	GEM_BUG_ON(obj->mm.pages);
2198 
2199 	switch (obj->mm.madv) {
2200 	case I915_MADV_DONTNEED:
2201 		i915_gem_object_truncate(obj);
2202 	case __I915_MADV_PURGED:
2203 		return;
2204 	}
2205 
2206 	if (obj->base.filp == NULL)
2207 		return;
2208 
2209 	mapping = obj->base.filp->f_mapping,
2210 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2211 }
2212 
2213 static void
2214 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2215 			      struct sg_table *pages)
2216 {
2217 	struct sgt_iter sgt_iter;
2218 	struct page *page;
2219 
2220 	__i915_gem_object_release_shmem(obj, pages);
2221 
2222 	i915_gem_gtt_finish_pages(obj, pages);
2223 
2224 	if (i915_gem_object_needs_bit17_swizzle(obj))
2225 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2226 
2227 	for_each_sgt_page(page, sgt_iter, pages) {
2228 		if (obj->mm.dirty)
2229 			set_page_dirty(page);
2230 
2231 		if (obj->mm.madv == I915_MADV_WILLNEED)
2232 			mark_page_accessed(page);
2233 
2234 		put_page(page);
2235 	}
2236 	obj->mm.dirty = false;
2237 
2238 	sg_free_table(pages);
2239 	kfree(pages);
2240 }
2241 
2242 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2243 {
2244 	struct radix_tree_iter iter;
2245 	void **slot;
2246 
2247 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2248 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2249 }
2250 
2251 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2252 				 enum i915_mm_subclass subclass)
2253 {
2254 	struct sg_table *pages;
2255 
2256 	if (i915_gem_object_has_pinned_pages(obj))
2257 		return;
2258 
2259 	GEM_BUG_ON(obj->bind_count);
2260 	if (!READ_ONCE(obj->mm.pages))
2261 		return;
2262 
2263 	/* May be called by shrinker from within get_pages() (on another bo) */
2264 	mutex_lock_nested(&obj->mm.lock, subclass);
2265 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2266 		goto unlock;
2267 
2268 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2269 	 * array, hence protect them from being reaped by removing them from gtt
2270 	 * lists early. */
2271 	pages = fetch_and_zero(&obj->mm.pages);
2272 	GEM_BUG_ON(!pages);
2273 
2274 	if (obj->mm.mapping) {
2275 		void *ptr;
2276 
2277 		ptr = ptr_mask_bits(obj->mm.mapping);
2278 		if (is_vmalloc_addr(ptr))
2279 			vunmap(ptr);
2280 		else
2281 			kunmap(kmap_to_page(ptr));
2282 
2283 		obj->mm.mapping = NULL;
2284 	}
2285 
2286 	__i915_gem_object_reset_page_iter(obj);
2287 
2288 	obj->ops->put_pages(obj, pages);
2289 unlock:
2290 	mutex_unlock(&obj->mm.lock);
2291 }
2292 
2293 static unsigned int swiotlb_max_size(void)
2294 {
2295 #if IS_ENABLED(CONFIG_SWIOTLB)
2296 	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2297 #else
2298 	return 0;
2299 #endif
2300 }
2301 
2302 static void i915_sg_trim(struct sg_table *orig_st)
2303 {
2304 	struct sg_table new_st;
2305 	struct scatterlist *sg, *new_sg;
2306 	unsigned int i;
2307 
2308 	if (orig_st->nents == orig_st->orig_nents)
2309 		return;
2310 
2311 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2312 		return;
2313 
2314 	new_sg = new_st.sgl;
2315 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2316 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2317 		/* called before being DMA mapped, no need to copy sg->dma_* */
2318 		new_sg = sg_next(new_sg);
2319 	}
2320 
2321 	sg_free_table(orig_st);
2322 
2323 	*orig_st = new_st;
2324 }
2325 
2326 static struct sg_table *
2327 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2328 {
2329 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2330 	int page_count, i;
2331 	struct address_space *mapping;
2332 	struct sg_table *st;
2333 	struct scatterlist *sg;
2334 	struct sgt_iter sgt_iter;
2335 	struct page *page;
2336 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2337 	unsigned int max_segment;
2338 	int ret;
2339 	gfp_t gfp;
2340 
2341 	/* Assert that the object is not currently in any GPU domain. As it
2342 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2343 	 * a GPU cache
2344 	 */
2345 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2346 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2347 
2348 	max_segment = swiotlb_max_size();
2349 	if (!max_segment)
2350 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2351 
2352 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2353 	if (st == NULL)
2354 		return ERR_PTR(-ENOMEM);
2355 
2356 	page_count = obj->base.size / PAGE_SIZE;
2357 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2358 		kfree(st);
2359 		return ERR_PTR(-ENOMEM);
2360 	}
2361 
2362 	/* Get the list of pages out of our struct file.  They'll be pinned
2363 	 * at this point until we release them.
2364 	 *
2365 	 * Fail silently without starting the shrinker
2366 	 */
2367 	mapping = obj->base.filp->f_mapping;
2368 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2369 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2370 	sg = st->sgl;
2371 	st->nents = 0;
2372 	for (i = 0; i < page_count; i++) {
2373 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374 		if (IS_ERR(page)) {
2375 			i915_gem_shrink(dev_priv,
2376 					page_count,
2377 					I915_SHRINK_BOUND |
2378 					I915_SHRINK_UNBOUND |
2379 					I915_SHRINK_PURGEABLE);
2380 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2381 		}
2382 		if (IS_ERR(page)) {
2383 			/* We've tried hard to allocate the memory by reaping
2384 			 * our own buffer, now let the real VM do its job and
2385 			 * go down in flames if truly OOM.
2386 			 */
2387 			page = shmem_read_mapping_page(mapping, i);
2388 			if (IS_ERR(page)) {
2389 				ret = PTR_ERR(page);
2390 				goto err_sg;
2391 			}
2392 		}
2393 		if (!i ||
2394 		    sg->length >= max_segment ||
2395 		    page_to_pfn(page) != last_pfn + 1) {
2396 			if (i)
2397 				sg = sg_next(sg);
2398 			st->nents++;
2399 			sg_set_page(sg, page, PAGE_SIZE, 0);
2400 		} else {
2401 			sg->length += PAGE_SIZE;
2402 		}
2403 		last_pfn = page_to_pfn(page);
2404 
2405 		/* Check that the i965g/gm workaround works. */
2406 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2407 	}
2408 	if (sg) /* loop terminated early; short sg table */
2409 		sg_mark_end(sg);
2410 
2411 	/* Trim unused sg entries to avoid wasting memory. */
2412 	i915_sg_trim(st);
2413 
2414 	ret = i915_gem_gtt_prepare_pages(obj, st);
2415 	if (ret)
2416 		goto err_pages;
2417 
2418 	if (i915_gem_object_needs_bit17_swizzle(obj))
2419 		i915_gem_object_do_bit_17_swizzle(obj, st);
2420 
2421 	return st;
2422 
2423 err_sg:
2424 	sg_mark_end(sg);
2425 err_pages:
2426 	for_each_sgt_page(page, sgt_iter, st)
2427 		put_page(page);
2428 	sg_free_table(st);
2429 	kfree(st);
2430 
2431 	/* shmemfs first checks if there is enough memory to allocate the page
2432 	 * and reports ENOSPC should there be insufficient, along with the usual
2433 	 * ENOMEM for a genuine allocation failure.
2434 	 *
2435 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2436 	 * space and so want to translate the error from shmemfs back to our
2437 	 * usual understanding of ENOMEM.
2438 	 */
2439 	if (ret == -ENOSPC)
2440 		ret = -ENOMEM;
2441 
2442 	return ERR_PTR(ret);
2443 }
2444 
2445 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2446 				 struct sg_table *pages)
2447 {
2448 	lockdep_assert_held(&obj->mm.lock);
2449 
2450 	obj->mm.get_page.sg_pos = pages->sgl;
2451 	obj->mm.get_page.sg_idx = 0;
2452 
2453 	obj->mm.pages = pages;
2454 
2455 	if (i915_gem_object_is_tiled(obj) &&
2456 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2457 		GEM_BUG_ON(obj->mm.quirked);
2458 		__i915_gem_object_pin_pages(obj);
2459 		obj->mm.quirked = true;
2460 	}
2461 }
2462 
2463 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2464 {
2465 	struct sg_table *pages;
2466 
2467 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2468 
2469 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2470 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2471 		return -EFAULT;
2472 	}
2473 
2474 	pages = obj->ops->get_pages(obj);
2475 	if (unlikely(IS_ERR(pages)))
2476 		return PTR_ERR(pages);
2477 
2478 	__i915_gem_object_set_pages(obj, pages);
2479 	return 0;
2480 }
2481 
2482 /* Ensure that the associated pages are gathered from the backing storage
2483  * and pinned into our object. i915_gem_object_pin_pages() may be called
2484  * multiple times before they are released by a single call to
2485  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2486  * either as a result of memory pressure (reaping pages under the shrinker)
2487  * or as the object is itself released.
2488  */
2489 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2490 {
2491 	int err;
2492 
2493 	err = mutex_lock_interruptible(&obj->mm.lock);
2494 	if (err)
2495 		return err;
2496 
2497 	if (unlikely(!obj->mm.pages)) {
2498 		err = ____i915_gem_object_get_pages(obj);
2499 		if (err)
2500 			goto unlock;
2501 
2502 		smp_mb__before_atomic();
2503 	}
2504 	atomic_inc(&obj->mm.pages_pin_count);
2505 
2506 unlock:
2507 	mutex_unlock(&obj->mm.lock);
2508 	return err;
2509 }
2510 
2511 /* The 'mapping' part of i915_gem_object_pin_map() below */
2512 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2513 				 enum i915_map_type type)
2514 {
2515 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2516 	struct sg_table *sgt = obj->mm.pages;
2517 	struct sgt_iter sgt_iter;
2518 	struct page *page;
2519 	struct page *stack_pages[32];
2520 	struct page **pages = stack_pages;
2521 	unsigned long i = 0;
2522 	pgprot_t pgprot;
2523 	void *addr;
2524 
2525 	/* A single page can always be kmapped */
2526 	if (n_pages == 1 && type == I915_MAP_WB)
2527 		return kmap(sg_page(sgt->sgl));
2528 
2529 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2530 		/* Too big for stack -- allocate temporary array instead */
2531 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2532 		if (!pages)
2533 			return NULL;
2534 	}
2535 
2536 	for_each_sgt_page(page, sgt_iter, sgt)
2537 		pages[i++] = page;
2538 
2539 	/* Check that we have the expected number of pages */
2540 	GEM_BUG_ON(i != n_pages);
2541 
2542 	switch (type) {
2543 	case I915_MAP_WB:
2544 		pgprot = PAGE_KERNEL;
2545 		break;
2546 	case I915_MAP_WC:
2547 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2548 		break;
2549 	}
2550 	addr = vmap(pages, n_pages, 0, pgprot);
2551 
2552 	if (pages != stack_pages)
2553 		drm_free_large(pages);
2554 
2555 	return addr;
2556 }
2557 
2558 /* get, pin, and map the pages of the object into kernel space */
2559 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2560 			      enum i915_map_type type)
2561 {
2562 	enum i915_map_type has_type;
2563 	bool pinned;
2564 	void *ptr;
2565 	int ret;
2566 
2567 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2568 
2569 	ret = mutex_lock_interruptible(&obj->mm.lock);
2570 	if (ret)
2571 		return ERR_PTR(ret);
2572 
2573 	pinned = true;
2574 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2575 		if (unlikely(!obj->mm.pages)) {
2576 			ret = ____i915_gem_object_get_pages(obj);
2577 			if (ret)
2578 				goto err_unlock;
2579 
2580 			smp_mb__before_atomic();
2581 		}
2582 		atomic_inc(&obj->mm.pages_pin_count);
2583 		pinned = false;
2584 	}
2585 	GEM_BUG_ON(!obj->mm.pages);
2586 
2587 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2588 	if (ptr && has_type != type) {
2589 		if (pinned) {
2590 			ret = -EBUSY;
2591 			goto err_unpin;
2592 		}
2593 
2594 		if (is_vmalloc_addr(ptr))
2595 			vunmap(ptr);
2596 		else
2597 			kunmap(kmap_to_page(ptr));
2598 
2599 		ptr = obj->mm.mapping = NULL;
2600 	}
2601 
2602 	if (!ptr) {
2603 		ptr = i915_gem_object_map(obj, type);
2604 		if (!ptr) {
2605 			ret = -ENOMEM;
2606 			goto err_unpin;
2607 		}
2608 
2609 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2610 	}
2611 
2612 out_unlock:
2613 	mutex_unlock(&obj->mm.lock);
2614 	return ptr;
2615 
2616 err_unpin:
2617 	atomic_dec(&obj->mm.pages_pin_count);
2618 err_unlock:
2619 	ptr = ERR_PTR(ret);
2620 	goto out_unlock;
2621 }
2622 
2623 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2624 {
2625 	unsigned long elapsed;
2626 
2627 	if (ctx->hang_stats.banned)
2628 		return true;
2629 
2630 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631 	if (ctx->hang_stats.ban_period_seconds &&
2632 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2633 		DRM_DEBUG("context hanging too fast, banning!\n");
2634 		return true;
2635 	}
2636 
2637 	return false;
2638 }
2639 
2640 static void i915_set_reset_status(struct i915_gem_context *ctx,
2641 				  const bool guilty)
2642 {
2643 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2644 
2645 	if (guilty) {
2646 		hs->banned = i915_context_is_banned(ctx);
2647 		hs->batch_active++;
2648 		hs->guilty_ts = get_seconds();
2649 	} else {
2650 		hs->batch_pending++;
2651 	}
2652 }
2653 
2654 struct drm_i915_gem_request *
2655 i915_gem_find_active_request(struct intel_engine_cs *engine)
2656 {
2657 	struct drm_i915_gem_request *request;
2658 
2659 	/* We are called by the error capture and reset at a random
2660 	 * point in time. In particular, note that neither is crucially
2661 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2662 	 * assume that no more writes can happen (we waited long enough for
2663 	 * all writes that were in transaction to be flushed) - adding an
2664 	 * extra delay for a recent interrupt is pointless. Hence, we do
2665 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2666 	 */
2667 	list_for_each_entry(request, &engine->timeline->requests, link) {
2668 		if (__i915_gem_request_completed(request))
2669 			continue;
2670 
2671 		return request;
2672 	}
2673 
2674 	return NULL;
2675 }
2676 
2677 static void reset_request(struct drm_i915_gem_request *request)
2678 {
2679 	void *vaddr = request->ring->vaddr;
2680 	u32 head;
2681 
2682 	/* As this request likely depends on state from the lost
2683 	 * context, clear out all the user operations leaving the
2684 	 * breadcrumb at the end (so we get the fence notifications).
2685 	 */
2686 	head = request->head;
2687 	if (request->postfix < head) {
2688 		memset(vaddr + head, 0, request->ring->size - head);
2689 		head = 0;
2690 	}
2691 	memset(vaddr + head, 0, request->postfix - head);
2692 }
2693 
2694 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2695 {
2696 	struct drm_i915_gem_request *request;
2697 	struct i915_gem_context *incomplete_ctx;
2698 	struct intel_timeline *timeline;
2699 	bool ring_hung;
2700 
2701 	if (engine->irq_seqno_barrier)
2702 		engine->irq_seqno_barrier(engine);
2703 
2704 	request = i915_gem_find_active_request(engine);
2705 	if (!request)
2706 		return;
2707 
2708 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2709 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2710 		ring_hung = false;
2711 
2712 	i915_set_reset_status(request->ctx, ring_hung);
2713 	if (!ring_hung)
2714 		return;
2715 
2716 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2717 			 engine->name, request->global_seqno);
2718 
2719 	/* Setup the CS to resume from the breadcrumb of the hung request */
2720 	engine->reset_hw(engine, request);
2721 
2722 	/* Users of the default context do not rely on logical state
2723 	 * preserved between batches. They have to emit full state on
2724 	 * every batch and so it is safe to execute queued requests following
2725 	 * the hang.
2726 	 *
2727 	 * Other contexts preserve state, now corrupt. We want to skip all
2728 	 * queued requests that reference the corrupt context.
2729 	 */
2730 	incomplete_ctx = request->ctx;
2731 	if (i915_gem_context_is_default(incomplete_ctx))
2732 		return;
2733 
2734 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2735 		if (request->ctx == incomplete_ctx)
2736 			reset_request(request);
2737 
2738 	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2739 	list_for_each_entry(request, &timeline->requests, link)
2740 		reset_request(request);
2741 }
2742 
2743 void i915_gem_reset(struct drm_i915_private *dev_priv)
2744 {
2745 	struct intel_engine_cs *engine;
2746 	enum intel_engine_id id;
2747 
2748 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2749 
2750 	i915_gem_retire_requests(dev_priv);
2751 
2752 	for_each_engine(engine, dev_priv, id)
2753 		i915_gem_reset_engine(engine);
2754 
2755 	i915_gem_restore_fences(dev_priv);
2756 
2757 	if (dev_priv->gt.awake) {
2758 		intel_sanitize_gt_powersave(dev_priv);
2759 		intel_enable_gt_powersave(dev_priv);
2760 		if (INTEL_GEN(dev_priv) >= 6)
2761 			gen6_rps_busy(dev_priv);
2762 	}
2763 }
2764 
2765 static void nop_submit_request(struct drm_i915_gem_request *request)
2766 {
2767 	i915_gem_request_submit(request);
2768 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2769 }
2770 
2771 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2772 {
2773 	engine->submit_request = nop_submit_request;
2774 
2775 	/* Mark all pending requests as complete so that any concurrent
2776 	 * (lockless) lookup doesn't try and wait upon the request as we
2777 	 * reset it.
2778 	 */
2779 	intel_engine_init_global_seqno(engine,
2780 				       intel_engine_last_submit(engine));
2781 
2782 	/*
2783 	 * Clear the execlists queue up before freeing the requests, as those
2784 	 * are the ones that keep the context and ringbuffer backing objects
2785 	 * pinned in place.
2786 	 */
2787 
2788 	if (i915.enable_execlists) {
2789 		unsigned long flags;
2790 
2791 		spin_lock_irqsave(&engine->timeline->lock, flags);
2792 
2793 		i915_gem_request_put(engine->execlist_port[0].request);
2794 		i915_gem_request_put(engine->execlist_port[1].request);
2795 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2796 		engine->execlist_queue = RB_ROOT;
2797 		engine->execlist_first = NULL;
2798 
2799 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2800 	}
2801 }
2802 
2803 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2804 {
2805 	struct intel_engine_cs *engine;
2806 	enum intel_engine_id id;
2807 
2808 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2809 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2810 
2811 	i915_gem_context_lost(dev_priv);
2812 	for_each_engine(engine, dev_priv, id)
2813 		i915_gem_cleanup_engine(engine);
2814 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2815 
2816 	i915_gem_retire_requests(dev_priv);
2817 }
2818 
2819 static void
2820 i915_gem_retire_work_handler(struct work_struct *work)
2821 {
2822 	struct drm_i915_private *dev_priv =
2823 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2824 	struct drm_device *dev = &dev_priv->drm;
2825 
2826 	/* Come back later if the device is busy... */
2827 	if (mutex_trylock(&dev->struct_mutex)) {
2828 		i915_gem_retire_requests(dev_priv);
2829 		mutex_unlock(&dev->struct_mutex);
2830 	}
2831 
2832 	/* Keep the retire handler running until we are finally idle.
2833 	 * We do not need to do this test under locking as in the worst-case
2834 	 * we queue the retire worker once too often.
2835 	 */
2836 	if (READ_ONCE(dev_priv->gt.awake)) {
2837 		i915_queue_hangcheck(dev_priv);
2838 		queue_delayed_work(dev_priv->wq,
2839 				   &dev_priv->gt.retire_work,
2840 				   round_jiffies_up_relative(HZ));
2841 	}
2842 }
2843 
2844 static void
2845 i915_gem_idle_work_handler(struct work_struct *work)
2846 {
2847 	struct drm_i915_private *dev_priv =
2848 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2849 	struct drm_device *dev = &dev_priv->drm;
2850 	struct intel_engine_cs *engine;
2851 	enum intel_engine_id id;
2852 	bool rearm_hangcheck;
2853 
2854 	if (!READ_ONCE(dev_priv->gt.awake))
2855 		return;
2856 
2857 	/*
2858 	 * Wait for last execlists context complete, but bail out in case a
2859 	 * new request is submitted.
2860 	 */
2861 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2862 		 intel_execlists_idle(dev_priv), 10);
2863 
2864 	if (READ_ONCE(dev_priv->gt.active_requests))
2865 		return;
2866 
2867 	rearm_hangcheck =
2868 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2869 
2870 	if (!mutex_trylock(&dev->struct_mutex)) {
2871 		/* Currently busy, come back later */
2872 		mod_delayed_work(dev_priv->wq,
2873 				 &dev_priv->gt.idle_work,
2874 				 msecs_to_jiffies(50));
2875 		goto out_rearm;
2876 	}
2877 
2878 	/*
2879 	 * New request retired after this work handler started, extend active
2880 	 * period until next instance of the work.
2881 	 */
2882 	if (work_pending(work))
2883 		goto out_unlock;
2884 
2885 	if (dev_priv->gt.active_requests)
2886 		goto out_unlock;
2887 
2888 	if (wait_for(intel_execlists_idle(dev_priv), 10))
2889 		DRM_ERROR("Timeout waiting for engines to idle\n");
2890 
2891 	for_each_engine(engine, dev_priv, id)
2892 		i915_gem_batch_pool_fini(&engine->batch_pool);
2893 
2894 	GEM_BUG_ON(!dev_priv->gt.awake);
2895 	dev_priv->gt.awake = false;
2896 	rearm_hangcheck = false;
2897 
2898 	if (INTEL_GEN(dev_priv) >= 6)
2899 		gen6_rps_idle(dev_priv);
2900 	intel_runtime_pm_put(dev_priv);
2901 out_unlock:
2902 	mutex_unlock(&dev->struct_mutex);
2903 
2904 out_rearm:
2905 	if (rearm_hangcheck) {
2906 		GEM_BUG_ON(!dev_priv->gt.awake);
2907 		i915_queue_hangcheck(dev_priv);
2908 	}
2909 }
2910 
2911 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2912 {
2913 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2914 	struct drm_i915_file_private *fpriv = file->driver_priv;
2915 	struct i915_vma *vma, *vn;
2916 
2917 	mutex_lock(&obj->base.dev->struct_mutex);
2918 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2919 		if (vma->vm->file == fpriv)
2920 			i915_vma_close(vma);
2921 
2922 	if (i915_gem_object_is_active(obj) &&
2923 	    !i915_gem_object_has_active_reference(obj)) {
2924 		i915_gem_object_set_active_reference(obj);
2925 		i915_gem_object_get(obj);
2926 	}
2927 	mutex_unlock(&obj->base.dev->struct_mutex);
2928 }
2929 
2930 static unsigned long to_wait_timeout(s64 timeout_ns)
2931 {
2932 	if (timeout_ns < 0)
2933 		return MAX_SCHEDULE_TIMEOUT;
2934 
2935 	if (timeout_ns == 0)
2936 		return 0;
2937 
2938 	return nsecs_to_jiffies_timeout(timeout_ns);
2939 }
2940 
2941 /**
2942  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2943  * @dev: drm device pointer
2944  * @data: ioctl data blob
2945  * @file: drm file pointer
2946  *
2947  * Returns 0 if successful, else an error is returned with the remaining time in
2948  * the timeout parameter.
2949  *  -ETIME: object is still busy after timeout
2950  *  -ERESTARTSYS: signal interrupted the wait
2951  *  -ENONENT: object doesn't exist
2952  * Also possible, but rare:
2953  *  -EAGAIN: GPU wedged
2954  *  -ENOMEM: damn
2955  *  -ENODEV: Internal IRQ fail
2956  *  -E?: The add request failed
2957  *
2958  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2959  * non-zero timeout parameter the wait ioctl will wait for the given number of
2960  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2961  * without holding struct_mutex the object may become re-busied before this
2962  * function completes. A similar but shorter * race condition exists in the busy
2963  * ioctl
2964  */
2965 int
2966 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2967 {
2968 	struct drm_i915_gem_wait *args = data;
2969 	struct drm_i915_gem_object *obj;
2970 	ktime_t start;
2971 	long ret;
2972 
2973 	if (args->flags != 0)
2974 		return -EINVAL;
2975 
2976 	obj = i915_gem_object_lookup(file, args->bo_handle);
2977 	if (!obj)
2978 		return -ENOENT;
2979 
2980 	start = ktime_get();
2981 
2982 	ret = i915_gem_object_wait(obj,
2983 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2984 				   to_wait_timeout(args->timeout_ns),
2985 				   to_rps_client(file));
2986 
2987 	if (args->timeout_ns > 0) {
2988 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2989 		if (args->timeout_ns < 0)
2990 			args->timeout_ns = 0;
2991 	}
2992 
2993 	i915_gem_object_put(obj);
2994 	return ret;
2995 }
2996 
2997 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2998 {
2999 	int ret, i;
3000 
3001 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3002 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3003 		if (ret)
3004 			return ret;
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3011 {
3012 	int ret;
3013 
3014 	if (flags & I915_WAIT_LOCKED) {
3015 		struct i915_gem_timeline *tl;
3016 
3017 		lockdep_assert_held(&i915->drm.struct_mutex);
3018 
3019 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3020 			ret = wait_for_timeline(tl, flags);
3021 			if (ret)
3022 				return ret;
3023 		}
3024 	} else {
3025 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3026 		if (ret)
3027 			return ret;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3034 			     bool force)
3035 {
3036 	/* If we don't have a page list set up, then we're not pinned
3037 	 * to GPU, and we can ignore the cache flush because it'll happen
3038 	 * again at bind time.
3039 	 */
3040 	if (!obj->mm.pages)
3041 		return;
3042 
3043 	/*
3044 	 * Stolen memory is always coherent with the GPU as it is explicitly
3045 	 * marked as wc by the system, or the system is cache-coherent.
3046 	 */
3047 	if (obj->stolen || obj->phys_handle)
3048 		return;
3049 
3050 	/* If the GPU is snooping the contents of the CPU cache,
3051 	 * we do not need to manually clear the CPU cache lines.  However,
3052 	 * the caches are only snooped when the render cache is
3053 	 * flushed/invalidated.  As we always have to emit invalidations
3054 	 * and flushes when moving into and out of the RENDER domain, correct
3055 	 * snooping behaviour occurs naturally as the result of our domain
3056 	 * tracking.
3057 	 */
3058 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3059 		obj->cache_dirty = true;
3060 		return;
3061 	}
3062 
3063 	trace_i915_gem_object_clflush(obj);
3064 	drm_clflush_sg(obj->mm.pages);
3065 	obj->cache_dirty = false;
3066 }
3067 
3068 /** Flushes the GTT write domain for the object if it's dirty. */
3069 static void
3070 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3071 {
3072 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3073 
3074 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3075 		return;
3076 
3077 	/* No actual flushing is required for the GTT write domain.  Writes
3078 	 * to it "immediately" go to main memory as far as we know, so there's
3079 	 * no chipset flush.  It also doesn't land in render cache.
3080 	 *
3081 	 * However, we do have to enforce the order so that all writes through
3082 	 * the GTT land before any writes to the device, such as updates to
3083 	 * the GATT itself.
3084 	 *
3085 	 * We also have to wait a bit for the writes to land from the GTT.
3086 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3087 	 * timing. This issue has only been observed when switching quickly
3088 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3089 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3090 	 * system agents we cannot reproduce this behaviour).
3091 	 */
3092 	wmb();
3093 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3094 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3095 
3096 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3097 
3098 	obj->base.write_domain = 0;
3099 	trace_i915_gem_object_change_domain(obj,
3100 					    obj->base.read_domains,
3101 					    I915_GEM_DOMAIN_GTT);
3102 }
3103 
3104 /** Flushes the CPU write domain for the object if it's dirty. */
3105 static void
3106 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3107 {
3108 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3109 		return;
3110 
3111 	i915_gem_clflush_object(obj, obj->pin_display);
3112 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3113 
3114 	obj->base.write_domain = 0;
3115 	trace_i915_gem_object_change_domain(obj,
3116 					    obj->base.read_domains,
3117 					    I915_GEM_DOMAIN_CPU);
3118 }
3119 
3120 /**
3121  * Moves a single object to the GTT read, and possibly write domain.
3122  * @obj: object to act on
3123  * @write: ask for write access or read only
3124  *
3125  * This function returns when the move is complete, including waiting on
3126  * flushes to occur.
3127  */
3128 int
3129 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3130 {
3131 	uint32_t old_write_domain, old_read_domains;
3132 	int ret;
3133 
3134 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3135 
3136 	ret = i915_gem_object_wait(obj,
3137 				   I915_WAIT_INTERRUPTIBLE |
3138 				   I915_WAIT_LOCKED |
3139 				   (write ? I915_WAIT_ALL : 0),
3140 				   MAX_SCHEDULE_TIMEOUT,
3141 				   NULL);
3142 	if (ret)
3143 		return ret;
3144 
3145 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3146 		return 0;
3147 
3148 	/* Flush and acquire obj->pages so that we are coherent through
3149 	 * direct access in memory with previous cached writes through
3150 	 * shmemfs and that our cache domain tracking remains valid.
3151 	 * For example, if the obj->filp was moved to swap without us
3152 	 * being notified and releasing the pages, we would mistakenly
3153 	 * continue to assume that the obj remained out of the CPU cached
3154 	 * domain.
3155 	 */
3156 	ret = i915_gem_object_pin_pages(obj);
3157 	if (ret)
3158 		return ret;
3159 
3160 	i915_gem_object_flush_cpu_write_domain(obj);
3161 
3162 	/* Serialise direct access to this object with the barriers for
3163 	 * coherent writes from the GPU, by effectively invalidating the
3164 	 * GTT domain upon first access.
3165 	 */
3166 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3167 		mb();
3168 
3169 	old_write_domain = obj->base.write_domain;
3170 	old_read_domains = obj->base.read_domains;
3171 
3172 	/* It should now be out of any other write domains, and we can update
3173 	 * the domain values for our changes.
3174 	 */
3175 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3176 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3177 	if (write) {
3178 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3179 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3180 		obj->mm.dirty = true;
3181 	}
3182 
3183 	trace_i915_gem_object_change_domain(obj,
3184 					    old_read_domains,
3185 					    old_write_domain);
3186 
3187 	i915_gem_object_unpin_pages(obj);
3188 	return 0;
3189 }
3190 
3191 /**
3192  * Changes the cache-level of an object across all VMA.
3193  * @obj: object to act on
3194  * @cache_level: new cache level to set for the object
3195  *
3196  * After this function returns, the object will be in the new cache-level
3197  * across all GTT and the contents of the backing storage will be coherent,
3198  * with respect to the new cache-level. In order to keep the backing storage
3199  * coherent for all users, we only allow a single cache level to be set
3200  * globally on the object and prevent it from being changed whilst the
3201  * hardware is reading from the object. That is if the object is currently
3202  * on the scanout it will be set to uncached (or equivalent display
3203  * cache coherency) and all non-MOCS GPU access will also be uncached so
3204  * that all direct access to the scanout remains coherent.
3205  */
3206 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3207 				    enum i915_cache_level cache_level)
3208 {
3209 	struct i915_vma *vma;
3210 	int ret;
3211 
3212 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3213 
3214 	if (obj->cache_level == cache_level)
3215 		return 0;
3216 
3217 	/* Inspect the list of currently bound VMA and unbind any that would
3218 	 * be invalid given the new cache-level. This is principally to
3219 	 * catch the issue of the CS prefetch crossing page boundaries and
3220 	 * reading an invalid PTE on older architectures.
3221 	 */
3222 restart:
3223 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3224 		if (!drm_mm_node_allocated(&vma->node))
3225 			continue;
3226 
3227 		if (i915_vma_is_pinned(vma)) {
3228 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3229 			return -EBUSY;
3230 		}
3231 
3232 		if (i915_gem_valid_gtt_space(vma, cache_level))
3233 			continue;
3234 
3235 		ret = i915_vma_unbind(vma);
3236 		if (ret)
3237 			return ret;
3238 
3239 		/* As unbinding may affect other elements in the
3240 		 * obj->vma_list (due to side-effects from retiring
3241 		 * an active vma), play safe and restart the iterator.
3242 		 */
3243 		goto restart;
3244 	}
3245 
3246 	/* We can reuse the existing drm_mm nodes but need to change the
3247 	 * cache-level on the PTE. We could simply unbind them all and
3248 	 * rebind with the correct cache-level on next use. However since
3249 	 * we already have a valid slot, dma mapping, pages etc, we may as
3250 	 * rewrite the PTE in the belief that doing so tramples upon less
3251 	 * state and so involves less work.
3252 	 */
3253 	if (obj->bind_count) {
3254 		/* Before we change the PTE, the GPU must not be accessing it.
3255 		 * If we wait upon the object, we know that all the bound
3256 		 * VMA are no longer active.
3257 		 */
3258 		ret = i915_gem_object_wait(obj,
3259 					   I915_WAIT_INTERRUPTIBLE |
3260 					   I915_WAIT_LOCKED |
3261 					   I915_WAIT_ALL,
3262 					   MAX_SCHEDULE_TIMEOUT,
3263 					   NULL);
3264 		if (ret)
3265 			return ret;
3266 
3267 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3268 		    cache_level != I915_CACHE_NONE) {
3269 			/* Access to snoopable pages through the GTT is
3270 			 * incoherent and on some machines causes a hard
3271 			 * lockup. Relinquish the CPU mmaping to force
3272 			 * userspace to refault in the pages and we can
3273 			 * then double check if the GTT mapping is still
3274 			 * valid for that pointer access.
3275 			 */
3276 			i915_gem_release_mmap(obj);
3277 
3278 			/* As we no longer need a fence for GTT access,
3279 			 * we can relinquish it now (and so prevent having
3280 			 * to steal a fence from someone else on the next
3281 			 * fence request). Note GPU activity would have
3282 			 * dropped the fence as all snoopable access is
3283 			 * supposed to be linear.
3284 			 */
3285 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3286 				ret = i915_vma_put_fence(vma);
3287 				if (ret)
3288 					return ret;
3289 			}
3290 		} else {
3291 			/* We either have incoherent backing store and
3292 			 * so no GTT access or the architecture is fully
3293 			 * coherent. In such cases, existing GTT mmaps
3294 			 * ignore the cache bit in the PTE and we can
3295 			 * rewrite it without confusing the GPU or having
3296 			 * to force userspace to fault back in its mmaps.
3297 			 */
3298 		}
3299 
3300 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3301 			if (!drm_mm_node_allocated(&vma->node))
3302 				continue;
3303 
3304 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3305 			if (ret)
3306 				return ret;
3307 		}
3308 	}
3309 
3310 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3311 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3312 		obj->cache_dirty = true;
3313 
3314 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3315 		vma->node.color = cache_level;
3316 	obj->cache_level = cache_level;
3317 
3318 	return 0;
3319 }
3320 
3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322 			       struct drm_file *file)
3323 {
3324 	struct drm_i915_gem_caching *args = data;
3325 	struct drm_i915_gem_object *obj;
3326 	int err = 0;
3327 
3328 	rcu_read_lock();
3329 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3330 	if (!obj) {
3331 		err = -ENOENT;
3332 		goto out;
3333 	}
3334 
3335 	switch (obj->cache_level) {
3336 	case I915_CACHE_LLC:
3337 	case I915_CACHE_L3_LLC:
3338 		args->caching = I915_CACHING_CACHED;
3339 		break;
3340 
3341 	case I915_CACHE_WT:
3342 		args->caching = I915_CACHING_DISPLAY;
3343 		break;
3344 
3345 	default:
3346 		args->caching = I915_CACHING_NONE;
3347 		break;
3348 	}
3349 out:
3350 	rcu_read_unlock();
3351 	return err;
3352 }
3353 
3354 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3355 			       struct drm_file *file)
3356 {
3357 	struct drm_i915_private *i915 = to_i915(dev);
3358 	struct drm_i915_gem_caching *args = data;
3359 	struct drm_i915_gem_object *obj;
3360 	enum i915_cache_level level;
3361 	int ret;
3362 
3363 	switch (args->caching) {
3364 	case I915_CACHING_NONE:
3365 		level = I915_CACHE_NONE;
3366 		break;
3367 	case I915_CACHING_CACHED:
3368 		/*
3369 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3370 		 * snooped mapping may leave stale data in a corresponding CPU
3371 		 * cacheline, whereas normally such cachelines would get
3372 		 * invalidated.
3373 		 */
3374 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3375 			return -ENODEV;
3376 
3377 		level = I915_CACHE_LLC;
3378 		break;
3379 	case I915_CACHING_DISPLAY:
3380 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3381 		break;
3382 	default:
3383 		return -EINVAL;
3384 	}
3385 
3386 	ret = i915_mutex_lock_interruptible(dev);
3387 	if (ret)
3388 		return ret;
3389 
3390 	obj = i915_gem_object_lookup(file, args->handle);
3391 	if (!obj) {
3392 		ret = -ENOENT;
3393 		goto unlock;
3394 	}
3395 
3396 	ret = i915_gem_object_set_cache_level(obj, level);
3397 	i915_gem_object_put(obj);
3398 unlock:
3399 	mutex_unlock(&dev->struct_mutex);
3400 	return ret;
3401 }
3402 
3403 /*
3404  * Prepare buffer for display plane (scanout, cursors, etc).
3405  * Can be called from an uninterruptible phase (modesetting) and allows
3406  * any flushes to be pipelined (for pageflips).
3407  */
3408 struct i915_vma *
3409 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3410 				     u32 alignment,
3411 				     const struct i915_ggtt_view *view)
3412 {
3413 	struct i915_vma *vma;
3414 	u32 old_read_domains, old_write_domain;
3415 	int ret;
3416 
3417 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3418 
3419 	/* Mark the pin_display early so that we account for the
3420 	 * display coherency whilst setting up the cache domains.
3421 	 */
3422 	obj->pin_display++;
3423 
3424 	/* The display engine is not coherent with the LLC cache on gen6.  As
3425 	 * a result, we make sure that the pinning that is about to occur is
3426 	 * done with uncached PTEs. This is lowest common denominator for all
3427 	 * chipsets.
3428 	 *
3429 	 * However for gen6+, we could do better by using the GFDT bit instead
3430 	 * of uncaching, which would allow us to flush all the LLC-cached data
3431 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3432 	 */
3433 	ret = i915_gem_object_set_cache_level(obj,
3434 					      HAS_WT(to_i915(obj->base.dev)) ?
3435 					      I915_CACHE_WT : I915_CACHE_NONE);
3436 	if (ret) {
3437 		vma = ERR_PTR(ret);
3438 		goto err_unpin_display;
3439 	}
3440 
3441 	/* As the user may map the buffer once pinned in the display plane
3442 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3443 	 * always use map_and_fenceable for all scanout buffers. However,
3444 	 * it may simply be too big to fit into mappable, in which case
3445 	 * put it anyway and hope that userspace can cope (but always first
3446 	 * try to preserve the existing ABI).
3447 	 */
3448 	vma = ERR_PTR(-ENOSPC);
3449 	if (view->type == I915_GGTT_VIEW_NORMAL)
3450 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3451 					       PIN_MAPPABLE | PIN_NONBLOCK);
3452 	if (IS_ERR(vma)) {
3453 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3454 		unsigned int flags;
3455 
3456 		/* Valleyview is definitely limited to scanning out the first
3457 		 * 512MiB. Lets presume this behaviour was inherited from the
3458 		 * g4x display engine and that all earlier gen are similarly
3459 		 * limited. Testing suggests that it is a little more
3460 		 * complicated than this. For example, Cherryview appears quite
3461 		 * happy to scanout from anywhere within its global aperture.
3462 		 */
3463 		flags = 0;
3464 		if (HAS_GMCH_DISPLAY(i915))
3465 			flags = PIN_MAPPABLE;
3466 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3467 	}
3468 	if (IS_ERR(vma))
3469 		goto err_unpin_display;
3470 
3471 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3472 
3473 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3474 	if (obj->cache_dirty) {
3475 		i915_gem_clflush_object(obj, true);
3476 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3477 	}
3478 
3479 	old_write_domain = obj->base.write_domain;
3480 	old_read_domains = obj->base.read_domains;
3481 
3482 	/* It should now be out of any other write domains, and we can update
3483 	 * the domain values for our changes.
3484 	 */
3485 	obj->base.write_domain = 0;
3486 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3487 
3488 	trace_i915_gem_object_change_domain(obj,
3489 					    old_read_domains,
3490 					    old_write_domain);
3491 
3492 	return vma;
3493 
3494 err_unpin_display:
3495 	obj->pin_display--;
3496 	return vma;
3497 }
3498 
3499 void
3500 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3501 {
3502 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3503 
3504 	if (WARN_ON(vma->obj->pin_display == 0))
3505 		return;
3506 
3507 	if (--vma->obj->pin_display == 0)
3508 		vma->display_alignment = 0;
3509 
3510 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3511 	if (!i915_vma_is_active(vma))
3512 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3513 
3514 	i915_vma_unpin(vma);
3515 }
3516 
3517 /**
3518  * Moves a single object to the CPU read, and possibly write domain.
3519  * @obj: object to act on
3520  * @write: requesting write or read-only access
3521  *
3522  * This function returns when the move is complete, including waiting on
3523  * flushes to occur.
3524  */
3525 int
3526 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3527 {
3528 	uint32_t old_write_domain, old_read_domains;
3529 	int ret;
3530 
3531 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3532 
3533 	ret = i915_gem_object_wait(obj,
3534 				   I915_WAIT_INTERRUPTIBLE |
3535 				   I915_WAIT_LOCKED |
3536 				   (write ? I915_WAIT_ALL : 0),
3537 				   MAX_SCHEDULE_TIMEOUT,
3538 				   NULL);
3539 	if (ret)
3540 		return ret;
3541 
3542 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3543 		return 0;
3544 
3545 	i915_gem_object_flush_gtt_write_domain(obj);
3546 
3547 	old_write_domain = obj->base.write_domain;
3548 	old_read_domains = obj->base.read_domains;
3549 
3550 	/* Flush the CPU cache if it's still invalid. */
3551 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3552 		i915_gem_clflush_object(obj, false);
3553 
3554 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3555 	}
3556 
3557 	/* It should now be out of any other write domains, and we can update
3558 	 * the domain values for our changes.
3559 	 */
3560 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3561 
3562 	/* If we're writing through the CPU, then the GPU read domains will
3563 	 * need to be invalidated at next use.
3564 	 */
3565 	if (write) {
3566 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3567 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3568 	}
3569 
3570 	trace_i915_gem_object_change_domain(obj,
3571 					    old_read_domains,
3572 					    old_write_domain);
3573 
3574 	return 0;
3575 }
3576 
3577 /* Throttle our rendering by waiting until the ring has completed our requests
3578  * emitted over 20 msec ago.
3579  *
3580  * Note that if we were to use the current jiffies each time around the loop,
3581  * we wouldn't escape the function with any frames outstanding if the time to
3582  * render a frame was over 20ms.
3583  *
3584  * This should get us reasonable parallelism between CPU and GPU but also
3585  * relatively low latency when blocking on a particular request to finish.
3586  */
3587 static int
3588 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3589 {
3590 	struct drm_i915_private *dev_priv = to_i915(dev);
3591 	struct drm_i915_file_private *file_priv = file->driver_priv;
3592 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3593 	struct drm_i915_gem_request *request, *target = NULL;
3594 	long ret;
3595 
3596 	/* ABI: return -EIO if already wedged */
3597 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3598 		return -EIO;
3599 
3600 	spin_lock(&file_priv->mm.lock);
3601 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3602 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3603 			break;
3604 
3605 		/*
3606 		 * Note that the request might not have been submitted yet.
3607 		 * In which case emitted_jiffies will be zero.
3608 		 */
3609 		if (!request->emitted_jiffies)
3610 			continue;
3611 
3612 		target = request;
3613 	}
3614 	if (target)
3615 		i915_gem_request_get(target);
3616 	spin_unlock(&file_priv->mm.lock);
3617 
3618 	if (target == NULL)
3619 		return 0;
3620 
3621 	ret = i915_wait_request(target,
3622 				I915_WAIT_INTERRUPTIBLE,
3623 				MAX_SCHEDULE_TIMEOUT);
3624 	i915_gem_request_put(target);
3625 
3626 	return ret < 0 ? ret : 0;
3627 }
3628 
3629 struct i915_vma *
3630 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3631 			 const struct i915_ggtt_view *view,
3632 			 u64 size,
3633 			 u64 alignment,
3634 			 u64 flags)
3635 {
3636 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3637 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3638 	struct i915_vma *vma;
3639 	int ret;
3640 
3641 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3642 
3643 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3644 	if (IS_ERR(vma))
3645 		return vma;
3646 
3647 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3648 		if (flags & PIN_NONBLOCK &&
3649 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3650 			return ERR_PTR(-ENOSPC);
3651 
3652 		if (flags & PIN_MAPPABLE) {
3653 			u32 fence_size;
3654 
3655 			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3656 							    i915_gem_object_get_tiling(obj));
3657 			/* If the required space is larger than the available
3658 			 * aperture, we will not able to find a slot for the
3659 			 * object and unbinding the object now will be in
3660 			 * vain. Worse, doing so may cause us to ping-pong
3661 			 * the object in and out of the Global GTT and
3662 			 * waste a lot of cycles under the mutex.
3663 			 */
3664 			if (fence_size > dev_priv->ggtt.mappable_end)
3665 				return ERR_PTR(-E2BIG);
3666 
3667 			/* If NONBLOCK is set the caller is optimistically
3668 			 * trying to cache the full object within the mappable
3669 			 * aperture, and *must* have a fallback in place for
3670 			 * situations where we cannot bind the object. We
3671 			 * can be a little more lax here and use the fallback
3672 			 * more often to avoid costly migrations of ourselves
3673 			 * and other objects within the aperture.
3674 			 *
3675 			 * Half-the-aperture is used as a simple heuristic.
3676 			 * More interesting would to do search for a free
3677 			 * block prior to making the commitment to unbind.
3678 			 * That caters for the self-harm case, and with a
3679 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3680 			 * we could try to minimise harm to others.
3681 			 */
3682 			if (flags & PIN_NONBLOCK &&
3683 			    fence_size > dev_priv->ggtt.mappable_end / 2)
3684 				return ERR_PTR(-ENOSPC);
3685 		}
3686 
3687 		WARN(i915_vma_is_pinned(vma),
3688 		     "bo is already pinned in ggtt with incorrect alignment:"
3689 		     " offset=%08x, req.alignment=%llx,"
3690 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3691 		     i915_ggtt_offset(vma), alignment,
3692 		     !!(flags & PIN_MAPPABLE),
3693 		     i915_vma_is_map_and_fenceable(vma));
3694 		ret = i915_vma_unbind(vma);
3695 		if (ret)
3696 			return ERR_PTR(ret);
3697 	}
3698 
3699 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3700 	if (ret)
3701 		return ERR_PTR(ret);
3702 
3703 	return vma;
3704 }
3705 
3706 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3707 {
3708 	/* Note that we could alias engines in the execbuf API, but
3709 	 * that would be very unwise as it prevents userspace from
3710 	 * fine control over engine selection. Ahem.
3711 	 *
3712 	 * This should be something like EXEC_MAX_ENGINE instead of
3713 	 * I915_NUM_ENGINES.
3714 	 */
3715 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3716 	return 0x10000 << id;
3717 }
3718 
3719 static __always_inline unsigned int __busy_write_id(unsigned int id)
3720 {
3721 	/* The uABI guarantees an active writer is also amongst the read
3722 	 * engines. This would be true if we accessed the activity tracking
3723 	 * under the lock, but as we perform the lookup of the object and
3724 	 * its activity locklessly we can not guarantee that the last_write
3725 	 * being active implies that we have set the same engine flag from
3726 	 * last_read - hence we always set both read and write busy for
3727 	 * last_write.
3728 	 */
3729 	return id | __busy_read_flag(id);
3730 }
3731 
3732 static __always_inline unsigned int
3733 __busy_set_if_active(const struct dma_fence *fence,
3734 		     unsigned int (*flag)(unsigned int id))
3735 {
3736 	struct drm_i915_gem_request *rq;
3737 
3738 	/* We have to check the current hw status of the fence as the uABI
3739 	 * guarantees forward progress. We could rely on the idle worker
3740 	 * to eventually flush us, but to minimise latency just ask the
3741 	 * hardware.
3742 	 *
3743 	 * Note we only report on the status of native fences.
3744 	 */
3745 	if (!dma_fence_is_i915(fence))
3746 		return 0;
3747 
3748 	/* opencode to_request() in order to avoid const warnings */
3749 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3750 	if (i915_gem_request_completed(rq))
3751 		return 0;
3752 
3753 	return flag(rq->engine->exec_id);
3754 }
3755 
3756 static __always_inline unsigned int
3757 busy_check_reader(const struct dma_fence *fence)
3758 {
3759 	return __busy_set_if_active(fence, __busy_read_flag);
3760 }
3761 
3762 static __always_inline unsigned int
3763 busy_check_writer(const struct dma_fence *fence)
3764 {
3765 	if (!fence)
3766 		return 0;
3767 
3768 	return __busy_set_if_active(fence, __busy_write_id);
3769 }
3770 
3771 int
3772 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3773 		    struct drm_file *file)
3774 {
3775 	struct drm_i915_gem_busy *args = data;
3776 	struct drm_i915_gem_object *obj;
3777 	struct reservation_object_list *list;
3778 	unsigned int seq;
3779 	int err;
3780 
3781 	err = -ENOENT;
3782 	rcu_read_lock();
3783 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3784 	if (!obj)
3785 		goto out;
3786 
3787 	/* A discrepancy here is that we do not report the status of
3788 	 * non-i915 fences, i.e. even though we may report the object as idle,
3789 	 * a call to set-domain may still stall waiting for foreign rendering.
3790 	 * This also means that wait-ioctl may report an object as busy,
3791 	 * where busy-ioctl considers it idle.
3792 	 *
3793 	 * We trade the ability to warn of foreign fences to report on which
3794 	 * i915 engines are active for the object.
3795 	 *
3796 	 * Alternatively, we can trade that extra information on read/write
3797 	 * activity with
3798 	 *	args->busy =
3799 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3800 	 * to report the overall busyness. This is what the wait-ioctl does.
3801 	 *
3802 	 */
3803 retry:
3804 	seq = raw_read_seqcount(&obj->resv->seq);
3805 
3806 	/* Translate the exclusive fence to the READ *and* WRITE engine */
3807 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3808 
3809 	/* Translate shared fences to READ set of engines */
3810 	list = rcu_dereference(obj->resv->fence);
3811 	if (list) {
3812 		unsigned int shared_count = list->shared_count, i;
3813 
3814 		for (i = 0; i < shared_count; ++i) {
3815 			struct dma_fence *fence =
3816 				rcu_dereference(list->shared[i]);
3817 
3818 			args->busy |= busy_check_reader(fence);
3819 		}
3820 	}
3821 
3822 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3823 		goto retry;
3824 
3825 	err = 0;
3826 out:
3827 	rcu_read_unlock();
3828 	return err;
3829 }
3830 
3831 int
3832 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3833 			struct drm_file *file_priv)
3834 {
3835 	return i915_gem_ring_throttle(dev, file_priv);
3836 }
3837 
3838 int
3839 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3840 		       struct drm_file *file_priv)
3841 {
3842 	struct drm_i915_private *dev_priv = to_i915(dev);
3843 	struct drm_i915_gem_madvise *args = data;
3844 	struct drm_i915_gem_object *obj;
3845 	int err;
3846 
3847 	switch (args->madv) {
3848 	case I915_MADV_DONTNEED:
3849 	case I915_MADV_WILLNEED:
3850 	    break;
3851 	default:
3852 	    return -EINVAL;
3853 	}
3854 
3855 	obj = i915_gem_object_lookup(file_priv, args->handle);
3856 	if (!obj)
3857 		return -ENOENT;
3858 
3859 	err = mutex_lock_interruptible(&obj->mm.lock);
3860 	if (err)
3861 		goto out;
3862 
3863 	if (obj->mm.pages &&
3864 	    i915_gem_object_is_tiled(obj) &&
3865 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3866 		if (obj->mm.madv == I915_MADV_WILLNEED) {
3867 			GEM_BUG_ON(!obj->mm.quirked);
3868 			__i915_gem_object_unpin_pages(obj);
3869 			obj->mm.quirked = false;
3870 		}
3871 		if (args->madv == I915_MADV_WILLNEED) {
3872 			GEM_BUG_ON(obj->mm.quirked);
3873 			__i915_gem_object_pin_pages(obj);
3874 			obj->mm.quirked = true;
3875 		}
3876 	}
3877 
3878 	if (obj->mm.madv != __I915_MADV_PURGED)
3879 		obj->mm.madv = args->madv;
3880 
3881 	/* if the object is no longer attached, discard its backing storage */
3882 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3883 		i915_gem_object_truncate(obj);
3884 
3885 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3886 	mutex_unlock(&obj->mm.lock);
3887 
3888 out:
3889 	i915_gem_object_put(obj);
3890 	return err;
3891 }
3892 
3893 static void
3894 frontbuffer_retire(struct i915_gem_active *active,
3895 		   struct drm_i915_gem_request *request)
3896 {
3897 	struct drm_i915_gem_object *obj =
3898 		container_of(active, typeof(*obj), frontbuffer_write);
3899 
3900 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3901 }
3902 
3903 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3904 			  const struct drm_i915_gem_object_ops *ops)
3905 {
3906 	mutex_init(&obj->mm.lock);
3907 
3908 	INIT_LIST_HEAD(&obj->global_link);
3909 	INIT_LIST_HEAD(&obj->userfault_link);
3910 	INIT_LIST_HEAD(&obj->obj_exec_link);
3911 	INIT_LIST_HEAD(&obj->vma_list);
3912 	INIT_LIST_HEAD(&obj->batch_pool_link);
3913 
3914 	obj->ops = ops;
3915 
3916 	reservation_object_init(&obj->__builtin_resv);
3917 	obj->resv = &obj->__builtin_resv;
3918 
3919 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3920 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3921 
3922 	obj->mm.madv = I915_MADV_WILLNEED;
3923 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3924 	mutex_init(&obj->mm.get_page.lock);
3925 
3926 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3927 }
3928 
3929 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3930 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3931 		 I915_GEM_OBJECT_IS_SHRINKABLE,
3932 	.get_pages = i915_gem_object_get_pages_gtt,
3933 	.put_pages = i915_gem_object_put_pages_gtt,
3934 };
3935 
3936 /* Note we don't consider signbits :| */
3937 #define overflows_type(x, T) \
3938 	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3939 
3940 struct drm_i915_gem_object *
3941 i915_gem_object_create(struct drm_device *dev, u64 size)
3942 {
3943 	struct drm_i915_private *dev_priv = to_i915(dev);
3944 	struct drm_i915_gem_object *obj;
3945 	struct address_space *mapping;
3946 	gfp_t mask;
3947 	int ret;
3948 
3949 	/* There is a prevalence of the assumption that we fit the object's
3950 	 * page count inside a 32bit _signed_ variable. Let's document this and
3951 	 * catch if we ever need to fix it. In the meantime, if you do spot
3952 	 * such a local variable, please consider fixing!
3953 	 */
3954 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3955 		return ERR_PTR(-E2BIG);
3956 
3957 	if (overflows_type(size, obj->base.size))
3958 		return ERR_PTR(-E2BIG);
3959 
3960 	obj = i915_gem_object_alloc(dev);
3961 	if (obj == NULL)
3962 		return ERR_PTR(-ENOMEM);
3963 
3964 	ret = drm_gem_object_init(dev, &obj->base, size);
3965 	if (ret)
3966 		goto fail;
3967 
3968 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3969 	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3970 		/* 965gm cannot relocate objects above 4GiB. */
3971 		mask &= ~__GFP_HIGHMEM;
3972 		mask |= __GFP_DMA32;
3973 	}
3974 
3975 	mapping = obj->base.filp->f_mapping;
3976 	mapping_set_gfp_mask(mapping, mask);
3977 
3978 	i915_gem_object_init(obj, &i915_gem_object_ops);
3979 
3980 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3981 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982 
3983 	if (HAS_LLC(dev_priv)) {
3984 		/* On some devices, we can have the GPU use the LLC (the CPU
3985 		 * cache) for about a 10% performance improvement
3986 		 * compared to uncached.  Graphics requests other than
3987 		 * display scanout are coherent with the CPU in
3988 		 * accessing this cache.  This means in this mode we
3989 		 * don't need to clflush on the CPU side, and on the
3990 		 * GPU side we only need to flush internal caches to
3991 		 * get data visible to the CPU.
3992 		 *
3993 		 * However, we maintain the display planes as UC, and so
3994 		 * need to rebind when first used as such.
3995 		 */
3996 		obj->cache_level = I915_CACHE_LLC;
3997 	} else
3998 		obj->cache_level = I915_CACHE_NONE;
3999 
4000 	trace_i915_gem_object_create(obj);
4001 
4002 	return obj;
4003 
4004 fail:
4005 	i915_gem_object_free(obj);
4006 	return ERR_PTR(ret);
4007 }
4008 
4009 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4010 {
4011 	/* If we are the last user of the backing storage (be it shmemfs
4012 	 * pages or stolen etc), we know that the pages are going to be
4013 	 * immediately released. In this case, we can then skip copying
4014 	 * back the contents from the GPU.
4015 	 */
4016 
4017 	if (obj->mm.madv != I915_MADV_WILLNEED)
4018 		return false;
4019 
4020 	if (obj->base.filp == NULL)
4021 		return true;
4022 
4023 	/* At first glance, this looks racy, but then again so would be
4024 	 * userspace racing mmap against close. However, the first external
4025 	 * reference to the filp can only be obtained through the
4026 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4027 	 * acquiring such a reference whilst we are in the middle of
4028 	 * freeing the object.
4029 	 */
4030 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4031 }
4032 
4033 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4034 				    struct llist_node *freed)
4035 {
4036 	struct drm_i915_gem_object *obj, *on;
4037 
4038 	mutex_lock(&i915->drm.struct_mutex);
4039 	intel_runtime_pm_get(i915);
4040 	llist_for_each_entry(obj, freed, freed) {
4041 		struct i915_vma *vma, *vn;
4042 
4043 		trace_i915_gem_object_destroy(obj);
4044 
4045 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4046 		list_for_each_entry_safe(vma, vn,
4047 					 &obj->vma_list, obj_link) {
4048 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4049 			GEM_BUG_ON(i915_vma_is_active(vma));
4050 			vma->flags &= ~I915_VMA_PIN_MASK;
4051 			i915_vma_close(vma);
4052 		}
4053 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4054 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4055 
4056 		list_del(&obj->global_link);
4057 	}
4058 	intel_runtime_pm_put(i915);
4059 	mutex_unlock(&i915->drm.struct_mutex);
4060 
4061 	llist_for_each_entry_safe(obj, on, freed, freed) {
4062 		GEM_BUG_ON(obj->bind_count);
4063 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4064 
4065 		if (obj->ops->release)
4066 			obj->ops->release(obj);
4067 
4068 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4069 			atomic_set(&obj->mm.pages_pin_count, 0);
4070 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4071 		GEM_BUG_ON(obj->mm.pages);
4072 
4073 		if (obj->base.import_attach)
4074 			drm_prime_gem_destroy(&obj->base, NULL);
4075 
4076 		reservation_object_fini(&obj->__builtin_resv);
4077 		drm_gem_object_release(&obj->base);
4078 		i915_gem_info_remove_obj(i915, obj->base.size);
4079 
4080 		kfree(obj->bit_17);
4081 		i915_gem_object_free(obj);
4082 	}
4083 }
4084 
4085 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4086 {
4087 	struct llist_node *freed;
4088 
4089 	freed = llist_del_all(&i915->mm.free_list);
4090 	if (unlikely(freed))
4091 		__i915_gem_free_objects(i915, freed);
4092 }
4093 
4094 static void __i915_gem_free_work(struct work_struct *work)
4095 {
4096 	struct drm_i915_private *i915 =
4097 		container_of(work, struct drm_i915_private, mm.free_work);
4098 	struct llist_node *freed;
4099 
4100 	/* All file-owned VMA should have been released by this point through
4101 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4102 	 * However, the object may also be bound into the global GTT (e.g.
4103 	 * older GPUs without per-process support, or for direct access through
4104 	 * the GTT either for the user or for scanout). Those VMA still need to
4105 	 * unbound now.
4106 	 */
4107 
4108 	while ((freed = llist_del_all(&i915->mm.free_list)))
4109 		__i915_gem_free_objects(i915, freed);
4110 }
4111 
4112 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4113 {
4114 	struct drm_i915_gem_object *obj =
4115 		container_of(head, typeof(*obj), rcu);
4116 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4117 
4118 	/* We can't simply use call_rcu() from i915_gem_free_object()
4119 	 * as we need to block whilst unbinding, and the call_rcu
4120 	 * task may be called from softirq context. So we take a
4121 	 * detour through a worker.
4122 	 */
4123 	if (llist_add(&obj->freed, &i915->mm.free_list))
4124 		schedule_work(&i915->mm.free_work);
4125 }
4126 
4127 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4128 {
4129 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4130 
4131 	if (obj->mm.quirked)
4132 		__i915_gem_object_unpin_pages(obj);
4133 
4134 	if (discard_backing_storage(obj))
4135 		obj->mm.madv = I915_MADV_DONTNEED;
4136 
4137 	/* Before we free the object, make sure any pure RCU-only
4138 	 * read-side critical sections are complete, e.g.
4139 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4140 	 * lookup see i915_gem_object_lookup_rcu().
4141 	 */
4142 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4143 }
4144 
4145 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4146 {
4147 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4148 
4149 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4150 	if (i915_gem_object_is_active(obj))
4151 		i915_gem_object_set_active_reference(obj);
4152 	else
4153 		i915_gem_object_put(obj);
4154 }
4155 
4156 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4157 {
4158 	struct intel_engine_cs *engine;
4159 	enum intel_engine_id id;
4160 
4161 	for_each_engine(engine, dev_priv, id)
4162 		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4163 }
4164 
4165 int i915_gem_suspend(struct drm_device *dev)
4166 {
4167 	struct drm_i915_private *dev_priv = to_i915(dev);
4168 	int ret;
4169 
4170 	intel_suspend_gt_powersave(dev_priv);
4171 
4172 	mutex_lock(&dev->struct_mutex);
4173 
4174 	/* We have to flush all the executing contexts to main memory so
4175 	 * that they can saved in the hibernation image. To ensure the last
4176 	 * context image is coherent, we have to switch away from it. That
4177 	 * leaves the dev_priv->kernel_context still active when
4178 	 * we actually suspend, and its image in memory may not match the GPU
4179 	 * state. Fortunately, the kernel_context is disposable and we do
4180 	 * not rely on its state.
4181 	 */
4182 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4183 	if (ret)
4184 		goto err;
4185 
4186 	ret = i915_gem_wait_for_idle(dev_priv,
4187 				     I915_WAIT_INTERRUPTIBLE |
4188 				     I915_WAIT_LOCKED);
4189 	if (ret)
4190 		goto err;
4191 
4192 	i915_gem_retire_requests(dev_priv);
4193 	GEM_BUG_ON(dev_priv->gt.active_requests);
4194 
4195 	assert_kernel_context_is_current(dev_priv);
4196 	i915_gem_context_lost(dev_priv);
4197 	mutex_unlock(&dev->struct_mutex);
4198 
4199 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4200 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4201 	flush_delayed_work(&dev_priv->gt.idle_work);
4202 	flush_work(&dev_priv->mm.free_work);
4203 
4204 	/* Assert that we sucessfully flushed all the work and
4205 	 * reset the GPU back to its idle, low power state.
4206 	 */
4207 	WARN_ON(dev_priv->gt.awake);
4208 	WARN_ON(!intel_execlists_idle(dev_priv));
4209 
4210 	/*
4211 	 * Neither the BIOS, ourselves or any other kernel
4212 	 * expects the system to be in execlists mode on startup,
4213 	 * so we need to reset the GPU back to legacy mode. And the only
4214 	 * known way to disable logical contexts is through a GPU reset.
4215 	 *
4216 	 * So in order to leave the system in a known default configuration,
4217 	 * always reset the GPU upon unload and suspend. Afterwards we then
4218 	 * clean up the GEM state tracking, flushing off the requests and
4219 	 * leaving the system in a known idle state.
4220 	 *
4221 	 * Note that is of the upmost importance that the GPU is idle and
4222 	 * all stray writes are flushed *before* we dismantle the backing
4223 	 * storage for the pinned objects.
4224 	 *
4225 	 * However, since we are uncertain that resetting the GPU on older
4226 	 * machines is a good idea, we don't - just in case it leaves the
4227 	 * machine in an unusable condition.
4228 	 */
4229 	if (HAS_HW_CONTEXTS(dev_priv)) {
4230 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4231 		WARN_ON(reset && reset != -ENODEV);
4232 	}
4233 
4234 	return 0;
4235 
4236 err:
4237 	mutex_unlock(&dev->struct_mutex);
4238 	return ret;
4239 }
4240 
4241 void i915_gem_resume(struct drm_device *dev)
4242 {
4243 	struct drm_i915_private *dev_priv = to_i915(dev);
4244 
4245 	WARN_ON(dev_priv->gt.awake);
4246 
4247 	mutex_lock(&dev->struct_mutex);
4248 	i915_gem_restore_gtt_mappings(dev_priv);
4249 
4250 	/* As we didn't flush the kernel context before suspend, we cannot
4251 	 * guarantee that the context image is complete. So let's just reset
4252 	 * it and start again.
4253 	 */
4254 	dev_priv->gt.resume(dev_priv);
4255 
4256 	mutex_unlock(&dev->struct_mutex);
4257 }
4258 
4259 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4260 {
4261 	if (INTEL_GEN(dev_priv) < 5 ||
4262 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4263 		return;
4264 
4265 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4266 				 DISP_TILE_SURFACE_SWIZZLING);
4267 
4268 	if (IS_GEN5(dev_priv))
4269 		return;
4270 
4271 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4272 	if (IS_GEN6(dev_priv))
4273 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4274 	else if (IS_GEN7(dev_priv))
4275 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4276 	else if (IS_GEN8(dev_priv))
4277 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4278 	else
4279 		BUG();
4280 }
4281 
4282 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4283 {
4284 	I915_WRITE(RING_CTL(base), 0);
4285 	I915_WRITE(RING_HEAD(base), 0);
4286 	I915_WRITE(RING_TAIL(base), 0);
4287 	I915_WRITE(RING_START(base), 0);
4288 }
4289 
4290 static void init_unused_rings(struct drm_i915_private *dev_priv)
4291 {
4292 	if (IS_I830(dev_priv)) {
4293 		init_unused_ring(dev_priv, PRB1_BASE);
4294 		init_unused_ring(dev_priv, SRB0_BASE);
4295 		init_unused_ring(dev_priv, SRB1_BASE);
4296 		init_unused_ring(dev_priv, SRB2_BASE);
4297 		init_unused_ring(dev_priv, SRB3_BASE);
4298 	} else if (IS_GEN2(dev_priv)) {
4299 		init_unused_ring(dev_priv, SRB0_BASE);
4300 		init_unused_ring(dev_priv, SRB1_BASE);
4301 	} else if (IS_GEN3(dev_priv)) {
4302 		init_unused_ring(dev_priv, PRB1_BASE);
4303 		init_unused_ring(dev_priv, PRB2_BASE);
4304 	}
4305 }
4306 
4307 int
4308 i915_gem_init_hw(struct drm_device *dev)
4309 {
4310 	struct drm_i915_private *dev_priv = to_i915(dev);
4311 	struct intel_engine_cs *engine;
4312 	enum intel_engine_id id;
4313 	int ret;
4314 
4315 	dev_priv->gt.last_init_time = ktime_get();
4316 
4317 	/* Double layer security blanket, see i915_gem_init() */
4318 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4319 
4320 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4321 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4322 
4323 	if (IS_HASWELL(dev_priv))
4324 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4325 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4326 
4327 	if (HAS_PCH_NOP(dev_priv)) {
4328 		if (IS_IVYBRIDGE(dev_priv)) {
4329 			u32 temp = I915_READ(GEN7_MSG_CTL);
4330 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4331 			I915_WRITE(GEN7_MSG_CTL, temp);
4332 		} else if (INTEL_GEN(dev_priv) >= 7) {
4333 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4334 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4335 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4336 		}
4337 	}
4338 
4339 	i915_gem_init_swizzling(dev_priv);
4340 
4341 	/*
4342 	 * At least 830 can leave some of the unused rings
4343 	 * "active" (ie. head != tail) after resume which
4344 	 * will prevent c3 entry. Makes sure all unused rings
4345 	 * are totally idle.
4346 	 */
4347 	init_unused_rings(dev_priv);
4348 
4349 	BUG_ON(!dev_priv->kernel_context);
4350 
4351 	ret = i915_ppgtt_init_hw(dev_priv);
4352 	if (ret) {
4353 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4354 		goto out;
4355 	}
4356 
4357 	/* Need to do basic initialisation of all rings first: */
4358 	for_each_engine(engine, dev_priv, id) {
4359 		ret = engine->init_hw(engine);
4360 		if (ret)
4361 			goto out;
4362 	}
4363 
4364 	intel_mocs_init_l3cc_table(dev);
4365 
4366 	/* We can't enable contexts until all firmware is loaded */
4367 	ret = intel_guc_setup(dev);
4368 	if (ret)
4369 		goto out;
4370 
4371 out:
4372 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4373 	return ret;
4374 }
4375 
4376 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4377 {
4378 	if (INTEL_INFO(dev_priv)->gen < 6)
4379 		return false;
4380 
4381 	/* TODO: make semaphores and Execlists play nicely together */
4382 	if (i915.enable_execlists)
4383 		return false;
4384 
4385 	if (value >= 0)
4386 		return value;
4387 
4388 #ifdef CONFIG_INTEL_IOMMU
4389 	/* Enable semaphores on SNB when IO remapping is off */
4390 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4391 		return false;
4392 #endif
4393 
4394 	return true;
4395 }
4396 
4397 int i915_gem_init(struct drm_device *dev)
4398 {
4399 	struct drm_i915_private *dev_priv = to_i915(dev);
4400 	int ret;
4401 
4402 	mutex_lock(&dev->struct_mutex);
4403 
4404 	if (!i915.enable_execlists) {
4405 		dev_priv->gt.resume = intel_legacy_submission_resume;
4406 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4407 	} else {
4408 		dev_priv->gt.resume = intel_lr_context_resume;
4409 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4410 	}
4411 
4412 	/* This is just a security blanket to placate dragons.
4413 	 * On some systems, we very sporadically observe that the first TLBs
4414 	 * used by the CS may be stale, despite us poking the TLB reset. If
4415 	 * we hold the forcewake during initialisation these problems
4416 	 * just magically go away.
4417 	 */
4418 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4419 
4420 	i915_gem_init_userptr(dev_priv);
4421 
4422 	ret = i915_gem_init_ggtt(dev_priv);
4423 	if (ret)
4424 		goto out_unlock;
4425 
4426 	ret = i915_gem_context_init(dev);
4427 	if (ret)
4428 		goto out_unlock;
4429 
4430 	ret = intel_engines_init(dev);
4431 	if (ret)
4432 		goto out_unlock;
4433 
4434 	ret = i915_gem_init_hw(dev);
4435 	if (ret == -EIO) {
4436 		/* Allow engine initialisation to fail by marking the GPU as
4437 		 * wedged. But we only want to do this where the GPU is angry,
4438 		 * for all other failure, such as an allocation failure, bail.
4439 		 */
4440 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4441 		i915_gem_set_wedged(dev_priv);
4442 		ret = 0;
4443 	}
4444 
4445 out_unlock:
4446 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4447 	mutex_unlock(&dev->struct_mutex);
4448 
4449 	return ret;
4450 }
4451 
4452 void
4453 i915_gem_cleanup_engines(struct drm_device *dev)
4454 {
4455 	struct drm_i915_private *dev_priv = to_i915(dev);
4456 	struct intel_engine_cs *engine;
4457 	enum intel_engine_id id;
4458 
4459 	for_each_engine(engine, dev_priv, id)
4460 		dev_priv->gt.cleanup_engine(engine);
4461 }
4462 
4463 void
4464 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4465 {
4466 	int i;
4467 
4468 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4469 	    !IS_CHERRYVIEW(dev_priv))
4470 		dev_priv->num_fence_regs = 32;
4471 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4472 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4473 		dev_priv->num_fence_regs = 16;
4474 	else
4475 		dev_priv->num_fence_regs = 8;
4476 
4477 	if (intel_vgpu_active(dev_priv))
4478 		dev_priv->num_fence_regs =
4479 				I915_READ(vgtif_reg(avail_rs.fence_num));
4480 
4481 	/* Initialize fence registers to zero */
4482 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4483 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4484 
4485 		fence->i915 = dev_priv;
4486 		fence->id = i;
4487 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4488 	}
4489 	i915_gem_restore_fences(dev_priv);
4490 
4491 	i915_gem_detect_bit_6_swizzle(dev_priv);
4492 }
4493 
4494 int
4495 i915_gem_load_init(struct drm_device *dev)
4496 {
4497 	struct drm_i915_private *dev_priv = to_i915(dev);
4498 	int err = -ENOMEM;
4499 
4500 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4501 	if (!dev_priv->objects)
4502 		goto err_out;
4503 
4504 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4505 	if (!dev_priv->vmas)
4506 		goto err_objects;
4507 
4508 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4509 					SLAB_HWCACHE_ALIGN |
4510 					SLAB_RECLAIM_ACCOUNT |
4511 					SLAB_DESTROY_BY_RCU);
4512 	if (!dev_priv->requests)
4513 		goto err_vmas;
4514 
4515 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4516 					    SLAB_HWCACHE_ALIGN |
4517 					    SLAB_RECLAIM_ACCOUNT);
4518 	if (!dev_priv->dependencies)
4519 		goto err_requests;
4520 
4521 	mutex_lock(&dev_priv->drm.struct_mutex);
4522 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4523 	err = i915_gem_timeline_init__global(dev_priv);
4524 	mutex_unlock(&dev_priv->drm.struct_mutex);
4525 	if (err)
4526 		goto err_dependencies;
4527 
4528 	INIT_LIST_HEAD(&dev_priv->context_list);
4529 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4530 	init_llist_head(&dev_priv->mm.free_list);
4531 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4532 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4533 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4534 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4535 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4536 			  i915_gem_retire_work_handler);
4537 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4538 			  i915_gem_idle_work_handler);
4539 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4540 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4541 
4542 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4543 
4544 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4545 
4546 	dev_priv->mm.interruptible = true;
4547 
4548 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4549 
4550 	spin_lock_init(&dev_priv->fb_tracking.lock);
4551 
4552 	return 0;
4553 
4554 err_dependencies:
4555 	kmem_cache_destroy(dev_priv->dependencies);
4556 err_requests:
4557 	kmem_cache_destroy(dev_priv->requests);
4558 err_vmas:
4559 	kmem_cache_destroy(dev_priv->vmas);
4560 err_objects:
4561 	kmem_cache_destroy(dev_priv->objects);
4562 err_out:
4563 	return err;
4564 }
4565 
4566 void i915_gem_load_cleanup(struct drm_device *dev)
4567 {
4568 	struct drm_i915_private *dev_priv = to_i915(dev);
4569 
4570 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4571 
4572 	mutex_lock(&dev_priv->drm.struct_mutex);
4573 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4574 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4575 	mutex_unlock(&dev_priv->drm.struct_mutex);
4576 
4577 	kmem_cache_destroy(dev_priv->dependencies);
4578 	kmem_cache_destroy(dev_priv->requests);
4579 	kmem_cache_destroy(dev_priv->vmas);
4580 	kmem_cache_destroy(dev_priv->objects);
4581 
4582 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4583 	rcu_barrier();
4584 }
4585 
4586 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4587 {
4588 	intel_runtime_pm_get(dev_priv);
4589 
4590 	mutex_lock(&dev_priv->drm.struct_mutex);
4591 	i915_gem_shrink_all(dev_priv);
4592 	mutex_unlock(&dev_priv->drm.struct_mutex);
4593 
4594 	intel_runtime_pm_put(dev_priv);
4595 
4596 	return 0;
4597 }
4598 
4599 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4600 {
4601 	struct drm_i915_gem_object *obj;
4602 	struct list_head *phases[] = {
4603 		&dev_priv->mm.unbound_list,
4604 		&dev_priv->mm.bound_list,
4605 		NULL
4606 	}, **p;
4607 
4608 	/* Called just before we write the hibernation image.
4609 	 *
4610 	 * We need to update the domain tracking to reflect that the CPU
4611 	 * will be accessing all the pages to create and restore from the
4612 	 * hibernation, and so upon restoration those pages will be in the
4613 	 * CPU domain.
4614 	 *
4615 	 * To make sure the hibernation image contains the latest state,
4616 	 * we update that state just before writing out the image.
4617 	 *
4618 	 * To try and reduce the hibernation image, we manually shrink
4619 	 * the objects as well.
4620 	 */
4621 
4622 	mutex_lock(&dev_priv->drm.struct_mutex);
4623 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4624 
4625 	for (p = phases; *p; p++) {
4626 		list_for_each_entry(obj, *p, global_link) {
4627 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4628 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4629 		}
4630 	}
4631 	mutex_unlock(&dev_priv->drm.struct_mutex);
4632 
4633 	return 0;
4634 }
4635 
4636 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4637 {
4638 	struct drm_i915_file_private *file_priv = file->driver_priv;
4639 	struct drm_i915_gem_request *request;
4640 
4641 	/* Clean up our request list when the client is going away, so that
4642 	 * later retire_requests won't dereference our soon-to-be-gone
4643 	 * file_priv.
4644 	 */
4645 	spin_lock(&file_priv->mm.lock);
4646 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4647 		request->file_priv = NULL;
4648 	spin_unlock(&file_priv->mm.lock);
4649 
4650 	if (!list_empty(&file_priv->rps.link)) {
4651 		spin_lock(&to_i915(dev)->rps.client_lock);
4652 		list_del(&file_priv->rps.link);
4653 		spin_unlock(&to_i915(dev)->rps.client_lock);
4654 	}
4655 }
4656 
4657 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4658 {
4659 	struct drm_i915_file_private *file_priv;
4660 	int ret;
4661 
4662 	DRM_DEBUG("\n");
4663 
4664 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4665 	if (!file_priv)
4666 		return -ENOMEM;
4667 
4668 	file->driver_priv = file_priv;
4669 	file_priv->dev_priv = to_i915(dev);
4670 	file_priv->file = file;
4671 	INIT_LIST_HEAD(&file_priv->rps.link);
4672 
4673 	spin_lock_init(&file_priv->mm.lock);
4674 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4675 
4676 	file_priv->bsd_engine = -1;
4677 
4678 	ret = i915_gem_context_open(dev, file);
4679 	if (ret)
4680 		kfree(file_priv);
4681 
4682 	return ret;
4683 }
4684 
4685 /**
4686  * i915_gem_track_fb - update frontbuffer tracking
4687  * @old: current GEM buffer for the frontbuffer slots
4688  * @new: new GEM buffer for the frontbuffer slots
4689  * @frontbuffer_bits: bitmask of frontbuffer slots
4690  *
4691  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4692  * from @old and setting them in @new. Both @old and @new can be NULL.
4693  */
4694 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4695 		       struct drm_i915_gem_object *new,
4696 		       unsigned frontbuffer_bits)
4697 {
4698 	/* Control of individual bits within the mask are guarded by
4699 	 * the owning plane->mutex, i.e. we can never see concurrent
4700 	 * manipulation of individual bits. But since the bitfield as a whole
4701 	 * is updated using RMW, we need to use atomics in order to update
4702 	 * the bits.
4703 	 */
4704 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4705 		     sizeof(atomic_t) * BITS_PER_BYTE);
4706 
4707 	if (old) {
4708 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4709 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4710 	}
4711 
4712 	if (new) {
4713 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4714 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4715 	}
4716 }
4717 
4718 /* Allocate a new GEM object and fill it with the supplied data */
4719 struct drm_i915_gem_object *
4720 i915_gem_object_create_from_data(struct drm_device *dev,
4721 			         const void *data, size_t size)
4722 {
4723 	struct drm_i915_gem_object *obj;
4724 	struct sg_table *sg;
4725 	size_t bytes;
4726 	int ret;
4727 
4728 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4729 	if (IS_ERR(obj))
4730 		return obj;
4731 
4732 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4733 	if (ret)
4734 		goto fail;
4735 
4736 	ret = i915_gem_object_pin_pages(obj);
4737 	if (ret)
4738 		goto fail;
4739 
4740 	sg = obj->mm.pages;
4741 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4742 	obj->mm.dirty = true; /* Backing store is now out of date */
4743 	i915_gem_object_unpin_pages(obj);
4744 
4745 	if (WARN_ON(bytes != size)) {
4746 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4747 		ret = -EFAULT;
4748 		goto fail;
4749 	}
4750 
4751 	return obj;
4752 
4753 fail:
4754 	i915_gem_object_put(obj);
4755 	return ERR_PTR(ret);
4756 }
4757 
4758 struct scatterlist *
4759 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4760 		       unsigned int n,
4761 		       unsigned int *offset)
4762 {
4763 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4764 	struct scatterlist *sg;
4765 	unsigned int idx, count;
4766 
4767 	might_sleep();
4768 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4769 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4770 
4771 	/* As we iterate forward through the sg, we record each entry in a
4772 	 * radixtree for quick repeated (backwards) lookups. If we have seen
4773 	 * this index previously, we will have an entry for it.
4774 	 *
4775 	 * Initial lookup is O(N), but this is amortized to O(1) for
4776 	 * sequential page access (where each new request is consecutive
4777 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4778 	 * i.e. O(1) with a large constant!
4779 	 */
4780 	if (n < READ_ONCE(iter->sg_idx))
4781 		goto lookup;
4782 
4783 	mutex_lock(&iter->lock);
4784 
4785 	/* We prefer to reuse the last sg so that repeated lookup of this
4786 	 * (or the subsequent) sg are fast - comparing against the last
4787 	 * sg is faster than going through the radixtree.
4788 	 */
4789 
4790 	sg = iter->sg_pos;
4791 	idx = iter->sg_idx;
4792 	count = __sg_page_count(sg);
4793 
4794 	while (idx + count <= n) {
4795 		unsigned long exception, i;
4796 		int ret;
4797 
4798 		/* If we cannot allocate and insert this entry, or the
4799 		 * individual pages from this range, cancel updating the
4800 		 * sg_idx so that on this lookup we are forced to linearly
4801 		 * scan onwards, but on future lookups we will try the
4802 		 * insertion again (in which case we need to be careful of
4803 		 * the error return reporting that we have already inserted
4804 		 * this index).
4805 		 */
4806 		ret = radix_tree_insert(&iter->radix, idx, sg);
4807 		if (ret && ret != -EEXIST)
4808 			goto scan;
4809 
4810 		exception =
4811 			RADIX_TREE_EXCEPTIONAL_ENTRY |
4812 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4813 		for (i = 1; i < count; i++) {
4814 			ret = radix_tree_insert(&iter->radix, idx + i,
4815 						(void *)exception);
4816 			if (ret && ret != -EEXIST)
4817 				goto scan;
4818 		}
4819 
4820 		idx += count;
4821 		sg = ____sg_next(sg);
4822 		count = __sg_page_count(sg);
4823 	}
4824 
4825 scan:
4826 	iter->sg_pos = sg;
4827 	iter->sg_idx = idx;
4828 
4829 	mutex_unlock(&iter->lock);
4830 
4831 	if (unlikely(n < idx)) /* insertion completed by another thread */
4832 		goto lookup;
4833 
4834 	/* In case we failed to insert the entry into the radixtree, we need
4835 	 * to look beyond the current sg.
4836 	 */
4837 	while (idx + count <= n) {
4838 		idx += count;
4839 		sg = ____sg_next(sg);
4840 		count = __sg_page_count(sg);
4841 	}
4842 
4843 	*offset = n - idx;
4844 	return sg;
4845 
4846 lookup:
4847 	rcu_read_lock();
4848 
4849 	sg = radix_tree_lookup(&iter->radix, n);
4850 	GEM_BUG_ON(!sg);
4851 
4852 	/* If this index is in the middle of multi-page sg entry,
4853 	 * the radixtree will contain an exceptional entry that points
4854 	 * to the start of that range. We will return the pointer to
4855 	 * the base page and the offset of this page within the
4856 	 * sg entry's range.
4857 	 */
4858 	*offset = 0;
4859 	if (unlikely(radix_tree_exception(sg))) {
4860 		unsigned long base =
4861 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4862 
4863 		sg = radix_tree_lookup(&iter->radix, base);
4864 		GEM_BUG_ON(!sg);
4865 
4866 		*offset = n - base;
4867 	}
4868 
4869 	rcu_read_unlock();
4870 
4871 	return sg;
4872 }
4873 
4874 struct page *
4875 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4876 {
4877 	struct scatterlist *sg;
4878 	unsigned int offset;
4879 
4880 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4881 
4882 	sg = i915_gem_object_get_sg(obj, n, &offset);
4883 	return nth_page(sg_page(sg), offset);
4884 }
4885 
4886 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4887 struct page *
4888 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4889 			       unsigned int n)
4890 {
4891 	struct page *page;
4892 
4893 	page = i915_gem_object_get_page(obj, n);
4894 	if (!obj->mm.dirty)
4895 		set_page_dirty(page);
4896 
4897 	return page;
4898 }
4899 
4900 dma_addr_t
4901 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4902 				unsigned long n)
4903 {
4904 	struct scatterlist *sg;
4905 	unsigned int offset;
4906 
4907 	sg = i915_gem_object_get_sg(obj, n, &offset);
4908 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4909 }
4910