xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision cc622420798c4bcf093785d872525087a7798db9)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
121 		if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
122 			size += vma->node.size;
123 	}
124 
125 	return size;
126 }
127 
128 static void
129 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
130 {
131 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
132 	struct intel_engine_cs *ring;
133 	struct i915_vma *vma;
134 	int pin_count = 0;
135 	int i;
136 
137 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
138 		   &obj->base,
139 		   obj->active ? "*" : " ",
140 		   get_pin_flag(obj),
141 		   get_tiling_flag(obj),
142 		   get_global_flag(obj),
143 		   obj->base.size / 1024,
144 		   obj->base.read_domains,
145 		   obj->base.write_domain);
146 	for_each_ring(ring, dev_priv, i)
147 		seq_printf(m, "%x ",
148 				i915_gem_request_get_seqno(obj->last_read_req[i]));
149 	seq_printf(m, "] %x %x%s%s%s",
150 		   i915_gem_request_get_seqno(obj->last_write_req),
151 		   i915_gem_request_get_seqno(obj->last_fenced_req),
152 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
153 		   obj->dirty ? " dirty" : "",
154 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
155 	if (obj->base.name)
156 		seq_printf(m, " (name: %d)", obj->base.name);
157 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
158 		if (vma->pin_count > 0)
159 			pin_count++;
160 	}
161 	seq_printf(m, " (pinned x %d)", pin_count);
162 	if (obj->pin_display)
163 		seq_printf(m, " (display)");
164 	if (obj->fence_reg != I915_FENCE_REG_NONE)
165 		seq_printf(m, " (fence: %d)", obj->fence_reg);
166 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
167 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
168 			   vma->is_ggtt ? "g" : "pp",
169 			   vma->node.start, vma->node.size);
170 		if (vma->is_ggtt)
171 			seq_printf(m, ", type: %u", vma->ggtt_view.type);
172 		seq_puts(m, ")");
173 	}
174 	if (obj->stolen)
175 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
176 	if (obj->pin_display || obj->fault_mappable) {
177 		char s[3], *t = s;
178 		if (obj->pin_display)
179 			*t++ = 'p';
180 		if (obj->fault_mappable)
181 			*t++ = 'f';
182 		*t = '\0';
183 		seq_printf(m, " (%s mappable)", s);
184 	}
185 	if (obj->last_write_req != NULL)
186 		seq_printf(m, " (%s)",
187 			   i915_gem_request_get_ring(obj->last_write_req)->name);
188 	if (obj->frontbuffer_bits)
189 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
190 }
191 
192 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
193 {
194 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
195 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
196 	seq_putc(m, ' ');
197 }
198 
199 static int i915_gem_object_list_info(struct seq_file *m, void *data)
200 {
201 	struct drm_info_node *node = m->private;
202 	uintptr_t list = (uintptr_t) node->info_ent->data;
203 	struct list_head *head;
204 	struct drm_device *dev = node->minor->dev;
205 	struct drm_i915_private *dev_priv = dev->dev_private;
206 	struct i915_address_space *vm = &dev_priv->gtt.base;
207 	struct i915_vma *vma;
208 	u64 total_obj_size, total_gtt_size;
209 	int count, ret;
210 
211 	ret = mutex_lock_interruptible(&dev->struct_mutex);
212 	if (ret)
213 		return ret;
214 
215 	/* FIXME: the user of this interface might want more than just GGTT */
216 	switch (list) {
217 	case ACTIVE_LIST:
218 		seq_puts(m, "Active:\n");
219 		head = &vm->active_list;
220 		break;
221 	case INACTIVE_LIST:
222 		seq_puts(m, "Inactive:\n");
223 		head = &vm->inactive_list;
224 		break;
225 	default:
226 		mutex_unlock(&dev->struct_mutex);
227 		return -EINVAL;
228 	}
229 
230 	total_obj_size = total_gtt_size = count = 0;
231 	list_for_each_entry(vma, head, vm_link) {
232 		seq_printf(m, "   ");
233 		describe_obj(m, vma->obj);
234 		seq_printf(m, "\n");
235 		total_obj_size += vma->obj->base.size;
236 		total_gtt_size += vma->node.size;
237 		count++;
238 	}
239 	mutex_unlock(&dev->struct_mutex);
240 
241 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
242 		   count, total_obj_size, total_gtt_size);
243 	return 0;
244 }
245 
246 static int obj_rank_by_stolen(void *priv,
247 			      struct list_head *A, struct list_head *B)
248 {
249 	struct drm_i915_gem_object *a =
250 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
251 	struct drm_i915_gem_object *b =
252 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
253 
254 	if (a->stolen->start < b->stolen->start)
255 		return -1;
256 	if (a->stolen->start > b->stolen->start)
257 		return 1;
258 	return 0;
259 }
260 
261 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
262 {
263 	struct drm_info_node *node = m->private;
264 	struct drm_device *dev = node->minor->dev;
265 	struct drm_i915_private *dev_priv = dev->dev_private;
266 	struct drm_i915_gem_object *obj;
267 	u64 total_obj_size, total_gtt_size;
268 	LIST_HEAD(stolen);
269 	int count, ret;
270 
271 	ret = mutex_lock_interruptible(&dev->struct_mutex);
272 	if (ret)
273 		return ret;
274 
275 	total_obj_size = total_gtt_size = count = 0;
276 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
277 		if (obj->stolen == NULL)
278 			continue;
279 
280 		list_add(&obj->obj_exec_link, &stolen);
281 
282 		total_obj_size += obj->base.size;
283 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
284 		count++;
285 	}
286 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
287 		if (obj->stolen == NULL)
288 			continue;
289 
290 		list_add(&obj->obj_exec_link, &stolen);
291 
292 		total_obj_size += obj->base.size;
293 		count++;
294 	}
295 	list_sort(NULL, &stolen, obj_rank_by_stolen);
296 	seq_puts(m, "Stolen:\n");
297 	while (!list_empty(&stolen)) {
298 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
299 		seq_puts(m, "   ");
300 		describe_obj(m, obj);
301 		seq_putc(m, '\n');
302 		list_del_init(&obj->obj_exec_link);
303 	}
304 	mutex_unlock(&dev->struct_mutex);
305 
306 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
307 		   count, total_obj_size, total_gtt_size);
308 	return 0;
309 }
310 
311 #define count_objects(list, member) do { \
312 	list_for_each_entry(obj, list, member) { \
313 		size += i915_gem_obj_total_ggtt_size(obj); \
314 		++count; \
315 		if (obj->map_and_fenceable) { \
316 			mappable_size += i915_gem_obj_ggtt_size(obj); \
317 			++mappable_count; \
318 		} \
319 	} \
320 } while (0)
321 
322 struct file_stats {
323 	struct drm_i915_file_private *file_priv;
324 	unsigned long count;
325 	u64 total, unbound;
326 	u64 global, shared;
327 	u64 active, inactive;
328 };
329 
330 static int per_file_stats(int id, void *ptr, void *data)
331 {
332 	struct drm_i915_gem_object *obj = ptr;
333 	struct file_stats *stats = data;
334 	struct i915_vma *vma;
335 
336 	stats->count++;
337 	stats->total += obj->base.size;
338 
339 	if (obj->base.name || obj->base.dma_buf)
340 		stats->shared += obj->base.size;
341 
342 	if (USES_FULL_PPGTT(obj->base.dev)) {
343 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
344 			struct i915_hw_ppgtt *ppgtt;
345 
346 			if (!drm_mm_node_allocated(&vma->node))
347 				continue;
348 
349 			if (vma->is_ggtt) {
350 				stats->global += obj->base.size;
351 				continue;
352 			}
353 
354 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
355 			if (ppgtt->file_priv != stats->file_priv)
356 				continue;
357 
358 			if (obj->active) /* XXX per-vma statistic */
359 				stats->active += obj->base.size;
360 			else
361 				stats->inactive += obj->base.size;
362 
363 			return 0;
364 		}
365 	} else {
366 		if (i915_gem_obj_ggtt_bound(obj)) {
367 			stats->global += obj->base.size;
368 			if (obj->active)
369 				stats->active += obj->base.size;
370 			else
371 				stats->inactive += obj->base.size;
372 			return 0;
373 		}
374 	}
375 
376 	if (!list_empty(&obj->global_list))
377 		stats->unbound += obj->base.size;
378 
379 	return 0;
380 }
381 
382 #define print_file_stats(m, name, stats) do { \
383 	if (stats.count) \
384 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
385 			   name, \
386 			   stats.count, \
387 			   stats.total, \
388 			   stats.active, \
389 			   stats.inactive, \
390 			   stats.global, \
391 			   stats.shared, \
392 			   stats.unbound); \
393 } while (0)
394 
395 static void print_batch_pool_stats(struct seq_file *m,
396 				   struct drm_i915_private *dev_priv)
397 {
398 	struct drm_i915_gem_object *obj;
399 	struct file_stats stats;
400 	struct intel_engine_cs *ring;
401 	int i, j;
402 
403 	memset(&stats, 0, sizeof(stats));
404 
405 	for_each_ring(ring, dev_priv, i) {
406 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
407 			list_for_each_entry(obj,
408 					    &ring->batch_pool.cache_list[j],
409 					    batch_pool_link)
410 				per_file_stats(0, obj, &stats);
411 		}
412 	}
413 
414 	print_file_stats(m, "[k]batch pool", stats);
415 }
416 
417 #define count_vmas(list, member) do { \
418 	list_for_each_entry(vma, list, member) { \
419 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
420 		++count; \
421 		if (vma->obj->map_and_fenceable) { \
422 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
423 			++mappable_count; \
424 		} \
425 	} \
426 } while (0)
427 
428 static int i915_gem_object_info(struct seq_file *m, void* data)
429 {
430 	struct drm_info_node *node = m->private;
431 	struct drm_device *dev = node->minor->dev;
432 	struct drm_i915_private *dev_priv = dev->dev_private;
433 	u32 count, mappable_count, purgeable_count;
434 	u64 size, mappable_size, purgeable_size;
435 	struct drm_i915_gem_object *obj;
436 	struct i915_address_space *vm = &dev_priv->gtt.base;
437 	struct drm_file *file;
438 	struct i915_vma *vma;
439 	int ret;
440 
441 	ret = mutex_lock_interruptible(&dev->struct_mutex);
442 	if (ret)
443 		return ret;
444 
445 	seq_printf(m, "%u objects, %zu bytes\n",
446 		   dev_priv->mm.object_count,
447 		   dev_priv->mm.object_memory);
448 
449 	size = count = mappable_size = mappable_count = 0;
450 	count_objects(&dev_priv->mm.bound_list, global_list);
451 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
452 		   count, mappable_count, size, mappable_size);
453 
454 	size = count = mappable_size = mappable_count = 0;
455 	count_vmas(&vm->active_list, vm_link);
456 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
457 		   count, mappable_count, size, mappable_size);
458 
459 	size = count = mappable_size = mappable_count = 0;
460 	count_vmas(&vm->inactive_list, vm_link);
461 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
462 		   count, mappable_count, size, mappable_size);
463 
464 	size = count = purgeable_size = purgeable_count = 0;
465 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
466 		size += obj->base.size, ++count;
467 		if (obj->madv == I915_MADV_DONTNEED)
468 			purgeable_size += obj->base.size, ++purgeable_count;
469 	}
470 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
471 
472 	size = count = mappable_size = mappable_count = 0;
473 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
474 		if (obj->fault_mappable) {
475 			size += i915_gem_obj_ggtt_size(obj);
476 			++count;
477 		}
478 		if (obj->pin_display) {
479 			mappable_size += i915_gem_obj_ggtt_size(obj);
480 			++mappable_count;
481 		}
482 		if (obj->madv == I915_MADV_DONTNEED) {
483 			purgeable_size += obj->base.size;
484 			++purgeable_count;
485 		}
486 	}
487 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
488 		   purgeable_count, purgeable_size);
489 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
490 		   mappable_count, mappable_size);
491 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
492 		   count, size);
493 
494 	seq_printf(m, "%llu [%llu] gtt total\n",
495 		   dev_priv->gtt.base.total,
496 		   (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
497 
498 	seq_putc(m, '\n');
499 	print_batch_pool_stats(m, dev_priv);
500 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
501 		struct file_stats stats;
502 		struct task_struct *task;
503 
504 		memset(&stats, 0, sizeof(stats));
505 		stats.file_priv = file->driver_priv;
506 		spin_lock(&file->table_lock);
507 		idr_for_each(&file->object_idr, per_file_stats, &stats);
508 		spin_unlock(&file->table_lock);
509 		/*
510 		 * Although we have a valid reference on file->pid, that does
511 		 * not guarantee that the task_struct who called get_pid() is
512 		 * still alive (e.g. get_pid(current) => fork() => exit()).
513 		 * Therefore, we need to protect this ->comm access using RCU.
514 		 */
515 		rcu_read_lock();
516 		task = pid_task(file->pid, PIDTYPE_PID);
517 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
518 		rcu_read_unlock();
519 	}
520 
521 	mutex_unlock(&dev->struct_mutex);
522 
523 	return 0;
524 }
525 
526 static int i915_gem_gtt_info(struct seq_file *m, void *data)
527 {
528 	struct drm_info_node *node = m->private;
529 	struct drm_device *dev = node->minor->dev;
530 	uintptr_t list = (uintptr_t) node->info_ent->data;
531 	struct drm_i915_private *dev_priv = dev->dev_private;
532 	struct drm_i915_gem_object *obj;
533 	u64 total_obj_size, total_gtt_size;
534 	int count, ret;
535 
536 	ret = mutex_lock_interruptible(&dev->struct_mutex);
537 	if (ret)
538 		return ret;
539 
540 	total_obj_size = total_gtt_size = count = 0;
541 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
542 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
543 			continue;
544 
545 		seq_puts(m, "   ");
546 		describe_obj(m, obj);
547 		seq_putc(m, '\n');
548 		total_obj_size += obj->base.size;
549 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
550 		count++;
551 	}
552 
553 	mutex_unlock(&dev->struct_mutex);
554 
555 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
556 		   count, total_obj_size, total_gtt_size);
557 
558 	return 0;
559 }
560 
561 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
562 {
563 	struct drm_info_node *node = m->private;
564 	struct drm_device *dev = node->minor->dev;
565 	struct drm_i915_private *dev_priv = dev->dev_private;
566 	struct intel_crtc *crtc;
567 	int ret;
568 
569 	ret = mutex_lock_interruptible(&dev->struct_mutex);
570 	if (ret)
571 		return ret;
572 
573 	for_each_intel_crtc(dev, crtc) {
574 		const char pipe = pipe_name(crtc->pipe);
575 		const char plane = plane_name(crtc->plane);
576 		struct intel_unpin_work *work;
577 
578 		spin_lock_irq(&dev->event_lock);
579 		work = crtc->unpin_work;
580 		if (work == NULL) {
581 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
582 				   pipe, plane);
583 		} else {
584 			u32 addr;
585 
586 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
587 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
588 					   pipe, plane);
589 			} else {
590 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
591 					   pipe, plane);
592 			}
593 			if (work->flip_queued_req) {
594 				struct intel_engine_cs *ring =
595 					i915_gem_request_get_ring(work->flip_queued_req);
596 
597 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
598 					   ring->name,
599 					   i915_gem_request_get_seqno(work->flip_queued_req),
600 					   dev_priv->next_seqno,
601 					   ring->get_seqno(ring, true),
602 					   i915_gem_request_completed(work->flip_queued_req, true));
603 			} else
604 				seq_printf(m, "Flip not associated with any ring\n");
605 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
606 				   work->flip_queued_vblank,
607 				   work->flip_ready_vblank,
608 				   drm_crtc_vblank_count(&crtc->base));
609 			if (work->enable_stall_check)
610 				seq_puts(m, "Stall check enabled, ");
611 			else
612 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
613 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
614 
615 			if (INTEL_INFO(dev)->gen >= 4)
616 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
617 			else
618 				addr = I915_READ(DSPADDR(crtc->plane));
619 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
620 
621 			if (work->pending_flip_obj) {
622 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
623 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
624 			}
625 		}
626 		spin_unlock_irq(&dev->event_lock);
627 	}
628 
629 	mutex_unlock(&dev->struct_mutex);
630 
631 	return 0;
632 }
633 
634 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
635 {
636 	struct drm_info_node *node = m->private;
637 	struct drm_device *dev = node->minor->dev;
638 	struct drm_i915_private *dev_priv = dev->dev_private;
639 	struct drm_i915_gem_object *obj;
640 	struct intel_engine_cs *ring;
641 	int total = 0;
642 	int ret, i, j;
643 
644 	ret = mutex_lock_interruptible(&dev->struct_mutex);
645 	if (ret)
646 		return ret;
647 
648 	for_each_ring(ring, dev_priv, i) {
649 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
650 			int count;
651 
652 			count = 0;
653 			list_for_each_entry(obj,
654 					    &ring->batch_pool.cache_list[j],
655 					    batch_pool_link)
656 				count++;
657 			seq_printf(m, "%s cache[%d]: %d objects\n",
658 				   ring->name, j, count);
659 
660 			list_for_each_entry(obj,
661 					    &ring->batch_pool.cache_list[j],
662 					    batch_pool_link) {
663 				seq_puts(m, "   ");
664 				describe_obj(m, obj);
665 				seq_putc(m, '\n');
666 			}
667 
668 			total += count;
669 		}
670 	}
671 
672 	seq_printf(m, "total: %d\n", total);
673 
674 	mutex_unlock(&dev->struct_mutex);
675 
676 	return 0;
677 }
678 
679 static int i915_gem_request_info(struct seq_file *m, void *data)
680 {
681 	struct drm_info_node *node = m->private;
682 	struct drm_device *dev = node->minor->dev;
683 	struct drm_i915_private *dev_priv = dev->dev_private;
684 	struct intel_engine_cs *ring;
685 	struct drm_i915_gem_request *req;
686 	int ret, any, i;
687 
688 	ret = mutex_lock_interruptible(&dev->struct_mutex);
689 	if (ret)
690 		return ret;
691 
692 	any = 0;
693 	for_each_ring(ring, dev_priv, i) {
694 		int count;
695 
696 		count = 0;
697 		list_for_each_entry(req, &ring->request_list, list)
698 			count++;
699 		if (count == 0)
700 			continue;
701 
702 		seq_printf(m, "%s requests: %d\n", ring->name, count);
703 		list_for_each_entry(req, &ring->request_list, list) {
704 			struct task_struct *task;
705 
706 			rcu_read_lock();
707 			task = NULL;
708 			if (req->pid)
709 				task = pid_task(req->pid, PIDTYPE_PID);
710 			seq_printf(m, "    %x @ %d: %s [%d]\n",
711 				   req->seqno,
712 				   (int) (jiffies - req->emitted_jiffies),
713 				   task ? task->comm : "<unknown>",
714 				   task ? task->pid : -1);
715 			rcu_read_unlock();
716 		}
717 
718 		any++;
719 	}
720 	mutex_unlock(&dev->struct_mutex);
721 
722 	if (any == 0)
723 		seq_puts(m, "No requests\n");
724 
725 	return 0;
726 }
727 
728 static void i915_ring_seqno_info(struct seq_file *m,
729 				 struct intel_engine_cs *ring)
730 {
731 	if (ring->get_seqno) {
732 		seq_printf(m, "Current sequence (%s): %x\n",
733 			   ring->name, ring->get_seqno(ring, false));
734 	}
735 }
736 
737 static int i915_gem_seqno_info(struct seq_file *m, void *data)
738 {
739 	struct drm_info_node *node = m->private;
740 	struct drm_device *dev = node->minor->dev;
741 	struct drm_i915_private *dev_priv = dev->dev_private;
742 	struct intel_engine_cs *ring;
743 	int ret, i;
744 
745 	ret = mutex_lock_interruptible(&dev->struct_mutex);
746 	if (ret)
747 		return ret;
748 	intel_runtime_pm_get(dev_priv);
749 
750 	for_each_ring(ring, dev_priv, i)
751 		i915_ring_seqno_info(m, ring);
752 
753 	intel_runtime_pm_put(dev_priv);
754 	mutex_unlock(&dev->struct_mutex);
755 
756 	return 0;
757 }
758 
759 
760 static int i915_interrupt_info(struct seq_file *m, void *data)
761 {
762 	struct drm_info_node *node = m->private;
763 	struct drm_device *dev = node->minor->dev;
764 	struct drm_i915_private *dev_priv = dev->dev_private;
765 	struct intel_engine_cs *ring;
766 	int ret, i, pipe;
767 
768 	ret = mutex_lock_interruptible(&dev->struct_mutex);
769 	if (ret)
770 		return ret;
771 	intel_runtime_pm_get(dev_priv);
772 
773 	if (IS_CHERRYVIEW(dev)) {
774 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 			   I915_READ(GEN8_MASTER_IRQ));
776 
777 		seq_printf(m, "Display IER:\t%08x\n",
778 			   I915_READ(VLV_IER));
779 		seq_printf(m, "Display IIR:\t%08x\n",
780 			   I915_READ(VLV_IIR));
781 		seq_printf(m, "Display IIR_RW:\t%08x\n",
782 			   I915_READ(VLV_IIR_RW));
783 		seq_printf(m, "Display IMR:\t%08x\n",
784 			   I915_READ(VLV_IMR));
785 		for_each_pipe(dev_priv, pipe)
786 			seq_printf(m, "Pipe %c stat:\t%08x\n",
787 				   pipe_name(pipe),
788 				   I915_READ(PIPESTAT(pipe)));
789 
790 		seq_printf(m, "Port hotplug:\t%08x\n",
791 			   I915_READ(PORT_HOTPLUG_EN));
792 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
793 			   I915_READ(VLV_DPFLIPSTAT));
794 		seq_printf(m, "DPINVGTT:\t%08x\n",
795 			   I915_READ(DPINVGTT));
796 
797 		for (i = 0; i < 4; i++) {
798 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
799 				   i, I915_READ(GEN8_GT_IMR(i)));
800 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IIR(i)));
802 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IER(i)));
804 		}
805 
806 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
807 			   I915_READ(GEN8_PCU_IMR));
808 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IIR));
810 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IER));
812 	} else if (INTEL_INFO(dev)->gen >= 8) {
813 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
814 			   I915_READ(GEN8_MASTER_IRQ));
815 
816 		for (i = 0; i < 4; i++) {
817 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
818 				   i, I915_READ(GEN8_GT_IMR(i)));
819 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IIR(i)));
821 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IER(i)));
823 		}
824 
825 		for_each_pipe(dev_priv, pipe) {
826 			enum intel_display_power_domain power_domain;
827 
828 			power_domain = POWER_DOMAIN_PIPE(pipe);
829 			if (!intel_display_power_get_if_enabled(dev_priv,
830 								power_domain)) {
831 				seq_printf(m, "Pipe %c power disabled\n",
832 					   pipe_name(pipe));
833 				continue;
834 			}
835 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
836 				   pipe_name(pipe),
837 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
839 				   pipe_name(pipe),
840 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841 			seq_printf(m, "Pipe %c IER:\t%08x\n",
842 				   pipe_name(pipe),
843 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
844 
845 			intel_display_power_put(dev_priv, power_domain);
846 		}
847 
848 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
849 			   I915_READ(GEN8_DE_PORT_IMR));
850 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
851 			   I915_READ(GEN8_DE_PORT_IIR));
852 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
853 			   I915_READ(GEN8_DE_PORT_IER));
854 
855 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
856 			   I915_READ(GEN8_DE_MISC_IMR));
857 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
858 			   I915_READ(GEN8_DE_MISC_IIR));
859 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
860 			   I915_READ(GEN8_DE_MISC_IER));
861 
862 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
863 			   I915_READ(GEN8_PCU_IMR));
864 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
865 			   I915_READ(GEN8_PCU_IIR));
866 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
867 			   I915_READ(GEN8_PCU_IER));
868 	} else if (IS_VALLEYVIEW(dev)) {
869 		seq_printf(m, "Display IER:\t%08x\n",
870 			   I915_READ(VLV_IER));
871 		seq_printf(m, "Display IIR:\t%08x\n",
872 			   I915_READ(VLV_IIR));
873 		seq_printf(m, "Display IIR_RW:\t%08x\n",
874 			   I915_READ(VLV_IIR_RW));
875 		seq_printf(m, "Display IMR:\t%08x\n",
876 			   I915_READ(VLV_IMR));
877 		for_each_pipe(dev_priv, pipe)
878 			seq_printf(m, "Pipe %c stat:\t%08x\n",
879 				   pipe_name(pipe),
880 				   I915_READ(PIPESTAT(pipe)));
881 
882 		seq_printf(m, "Master IER:\t%08x\n",
883 			   I915_READ(VLV_MASTER_IER));
884 
885 		seq_printf(m, "Render IER:\t%08x\n",
886 			   I915_READ(GTIER));
887 		seq_printf(m, "Render IIR:\t%08x\n",
888 			   I915_READ(GTIIR));
889 		seq_printf(m, "Render IMR:\t%08x\n",
890 			   I915_READ(GTIMR));
891 
892 		seq_printf(m, "PM IER:\t\t%08x\n",
893 			   I915_READ(GEN6_PMIER));
894 		seq_printf(m, "PM IIR:\t\t%08x\n",
895 			   I915_READ(GEN6_PMIIR));
896 		seq_printf(m, "PM IMR:\t\t%08x\n",
897 			   I915_READ(GEN6_PMIMR));
898 
899 		seq_printf(m, "Port hotplug:\t%08x\n",
900 			   I915_READ(PORT_HOTPLUG_EN));
901 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
902 			   I915_READ(VLV_DPFLIPSTAT));
903 		seq_printf(m, "DPINVGTT:\t%08x\n",
904 			   I915_READ(DPINVGTT));
905 
906 	} else if (!HAS_PCH_SPLIT(dev)) {
907 		seq_printf(m, "Interrupt enable:    %08x\n",
908 			   I915_READ(IER));
909 		seq_printf(m, "Interrupt identity:  %08x\n",
910 			   I915_READ(IIR));
911 		seq_printf(m, "Interrupt mask:      %08x\n",
912 			   I915_READ(IMR));
913 		for_each_pipe(dev_priv, pipe)
914 			seq_printf(m, "Pipe %c stat:         %08x\n",
915 				   pipe_name(pipe),
916 				   I915_READ(PIPESTAT(pipe)));
917 	} else {
918 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
919 			   I915_READ(DEIER));
920 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
921 			   I915_READ(DEIIR));
922 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
923 			   I915_READ(DEIMR));
924 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
925 			   I915_READ(SDEIER));
926 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
927 			   I915_READ(SDEIIR));
928 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
929 			   I915_READ(SDEIMR));
930 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
931 			   I915_READ(GTIER));
932 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
933 			   I915_READ(GTIIR));
934 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
935 			   I915_READ(GTIMR));
936 	}
937 	for_each_ring(ring, dev_priv, i) {
938 		if (INTEL_INFO(dev)->gen >= 6) {
939 			seq_printf(m,
940 				   "Graphics Interrupt mask (%s):	%08x\n",
941 				   ring->name, I915_READ_IMR(ring));
942 		}
943 		i915_ring_seqno_info(m, ring);
944 	}
945 	intel_runtime_pm_put(dev_priv);
946 	mutex_unlock(&dev->struct_mutex);
947 
948 	return 0;
949 }
950 
951 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
952 {
953 	struct drm_info_node *node = m->private;
954 	struct drm_device *dev = node->minor->dev;
955 	struct drm_i915_private *dev_priv = dev->dev_private;
956 	int i, ret;
957 
958 	ret = mutex_lock_interruptible(&dev->struct_mutex);
959 	if (ret)
960 		return ret;
961 
962 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
963 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
964 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
965 
966 		seq_printf(m, "Fence %d, pin count = %d, object = ",
967 			   i, dev_priv->fence_regs[i].pin_count);
968 		if (obj == NULL)
969 			seq_puts(m, "unused");
970 		else
971 			describe_obj(m, obj);
972 		seq_putc(m, '\n');
973 	}
974 
975 	mutex_unlock(&dev->struct_mutex);
976 	return 0;
977 }
978 
979 static int i915_hws_info(struct seq_file *m, void *data)
980 {
981 	struct drm_info_node *node = m->private;
982 	struct drm_device *dev = node->minor->dev;
983 	struct drm_i915_private *dev_priv = dev->dev_private;
984 	struct intel_engine_cs *ring;
985 	const u32 *hws;
986 	int i;
987 
988 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
989 	hws = ring->status_page.page_addr;
990 	if (hws == NULL)
991 		return 0;
992 
993 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
994 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
995 			   i * 4,
996 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
997 	}
998 	return 0;
999 }
1000 
1001 static ssize_t
1002 i915_error_state_write(struct file *filp,
1003 		       const char __user *ubuf,
1004 		       size_t cnt,
1005 		       loff_t *ppos)
1006 {
1007 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1008 	struct drm_device *dev = error_priv->dev;
1009 	int ret;
1010 
1011 	DRM_DEBUG_DRIVER("Resetting error state\n");
1012 
1013 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1014 	if (ret)
1015 		return ret;
1016 
1017 	i915_destroy_error_state(dev);
1018 	mutex_unlock(&dev->struct_mutex);
1019 
1020 	return cnt;
1021 }
1022 
1023 static int i915_error_state_open(struct inode *inode, struct file *file)
1024 {
1025 	struct drm_device *dev = inode->i_private;
1026 	struct i915_error_state_file_priv *error_priv;
1027 
1028 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1029 	if (!error_priv)
1030 		return -ENOMEM;
1031 
1032 	error_priv->dev = dev;
1033 
1034 	i915_error_state_get(dev, error_priv);
1035 
1036 	file->private_data = error_priv;
1037 
1038 	return 0;
1039 }
1040 
1041 static int i915_error_state_release(struct inode *inode, struct file *file)
1042 {
1043 	struct i915_error_state_file_priv *error_priv = file->private_data;
1044 
1045 	i915_error_state_put(error_priv);
1046 	kfree(error_priv);
1047 
1048 	return 0;
1049 }
1050 
1051 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1052 				     size_t count, loff_t *pos)
1053 {
1054 	struct i915_error_state_file_priv *error_priv = file->private_data;
1055 	struct drm_i915_error_state_buf error_str;
1056 	loff_t tmp_pos = 0;
1057 	ssize_t ret_count = 0;
1058 	int ret;
1059 
1060 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1061 	if (ret)
1062 		return ret;
1063 
1064 	ret = i915_error_state_to_str(&error_str, error_priv);
1065 	if (ret)
1066 		goto out;
1067 
1068 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1069 					    error_str.buf,
1070 					    error_str.bytes);
1071 
1072 	if (ret_count < 0)
1073 		ret = ret_count;
1074 	else
1075 		*pos = error_str.start + ret_count;
1076 out:
1077 	i915_error_state_buf_release(&error_str);
1078 	return ret ?: ret_count;
1079 }
1080 
1081 static const struct file_operations i915_error_state_fops = {
1082 	.owner = THIS_MODULE,
1083 	.open = i915_error_state_open,
1084 	.read = i915_error_state_read,
1085 	.write = i915_error_state_write,
1086 	.llseek = default_llseek,
1087 	.release = i915_error_state_release,
1088 };
1089 
1090 static int
1091 i915_next_seqno_get(void *data, u64 *val)
1092 {
1093 	struct drm_device *dev = data;
1094 	struct drm_i915_private *dev_priv = dev->dev_private;
1095 	int ret;
1096 
1097 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1098 	if (ret)
1099 		return ret;
1100 
1101 	*val = dev_priv->next_seqno;
1102 	mutex_unlock(&dev->struct_mutex);
1103 
1104 	return 0;
1105 }
1106 
1107 static int
1108 i915_next_seqno_set(void *data, u64 val)
1109 {
1110 	struct drm_device *dev = data;
1111 	int ret;
1112 
1113 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1114 	if (ret)
1115 		return ret;
1116 
1117 	ret = i915_gem_set_seqno(dev, val);
1118 	mutex_unlock(&dev->struct_mutex);
1119 
1120 	return ret;
1121 }
1122 
1123 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1124 			i915_next_seqno_get, i915_next_seqno_set,
1125 			"0x%llx\n");
1126 
1127 static int i915_frequency_info(struct seq_file *m, void *unused)
1128 {
1129 	struct drm_info_node *node = m->private;
1130 	struct drm_device *dev = node->minor->dev;
1131 	struct drm_i915_private *dev_priv = dev->dev_private;
1132 	int ret = 0;
1133 
1134 	intel_runtime_pm_get(dev_priv);
1135 
1136 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1137 
1138 	if (IS_GEN5(dev)) {
1139 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1140 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1141 
1142 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1143 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1144 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1145 			   MEMSTAT_VID_SHIFT);
1146 		seq_printf(m, "Current P-state: %d\n",
1147 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1148 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1149 		u32 freq_sts;
1150 
1151 		mutex_lock(&dev_priv->rps.hw_lock);
1152 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1153 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1154 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1155 
1156 		seq_printf(m, "actual GPU freq: %d MHz\n",
1157 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158 
1159 		seq_printf(m, "current GPU freq: %d MHz\n",
1160 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1161 
1162 		seq_printf(m, "max GPU freq: %d MHz\n",
1163 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1164 
1165 		seq_printf(m, "min GPU freq: %d MHz\n",
1166 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1167 
1168 		seq_printf(m, "idle GPU freq: %d MHz\n",
1169 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1170 
1171 		seq_printf(m,
1172 			   "efficient (RPe) frequency: %d MHz\n",
1173 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1174 		mutex_unlock(&dev_priv->rps.hw_lock);
1175 	} else if (INTEL_INFO(dev)->gen >= 6) {
1176 		u32 rp_state_limits;
1177 		u32 gt_perf_status;
1178 		u32 rp_state_cap;
1179 		u32 rpmodectl, rpinclimit, rpdeclimit;
1180 		u32 rpstat, cagf, reqf;
1181 		u32 rpupei, rpcurup, rpprevup;
1182 		u32 rpdownei, rpcurdown, rpprevdown;
1183 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1184 		int max_freq;
1185 
1186 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1187 		if (IS_BROXTON(dev)) {
1188 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1189 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1190 		} else {
1191 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1192 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1193 		}
1194 
1195 		/* RPSTAT1 is in the GT power well */
1196 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1197 		if (ret)
1198 			goto out;
1199 
1200 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1201 
1202 		reqf = I915_READ(GEN6_RPNSWREQ);
1203 		if (IS_GEN9(dev))
1204 			reqf >>= 23;
1205 		else {
1206 			reqf &= ~GEN6_TURBO_DISABLE;
1207 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1208 				reqf >>= 24;
1209 			else
1210 				reqf >>= 25;
1211 		}
1212 		reqf = intel_gpu_freq(dev_priv, reqf);
1213 
1214 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1215 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1216 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1217 
1218 		rpstat = I915_READ(GEN6_RPSTAT1);
1219 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1220 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1221 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1222 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1223 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1224 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1225 		if (IS_GEN9(dev))
1226 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1227 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1228 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1229 		else
1230 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1231 		cagf = intel_gpu_freq(dev_priv, cagf);
1232 
1233 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1234 		mutex_unlock(&dev->struct_mutex);
1235 
1236 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1237 			pm_ier = I915_READ(GEN6_PMIER);
1238 			pm_imr = I915_READ(GEN6_PMIMR);
1239 			pm_isr = I915_READ(GEN6_PMISR);
1240 			pm_iir = I915_READ(GEN6_PMIIR);
1241 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1242 		} else {
1243 			pm_ier = I915_READ(GEN8_GT_IER(2));
1244 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1245 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1246 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1247 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1248 		}
1249 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1250 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1251 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1252 		seq_printf(m, "Render p-state ratio: %d\n",
1253 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1254 		seq_printf(m, "Render p-state VID: %d\n",
1255 			   gt_perf_status & 0xff);
1256 		seq_printf(m, "Render p-state limit: %d\n",
1257 			   rp_state_limits & 0xff);
1258 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1259 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1260 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1261 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1262 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1263 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1264 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1265 			   GEN6_CURICONT_MASK);
1266 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1267 			   GEN6_CURBSYTAVG_MASK);
1268 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1269 			   GEN6_CURBSYTAVG_MASK);
1270 		seq_printf(m, "Up threshold: %d%%\n",
1271 			   dev_priv->rps.up_threshold);
1272 
1273 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1274 			   GEN6_CURIAVG_MASK);
1275 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1276 			   GEN6_CURBSYTAVG_MASK);
1277 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1278 			   GEN6_CURBSYTAVG_MASK);
1279 		seq_printf(m, "Down threshold: %d%%\n",
1280 			   dev_priv->rps.down_threshold);
1281 
1282 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1283 			    rp_state_cap >> 16) & 0xff;
1284 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1285 			     GEN9_FREQ_SCALER : 1);
1286 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1287 			   intel_gpu_freq(dev_priv, max_freq));
1288 
1289 		max_freq = (rp_state_cap & 0xff00) >> 8;
1290 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1291 			     GEN9_FREQ_SCALER : 1);
1292 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1293 			   intel_gpu_freq(dev_priv, max_freq));
1294 
1295 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1296 			    rp_state_cap >> 0) & 0xff;
1297 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1298 			     GEN9_FREQ_SCALER : 1);
1299 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1300 			   intel_gpu_freq(dev_priv, max_freq));
1301 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1303 
1304 		seq_printf(m, "Current freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1306 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1307 		seq_printf(m, "Idle freq: %d MHz\n",
1308 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1309 		seq_printf(m, "Min freq: %d MHz\n",
1310 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1311 		seq_printf(m, "Max freq: %d MHz\n",
1312 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1313 		seq_printf(m,
1314 			   "efficient (RPe) frequency: %d MHz\n",
1315 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1316 	} else {
1317 		seq_puts(m, "no P-state info available\n");
1318 	}
1319 
1320 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1321 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1322 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1323 
1324 out:
1325 	intel_runtime_pm_put(dev_priv);
1326 	return ret;
1327 }
1328 
1329 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1330 {
1331 	struct drm_info_node *node = m->private;
1332 	struct drm_device *dev = node->minor->dev;
1333 	struct drm_i915_private *dev_priv = dev->dev_private;
1334 	struct intel_engine_cs *ring;
1335 	u64 acthd[I915_NUM_RINGS];
1336 	u32 seqno[I915_NUM_RINGS];
1337 	u32 instdone[I915_NUM_INSTDONE_REG];
1338 	int i, j;
1339 
1340 	if (!i915.enable_hangcheck) {
1341 		seq_printf(m, "Hangcheck disabled\n");
1342 		return 0;
1343 	}
1344 
1345 	intel_runtime_pm_get(dev_priv);
1346 
1347 	for_each_ring(ring, dev_priv, i) {
1348 		seqno[i] = ring->get_seqno(ring, false);
1349 		acthd[i] = intel_ring_get_active_head(ring);
1350 	}
1351 
1352 	i915_get_extra_instdone(dev, instdone);
1353 
1354 	intel_runtime_pm_put(dev_priv);
1355 
1356 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1357 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1358 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1359 					    jiffies));
1360 	} else
1361 		seq_printf(m, "Hangcheck inactive\n");
1362 
1363 	for_each_ring(ring, dev_priv, i) {
1364 		seq_printf(m, "%s:\n", ring->name);
1365 		seq_printf(m, "\tseqno = %x [current %x]\n",
1366 			   ring->hangcheck.seqno, seqno[i]);
1367 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1368 			   (long long)ring->hangcheck.acthd,
1369 			   (long long)acthd[i]);
1370 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1371 			   (long long)ring->hangcheck.max_acthd);
1372 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1373 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1374 
1375 		if (ring->id == RCS) {
1376 			seq_puts(m, "\tinstdone read =");
1377 
1378 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1379 				seq_printf(m, " 0x%08x", instdone[j]);
1380 
1381 			seq_puts(m, "\n\tinstdone accu =");
1382 
1383 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1384 				seq_printf(m, " 0x%08x",
1385 					   ring->hangcheck.instdone[j]);
1386 
1387 			seq_puts(m, "\n");
1388 		}
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int ironlake_drpc_info(struct seq_file *m)
1395 {
1396 	struct drm_info_node *node = m->private;
1397 	struct drm_device *dev = node->minor->dev;
1398 	struct drm_i915_private *dev_priv = dev->dev_private;
1399 	u32 rgvmodectl, rstdbyctl;
1400 	u16 crstandvid;
1401 	int ret;
1402 
1403 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1404 	if (ret)
1405 		return ret;
1406 	intel_runtime_pm_get(dev_priv);
1407 
1408 	rgvmodectl = I915_READ(MEMMODECTL);
1409 	rstdbyctl = I915_READ(RSTDBYCTL);
1410 	crstandvid = I915_READ16(CRSTANDVID);
1411 
1412 	intel_runtime_pm_put(dev_priv);
1413 	mutex_unlock(&dev->struct_mutex);
1414 
1415 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1416 	seq_printf(m, "Boost freq: %d\n",
1417 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1418 		   MEMMODE_BOOST_FREQ_SHIFT);
1419 	seq_printf(m, "HW control enabled: %s\n",
1420 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1421 	seq_printf(m, "SW control enabled: %s\n",
1422 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1423 	seq_printf(m, "Gated voltage change: %s\n",
1424 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1425 	seq_printf(m, "Starting frequency: P%d\n",
1426 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1427 	seq_printf(m, "Max P-state: P%d\n",
1428 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1429 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1430 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1431 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1432 	seq_printf(m, "Render standby enabled: %s\n",
1433 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1434 	seq_puts(m, "Current RS state: ");
1435 	switch (rstdbyctl & RSX_STATUS_MASK) {
1436 	case RSX_STATUS_ON:
1437 		seq_puts(m, "on\n");
1438 		break;
1439 	case RSX_STATUS_RC1:
1440 		seq_puts(m, "RC1\n");
1441 		break;
1442 	case RSX_STATUS_RC1E:
1443 		seq_puts(m, "RC1E\n");
1444 		break;
1445 	case RSX_STATUS_RS1:
1446 		seq_puts(m, "RS1\n");
1447 		break;
1448 	case RSX_STATUS_RS2:
1449 		seq_puts(m, "RS2 (RC6)\n");
1450 		break;
1451 	case RSX_STATUS_RS3:
1452 		seq_puts(m, "RC3 (RC6+)\n");
1453 		break;
1454 	default:
1455 		seq_puts(m, "unknown\n");
1456 		break;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int i915_forcewake_domains(struct seq_file *m, void *data)
1463 {
1464 	struct drm_info_node *node = m->private;
1465 	struct drm_device *dev = node->minor->dev;
1466 	struct drm_i915_private *dev_priv = dev->dev_private;
1467 	struct intel_uncore_forcewake_domain *fw_domain;
1468 	int i;
1469 
1470 	spin_lock_irq(&dev_priv->uncore.lock);
1471 	for_each_fw_domain(fw_domain, dev_priv, i) {
1472 		seq_printf(m, "%s.wake_count = %u\n",
1473 			   intel_uncore_forcewake_domain_to_str(i),
1474 			   fw_domain->wake_count);
1475 	}
1476 	spin_unlock_irq(&dev_priv->uncore.lock);
1477 
1478 	return 0;
1479 }
1480 
1481 static int vlv_drpc_info(struct seq_file *m)
1482 {
1483 	struct drm_info_node *node = m->private;
1484 	struct drm_device *dev = node->minor->dev;
1485 	struct drm_i915_private *dev_priv = dev->dev_private;
1486 	u32 rpmodectl1, rcctl1, pw_status;
1487 
1488 	intel_runtime_pm_get(dev_priv);
1489 
1490 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1491 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1492 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1493 
1494 	intel_runtime_pm_put(dev_priv);
1495 
1496 	seq_printf(m, "Video Turbo Mode: %s\n",
1497 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1498 	seq_printf(m, "Turbo enabled: %s\n",
1499 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1500 	seq_printf(m, "HW control enabled: %s\n",
1501 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1502 	seq_printf(m, "SW control enabled: %s\n",
1503 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1504 			  GEN6_RP_MEDIA_SW_MODE));
1505 	seq_printf(m, "RC6 Enabled: %s\n",
1506 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1507 					GEN6_RC_CTL_EI_MODE(1))));
1508 	seq_printf(m, "Render Power Well: %s\n",
1509 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1510 	seq_printf(m, "Media Power Well: %s\n",
1511 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1512 
1513 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1514 		   I915_READ(VLV_GT_RENDER_RC6));
1515 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1516 		   I915_READ(VLV_GT_MEDIA_RC6));
1517 
1518 	return i915_forcewake_domains(m, NULL);
1519 }
1520 
1521 static int gen6_drpc_info(struct seq_file *m)
1522 {
1523 	struct drm_info_node *node = m->private;
1524 	struct drm_device *dev = node->minor->dev;
1525 	struct drm_i915_private *dev_priv = dev->dev_private;
1526 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1527 	unsigned forcewake_count;
1528 	int count = 0, ret;
1529 
1530 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1531 	if (ret)
1532 		return ret;
1533 	intel_runtime_pm_get(dev_priv);
1534 
1535 	spin_lock_irq(&dev_priv->uncore.lock);
1536 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1537 	spin_unlock_irq(&dev_priv->uncore.lock);
1538 
1539 	if (forcewake_count) {
1540 		seq_puts(m, "RC information inaccurate because somebody "
1541 			    "holds a forcewake reference \n");
1542 	} else {
1543 		/* NB: we cannot use forcewake, else we read the wrong values */
1544 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1545 			udelay(10);
1546 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1547 	}
1548 
1549 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1550 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1551 
1552 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1553 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1554 	mutex_unlock(&dev->struct_mutex);
1555 	mutex_lock(&dev_priv->rps.hw_lock);
1556 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557 	mutex_unlock(&dev_priv->rps.hw_lock);
1558 
1559 	intel_runtime_pm_put(dev_priv);
1560 
1561 	seq_printf(m, "Video Turbo Mode: %s\n",
1562 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563 	seq_printf(m, "HW control enabled: %s\n",
1564 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565 	seq_printf(m, "SW control enabled: %s\n",
1566 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567 			  GEN6_RP_MEDIA_SW_MODE));
1568 	seq_printf(m, "RC1e Enabled: %s\n",
1569 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570 	seq_printf(m, "RC6 Enabled: %s\n",
1571 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1573 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1574 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1575 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1576 	seq_puts(m, "Current RC state: ");
1577 	switch (gt_core_status & GEN6_RCn_MASK) {
1578 	case GEN6_RC0:
1579 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1580 			seq_puts(m, "Core Power Down\n");
1581 		else
1582 			seq_puts(m, "on\n");
1583 		break;
1584 	case GEN6_RC3:
1585 		seq_puts(m, "RC3\n");
1586 		break;
1587 	case GEN6_RC6:
1588 		seq_puts(m, "RC6\n");
1589 		break;
1590 	case GEN6_RC7:
1591 		seq_puts(m, "RC7\n");
1592 		break;
1593 	default:
1594 		seq_puts(m, "Unknown\n");
1595 		break;
1596 	}
1597 
1598 	seq_printf(m, "Core Power Down: %s\n",
1599 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1600 
1601 	/* Not exactly sure what this is */
1602 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1603 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1604 	seq_printf(m, "RC6 residency since boot: %u\n",
1605 		   I915_READ(GEN6_GT_GFX_RC6));
1606 	seq_printf(m, "RC6+ residency since boot: %u\n",
1607 		   I915_READ(GEN6_GT_GFX_RC6p));
1608 	seq_printf(m, "RC6++ residency since boot: %u\n",
1609 		   I915_READ(GEN6_GT_GFX_RC6pp));
1610 
1611 	seq_printf(m, "RC6   voltage: %dmV\n",
1612 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1613 	seq_printf(m, "RC6+  voltage: %dmV\n",
1614 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1615 	seq_printf(m, "RC6++ voltage: %dmV\n",
1616 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1617 	return 0;
1618 }
1619 
1620 static int i915_drpc_info(struct seq_file *m, void *unused)
1621 {
1622 	struct drm_info_node *node = m->private;
1623 	struct drm_device *dev = node->minor->dev;
1624 
1625 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1626 		return vlv_drpc_info(m);
1627 	else if (INTEL_INFO(dev)->gen >= 6)
1628 		return gen6_drpc_info(m);
1629 	else
1630 		return ironlake_drpc_info(m);
1631 }
1632 
1633 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1634 {
1635 	struct drm_info_node *node = m->private;
1636 	struct drm_device *dev = node->minor->dev;
1637 	struct drm_i915_private *dev_priv = dev->dev_private;
1638 
1639 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1640 		   dev_priv->fb_tracking.busy_bits);
1641 
1642 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1643 		   dev_priv->fb_tracking.flip_bits);
1644 
1645 	return 0;
1646 }
1647 
1648 static int i915_fbc_status(struct seq_file *m, void *unused)
1649 {
1650 	struct drm_info_node *node = m->private;
1651 	struct drm_device *dev = node->minor->dev;
1652 	struct drm_i915_private *dev_priv = dev->dev_private;
1653 
1654 	if (!HAS_FBC(dev)) {
1655 		seq_puts(m, "FBC unsupported on this chipset\n");
1656 		return 0;
1657 	}
1658 
1659 	intel_runtime_pm_get(dev_priv);
1660 	mutex_lock(&dev_priv->fbc.lock);
1661 
1662 	if (intel_fbc_is_active(dev_priv))
1663 		seq_puts(m, "FBC enabled\n");
1664 	else
1665 		seq_printf(m, "FBC disabled: %s\n",
1666 			   dev_priv->fbc.no_fbc_reason);
1667 
1668 	if (INTEL_INFO(dev_priv)->gen >= 7)
1669 		seq_printf(m, "Compressing: %s\n",
1670 			   yesno(I915_READ(FBC_STATUS2) &
1671 				 FBC_COMPRESSION_MASK));
1672 
1673 	mutex_unlock(&dev_priv->fbc.lock);
1674 	intel_runtime_pm_put(dev_priv);
1675 
1676 	return 0;
1677 }
1678 
1679 static int i915_fbc_fc_get(void *data, u64 *val)
1680 {
1681 	struct drm_device *dev = data;
1682 	struct drm_i915_private *dev_priv = dev->dev_private;
1683 
1684 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1685 		return -ENODEV;
1686 
1687 	*val = dev_priv->fbc.false_color;
1688 
1689 	return 0;
1690 }
1691 
1692 static int i915_fbc_fc_set(void *data, u64 val)
1693 {
1694 	struct drm_device *dev = data;
1695 	struct drm_i915_private *dev_priv = dev->dev_private;
1696 	u32 reg;
1697 
1698 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1699 		return -ENODEV;
1700 
1701 	mutex_lock(&dev_priv->fbc.lock);
1702 
1703 	reg = I915_READ(ILK_DPFC_CONTROL);
1704 	dev_priv->fbc.false_color = val;
1705 
1706 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1707 		   (reg | FBC_CTL_FALSE_COLOR) :
1708 		   (reg & ~FBC_CTL_FALSE_COLOR));
1709 
1710 	mutex_unlock(&dev_priv->fbc.lock);
1711 	return 0;
1712 }
1713 
1714 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1715 			i915_fbc_fc_get, i915_fbc_fc_set,
1716 			"%llu\n");
1717 
1718 static int i915_ips_status(struct seq_file *m, void *unused)
1719 {
1720 	struct drm_info_node *node = m->private;
1721 	struct drm_device *dev = node->minor->dev;
1722 	struct drm_i915_private *dev_priv = dev->dev_private;
1723 
1724 	if (!HAS_IPS(dev)) {
1725 		seq_puts(m, "not supported\n");
1726 		return 0;
1727 	}
1728 
1729 	intel_runtime_pm_get(dev_priv);
1730 
1731 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1732 		   yesno(i915.enable_ips));
1733 
1734 	if (INTEL_INFO(dev)->gen >= 8) {
1735 		seq_puts(m, "Currently: unknown\n");
1736 	} else {
1737 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1738 			seq_puts(m, "Currently: enabled\n");
1739 		else
1740 			seq_puts(m, "Currently: disabled\n");
1741 	}
1742 
1743 	intel_runtime_pm_put(dev_priv);
1744 
1745 	return 0;
1746 }
1747 
1748 static int i915_sr_status(struct seq_file *m, void *unused)
1749 {
1750 	struct drm_info_node *node = m->private;
1751 	struct drm_device *dev = node->minor->dev;
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 	bool sr_enabled = false;
1754 
1755 	intel_runtime_pm_get(dev_priv);
1756 
1757 	if (HAS_PCH_SPLIT(dev))
1758 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1759 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1760 		 IS_I945G(dev) || IS_I945GM(dev))
1761 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1762 	else if (IS_I915GM(dev))
1763 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1764 	else if (IS_PINEVIEW(dev))
1765 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1766 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1767 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1768 
1769 	intel_runtime_pm_put(dev_priv);
1770 
1771 	seq_printf(m, "self-refresh: %s\n",
1772 		   sr_enabled ? "enabled" : "disabled");
1773 
1774 	return 0;
1775 }
1776 
1777 static int i915_emon_status(struct seq_file *m, void *unused)
1778 {
1779 	struct drm_info_node *node = m->private;
1780 	struct drm_device *dev = node->minor->dev;
1781 	struct drm_i915_private *dev_priv = dev->dev_private;
1782 	unsigned long temp, chipset, gfx;
1783 	int ret;
1784 
1785 	if (!IS_GEN5(dev))
1786 		return -ENODEV;
1787 
1788 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1789 	if (ret)
1790 		return ret;
1791 
1792 	temp = i915_mch_val(dev_priv);
1793 	chipset = i915_chipset_val(dev_priv);
1794 	gfx = i915_gfx_val(dev_priv);
1795 	mutex_unlock(&dev->struct_mutex);
1796 
1797 	seq_printf(m, "GMCH temp: %ld\n", temp);
1798 	seq_printf(m, "Chipset power: %ld\n", chipset);
1799 	seq_printf(m, "GFX power: %ld\n", gfx);
1800 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1801 
1802 	return 0;
1803 }
1804 
1805 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1806 {
1807 	struct drm_info_node *node = m->private;
1808 	struct drm_device *dev = node->minor->dev;
1809 	struct drm_i915_private *dev_priv = dev->dev_private;
1810 	int ret = 0;
1811 	int gpu_freq, ia_freq;
1812 	unsigned int max_gpu_freq, min_gpu_freq;
1813 
1814 	if (!HAS_CORE_RING_FREQ(dev)) {
1815 		seq_puts(m, "unsupported on this chipset\n");
1816 		return 0;
1817 	}
1818 
1819 	intel_runtime_pm_get(dev_priv);
1820 
1821 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1822 
1823 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1828 		/* Convert GT frequency to 50 HZ units */
1829 		min_gpu_freq =
1830 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831 		max_gpu_freq =
1832 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833 	} else {
1834 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836 	}
1837 
1838 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839 
1840 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841 		ia_freq = gpu_freq;
1842 		sandybridge_pcode_read(dev_priv,
1843 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844 				       &ia_freq);
1845 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846 			   intel_gpu_freq(dev_priv, (gpu_freq *
1847 				(IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1848 				 GEN9_FREQ_SCALER : 1))),
1849 			   ((ia_freq >> 0) & 0xff) * 100,
1850 			   ((ia_freq >> 8) & 0xff) * 100);
1851 	}
1852 
1853 	mutex_unlock(&dev_priv->rps.hw_lock);
1854 
1855 out:
1856 	intel_runtime_pm_put(dev_priv);
1857 	return ret;
1858 }
1859 
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862 	struct drm_info_node *node = m->private;
1863 	struct drm_device *dev = node->minor->dev;
1864 	struct drm_i915_private *dev_priv = dev->dev_private;
1865 	struct intel_opregion *opregion = &dev_priv->opregion;
1866 	int ret;
1867 
1868 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1869 	if (ret)
1870 		goto out;
1871 
1872 	if (opregion->header)
1873 		seq_write(m, opregion->header, OPREGION_SIZE);
1874 
1875 	mutex_unlock(&dev->struct_mutex);
1876 
1877 out:
1878 	return 0;
1879 }
1880 
1881 static int i915_vbt(struct seq_file *m, void *unused)
1882 {
1883 	struct drm_info_node *node = m->private;
1884 	struct drm_device *dev = node->minor->dev;
1885 	struct drm_i915_private *dev_priv = dev->dev_private;
1886 	struct intel_opregion *opregion = &dev_priv->opregion;
1887 
1888 	if (opregion->vbt)
1889 		seq_write(m, opregion->vbt, opregion->vbt_size);
1890 
1891 	return 0;
1892 }
1893 
1894 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1895 {
1896 	struct drm_info_node *node = m->private;
1897 	struct drm_device *dev = node->minor->dev;
1898 	struct intel_framebuffer *fbdev_fb = NULL;
1899 	struct drm_framebuffer *drm_fb;
1900 
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902        if (to_i915(dev)->fbdev) {
1903                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1904 
1905                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906                          fbdev_fb->base.width,
1907                          fbdev_fb->base.height,
1908                          fbdev_fb->base.depth,
1909                          fbdev_fb->base.bits_per_pixel,
1910                          fbdev_fb->base.modifier[0],
1911                          atomic_read(&fbdev_fb->base.refcount.refcount));
1912                describe_obj(m, fbdev_fb->obj);
1913                seq_putc(m, '\n');
1914        }
1915 #endif
1916 
1917 	mutex_lock(&dev->mode_config.fb_lock);
1918 	drm_for_each_fb(drm_fb, dev) {
1919 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920 		if (fb == fbdev_fb)
1921 			continue;
1922 
1923 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924 			   fb->base.width,
1925 			   fb->base.height,
1926 			   fb->base.depth,
1927 			   fb->base.bits_per_pixel,
1928 			   fb->base.modifier[0],
1929 			   atomic_read(&fb->base.refcount.refcount));
1930 		describe_obj(m, fb->obj);
1931 		seq_putc(m, '\n');
1932 	}
1933 	mutex_unlock(&dev->mode_config.fb_lock);
1934 
1935 	return 0;
1936 }
1937 
1938 static void describe_ctx_ringbuf(struct seq_file *m,
1939 				 struct intel_ringbuffer *ringbuf)
1940 {
1941 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1943 		   ringbuf->last_retired_head);
1944 }
1945 
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948 	struct drm_info_node *node = m->private;
1949 	struct drm_device *dev = node->minor->dev;
1950 	struct drm_i915_private *dev_priv = dev->dev_private;
1951 	struct intel_engine_cs *ring;
1952 	struct intel_context *ctx;
1953 	int ret, i;
1954 
1955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1956 	if (ret)
1957 		return ret;
1958 
1959 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960 		if (!i915.enable_execlists &&
1961 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1962 			continue;
1963 
1964 		seq_puts(m, "HW context ");
1965 		describe_ctx(m, ctx);
1966 		if (ctx == dev_priv->kernel_context)
1967 			seq_printf(m, "(kernel context) ");
1968 
1969 		if (i915.enable_execlists) {
1970 			seq_putc(m, '\n');
1971 			for_each_ring(ring, dev_priv, i) {
1972 				struct drm_i915_gem_object *ctx_obj =
1973 					ctx->engine[i].state;
1974 				struct intel_ringbuffer *ringbuf =
1975 					ctx->engine[i].ringbuf;
1976 
1977 				seq_printf(m, "%s: ", ring->name);
1978 				if (ctx_obj)
1979 					describe_obj(m, ctx_obj);
1980 				if (ringbuf)
1981 					describe_ctx_ringbuf(m, ringbuf);
1982 				seq_putc(m, '\n');
1983 			}
1984 		} else {
1985 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1986 		}
1987 
1988 		seq_putc(m, '\n');
1989 	}
1990 
1991 	mutex_unlock(&dev->struct_mutex);
1992 
1993 	return 0;
1994 }
1995 
1996 static void i915_dump_lrc_obj(struct seq_file *m,
1997 			      struct intel_context *ctx,
1998 			      struct intel_engine_cs *ring)
1999 {
2000 	struct page *page;
2001 	uint32_t *reg_state;
2002 	int j;
2003 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2004 	unsigned long ggtt_offset = 0;
2005 
2006 	if (ctx_obj == NULL) {
2007 		seq_printf(m, "Context on %s with no gem object\n",
2008 			   ring->name);
2009 		return;
2010 	}
2011 
2012 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2013 		   intel_execlists_ctx_id(ctx, ring));
2014 
2015 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
2016 		seq_puts(m, "\tNot bound in GGTT\n");
2017 	else
2018 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2019 
2020 	if (i915_gem_object_get_pages(ctx_obj)) {
2021 		seq_puts(m, "\tFailed to get pages for context object\n");
2022 		return;
2023 	}
2024 
2025 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2026 	if (!WARN_ON(page == NULL)) {
2027 		reg_state = kmap_atomic(page);
2028 
2029 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2030 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2031 				   ggtt_offset + 4096 + (j * 4),
2032 				   reg_state[j], reg_state[j + 1],
2033 				   reg_state[j + 2], reg_state[j + 3]);
2034 		}
2035 		kunmap_atomic(reg_state);
2036 	}
2037 
2038 	seq_putc(m, '\n');
2039 }
2040 
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2044 	struct drm_device *dev = node->minor->dev;
2045 	struct drm_i915_private *dev_priv = dev->dev_private;
2046 	struct intel_engine_cs *ring;
2047 	struct intel_context *ctx;
2048 	int ret, i;
2049 
2050 	if (!i915.enable_execlists) {
2051 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2052 		return 0;
2053 	}
2054 
2055 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2056 	if (ret)
2057 		return ret;
2058 
2059 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2060 		if (ctx != dev_priv->kernel_context)
2061 			for_each_ring(ring, dev_priv, i)
2062 				i915_dump_lrc_obj(m, ctx, ring);
2063 
2064 	mutex_unlock(&dev->struct_mutex);
2065 
2066 	return 0;
2067 }
2068 
2069 static int i915_execlists(struct seq_file *m, void *data)
2070 {
2071 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2072 	struct drm_device *dev = node->minor->dev;
2073 	struct drm_i915_private *dev_priv = dev->dev_private;
2074 	struct intel_engine_cs *ring;
2075 	u32 status_pointer;
2076 	u8 read_pointer;
2077 	u8 write_pointer;
2078 	u32 status;
2079 	u32 ctx_id;
2080 	struct list_head *cursor;
2081 	int ring_id, i;
2082 	int ret;
2083 
2084 	if (!i915.enable_execlists) {
2085 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2086 		return 0;
2087 	}
2088 
2089 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2090 	if (ret)
2091 		return ret;
2092 
2093 	intel_runtime_pm_get(dev_priv);
2094 
2095 	for_each_ring(ring, dev_priv, ring_id) {
2096 		struct drm_i915_gem_request *head_req = NULL;
2097 		int count = 0;
2098 		unsigned long flags;
2099 
2100 		seq_printf(m, "%s\n", ring->name);
2101 
2102 		status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2103 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2104 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2105 			   status, ctx_id);
2106 
2107 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2108 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2109 
2110 		read_pointer = ring->next_context_status_buffer;
2111 		write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2112 		if (read_pointer > write_pointer)
2113 			write_pointer += GEN8_CSB_ENTRIES;
2114 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2115 			   read_pointer, write_pointer);
2116 
2117 		for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2118 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2119 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2120 
2121 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2122 				   i, status, ctx_id);
2123 		}
2124 
2125 		spin_lock_irqsave(&ring->execlist_lock, flags);
2126 		list_for_each(cursor, &ring->execlist_queue)
2127 			count++;
2128 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2129 				struct drm_i915_gem_request, execlist_link);
2130 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2131 
2132 		seq_printf(m, "\t%d requests in queue\n", count);
2133 		if (head_req) {
2134 			seq_printf(m, "\tHead request id: %u\n",
2135 				   intel_execlists_ctx_id(head_req->ctx, ring));
2136 			seq_printf(m, "\tHead request tail: %u\n",
2137 				   head_req->tail);
2138 		}
2139 
2140 		seq_putc(m, '\n');
2141 	}
2142 
2143 	intel_runtime_pm_put(dev_priv);
2144 	mutex_unlock(&dev->struct_mutex);
2145 
2146 	return 0;
2147 }
2148 
2149 static const char *swizzle_string(unsigned swizzle)
2150 {
2151 	switch (swizzle) {
2152 	case I915_BIT_6_SWIZZLE_NONE:
2153 		return "none";
2154 	case I915_BIT_6_SWIZZLE_9:
2155 		return "bit9";
2156 	case I915_BIT_6_SWIZZLE_9_10:
2157 		return "bit9/bit10";
2158 	case I915_BIT_6_SWIZZLE_9_11:
2159 		return "bit9/bit11";
2160 	case I915_BIT_6_SWIZZLE_9_10_11:
2161 		return "bit9/bit10/bit11";
2162 	case I915_BIT_6_SWIZZLE_9_17:
2163 		return "bit9/bit17";
2164 	case I915_BIT_6_SWIZZLE_9_10_17:
2165 		return "bit9/bit10/bit17";
2166 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2167 		return "unknown";
2168 	}
2169 
2170 	return "bug";
2171 }
2172 
2173 static int i915_swizzle_info(struct seq_file *m, void *data)
2174 {
2175 	struct drm_info_node *node = m->private;
2176 	struct drm_device *dev = node->minor->dev;
2177 	struct drm_i915_private *dev_priv = dev->dev_private;
2178 	int ret;
2179 
2180 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2181 	if (ret)
2182 		return ret;
2183 	intel_runtime_pm_get(dev_priv);
2184 
2185 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2186 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2187 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2188 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2189 
2190 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2191 		seq_printf(m, "DDC = 0x%08x\n",
2192 			   I915_READ(DCC));
2193 		seq_printf(m, "DDC2 = 0x%08x\n",
2194 			   I915_READ(DCC2));
2195 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2196 			   I915_READ16(C0DRB3));
2197 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2198 			   I915_READ16(C1DRB3));
2199 	} else if (INTEL_INFO(dev)->gen >= 6) {
2200 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2201 			   I915_READ(MAD_DIMM_C0));
2202 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2203 			   I915_READ(MAD_DIMM_C1));
2204 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2205 			   I915_READ(MAD_DIMM_C2));
2206 		seq_printf(m, "TILECTL = 0x%08x\n",
2207 			   I915_READ(TILECTL));
2208 		if (INTEL_INFO(dev)->gen >= 8)
2209 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2210 				   I915_READ(GAMTARBMODE));
2211 		else
2212 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2213 				   I915_READ(ARB_MODE));
2214 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2215 			   I915_READ(DISP_ARB_CTL));
2216 	}
2217 
2218 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2219 		seq_puts(m, "L-shaped memory detected\n");
2220 
2221 	intel_runtime_pm_put(dev_priv);
2222 	mutex_unlock(&dev->struct_mutex);
2223 
2224 	return 0;
2225 }
2226 
2227 static int per_file_ctx(int id, void *ptr, void *data)
2228 {
2229 	struct intel_context *ctx = ptr;
2230 	struct seq_file *m = data;
2231 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2232 
2233 	if (!ppgtt) {
2234 		seq_printf(m, "  no ppgtt for context %d\n",
2235 			   ctx->user_handle);
2236 		return 0;
2237 	}
2238 
2239 	if (i915_gem_context_is_default(ctx))
2240 		seq_puts(m, "  default context:\n");
2241 	else
2242 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2243 	ppgtt->debug_dump(ppgtt, m);
2244 
2245 	return 0;
2246 }
2247 
2248 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2249 {
2250 	struct drm_i915_private *dev_priv = dev->dev_private;
2251 	struct intel_engine_cs *ring;
2252 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2253 	int unused, i;
2254 
2255 	if (!ppgtt)
2256 		return;
2257 
2258 	for_each_ring(ring, dev_priv, unused) {
2259 		seq_printf(m, "%s\n", ring->name);
2260 		for (i = 0; i < 4; i++) {
2261 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2262 			pdp <<= 32;
2263 			pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2264 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2265 		}
2266 	}
2267 }
2268 
2269 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2270 {
2271 	struct drm_i915_private *dev_priv = dev->dev_private;
2272 	struct intel_engine_cs *ring;
2273 	int i;
2274 
2275 	if (INTEL_INFO(dev)->gen == 6)
2276 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2277 
2278 	for_each_ring(ring, dev_priv, i) {
2279 		seq_printf(m, "%s\n", ring->name);
2280 		if (INTEL_INFO(dev)->gen == 7)
2281 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2282 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2283 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2284 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2285 	}
2286 	if (dev_priv->mm.aliasing_ppgtt) {
2287 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2288 
2289 		seq_puts(m, "aliasing PPGTT:\n");
2290 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2291 
2292 		ppgtt->debug_dump(ppgtt, m);
2293 	}
2294 
2295 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2296 }
2297 
2298 static int i915_ppgtt_info(struct seq_file *m, void *data)
2299 {
2300 	struct drm_info_node *node = m->private;
2301 	struct drm_device *dev = node->minor->dev;
2302 	struct drm_i915_private *dev_priv = dev->dev_private;
2303 	struct drm_file *file;
2304 
2305 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2306 	if (ret)
2307 		return ret;
2308 	intel_runtime_pm_get(dev_priv);
2309 
2310 	if (INTEL_INFO(dev)->gen >= 8)
2311 		gen8_ppgtt_info(m, dev);
2312 	else if (INTEL_INFO(dev)->gen >= 6)
2313 		gen6_ppgtt_info(m, dev);
2314 
2315 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2316 		struct drm_i915_file_private *file_priv = file->driver_priv;
2317 		struct task_struct *task;
2318 
2319 		task = get_pid_task(file->pid, PIDTYPE_PID);
2320 		if (!task) {
2321 			ret = -ESRCH;
2322 			goto out_put;
2323 		}
2324 		seq_printf(m, "\nproc: %s\n", task->comm);
2325 		put_task_struct(task);
2326 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2327 			     (void *)(unsigned long)m);
2328 	}
2329 
2330 out_put:
2331 	intel_runtime_pm_put(dev_priv);
2332 	mutex_unlock(&dev->struct_mutex);
2333 
2334 	return ret;
2335 }
2336 
2337 static int count_irq_waiters(struct drm_i915_private *i915)
2338 {
2339 	struct intel_engine_cs *ring;
2340 	int count = 0;
2341 	int i;
2342 
2343 	for_each_ring(ring, i915, i)
2344 		count += ring->irq_refcount;
2345 
2346 	return count;
2347 }
2348 
2349 static int i915_rps_boost_info(struct seq_file *m, void *data)
2350 {
2351 	struct drm_info_node *node = m->private;
2352 	struct drm_device *dev = node->minor->dev;
2353 	struct drm_i915_private *dev_priv = dev->dev_private;
2354 	struct drm_file *file;
2355 
2356 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2357 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2358 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2359 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2360 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2361 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2362 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2363 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2364 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2365 	spin_lock(&dev_priv->rps.client_lock);
2366 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2367 		struct drm_i915_file_private *file_priv = file->driver_priv;
2368 		struct task_struct *task;
2369 
2370 		rcu_read_lock();
2371 		task = pid_task(file->pid, PIDTYPE_PID);
2372 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2373 			   task ? task->comm : "<unknown>",
2374 			   task ? task->pid : -1,
2375 			   file_priv->rps.boosts,
2376 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2377 		rcu_read_unlock();
2378 	}
2379 	seq_printf(m, "Semaphore boosts: %d%s\n",
2380 		   dev_priv->rps.semaphores.boosts,
2381 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2382 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2383 		   dev_priv->rps.mmioflips.boosts,
2384 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2385 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2386 	spin_unlock(&dev_priv->rps.client_lock);
2387 
2388 	return 0;
2389 }
2390 
2391 static int i915_llc(struct seq_file *m, void *data)
2392 {
2393 	struct drm_info_node *node = m->private;
2394 	struct drm_device *dev = node->minor->dev;
2395 	struct drm_i915_private *dev_priv = dev->dev_private;
2396 
2397 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2398 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2399 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2400 
2401 	return 0;
2402 }
2403 
2404 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2405 {
2406 	struct drm_info_node *node = m->private;
2407 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2408 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2409 	u32 tmp, i;
2410 
2411 	if (!HAS_GUC_UCODE(dev_priv->dev))
2412 		return 0;
2413 
2414 	seq_printf(m, "GuC firmware status:\n");
2415 	seq_printf(m, "\tpath: %s\n",
2416 		guc_fw->guc_fw_path);
2417 	seq_printf(m, "\tfetch: %s\n",
2418 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2419 	seq_printf(m, "\tload: %s\n",
2420 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2421 	seq_printf(m, "\tversion wanted: %d.%d\n",
2422 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2423 	seq_printf(m, "\tversion found: %d.%d\n",
2424 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2425 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2426 		guc_fw->header_offset, guc_fw->header_size);
2427 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2428 		guc_fw->ucode_offset, guc_fw->ucode_size);
2429 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2430 		guc_fw->rsa_offset, guc_fw->rsa_size);
2431 
2432 	tmp = I915_READ(GUC_STATUS);
2433 
2434 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2435 	seq_printf(m, "\tBootrom status = 0x%x\n",
2436 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2437 	seq_printf(m, "\tuKernel status = 0x%x\n",
2438 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2439 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2440 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2441 	seq_puts(m, "\nScratch registers:\n");
2442 	for (i = 0; i < 16; i++)
2443 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2444 
2445 	return 0;
2446 }
2447 
2448 static void i915_guc_client_info(struct seq_file *m,
2449 				 struct drm_i915_private *dev_priv,
2450 				 struct i915_guc_client *client)
2451 {
2452 	struct intel_engine_cs *ring;
2453 	uint64_t tot = 0;
2454 	uint32_t i;
2455 
2456 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2457 		client->priority, client->ctx_index, client->proc_desc_offset);
2458 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2459 		client->doorbell_id, client->doorbell_offset, client->cookie);
2460 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2461 		client->wq_size, client->wq_offset, client->wq_tail);
2462 
2463 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2464 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2465 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2466 
2467 	for_each_ring(ring, dev_priv, i) {
2468 		seq_printf(m, "\tSubmissions: %llu %s\n",
2469 				client->submissions[ring->guc_id],
2470 				ring->name);
2471 		tot += client->submissions[ring->guc_id];
2472 	}
2473 	seq_printf(m, "\tTotal: %llu\n", tot);
2474 }
2475 
2476 static int i915_guc_info(struct seq_file *m, void *data)
2477 {
2478 	struct drm_info_node *node = m->private;
2479 	struct drm_device *dev = node->minor->dev;
2480 	struct drm_i915_private *dev_priv = dev->dev_private;
2481 	struct intel_guc guc;
2482 	struct i915_guc_client client = {};
2483 	struct intel_engine_cs *ring;
2484 	enum intel_ring_id i;
2485 	u64 total = 0;
2486 
2487 	if (!HAS_GUC_SCHED(dev_priv->dev))
2488 		return 0;
2489 
2490 	if (mutex_lock_interruptible(&dev->struct_mutex))
2491 		return 0;
2492 
2493 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2494 	guc = dev_priv->guc;
2495 	if (guc.execbuf_client)
2496 		client = *guc.execbuf_client;
2497 
2498 	mutex_unlock(&dev->struct_mutex);
2499 
2500 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2501 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2502 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2503 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2504 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2505 
2506 	seq_printf(m, "\nGuC submissions:\n");
2507 	for_each_ring(ring, dev_priv, i) {
2508 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2509 			ring->name, guc.submissions[ring->guc_id],
2510 			guc.last_seqno[ring->guc_id]);
2511 		total += guc.submissions[ring->guc_id];
2512 	}
2513 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2514 
2515 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2516 	i915_guc_client_info(m, dev_priv, &client);
2517 
2518 	/* Add more as required ... */
2519 
2520 	return 0;
2521 }
2522 
2523 static int i915_guc_log_dump(struct seq_file *m, void *data)
2524 {
2525 	struct drm_info_node *node = m->private;
2526 	struct drm_device *dev = node->minor->dev;
2527 	struct drm_i915_private *dev_priv = dev->dev_private;
2528 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2529 	u32 *log;
2530 	int i = 0, pg;
2531 
2532 	if (!log_obj)
2533 		return 0;
2534 
2535 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2536 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2537 
2538 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2539 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2540 				   *(log + i), *(log + i + 1),
2541 				   *(log + i + 2), *(log + i + 3));
2542 
2543 		kunmap_atomic(log);
2544 	}
2545 
2546 	seq_putc(m, '\n');
2547 
2548 	return 0;
2549 }
2550 
2551 static int i915_edp_psr_status(struct seq_file *m, void *data)
2552 {
2553 	struct drm_info_node *node = m->private;
2554 	struct drm_device *dev = node->minor->dev;
2555 	struct drm_i915_private *dev_priv = dev->dev_private;
2556 	u32 psrperf = 0;
2557 	u32 stat[3];
2558 	enum pipe pipe;
2559 	bool enabled = false;
2560 
2561 	if (!HAS_PSR(dev)) {
2562 		seq_puts(m, "PSR not supported\n");
2563 		return 0;
2564 	}
2565 
2566 	intel_runtime_pm_get(dev_priv);
2567 
2568 	mutex_lock(&dev_priv->psr.lock);
2569 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2570 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2571 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2572 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2573 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2574 		   dev_priv->psr.busy_frontbuffer_bits);
2575 	seq_printf(m, "Re-enable work scheduled: %s\n",
2576 		   yesno(work_busy(&dev_priv->psr.work.work)));
2577 
2578 	if (HAS_DDI(dev))
2579 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2580 	else {
2581 		for_each_pipe(dev_priv, pipe) {
2582 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2583 				VLV_EDP_PSR_CURR_STATE_MASK;
2584 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2585 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2586 				enabled = true;
2587 		}
2588 	}
2589 
2590 	seq_printf(m, "Main link in standby mode: %s\n",
2591 		   yesno(dev_priv->psr.link_standby));
2592 
2593 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2594 
2595 	if (!HAS_DDI(dev))
2596 		for_each_pipe(dev_priv, pipe) {
2597 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2598 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2599 				seq_printf(m, " pipe %c", pipe_name(pipe));
2600 		}
2601 	seq_puts(m, "\n");
2602 
2603 	/*
2604 	 * VLV/CHV PSR has no kind of performance counter
2605 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2606 	 */
2607 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2608 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2609 			EDP_PSR_PERF_CNT_MASK;
2610 
2611 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2612 	}
2613 	mutex_unlock(&dev_priv->psr.lock);
2614 
2615 	intel_runtime_pm_put(dev_priv);
2616 	return 0;
2617 }
2618 
2619 static int i915_sink_crc(struct seq_file *m, void *data)
2620 {
2621 	struct drm_info_node *node = m->private;
2622 	struct drm_device *dev = node->minor->dev;
2623 	struct intel_encoder *encoder;
2624 	struct intel_connector *connector;
2625 	struct intel_dp *intel_dp = NULL;
2626 	int ret;
2627 	u8 crc[6];
2628 
2629 	drm_modeset_lock_all(dev);
2630 	for_each_intel_connector(dev, connector) {
2631 
2632 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2633 			continue;
2634 
2635 		if (!connector->base.encoder)
2636 			continue;
2637 
2638 		encoder = to_intel_encoder(connector->base.encoder);
2639 		if (encoder->type != INTEL_OUTPUT_EDP)
2640 			continue;
2641 
2642 		intel_dp = enc_to_intel_dp(&encoder->base);
2643 
2644 		ret = intel_dp_sink_crc(intel_dp, crc);
2645 		if (ret)
2646 			goto out;
2647 
2648 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2649 			   crc[0], crc[1], crc[2],
2650 			   crc[3], crc[4], crc[5]);
2651 		goto out;
2652 	}
2653 	ret = -ENODEV;
2654 out:
2655 	drm_modeset_unlock_all(dev);
2656 	return ret;
2657 }
2658 
2659 static int i915_energy_uJ(struct seq_file *m, void *data)
2660 {
2661 	struct drm_info_node *node = m->private;
2662 	struct drm_device *dev = node->minor->dev;
2663 	struct drm_i915_private *dev_priv = dev->dev_private;
2664 	u64 power;
2665 	u32 units;
2666 
2667 	if (INTEL_INFO(dev)->gen < 6)
2668 		return -ENODEV;
2669 
2670 	intel_runtime_pm_get(dev_priv);
2671 
2672 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2673 	power = (power & 0x1f00) >> 8;
2674 	units = 1000000 / (1 << power); /* convert to uJ */
2675 	power = I915_READ(MCH_SECP_NRG_STTS);
2676 	power *= units;
2677 
2678 	intel_runtime_pm_put(dev_priv);
2679 
2680 	seq_printf(m, "%llu", (long long unsigned)power);
2681 
2682 	return 0;
2683 }
2684 
2685 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2686 {
2687 	struct drm_info_node *node = m->private;
2688 	struct drm_device *dev = node->minor->dev;
2689 	struct drm_i915_private *dev_priv = dev->dev_private;
2690 
2691 	if (!HAS_RUNTIME_PM(dev)) {
2692 		seq_puts(m, "not supported\n");
2693 		return 0;
2694 	}
2695 
2696 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2697 	seq_printf(m, "IRQs disabled: %s\n",
2698 		   yesno(!intel_irqs_enabled(dev_priv)));
2699 #ifdef CONFIG_PM
2700 	seq_printf(m, "Usage count: %d\n",
2701 		   atomic_read(&dev->dev->power.usage_count));
2702 #else
2703 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2704 #endif
2705 
2706 	return 0;
2707 }
2708 
2709 static int i915_power_domain_info(struct seq_file *m, void *unused)
2710 {
2711 	struct drm_info_node *node = m->private;
2712 	struct drm_device *dev = node->minor->dev;
2713 	struct drm_i915_private *dev_priv = dev->dev_private;
2714 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2715 	int i;
2716 
2717 	mutex_lock(&power_domains->lock);
2718 
2719 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2720 	for (i = 0; i < power_domains->power_well_count; i++) {
2721 		struct i915_power_well *power_well;
2722 		enum intel_display_power_domain power_domain;
2723 
2724 		power_well = &power_domains->power_wells[i];
2725 		seq_printf(m, "%-25s %d\n", power_well->name,
2726 			   power_well->count);
2727 
2728 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2729 		     power_domain++) {
2730 			if (!(BIT(power_domain) & power_well->domains))
2731 				continue;
2732 
2733 			seq_printf(m, "  %-23s %d\n",
2734 				 intel_display_power_domain_str(power_domain),
2735 				 power_domains->domain_use_count[power_domain]);
2736 		}
2737 	}
2738 
2739 	mutex_unlock(&power_domains->lock);
2740 
2741 	return 0;
2742 }
2743 
2744 static int i915_dmc_info(struct seq_file *m, void *unused)
2745 {
2746 	struct drm_info_node *node = m->private;
2747 	struct drm_device *dev = node->minor->dev;
2748 	struct drm_i915_private *dev_priv = dev->dev_private;
2749 	struct intel_csr *csr;
2750 
2751 	if (!HAS_CSR(dev)) {
2752 		seq_puts(m, "not supported\n");
2753 		return 0;
2754 	}
2755 
2756 	csr = &dev_priv->csr;
2757 
2758 	intel_runtime_pm_get(dev_priv);
2759 
2760 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2761 	seq_printf(m, "path: %s\n", csr->fw_path);
2762 
2763 	if (!csr->dmc_payload)
2764 		goto out;
2765 
2766 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2767 		   CSR_VERSION_MINOR(csr->version));
2768 
2769 	if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2770 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2771 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2772 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2773 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2774 	} else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2775 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2776 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2777 	}
2778 
2779 out:
2780 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2781 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2782 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2783 
2784 	intel_runtime_pm_put(dev_priv);
2785 
2786 	return 0;
2787 }
2788 
2789 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2790 				 struct drm_display_mode *mode)
2791 {
2792 	int i;
2793 
2794 	for (i = 0; i < tabs; i++)
2795 		seq_putc(m, '\t');
2796 
2797 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2798 		   mode->base.id, mode->name,
2799 		   mode->vrefresh, mode->clock,
2800 		   mode->hdisplay, mode->hsync_start,
2801 		   mode->hsync_end, mode->htotal,
2802 		   mode->vdisplay, mode->vsync_start,
2803 		   mode->vsync_end, mode->vtotal,
2804 		   mode->type, mode->flags);
2805 }
2806 
2807 static void intel_encoder_info(struct seq_file *m,
2808 			       struct intel_crtc *intel_crtc,
2809 			       struct intel_encoder *intel_encoder)
2810 {
2811 	struct drm_info_node *node = m->private;
2812 	struct drm_device *dev = node->minor->dev;
2813 	struct drm_crtc *crtc = &intel_crtc->base;
2814 	struct intel_connector *intel_connector;
2815 	struct drm_encoder *encoder;
2816 
2817 	encoder = &intel_encoder->base;
2818 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2819 		   encoder->base.id, encoder->name);
2820 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2821 		struct drm_connector *connector = &intel_connector->base;
2822 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2823 			   connector->base.id,
2824 			   connector->name,
2825 			   drm_get_connector_status_name(connector->status));
2826 		if (connector->status == connector_status_connected) {
2827 			struct drm_display_mode *mode = &crtc->mode;
2828 			seq_printf(m, ", mode:\n");
2829 			intel_seq_print_mode(m, 2, mode);
2830 		} else {
2831 			seq_putc(m, '\n');
2832 		}
2833 	}
2834 }
2835 
2836 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2837 {
2838 	struct drm_info_node *node = m->private;
2839 	struct drm_device *dev = node->minor->dev;
2840 	struct drm_crtc *crtc = &intel_crtc->base;
2841 	struct intel_encoder *intel_encoder;
2842 	struct drm_plane_state *plane_state = crtc->primary->state;
2843 	struct drm_framebuffer *fb = plane_state->fb;
2844 
2845 	if (fb)
2846 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2847 			   fb->base.id, plane_state->src_x >> 16,
2848 			   plane_state->src_y >> 16, fb->width, fb->height);
2849 	else
2850 		seq_puts(m, "\tprimary plane disabled\n");
2851 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2852 		intel_encoder_info(m, intel_crtc, intel_encoder);
2853 }
2854 
2855 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2856 {
2857 	struct drm_display_mode *mode = panel->fixed_mode;
2858 
2859 	seq_printf(m, "\tfixed mode:\n");
2860 	intel_seq_print_mode(m, 2, mode);
2861 }
2862 
2863 static void intel_dp_info(struct seq_file *m,
2864 			  struct intel_connector *intel_connector)
2865 {
2866 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2867 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2868 
2869 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2870 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2871 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2872 		intel_panel_info(m, &intel_connector->panel);
2873 }
2874 
2875 static void intel_dp_mst_info(struct seq_file *m,
2876 			  struct intel_connector *intel_connector)
2877 {
2878 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2879 	struct intel_dp_mst_encoder *intel_mst =
2880 		enc_to_mst(&intel_encoder->base);
2881 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2882 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2883 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2884 					intel_connector->port);
2885 
2886 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2887 }
2888 
2889 static void intel_hdmi_info(struct seq_file *m,
2890 			    struct intel_connector *intel_connector)
2891 {
2892 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2893 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2894 
2895 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2896 }
2897 
2898 static void intel_lvds_info(struct seq_file *m,
2899 			    struct intel_connector *intel_connector)
2900 {
2901 	intel_panel_info(m, &intel_connector->panel);
2902 }
2903 
2904 static void intel_connector_info(struct seq_file *m,
2905 				 struct drm_connector *connector)
2906 {
2907 	struct intel_connector *intel_connector = to_intel_connector(connector);
2908 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2909 	struct drm_display_mode *mode;
2910 
2911 	seq_printf(m, "connector %d: type %s, status: %s\n",
2912 		   connector->base.id, connector->name,
2913 		   drm_get_connector_status_name(connector->status));
2914 	if (connector->status == connector_status_connected) {
2915 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2916 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2917 			   connector->display_info.width_mm,
2918 			   connector->display_info.height_mm);
2919 		seq_printf(m, "\tsubpixel order: %s\n",
2920 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2921 		seq_printf(m, "\tCEA rev: %d\n",
2922 			   connector->display_info.cea_rev);
2923 	}
2924 	if (intel_encoder) {
2925 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2926 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2927 			intel_dp_info(m, intel_connector);
2928 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2929 			intel_hdmi_info(m, intel_connector);
2930 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2931 			intel_lvds_info(m, intel_connector);
2932 		else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2933 			intel_dp_mst_info(m, intel_connector);
2934 	}
2935 
2936 	seq_printf(m, "\tmodes:\n");
2937 	list_for_each_entry(mode, &connector->modes, head)
2938 		intel_seq_print_mode(m, 2, mode);
2939 }
2940 
2941 static bool cursor_active(struct drm_device *dev, int pipe)
2942 {
2943 	struct drm_i915_private *dev_priv = dev->dev_private;
2944 	u32 state;
2945 
2946 	if (IS_845G(dev) || IS_I865G(dev))
2947 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2948 	else
2949 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2950 
2951 	return state;
2952 }
2953 
2954 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2955 {
2956 	struct drm_i915_private *dev_priv = dev->dev_private;
2957 	u32 pos;
2958 
2959 	pos = I915_READ(CURPOS(pipe));
2960 
2961 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2962 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2963 		*x = -*x;
2964 
2965 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2966 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2967 		*y = -*y;
2968 
2969 	return cursor_active(dev, pipe);
2970 }
2971 
2972 static const char *plane_type(enum drm_plane_type type)
2973 {
2974 	switch (type) {
2975 	case DRM_PLANE_TYPE_OVERLAY:
2976 		return "OVL";
2977 	case DRM_PLANE_TYPE_PRIMARY:
2978 		return "PRI";
2979 	case DRM_PLANE_TYPE_CURSOR:
2980 		return "CUR";
2981 	/*
2982 	 * Deliberately omitting default: to generate compiler warnings
2983 	 * when a new drm_plane_type gets added.
2984 	 */
2985 	}
2986 
2987 	return "unknown";
2988 }
2989 
2990 static const char *plane_rotation(unsigned int rotation)
2991 {
2992 	static char buf[48];
2993 	/*
2994 	 * According to doc only one DRM_ROTATE_ is allowed but this
2995 	 * will print them all to visualize if the values are misused
2996 	 */
2997 	snprintf(buf, sizeof(buf),
2998 		 "%s%s%s%s%s%s(0x%08x)",
2999 		 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3000 		 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3001 		 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3002 		 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3003 		 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3004 		 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3005 		 rotation);
3006 
3007 	return buf;
3008 }
3009 
3010 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3011 {
3012 	struct drm_info_node *node = m->private;
3013 	struct drm_device *dev = node->minor->dev;
3014 	struct intel_plane *intel_plane;
3015 
3016 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3017 		struct drm_plane_state *state;
3018 		struct drm_plane *plane = &intel_plane->base;
3019 
3020 		if (!plane->state) {
3021 			seq_puts(m, "plane->state is NULL!\n");
3022 			continue;
3023 		}
3024 
3025 		state = plane->state;
3026 
3027 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3028 			   plane->base.id,
3029 			   plane_type(intel_plane->base.type),
3030 			   state->crtc_x, state->crtc_y,
3031 			   state->crtc_w, state->crtc_h,
3032 			   (state->src_x >> 16),
3033 			   ((state->src_x & 0xffff) * 15625) >> 10,
3034 			   (state->src_y >> 16),
3035 			   ((state->src_y & 0xffff) * 15625) >> 10,
3036 			   (state->src_w >> 16),
3037 			   ((state->src_w & 0xffff) * 15625) >> 10,
3038 			   (state->src_h >> 16),
3039 			   ((state->src_h & 0xffff) * 15625) >> 10,
3040 			   state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3041 			   plane_rotation(state->rotation));
3042 	}
3043 }
3044 
3045 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3046 {
3047 	struct intel_crtc_state *pipe_config;
3048 	int num_scalers = intel_crtc->num_scalers;
3049 	int i;
3050 
3051 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3052 
3053 	/* Not all platformas have a scaler */
3054 	if (num_scalers) {
3055 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3056 			   num_scalers,
3057 			   pipe_config->scaler_state.scaler_users,
3058 			   pipe_config->scaler_state.scaler_id);
3059 
3060 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3061 			struct intel_scaler *sc =
3062 					&pipe_config->scaler_state.scalers[i];
3063 
3064 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3065 				   i, yesno(sc->in_use), sc->mode);
3066 		}
3067 		seq_puts(m, "\n");
3068 	} else {
3069 		seq_puts(m, "\tNo scalers available on this platform\n");
3070 	}
3071 }
3072 
3073 static int i915_display_info(struct seq_file *m, void *unused)
3074 {
3075 	struct drm_info_node *node = m->private;
3076 	struct drm_device *dev = node->minor->dev;
3077 	struct drm_i915_private *dev_priv = dev->dev_private;
3078 	struct intel_crtc *crtc;
3079 	struct drm_connector *connector;
3080 
3081 	intel_runtime_pm_get(dev_priv);
3082 	drm_modeset_lock_all(dev);
3083 	seq_printf(m, "CRTC info\n");
3084 	seq_printf(m, "---------\n");
3085 	for_each_intel_crtc(dev, crtc) {
3086 		bool active;
3087 		struct intel_crtc_state *pipe_config;
3088 		int x, y;
3089 
3090 		pipe_config = to_intel_crtc_state(crtc->base.state);
3091 
3092 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3093 			   crtc->base.base.id, pipe_name(crtc->pipe),
3094 			   yesno(pipe_config->base.active),
3095 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3096 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3097 
3098 		if (pipe_config->base.active) {
3099 			intel_crtc_info(m, crtc);
3100 
3101 			active = cursor_position(dev, crtc->pipe, &x, &y);
3102 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3103 				   yesno(crtc->cursor_base),
3104 				   x, y, crtc->base.cursor->state->crtc_w,
3105 				   crtc->base.cursor->state->crtc_h,
3106 				   crtc->cursor_addr, yesno(active));
3107 			intel_scaler_info(m, crtc);
3108 			intel_plane_info(m, crtc);
3109 		}
3110 
3111 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3112 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3113 			   yesno(!crtc->pch_fifo_underrun_disabled));
3114 	}
3115 
3116 	seq_printf(m, "\n");
3117 	seq_printf(m, "Connector info\n");
3118 	seq_printf(m, "--------------\n");
3119 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3120 		intel_connector_info(m, connector);
3121 	}
3122 	drm_modeset_unlock_all(dev);
3123 	intel_runtime_pm_put(dev_priv);
3124 
3125 	return 0;
3126 }
3127 
3128 static int i915_semaphore_status(struct seq_file *m, void *unused)
3129 {
3130 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3131 	struct drm_device *dev = node->minor->dev;
3132 	struct drm_i915_private *dev_priv = dev->dev_private;
3133 	struct intel_engine_cs *ring;
3134 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3135 	int i, j, ret;
3136 
3137 	if (!i915_semaphore_is_enabled(dev)) {
3138 		seq_puts(m, "Semaphores are disabled\n");
3139 		return 0;
3140 	}
3141 
3142 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3143 	if (ret)
3144 		return ret;
3145 	intel_runtime_pm_get(dev_priv);
3146 
3147 	if (IS_BROADWELL(dev)) {
3148 		struct page *page;
3149 		uint64_t *seqno;
3150 
3151 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3152 
3153 		seqno = (uint64_t *)kmap_atomic(page);
3154 		for_each_ring(ring, dev_priv, i) {
3155 			uint64_t offset;
3156 
3157 			seq_printf(m, "%s\n", ring->name);
3158 
3159 			seq_puts(m, "  Last signal:");
3160 			for (j = 0; j < num_rings; j++) {
3161 				offset = i * I915_NUM_RINGS + j;
3162 				seq_printf(m, "0x%08llx (0x%02llx) ",
3163 					   seqno[offset], offset * 8);
3164 			}
3165 			seq_putc(m, '\n');
3166 
3167 			seq_puts(m, "  Last wait:  ");
3168 			for (j = 0; j < num_rings; j++) {
3169 				offset = i + (j * I915_NUM_RINGS);
3170 				seq_printf(m, "0x%08llx (0x%02llx) ",
3171 					   seqno[offset], offset * 8);
3172 			}
3173 			seq_putc(m, '\n');
3174 
3175 		}
3176 		kunmap_atomic(seqno);
3177 	} else {
3178 		seq_puts(m, "  Last signal:");
3179 		for_each_ring(ring, dev_priv, i)
3180 			for (j = 0; j < num_rings; j++)
3181 				seq_printf(m, "0x%08x\n",
3182 					   I915_READ(ring->semaphore.mbox.signal[j]));
3183 		seq_putc(m, '\n');
3184 	}
3185 
3186 	seq_puts(m, "\nSync seqno:\n");
3187 	for_each_ring(ring, dev_priv, i) {
3188 		for (j = 0; j < num_rings; j++) {
3189 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3190 		}
3191 		seq_putc(m, '\n');
3192 	}
3193 	seq_putc(m, '\n');
3194 
3195 	intel_runtime_pm_put(dev_priv);
3196 	mutex_unlock(&dev->struct_mutex);
3197 	return 0;
3198 }
3199 
3200 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3201 {
3202 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3203 	struct drm_device *dev = node->minor->dev;
3204 	struct drm_i915_private *dev_priv = dev->dev_private;
3205 	int i;
3206 
3207 	drm_modeset_lock_all(dev);
3208 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3209 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3210 
3211 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3212 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3213 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
3214 		seq_printf(m, " tracked hardware state:\n");
3215 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3216 		seq_printf(m, " dpll_md: 0x%08x\n",
3217 			   pll->config.hw_state.dpll_md);
3218 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3219 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3220 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3221 	}
3222 	drm_modeset_unlock_all(dev);
3223 
3224 	return 0;
3225 }
3226 
3227 static int i915_wa_registers(struct seq_file *m, void *unused)
3228 {
3229 	int i;
3230 	int ret;
3231 	struct intel_engine_cs *ring;
3232 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3233 	struct drm_device *dev = node->minor->dev;
3234 	struct drm_i915_private *dev_priv = dev->dev_private;
3235 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3236 
3237 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3238 	if (ret)
3239 		return ret;
3240 
3241 	intel_runtime_pm_get(dev_priv);
3242 
3243 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3244 	for_each_ring(ring, dev_priv, i)
3245 		seq_printf(m, "HW whitelist count for %s: %d\n",
3246 			   ring->name, workarounds->hw_whitelist_count[i]);
3247 	for (i = 0; i < workarounds->count; ++i) {
3248 		i915_reg_t addr;
3249 		u32 mask, value, read;
3250 		bool ok;
3251 
3252 		addr = workarounds->reg[i].addr;
3253 		mask = workarounds->reg[i].mask;
3254 		value = workarounds->reg[i].value;
3255 		read = I915_READ(addr);
3256 		ok = (value & mask) == (read & mask);
3257 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3258 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3259 	}
3260 
3261 	intel_runtime_pm_put(dev_priv);
3262 	mutex_unlock(&dev->struct_mutex);
3263 
3264 	return 0;
3265 }
3266 
3267 static int i915_ddb_info(struct seq_file *m, void *unused)
3268 {
3269 	struct drm_info_node *node = m->private;
3270 	struct drm_device *dev = node->minor->dev;
3271 	struct drm_i915_private *dev_priv = dev->dev_private;
3272 	struct skl_ddb_allocation *ddb;
3273 	struct skl_ddb_entry *entry;
3274 	enum pipe pipe;
3275 	int plane;
3276 
3277 	if (INTEL_INFO(dev)->gen < 9)
3278 		return 0;
3279 
3280 	drm_modeset_lock_all(dev);
3281 
3282 	ddb = &dev_priv->wm.skl_hw.ddb;
3283 
3284 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3285 
3286 	for_each_pipe(dev_priv, pipe) {
3287 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3288 
3289 		for_each_plane(dev_priv, pipe, plane) {
3290 			entry = &ddb->plane[pipe][plane];
3291 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3292 				   entry->start, entry->end,
3293 				   skl_ddb_entry_size(entry));
3294 		}
3295 
3296 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3297 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3298 			   entry->end, skl_ddb_entry_size(entry));
3299 	}
3300 
3301 	drm_modeset_unlock_all(dev);
3302 
3303 	return 0;
3304 }
3305 
3306 static void drrs_status_per_crtc(struct seq_file *m,
3307 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3308 {
3309 	struct intel_encoder *intel_encoder;
3310 	struct drm_i915_private *dev_priv = dev->dev_private;
3311 	struct i915_drrs *drrs = &dev_priv->drrs;
3312 	int vrefresh = 0;
3313 
3314 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3315 		/* Encoder connected on this CRTC */
3316 		switch (intel_encoder->type) {
3317 		case INTEL_OUTPUT_EDP:
3318 			seq_puts(m, "eDP:\n");
3319 			break;
3320 		case INTEL_OUTPUT_DSI:
3321 			seq_puts(m, "DSI:\n");
3322 			break;
3323 		case INTEL_OUTPUT_HDMI:
3324 			seq_puts(m, "HDMI:\n");
3325 			break;
3326 		case INTEL_OUTPUT_DISPLAYPORT:
3327 			seq_puts(m, "DP:\n");
3328 			break;
3329 		default:
3330 			seq_printf(m, "Other encoder (id=%d).\n",
3331 						intel_encoder->type);
3332 			return;
3333 		}
3334 	}
3335 
3336 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3337 		seq_puts(m, "\tVBT: DRRS_type: Static");
3338 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3339 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3340 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3341 		seq_puts(m, "\tVBT: DRRS_type: None");
3342 	else
3343 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3344 
3345 	seq_puts(m, "\n\n");
3346 
3347 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3348 		struct intel_panel *panel;
3349 
3350 		mutex_lock(&drrs->mutex);
3351 		/* DRRS Supported */
3352 		seq_puts(m, "\tDRRS Supported: Yes\n");
3353 
3354 		/* disable_drrs() will make drrs->dp NULL */
3355 		if (!drrs->dp) {
3356 			seq_puts(m, "Idleness DRRS: Disabled");
3357 			mutex_unlock(&drrs->mutex);
3358 			return;
3359 		}
3360 
3361 		panel = &drrs->dp->attached_connector->panel;
3362 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3363 					drrs->busy_frontbuffer_bits);
3364 
3365 		seq_puts(m, "\n\t\t");
3366 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3367 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3368 			vrefresh = panel->fixed_mode->vrefresh;
3369 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3370 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3371 			vrefresh = panel->downclock_mode->vrefresh;
3372 		} else {
3373 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3374 						drrs->refresh_rate_type);
3375 			mutex_unlock(&drrs->mutex);
3376 			return;
3377 		}
3378 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3379 
3380 		seq_puts(m, "\n\t\t");
3381 		mutex_unlock(&drrs->mutex);
3382 	} else {
3383 		/* DRRS not supported. Print the VBT parameter*/
3384 		seq_puts(m, "\tDRRS Supported : No");
3385 	}
3386 	seq_puts(m, "\n");
3387 }
3388 
3389 static int i915_drrs_status(struct seq_file *m, void *unused)
3390 {
3391 	struct drm_info_node *node = m->private;
3392 	struct drm_device *dev = node->minor->dev;
3393 	struct intel_crtc *intel_crtc;
3394 	int active_crtc_cnt = 0;
3395 
3396 	for_each_intel_crtc(dev, intel_crtc) {
3397 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3398 
3399 		if (intel_crtc->base.state->active) {
3400 			active_crtc_cnt++;
3401 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3402 
3403 			drrs_status_per_crtc(m, dev, intel_crtc);
3404 		}
3405 
3406 		drm_modeset_unlock(&intel_crtc->base.mutex);
3407 	}
3408 
3409 	if (!active_crtc_cnt)
3410 		seq_puts(m, "No active crtc found\n");
3411 
3412 	return 0;
3413 }
3414 
3415 struct pipe_crc_info {
3416 	const char *name;
3417 	struct drm_device *dev;
3418 	enum pipe pipe;
3419 };
3420 
3421 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3422 {
3423 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3424 	struct drm_device *dev = node->minor->dev;
3425 	struct drm_encoder *encoder;
3426 	struct intel_encoder *intel_encoder;
3427 	struct intel_digital_port *intel_dig_port;
3428 	drm_modeset_lock_all(dev);
3429 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3430 		intel_encoder = to_intel_encoder(encoder);
3431 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3432 			continue;
3433 		intel_dig_port = enc_to_dig_port(encoder);
3434 		if (!intel_dig_port->dp.can_mst)
3435 			continue;
3436 
3437 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3438 	}
3439 	drm_modeset_unlock_all(dev);
3440 	return 0;
3441 }
3442 
3443 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3444 {
3445 	struct pipe_crc_info *info = inode->i_private;
3446 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3447 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3448 
3449 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3450 		return -ENODEV;
3451 
3452 	spin_lock_irq(&pipe_crc->lock);
3453 
3454 	if (pipe_crc->opened) {
3455 		spin_unlock_irq(&pipe_crc->lock);
3456 		return -EBUSY; /* already open */
3457 	}
3458 
3459 	pipe_crc->opened = true;
3460 	filep->private_data = inode->i_private;
3461 
3462 	spin_unlock_irq(&pipe_crc->lock);
3463 
3464 	return 0;
3465 }
3466 
3467 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3468 {
3469 	struct pipe_crc_info *info = inode->i_private;
3470 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3471 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3472 
3473 	spin_lock_irq(&pipe_crc->lock);
3474 	pipe_crc->opened = false;
3475 	spin_unlock_irq(&pipe_crc->lock);
3476 
3477 	return 0;
3478 }
3479 
3480 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3481 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3482 /* account for \'0' */
3483 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3484 
3485 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3486 {
3487 	assert_spin_locked(&pipe_crc->lock);
3488 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3489 			INTEL_PIPE_CRC_ENTRIES_NR);
3490 }
3491 
3492 static ssize_t
3493 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3494 		   loff_t *pos)
3495 {
3496 	struct pipe_crc_info *info = filep->private_data;
3497 	struct drm_device *dev = info->dev;
3498 	struct drm_i915_private *dev_priv = dev->dev_private;
3499 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3500 	char buf[PIPE_CRC_BUFFER_LEN];
3501 	int n_entries;
3502 	ssize_t bytes_read;
3503 
3504 	/*
3505 	 * Don't allow user space to provide buffers not big enough to hold
3506 	 * a line of data.
3507 	 */
3508 	if (count < PIPE_CRC_LINE_LEN)
3509 		return -EINVAL;
3510 
3511 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3512 		return 0;
3513 
3514 	/* nothing to read */
3515 	spin_lock_irq(&pipe_crc->lock);
3516 	while (pipe_crc_data_count(pipe_crc) == 0) {
3517 		int ret;
3518 
3519 		if (filep->f_flags & O_NONBLOCK) {
3520 			spin_unlock_irq(&pipe_crc->lock);
3521 			return -EAGAIN;
3522 		}
3523 
3524 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3525 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3526 		if (ret) {
3527 			spin_unlock_irq(&pipe_crc->lock);
3528 			return ret;
3529 		}
3530 	}
3531 
3532 	/* We now have one or more entries to read */
3533 	n_entries = count / PIPE_CRC_LINE_LEN;
3534 
3535 	bytes_read = 0;
3536 	while (n_entries > 0) {
3537 		struct intel_pipe_crc_entry *entry =
3538 			&pipe_crc->entries[pipe_crc->tail];
3539 		int ret;
3540 
3541 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3542 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3543 			break;
3544 
3545 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3546 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3547 
3548 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3549 				       "%8u %8x %8x %8x %8x %8x\n",
3550 				       entry->frame, entry->crc[0],
3551 				       entry->crc[1], entry->crc[2],
3552 				       entry->crc[3], entry->crc[4]);
3553 
3554 		spin_unlock_irq(&pipe_crc->lock);
3555 
3556 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3557 		if (ret == PIPE_CRC_LINE_LEN)
3558 			return -EFAULT;
3559 
3560 		user_buf += PIPE_CRC_LINE_LEN;
3561 		n_entries--;
3562 
3563 		spin_lock_irq(&pipe_crc->lock);
3564 	}
3565 
3566 	spin_unlock_irq(&pipe_crc->lock);
3567 
3568 	return bytes_read;
3569 }
3570 
3571 static const struct file_operations i915_pipe_crc_fops = {
3572 	.owner = THIS_MODULE,
3573 	.open = i915_pipe_crc_open,
3574 	.read = i915_pipe_crc_read,
3575 	.release = i915_pipe_crc_release,
3576 };
3577 
3578 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3579 	{
3580 		.name = "i915_pipe_A_crc",
3581 		.pipe = PIPE_A,
3582 	},
3583 	{
3584 		.name = "i915_pipe_B_crc",
3585 		.pipe = PIPE_B,
3586 	},
3587 	{
3588 		.name = "i915_pipe_C_crc",
3589 		.pipe = PIPE_C,
3590 	},
3591 };
3592 
3593 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3594 				enum pipe pipe)
3595 {
3596 	struct drm_device *dev = minor->dev;
3597 	struct dentry *ent;
3598 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3599 
3600 	info->dev = dev;
3601 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3602 				  &i915_pipe_crc_fops);
3603 	if (!ent)
3604 		return -ENOMEM;
3605 
3606 	return drm_add_fake_info_node(minor, ent, info);
3607 }
3608 
3609 static const char * const pipe_crc_sources[] = {
3610 	"none",
3611 	"plane1",
3612 	"plane2",
3613 	"pf",
3614 	"pipe",
3615 	"TV",
3616 	"DP-B",
3617 	"DP-C",
3618 	"DP-D",
3619 	"auto",
3620 };
3621 
3622 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3623 {
3624 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3625 	return pipe_crc_sources[source];
3626 }
3627 
3628 static int display_crc_ctl_show(struct seq_file *m, void *data)
3629 {
3630 	struct drm_device *dev = m->private;
3631 	struct drm_i915_private *dev_priv = dev->dev_private;
3632 	int i;
3633 
3634 	for (i = 0; i < I915_MAX_PIPES; i++)
3635 		seq_printf(m, "%c %s\n", pipe_name(i),
3636 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3637 
3638 	return 0;
3639 }
3640 
3641 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3642 {
3643 	struct drm_device *dev = inode->i_private;
3644 
3645 	return single_open(file, display_crc_ctl_show, dev);
3646 }
3647 
3648 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3649 				 uint32_t *val)
3650 {
3651 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3652 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3653 
3654 	switch (*source) {
3655 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3656 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3657 		break;
3658 	case INTEL_PIPE_CRC_SOURCE_NONE:
3659 		*val = 0;
3660 		break;
3661 	default:
3662 		return -EINVAL;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3669 				     enum intel_pipe_crc_source *source)
3670 {
3671 	struct intel_encoder *encoder;
3672 	struct intel_crtc *crtc;
3673 	struct intel_digital_port *dig_port;
3674 	int ret = 0;
3675 
3676 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3677 
3678 	drm_modeset_lock_all(dev);
3679 	for_each_intel_encoder(dev, encoder) {
3680 		if (!encoder->base.crtc)
3681 			continue;
3682 
3683 		crtc = to_intel_crtc(encoder->base.crtc);
3684 
3685 		if (crtc->pipe != pipe)
3686 			continue;
3687 
3688 		switch (encoder->type) {
3689 		case INTEL_OUTPUT_TVOUT:
3690 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3691 			break;
3692 		case INTEL_OUTPUT_DISPLAYPORT:
3693 		case INTEL_OUTPUT_EDP:
3694 			dig_port = enc_to_dig_port(&encoder->base);
3695 			switch (dig_port->port) {
3696 			case PORT_B:
3697 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3698 				break;
3699 			case PORT_C:
3700 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3701 				break;
3702 			case PORT_D:
3703 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3704 				break;
3705 			default:
3706 				WARN(1, "nonexisting DP port %c\n",
3707 				     port_name(dig_port->port));
3708 				break;
3709 			}
3710 			break;
3711 		default:
3712 			break;
3713 		}
3714 	}
3715 	drm_modeset_unlock_all(dev);
3716 
3717 	return ret;
3718 }
3719 
3720 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3721 				enum pipe pipe,
3722 				enum intel_pipe_crc_source *source,
3723 				uint32_t *val)
3724 {
3725 	struct drm_i915_private *dev_priv = dev->dev_private;
3726 	bool need_stable_symbols = false;
3727 
3728 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3729 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3730 		if (ret)
3731 			return ret;
3732 	}
3733 
3734 	switch (*source) {
3735 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3736 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3737 		break;
3738 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3739 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3740 		need_stable_symbols = true;
3741 		break;
3742 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3743 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3744 		need_stable_symbols = true;
3745 		break;
3746 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3747 		if (!IS_CHERRYVIEW(dev))
3748 			return -EINVAL;
3749 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3750 		need_stable_symbols = true;
3751 		break;
3752 	case INTEL_PIPE_CRC_SOURCE_NONE:
3753 		*val = 0;
3754 		break;
3755 	default:
3756 		return -EINVAL;
3757 	}
3758 
3759 	/*
3760 	 * When the pipe CRC tap point is after the transcoders we need
3761 	 * to tweak symbol-level features to produce a deterministic series of
3762 	 * symbols for a given frame. We need to reset those features only once
3763 	 * a frame (instead of every nth symbol):
3764 	 *   - DC-balance: used to ensure a better clock recovery from the data
3765 	 *     link (SDVO)
3766 	 *   - DisplayPort scrambling: used for EMI reduction
3767 	 */
3768 	if (need_stable_symbols) {
3769 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3770 
3771 		tmp |= DC_BALANCE_RESET_VLV;
3772 		switch (pipe) {
3773 		case PIPE_A:
3774 			tmp |= PIPE_A_SCRAMBLE_RESET;
3775 			break;
3776 		case PIPE_B:
3777 			tmp |= PIPE_B_SCRAMBLE_RESET;
3778 			break;
3779 		case PIPE_C:
3780 			tmp |= PIPE_C_SCRAMBLE_RESET;
3781 			break;
3782 		default:
3783 			return -EINVAL;
3784 		}
3785 		I915_WRITE(PORT_DFT2_G4X, tmp);
3786 	}
3787 
3788 	return 0;
3789 }
3790 
3791 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3792 				 enum pipe pipe,
3793 				 enum intel_pipe_crc_source *source,
3794 				 uint32_t *val)
3795 {
3796 	struct drm_i915_private *dev_priv = dev->dev_private;
3797 	bool need_stable_symbols = false;
3798 
3799 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3800 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3801 		if (ret)
3802 			return ret;
3803 	}
3804 
3805 	switch (*source) {
3806 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3807 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3808 		break;
3809 	case INTEL_PIPE_CRC_SOURCE_TV:
3810 		if (!SUPPORTS_TV(dev))
3811 			return -EINVAL;
3812 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3813 		break;
3814 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3815 		if (!IS_G4X(dev))
3816 			return -EINVAL;
3817 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3818 		need_stable_symbols = true;
3819 		break;
3820 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3821 		if (!IS_G4X(dev))
3822 			return -EINVAL;
3823 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3824 		need_stable_symbols = true;
3825 		break;
3826 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3827 		if (!IS_G4X(dev))
3828 			return -EINVAL;
3829 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3830 		need_stable_symbols = true;
3831 		break;
3832 	case INTEL_PIPE_CRC_SOURCE_NONE:
3833 		*val = 0;
3834 		break;
3835 	default:
3836 		return -EINVAL;
3837 	}
3838 
3839 	/*
3840 	 * When the pipe CRC tap point is after the transcoders we need
3841 	 * to tweak symbol-level features to produce a deterministic series of
3842 	 * symbols for a given frame. We need to reset those features only once
3843 	 * a frame (instead of every nth symbol):
3844 	 *   - DC-balance: used to ensure a better clock recovery from the data
3845 	 *     link (SDVO)
3846 	 *   - DisplayPort scrambling: used for EMI reduction
3847 	 */
3848 	if (need_stable_symbols) {
3849 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850 
3851 		WARN_ON(!IS_G4X(dev));
3852 
3853 		I915_WRITE(PORT_DFT_I9XX,
3854 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3855 
3856 		if (pipe == PIPE_A)
3857 			tmp |= PIPE_A_SCRAMBLE_RESET;
3858 		else
3859 			tmp |= PIPE_B_SCRAMBLE_RESET;
3860 
3861 		I915_WRITE(PORT_DFT2_G4X, tmp);
3862 	}
3863 
3864 	return 0;
3865 }
3866 
3867 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3868 					 enum pipe pipe)
3869 {
3870 	struct drm_i915_private *dev_priv = dev->dev_private;
3871 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3872 
3873 	switch (pipe) {
3874 	case PIPE_A:
3875 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3876 		break;
3877 	case PIPE_B:
3878 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3879 		break;
3880 	case PIPE_C:
3881 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3882 		break;
3883 	default:
3884 		return;
3885 	}
3886 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3887 		tmp &= ~DC_BALANCE_RESET_VLV;
3888 	I915_WRITE(PORT_DFT2_G4X, tmp);
3889 
3890 }
3891 
3892 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3893 					 enum pipe pipe)
3894 {
3895 	struct drm_i915_private *dev_priv = dev->dev_private;
3896 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3897 
3898 	if (pipe == PIPE_A)
3899 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3900 	else
3901 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3902 	I915_WRITE(PORT_DFT2_G4X, tmp);
3903 
3904 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3905 		I915_WRITE(PORT_DFT_I9XX,
3906 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3907 	}
3908 }
3909 
3910 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3911 				uint32_t *val)
3912 {
3913 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3914 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3915 
3916 	switch (*source) {
3917 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3918 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3919 		break;
3920 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3921 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3922 		break;
3923 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3924 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3925 		break;
3926 	case INTEL_PIPE_CRC_SOURCE_NONE:
3927 		*val = 0;
3928 		break;
3929 	default:
3930 		return -EINVAL;
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3937 {
3938 	struct drm_i915_private *dev_priv = dev->dev_private;
3939 	struct intel_crtc *crtc =
3940 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3941 	struct intel_crtc_state *pipe_config;
3942 	struct drm_atomic_state *state;
3943 	int ret = 0;
3944 
3945 	drm_modeset_lock_all(dev);
3946 	state = drm_atomic_state_alloc(dev);
3947 	if (!state) {
3948 		ret = -ENOMEM;
3949 		goto out;
3950 	}
3951 
3952 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3953 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3954 	if (IS_ERR(pipe_config)) {
3955 		ret = PTR_ERR(pipe_config);
3956 		goto out;
3957 	}
3958 
3959 	pipe_config->pch_pfit.force_thru = enable;
3960 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3961 	    pipe_config->pch_pfit.enabled != enable)
3962 		pipe_config->base.connectors_changed = true;
3963 
3964 	ret = drm_atomic_commit(state);
3965 out:
3966 	drm_modeset_unlock_all(dev);
3967 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3968 	if (ret)
3969 		drm_atomic_state_free(state);
3970 }
3971 
3972 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3973 				enum pipe pipe,
3974 				enum intel_pipe_crc_source *source,
3975 				uint32_t *val)
3976 {
3977 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3978 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3979 
3980 	switch (*source) {
3981 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3982 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3983 		break;
3984 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3985 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3986 		break;
3987 	case INTEL_PIPE_CRC_SOURCE_PF:
3988 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3989 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
3990 
3991 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3992 		break;
3993 	case INTEL_PIPE_CRC_SOURCE_NONE:
3994 		*val = 0;
3995 		break;
3996 	default:
3997 		return -EINVAL;
3998 	}
3999 
4000 	return 0;
4001 }
4002 
4003 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4004 			       enum intel_pipe_crc_source source)
4005 {
4006 	struct drm_i915_private *dev_priv = dev->dev_private;
4007 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4008 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4009 									pipe));
4010 	enum intel_display_power_domain power_domain;
4011 	u32 val = 0; /* shut up gcc */
4012 	int ret;
4013 
4014 	if (pipe_crc->source == source)
4015 		return 0;
4016 
4017 	/* forbid changing the source without going back to 'none' */
4018 	if (pipe_crc->source && source)
4019 		return -EINVAL;
4020 
4021 	power_domain = POWER_DOMAIN_PIPE(pipe);
4022 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4023 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4024 		return -EIO;
4025 	}
4026 
4027 	if (IS_GEN2(dev))
4028 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4029 	else if (INTEL_INFO(dev)->gen < 5)
4030 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4031 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4032 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4033 	else if (IS_GEN5(dev) || IS_GEN6(dev))
4034 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4035 	else
4036 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4037 
4038 	if (ret != 0)
4039 		goto out;
4040 
4041 	/* none -> real source transition */
4042 	if (source) {
4043 		struct intel_pipe_crc_entry *entries;
4044 
4045 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4046 				 pipe_name(pipe), pipe_crc_source_name(source));
4047 
4048 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4049 				  sizeof(pipe_crc->entries[0]),
4050 				  GFP_KERNEL);
4051 		if (!entries) {
4052 			ret = -ENOMEM;
4053 			goto out;
4054 		}
4055 
4056 		/*
4057 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4058 		 * enabled and disabled dynamically based on package C states,
4059 		 * user space can't make reliable use of the CRCs, so let's just
4060 		 * completely disable it.
4061 		 */
4062 		hsw_disable_ips(crtc);
4063 
4064 		spin_lock_irq(&pipe_crc->lock);
4065 		kfree(pipe_crc->entries);
4066 		pipe_crc->entries = entries;
4067 		pipe_crc->head = 0;
4068 		pipe_crc->tail = 0;
4069 		spin_unlock_irq(&pipe_crc->lock);
4070 	}
4071 
4072 	pipe_crc->source = source;
4073 
4074 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4075 	POSTING_READ(PIPE_CRC_CTL(pipe));
4076 
4077 	/* real source -> none transition */
4078 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4079 		struct intel_pipe_crc_entry *entries;
4080 		struct intel_crtc *crtc =
4081 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4082 
4083 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4084 				 pipe_name(pipe));
4085 
4086 		drm_modeset_lock(&crtc->base.mutex, NULL);
4087 		if (crtc->base.state->active)
4088 			intel_wait_for_vblank(dev, pipe);
4089 		drm_modeset_unlock(&crtc->base.mutex);
4090 
4091 		spin_lock_irq(&pipe_crc->lock);
4092 		entries = pipe_crc->entries;
4093 		pipe_crc->entries = NULL;
4094 		pipe_crc->head = 0;
4095 		pipe_crc->tail = 0;
4096 		spin_unlock_irq(&pipe_crc->lock);
4097 
4098 		kfree(entries);
4099 
4100 		if (IS_G4X(dev))
4101 			g4x_undo_pipe_scramble_reset(dev, pipe);
4102 		else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4103 			vlv_undo_pipe_scramble_reset(dev, pipe);
4104 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
4105 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
4106 
4107 		hsw_enable_ips(crtc);
4108 	}
4109 
4110 	ret = 0;
4111 
4112 out:
4113 	intel_display_power_put(dev_priv, power_domain);
4114 
4115 	return ret;
4116 }
4117 
4118 /*
4119  * Parse pipe CRC command strings:
4120  *   command: wsp* object wsp+ name wsp+ source wsp*
4121  *   object: 'pipe'
4122  *   name: (A | B | C)
4123  *   source: (none | plane1 | plane2 | pf)
4124  *   wsp: (#0x20 | #0x9 | #0xA)+
4125  *
4126  * eg.:
4127  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4128  *  "pipe A none"    ->  Stop CRC
4129  */
4130 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4131 {
4132 	int n_words = 0;
4133 
4134 	while (*buf) {
4135 		char *end;
4136 
4137 		/* skip leading white space */
4138 		buf = skip_spaces(buf);
4139 		if (!*buf)
4140 			break;	/* end of buffer */
4141 
4142 		/* find end of word */
4143 		for (end = buf; *end && !isspace(*end); end++)
4144 			;
4145 
4146 		if (n_words == max_words) {
4147 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4148 					 max_words);
4149 			return -EINVAL;	/* ran out of words[] before bytes */
4150 		}
4151 
4152 		if (*end)
4153 			*end++ = '\0';
4154 		words[n_words++] = buf;
4155 		buf = end;
4156 	}
4157 
4158 	return n_words;
4159 }
4160 
4161 enum intel_pipe_crc_object {
4162 	PIPE_CRC_OBJECT_PIPE,
4163 };
4164 
4165 static const char * const pipe_crc_objects[] = {
4166 	"pipe",
4167 };
4168 
4169 static int
4170 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4171 {
4172 	int i;
4173 
4174 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4175 		if (!strcmp(buf, pipe_crc_objects[i])) {
4176 			*o = i;
4177 			return 0;
4178 		    }
4179 
4180 	return -EINVAL;
4181 }
4182 
4183 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4184 {
4185 	const char name = buf[0];
4186 
4187 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4188 		return -EINVAL;
4189 
4190 	*pipe = name - 'A';
4191 
4192 	return 0;
4193 }
4194 
4195 static int
4196 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4197 {
4198 	int i;
4199 
4200 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4201 		if (!strcmp(buf, pipe_crc_sources[i])) {
4202 			*s = i;
4203 			return 0;
4204 		    }
4205 
4206 	return -EINVAL;
4207 }
4208 
4209 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4210 {
4211 #define N_WORDS 3
4212 	int n_words;
4213 	char *words[N_WORDS];
4214 	enum pipe pipe;
4215 	enum intel_pipe_crc_object object;
4216 	enum intel_pipe_crc_source source;
4217 
4218 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4219 	if (n_words != N_WORDS) {
4220 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4221 				 N_WORDS);
4222 		return -EINVAL;
4223 	}
4224 
4225 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4226 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4227 		return -EINVAL;
4228 	}
4229 
4230 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4231 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4232 		return -EINVAL;
4233 	}
4234 
4235 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4236 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4237 		return -EINVAL;
4238 	}
4239 
4240 	return pipe_crc_set_source(dev, pipe, source);
4241 }
4242 
4243 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4244 				     size_t len, loff_t *offp)
4245 {
4246 	struct seq_file *m = file->private_data;
4247 	struct drm_device *dev = m->private;
4248 	char *tmpbuf;
4249 	int ret;
4250 
4251 	if (len == 0)
4252 		return 0;
4253 
4254 	if (len > PAGE_SIZE - 1) {
4255 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4256 				 PAGE_SIZE);
4257 		return -E2BIG;
4258 	}
4259 
4260 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4261 	if (!tmpbuf)
4262 		return -ENOMEM;
4263 
4264 	if (copy_from_user(tmpbuf, ubuf, len)) {
4265 		ret = -EFAULT;
4266 		goto out;
4267 	}
4268 	tmpbuf[len] = '\0';
4269 
4270 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4271 
4272 out:
4273 	kfree(tmpbuf);
4274 	if (ret < 0)
4275 		return ret;
4276 
4277 	*offp += len;
4278 	return len;
4279 }
4280 
4281 static const struct file_operations i915_display_crc_ctl_fops = {
4282 	.owner = THIS_MODULE,
4283 	.open = display_crc_ctl_open,
4284 	.read = seq_read,
4285 	.llseek = seq_lseek,
4286 	.release = single_release,
4287 	.write = display_crc_ctl_write
4288 };
4289 
4290 static ssize_t i915_displayport_test_active_write(struct file *file,
4291 					    const char __user *ubuf,
4292 					    size_t len, loff_t *offp)
4293 {
4294 	char *input_buffer;
4295 	int status = 0;
4296 	struct drm_device *dev;
4297 	struct drm_connector *connector;
4298 	struct list_head *connector_list;
4299 	struct intel_dp *intel_dp;
4300 	int val = 0;
4301 
4302 	dev = ((struct seq_file *)file->private_data)->private;
4303 
4304 	connector_list = &dev->mode_config.connector_list;
4305 
4306 	if (len == 0)
4307 		return 0;
4308 
4309 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4310 	if (!input_buffer)
4311 		return -ENOMEM;
4312 
4313 	if (copy_from_user(input_buffer, ubuf, len)) {
4314 		status = -EFAULT;
4315 		goto out;
4316 	}
4317 
4318 	input_buffer[len] = '\0';
4319 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4320 
4321 	list_for_each_entry(connector, connector_list, head) {
4322 
4323 		if (connector->connector_type !=
4324 		    DRM_MODE_CONNECTOR_DisplayPort)
4325 			continue;
4326 
4327 		if (connector->status == connector_status_connected &&
4328 		    connector->encoder != NULL) {
4329 			intel_dp = enc_to_intel_dp(connector->encoder);
4330 			status = kstrtoint(input_buffer, 10, &val);
4331 			if (status < 0)
4332 				goto out;
4333 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4334 			/* To prevent erroneous activation of the compliance
4335 			 * testing code, only accept an actual value of 1 here
4336 			 */
4337 			if (val == 1)
4338 				intel_dp->compliance_test_active = 1;
4339 			else
4340 				intel_dp->compliance_test_active = 0;
4341 		}
4342 	}
4343 out:
4344 	kfree(input_buffer);
4345 	if (status < 0)
4346 		return status;
4347 
4348 	*offp += len;
4349 	return len;
4350 }
4351 
4352 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4353 {
4354 	struct drm_device *dev = m->private;
4355 	struct drm_connector *connector;
4356 	struct list_head *connector_list = &dev->mode_config.connector_list;
4357 	struct intel_dp *intel_dp;
4358 
4359 	list_for_each_entry(connector, connector_list, head) {
4360 
4361 		if (connector->connector_type !=
4362 		    DRM_MODE_CONNECTOR_DisplayPort)
4363 			continue;
4364 
4365 		if (connector->status == connector_status_connected &&
4366 		    connector->encoder != NULL) {
4367 			intel_dp = enc_to_intel_dp(connector->encoder);
4368 			if (intel_dp->compliance_test_active)
4369 				seq_puts(m, "1");
4370 			else
4371 				seq_puts(m, "0");
4372 		} else
4373 			seq_puts(m, "0");
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 static int i915_displayport_test_active_open(struct inode *inode,
4380 				       struct file *file)
4381 {
4382 	struct drm_device *dev = inode->i_private;
4383 
4384 	return single_open(file, i915_displayport_test_active_show, dev);
4385 }
4386 
4387 static const struct file_operations i915_displayport_test_active_fops = {
4388 	.owner = THIS_MODULE,
4389 	.open = i915_displayport_test_active_open,
4390 	.read = seq_read,
4391 	.llseek = seq_lseek,
4392 	.release = single_release,
4393 	.write = i915_displayport_test_active_write
4394 };
4395 
4396 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4397 {
4398 	struct drm_device *dev = m->private;
4399 	struct drm_connector *connector;
4400 	struct list_head *connector_list = &dev->mode_config.connector_list;
4401 	struct intel_dp *intel_dp;
4402 
4403 	list_for_each_entry(connector, connector_list, head) {
4404 
4405 		if (connector->connector_type !=
4406 		    DRM_MODE_CONNECTOR_DisplayPort)
4407 			continue;
4408 
4409 		if (connector->status == connector_status_connected &&
4410 		    connector->encoder != NULL) {
4411 			intel_dp = enc_to_intel_dp(connector->encoder);
4412 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4413 		} else
4414 			seq_puts(m, "0");
4415 	}
4416 
4417 	return 0;
4418 }
4419 static int i915_displayport_test_data_open(struct inode *inode,
4420 				       struct file *file)
4421 {
4422 	struct drm_device *dev = inode->i_private;
4423 
4424 	return single_open(file, i915_displayport_test_data_show, dev);
4425 }
4426 
4427 static const struct file_operations i915_displayport_test_data_fops = {
4428 	.owner = THIS_MODULE,
4429 	.open = i915_displayport_test_data_open,
4430 	.read = seq_read,
4431 	.llseek = seq_lseek,
4432 	.release = single_release
4433 };
4434 
4435 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4436 {
4437 	struct drm_device *dev = m->private;
4438 	struct drm_connector *connector;
4439 	struct list_head *connector_list = &dev->mode_config.connector_list;
4440 	struct intel_dp *intel_dp;
4441 
4442 	list_for_each_entry(connector, connector_list, head) {
4443 
4444 		if (connector->connector_type !=
4445 		    DRM_MODE_CONNECTOR_DisplayPort)
4446 			continue;
4447 
4448 		if (connector->status == connector_status_connected &&
4449 		    connector->encoder != NULL) {
4450 			intel_dp = enc_to_intel_dp(connector->encoder);
4451 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4452 		} else
4453 			seq_puts(m, "0");
4454 	}
4455 
4456 	return 0;
4457 }
4458 
4459 static int i915_displayport_test_type_open(struct inode *inode,
4460 				       struct file *file)
4461 {
4462 	struct drm_device *dev = inode->i_private;
4463 
4464 	return single_open(file, i915_displayport_test_type_show, dev);
4465 }
4466 
4467 static const struct file_operations i915_displayport_test_type_fops = {
4468 	.owner = THIS_MODULE,
4469 	.open = i915_displayport_test_type_open,
4470 	.read = seq_read,
4471 	.llseek = seq_lseek,
4472 	.release = single_release
4473 };
4474 
4475 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4476 {
4477 	struct drm_device *dev = m->private;
4478 	int level;
4479 	int num_levels;
4480 
4481 	if (IS_CHERRYVIEW(dev))
4482 		num_levels = 3;
4483 	else if (IS_VALLEYVIEW(dev))
4484 		num_levels = 1;
4485 	else
4486 		num_levels = ilk_wm_max_level(dev) + 1;
4487 
4488 	drm_modeset_lock_all(dev);
4489 
4490 	for (level = 0; level < num_levels; level++) {
4491 		unsigned int latency = wm[level];
4492 
4493 		/*
4494 		 * - WM1+ latency values in 0.5us units
4495 		 * - latencies are in us on gen9/vlv/chv
4496 		 */
4497 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4498 		    IS_CHERRYVIEW(dev))
4499 			latency *= 10;
4500 		else if (level > 0)
4501 			latency *= 5;
4502 
4503 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4504 			   level, wm[level], latency / 10, latency % 10);
4505 	}
4506 
4507 	drm_modeset_unlock_all(dev);
4508 }
4509 
4510 static int pri_wm_latency_show(struct seq_file *m, void *data)
4511 {
4512 	struct drm_device *dev = m->private;
4513 	struct drm_i915_private *dev_priv = dev->dev_private;
4514 	const uint16_t *latencies;
4515 
4516 	if (INTEL_INFO(dev)->gen >= 9)
4517 		latencies = dev_priv->wm.skl_latency;
4518 	else
4519 		latencies = to_i915(dev)->wm.pri_latency;
4520 
4521 	wm_latency_show(m, latencies);
4522 
4523 	return 0;
4524 }
4525 
4526 static int spr_wm_latency_show(struct seq_file *m, void *data)
4527 {
4528 	struct drm_device *dev = m->private;
4529 	struct drm_i915_private *dev_priv = dev->dev_private;
4530 	const uint16_t *latencies;
4531 
4532 	if (INTEL_INFO(dev)->gen >= 9)
4533 		latencies = dev_priv->wm.skl_latency;
4534 	else
4535 		latencies = to_i915(dev)->wm.spr_latency;
4536 
4537 	wm_latency_show(m, latencies);
4538 
4539 	return 0;
4540 }
4541 
4542 static int cur_wm_latency_show(struct seq_file *m, void *data)
4543 {
4544 	struct drm_device *dev = m->private;
4545 	struct drm_i915_private *dev_priv = dev->dev_private;
4546 	const uint16_t *latencies;
4547 
4548 	if (INTEL_INFO(dev)->gen >= 9)
4549 		latencies = dev_priv->wm.skl_latency;
4550 	else
4551 		latencies = to_i915(dev)->wm.cur_latency;
4552 
4553 	wm_latency_show(m, latencies);
4554 
4555 	return 0;
4556 }
4557 
4558 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4559 {
4560 	struct drm_device *dev = inode->i_private;
4561 
4562 	if (INTEL_INFO(dev)->gen < 5)
4563 		return -ENODEV;
4564 
4565 	return single_open(file, pri_wm_latency_show, dev);
4566 }
4567 
4568 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4569 {
4570 	struct drm_device *dev = inode->i_private;
4571 
4572 	if (HAS_GMCH_DISPLAY(dev))
4573 		return -ENODEV;
4574 
4575 	return single_open(file, spr_wm_latency_show, dev);
4576 }
4577 
4578 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4579 {
4580 	struct drm_device *dev = inode->i_private;
4581 
4582 	if (HAS_GMCH_DISPLAY(dev))
4583 		return -ENODEV;
4584 
4585 	return single_open(file, cur_wm_latency_show, dev);
4586 }
4587 
4588 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4589 				size_t len, loff_t *offp, uint16_t wm[8])
4590 {
4591 	struct seq_file *m = file->private_data;
4592 	struct drm_device *dev = m->private;
4593 	uint16_t new[8] = { 0 };
4594 	int num_levels;
4595 	int level;
4596 	int ret;
4597 	char tmp[32];
4598 
4599 	if (IS_CHERRYVIEW(dev))
4600 		num_levels = 3;
4601 	else if (IS_VALLEYVIEW(dev))
4602 		num_levels = 1;
4603 	else
4604 		num_levels = ilk_wm_max_level(dev) + 1;
4605 
4606 	if (len >= sizeof(tmp))
4607 		return -EINVAL;
4608 
4609 	if (copy_from_user(tmp, ubuf, len))
4610 		return -EFAULT;
4611 
4612 	tmp[len] = '\0';
4613 
4614 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4615 		     &new[0], &new[1], &new[2], &new[3],
4616 		     &new[4], &new[5], &new[6], &new[7]);
4617 	if (ret != num_levels)
4618 		return -EINVAL;
4619 
4620 	drm_modeset_lock_all(dev);
4621 
4622 	for (level = 0; level < num_levels; level++)
4623 		wm[level] = new[level];
4624 
4625 	drm_modeset_unlock_all(dev);
4626 
4627 	return len;
4628 }
4629 
4630 
4631 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4632 				    size_t len, loff_t *offp)
4633 {
4634 	struct seq_file *m = file->private_data;
4635 	struct drm_device *dev = m->private;
4636 	struct drm_i915_private *dev_priv = dev->dev_private;
4637 	uint16_t *latencies;
4638 
4639 	if (INTEL_INFO(dev)->gen >= 9)
4640 		latencies = dev_priv->wm.skl_latency;
4641 	else
4642 		latencies = to_i915(dev)->wm.pri_latency;
4643 
4644 	return wm_latency_write(file, ubuf, len, offp, latencies);
4645 }
4646 
4647 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4648 				    size_t len, loff_t *offp)
4649 {
4650 	struct seq_file *m = file->private_data;
4651 	struct drm_device *dev = m->private;
4652 	struct drm_i915_private *dev_priv = dev->dev_private;
4653 	uint16_t *latencies;
4654 
4655 	if (INTEL_INFO(dev)->gen >= 9)
4656 		latencies = dev_priv->wm.skl_latency;
4657 	else
4658 		latencies = to_i915(dev)->wm.spr_latency;
4659 
4660 	return wm_latency_write(file, ubuf, len, offp, latencies);
4661 }
4662 
4663 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4664 				    size_t len, loff_t *offp)
4665 {
4666 	struct seq_file *m = file->private_data;
4667 	struct drm_device *dev = m->private;
4668 	struct drm_i915_private *dev_priv = dev->dev_private;
4669 	uint16_t *latencies;
4670 
4671 	if (INTEL_INFO(dev)->gen >= 9)
4672 		latencies = dev_priv->wm.skl_latency;
4673 	else
4674 		latencies = to_i915(dev)->wm.cur_latency;
4675 
4676 	return wm_latency_write(file, ubuf, len, offp, latencies);
4677 }
4678 
4679 static const struct file_operations i915_pri_wm_latency_fops = {
4680 	.owner = THIS_MODULE,
4681 	.open = pri_wm_latency_open,
4682 	.read = seq_read,
4683 	.llseek = seq_lseek,
4684 	.release = single_release,
4685 	.write = pri_wm_latency_write
4686 };
4687 
4688 static const struct file_operations i915_spr_wm_latency_fops = {
4689 	.owner = THIS_MODULE,
4690 	.open = spr_wm_latency_open,
4691 	.read = seq_read,
4692 	.llseek = seq_lseek,
4693 	.release = single_release,
4694 	.write = spr_wm_latency_write
4695 };
4696 
4697 static const struct file_operations i915_cur_wm_latency_fops = {
4698 	.owner = THIS_MODULE,
4699 	.open = cur_wm_latency_open,
4700 	.read = seq_read,
4701 	.llseek = seq_lseek,
4702 	.release = single_release,
4703 	.write = cur_wm_latency_write
4704 };
4705 
4706 static int
4707 i915_wedged_get(void *data, u64 *val)
4708 {
4709 	struct drm_device *dev = data;
4710 	struct drm_i915_private *dev_priv = dev->dev_private;
4711 
4712 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4713 
4714 	return 0;
4715 }
4716 
4717 static int
4718 i915_wedged_set(void *data, u64 val)
4719 {
4720 	struct drm_device *dev = data;
4721 	struct drm_i915_private *dev_priv = dev->dev_private;
4722 
4723 	/*
4724 	 * There is no safeguard against this debugfs entry colliding
4725 	 * with the hangcheck calling same i915_handle_error() in
4726 	 * parallel, causing an explosion. For now we assume that the
4727 	 * test harness is responsible enough not to inject gpu hangs
4728 	 * while it is writing to 'i915_wedged'
4729 	 */
4730 
4731 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4732 		return -EAGAIN;
4733 
4734 	intel_runtime_pm_get(dev_priv);
4735 
4736 	i915_handle_error(dev, val,
4737 			  "Manually setting wedged to %llu", val);
4738 
4739 	intel_runtime_pm_put(dev_priv);
4740 
4741 	return 0;
4742 }
4743 
4744 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4745 			i915_wedged_get, i915_wedged_set,
4746 			"%llu\n");
4747 
4748 static int
4749 i915_ring_stop_get(void *data, u64 *val)
4750 {
4751 	struct drm_device *dev = data;
4752 	struct drm_i915_private *dev_priv = dev->dev_private;
4753 
4754 	*val = dev_priv->gpu_error.stop_rings;
4755 
4756 	return 0;
4757 }
4758 
4759 static int
4760 i915_ring_stop_set(void *data, u64 val)
4761 {
4762 	struct drm_device *dev = data;
4763 	struct drm_i915_private *dev_priv = dev->dev_private;
4764 	int ret;
4765 
4766 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4767 
4768 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4769 	if (ret)
4770 		return ret;
4771 
4772 	dev_priv->gpu_error.stop_rings = val;
4773 	mutex_unlock(&dev->struct_mutex);
4774 
4775 	return 0;
4776 }
4777 
4778 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4779 			i915_ring_stop_get, i915_ring_stop_set,
4780 			"0x%08llx\n");
4781 
4782 static int
4783 i915_ring_missed_irq_get(void *data, u64 *val)
4784 {
4785 	struct drm_device *dev = data;
4786 	struct drm_i915_private *dev_priv = dev->dev_private;
4787 
4788 	*val = dev_priv->gpu_error.missed_irq_rings;
4789 	return 0;
4790 }
4791 
4792 static int
4793 i915_ring_missed_irq_set(void *data, u64 val)
4794 {
4795 	struct drm_device *dev = data;
4796 	struct drm_i915_private *dev_priv = dev->dev_private;
4797 	int ret;
4798 
4799 	/* Lock against concurrent debugfs callers */
4800 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4801 	if (ret)
4802 		return ret;
4803 	dev_priv->gpu_error.missed_irq_rings = val;
4804 	mutex_unlock(&dev->struct_mutex);
4805 
4806 	return 0;
4807 }
4808 
4809 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4810 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4811 			"0x%08llx\n");
4812 
4813 static int
4814 i915_ring_test_irq_get(void *data, u64 *val)
4815 {
4816 	struct drm_device *dev = data;
4817 	struct drm_i915_private *dev_priv = dev->dev_private;
4818 
4819 	*val = dev_priv->gpu_error.test_irq_rings;
4820 
4821 	return 0;
4822 }
4823 
4824 static int
4825 i915_ring_test_irq_set(void *data, u64 val)
4826 {
4827 	struct drm_device *dev = data;
4828 	struct drm_i915_private *dev_priv = dev->dev_private;
4829 	int ret;
4830 
4831 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4832 
4833 	/* Lock against concurrent debugfs callers */
4834 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4835 	if (ret)
4836 		return ret;
4837 
4838 	dev_priv->gpu_error.test_irq_rings = val;
4839 	mutex_unlock(&dev->struct_mutex);
4840 
4841 	return 0;
4842 }
4843 
4844 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4845 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4846 			"0x%08llx\n");
4847 
4848 #define DROP_UNBOUND 0x1
4849 #define DROP_BOUND 0x2
4850 #define DROP_RETIRE 0x4
4851 #define DROP_ACTIVE 0x8
4852 #define DROP_ALL (DROP_UNBOUND | \
4853 		  DROP_BOUND | \
4854 		  DROP_RETIRE | \
4855 		  DROP_ACTIVE)
4856 static int
4857 i915_drop_caches_get(void *data, u64 *val)
4858 {
4859 	*val = DROP_ALL;
4860 
4861 	return 0;
4862 }
4863 
4864 static int
4865 i915_drop_caches_set(void *data, u64 val)
4866 {
4867 	struct drm_device *dev = data;
4868 	struct drm_i915_private *dev_priv = dev->dev_private;
4869 	int ret;
4870 
4871 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4872 
4873 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4874 	 * on ioctls on -EAGAIN. */
4875 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4876 	if (ret)
4877 		return ret;
4878 
4879 	if (val & DROP_ACTIVE) {
4880 		ret = i915_gpu_idle(dev);
4881 		if (ret)
4882 			goto unlock;
4883 	}
4884 
4885 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4886 		i915_gem_retire_requests(dev);
4887 
4888 	if (val & DROP_BOUND)
4889 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4890 
4891 	if (val & DROP_UNBOUND)
4892 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4893 
4894 unlock:
4895 	mutex_unlock(&dev->struct_mutex);
4896 
4897 	return ret;
4898 }
4899 
4900 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4901 			i915_drop_caches_get, i915_drop_caches_set,
4902 			"0x%08llx\n");
4903 
4904 static int
4905 i915_max_freq_get(void *data, u64 *val)
4906 {
4907 	struct drm_device *dev = data;
4908 	struct drm_i915_private *dev_priv = dev->dev_private;
4909 	int ret;
4910 
4911 	if (INTEL_INFO(dev)->gen < 6)
4912 		return -ENODEV;
4913 
4914 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4915 
4916 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4917 	if (ret)
4918 		return ret;
4919 
4920 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4921 	mutex_unlock(&dev_priv->rps.hw_lock);
4922 
4923 	return 0;
4924 }
4925 
4926 static int
4927 i915_max_freq_set(void *data, u64 val)
4928 {
4929 	struct drm_device *dev = data;
4930 	struct drm_i915_private *dev_priv = dev->dev_private;
4931 	u32 hw_max, hw_min;
4932 	int ret;
4933 
4934 	if (INTEL_INFO(dev)->gen < 6)
4935 		return -ENODEV;
4936 
4937 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4938 
4939 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4940 
4941 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4942 	if (ret)
4943 		return ret;
4944 
4945 	/*
4946 	 * Turbo will still be enabled, but won't go above the set value.
4947 	 */
4948 	val = intel_freq_opcode(dev_priv, val);
4949 
4950 	hw_max = dev_priv->rps.max_freq;
4951 	hw_min = dev_priv->rps.min_freq;
4952 
4953 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4954 		mutex_unlock(&dev_priv->rps.hw_lock);
4955 		return -EINVAL;
4956 	}
4957 
4958 	dev_priv->rps.max_freq_softlimit = val;
4959 
4960 	intel_set_rps(dev, val);
4961 
4962 	mutex_unlock(&dev_priv->rps.hw_lock);
4963 
4964 	return 0;
4965 }
4966 
4967 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4968 			i915_max_freq_get, i915_max_freq_set,
4969 			"%llu\n");
4970 
4971 static int
4972 i915_min_freq_get(void *data, u64 *val)
4973 {
4974 	struct drm_device *dev = data;
4975 	struct drm_i915_private *dev_priv = dev->dev_private;
4976 	int ret;
4977 
4978 	if (INTEL_INFO(dev)->gen < 6)
4979 		return -ENODEV;
4980 
4981 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4982 
4983 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4984 	if (ret)
4985 		return ret;
4986 
4987 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4988 	mutex_unlock(&dev_priv->rps.hw_lock);
4989 
4990 	return 0;
4991 }
4992 
4993 static int
4994 i915_min_freq_set(void *data, u64 val)
4995 {
4996 	struct drm_device *dev = data;
4997 	struct drm_i915_private *dev_priv = dev->dev_private;
4998 	u32 hw_max, hw_min;
4999 	int ret;
5000 
5001 	if (INTEL_INFO(dev)->gen < 6)
5002 		return -ENODEV;
5003 
5004 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5005 
5006 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5007 
5008 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5009 	if (ret)
5010 		return ret;
5011 
5012 	/*
5013 	 * Turbo will still be enabled, but won't go below the set value.
5014 	 */
5015 	val = intel_freq_opcode(dev_priv, val);
5016 
5017 	hw_max = dev_priv->rps.max_freq;
5018 	hw_min = dev_priv->rps.min_freq;
5019 
5020 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5021 		mutex_unlock(&dev_priv->rps.hw_lock);
5022 		return -EINVAL;
5023 	}
5024 
5025 	dev_priv->rps.min_freq_softlimit = val;
5026 
5027 	intel_set_rps(dev, val);
5028 
5029 	mutex_unlock(&dev_priv->rps.hw_lock);
5030 
5031 	return 0;
5032 }
5033 
5034 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5035 			i915_min_freq_get, i915_min_freq_set,
5036 			"%llu\n");
5037 
5038 static int
5039 i915_cache_sharing_get(void *data, u64 *val)
5040 {
5041 	struct drm_device *dev = data;
5042 	struct drm_i915_private *dev_priv = dev->dev_private;
5043 	u32 snpcr;
5044 	int ret;
5045 
5046 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5047 		return -ENODEV;
5048 
5049 	ret = mutex_lock_interruptible(&dev->struct_mutex);
5050 	if (ret)
5051 		return ret;
5052 	intel_runtime_pm_get(dev_priv);
5053 
5054 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5055 
5056 	intel_runtime_pm_put(dev_priv);
5057 	mutex_unlock(&dev_priv->dev->struct_mutex);
5058 
5059 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5060 
5061 	return 0;
5062 }
5063 
5064 static int
5065 i915_cache_sharing_set(void *data, u64 val)
5066 {
5067 	struct drm_device *dev = data;
5068 	struct drm_i915_private *dev_priv = dev->dev_private;
5069 	u32 snpcr;
5070 
5071 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5072 		return -ENODEV;
5073 
5074 	if (val > 3)
5075 		return -EINVAL;
5076 
5077 	intel_runtime_pm_get(dev_priv);
5078 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5079 
5080 	/* Update the cache sharing policy here as well */
5081 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5082 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5083 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5084 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5085 
5086 	intel_runtime_pm_put(dev_priv);
5087 	return 0;
5088 }
5089 
5090 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5091 			i915_cache_sharing_get, i915_cache_sharing_set,
5092 			"%llu\n");
5093 
5094 struct sseu_dev_status {
5095 	unsigned int slice_total;
5096 	unsigned int subslice_total;
5097 	unsigned int subslice_per_slice;
5098 	unsigned int eu_total;
5099 	unsigned int eu_per_subslice;
5100 };
5101 
5102 static void cherryview_sseu_device_status(struct drm_device *dev,
5103 					  struct sseu_dev_status *stat)
5104 {
5105 	struct drm_i915_private *dev_priv = dev->dev_private;
5106 	int ss_max = 2;
5107 	int ss;
5108 	u32 sig1[ss_max], sig2[ss_max];
5109 
5110 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5111 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5112 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5113 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5114 
5115 	for (ss = 0; ss < ss_max; ss++) {
5116 		unsigned int eu_cnt;
5117 
5118 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5119 			/* skip disabled subslice */
5120 			continue;
5121 
5122 		stat->slice_total = 1;
5123 		stat->subslice_per_slice++;
5124 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5125 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5126 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5127 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5128 		stat->eu_total += eu_cnt;
5129 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5130 	}
5131 	stat->subslice_total = stat->subslice_per_slice;
5132 }
5133 
5134 static void gen9_sseu_device_status(struct drm_device *dev,
5135 				    struct sseu_dev_status *stat)
5136 {
5137 	struct drm_i915_private *dev_priv = dev->dev_private;
5138 	int s_max = 3, ss_max = 4;
5139 	int s, ss;
5140 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5141 
5142 	/* BXT has a single slice and at most 3 subslices. */
5143 	if (IS_BROXTON(dev)) {
5144 		s_max = 1;
5145 		ss_max = 3;
5146 	}
5147 
5148 	for (s = 0; s < s_max; s++) {
5149 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5150 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5151 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5152 	}
5153 
5154 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5155 		     GEN9_PGCTL_SSA_EU19_ACK |
5156 		     GEN9_PGCTL_SSA_EU210_ACK |
5157 		     GEN9_PGCTL_SSA_EU311_ACK;
5158 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5159 		     GEN9_PGCTL_SSB_EU19_ACK |
5160 		     GEN9_PGCTL_SSB_EU210_ACK |
5161 		     GEN9_PGCTL_SSB_EU311_ACK;
5162 
5163 	for (s = 0; s < s_max; s++) {
5164 		unsigned int ss_cnt = 0;
5165 
5166 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5167 			/* skip disabled slice */
5168 			continue;
5169 
5170 		stat->slice_total++;
5171 
5172 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5173 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5174 
5175 		for (ss = 0; ss < ss_max; ss++) {
5176 			unsigned int eu_cnt;
5177 
5178 			if (IS_BROXTON(dev) &&
5179 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5180 				/* skip disabled subslice */
5181 				continue;
5182 
5183 			if (IS_BROXTON(dev))
5184 				ss_cnt++;
5185 
5186 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5187 					       eu_mask[ss%2]);
5188 			stat->eu_total += eu_cnt;
5189 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5190 						    eu_cnt);
5191 		}
5192 
5193 		stat->subslice_total += ss_cnt;
5194 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5195 					       ss_cnt);
5196 	}
5197 }
5198 
5199 static void broadwell_sseu_device_status(struct drm_device *dev,
5200 					 struct sseu_dev_status *stat)
5201 {
5202 	struct drm_i915_private *dev_priv = dev->dev_private;
5203 	int s;
5204 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5205 
5206 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5207 
5208 	if (stat->slice_total) {
5209 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5210 		stat->subslice_total = stat->slice_total *
5211 				       stat->subslice_per_slice;
5212 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5213 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5214 
5215 		/* subtract fused off EU(s) from enabled slice(s) */
5216 		for (s = 0; s < stat->slice_total; s++) {
5217 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5218 
5219 			stat->eu_total -= hweight8(subslice_7eu);
5220 		}
5221 	}
5222 }
5223 
5224 static int i915_sseu_status(struct seq_file *m, void *unused)
5225 {
5226 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5227 	struct drm_device *dev = node->minor->dev;
5228 	struct sseu_dev_status stat;
5229 
5230 	if (INTEL_INFO(dev)->gen < 8)
5231 		return -ENODEV;
5232 
5233 	seq_puts(m, "SSEU Device Info\n");
5234 	seq_printf(m, "  Available Slice Total: %u\n",
5235 		   INTEL_INFO(dev)->slice_total);
5236 	seq_printf(m, "  Available Subslice Total: %u\n",
5237 		   INTEL_INFO(dev)->subslice_total);
5238 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5239 		   INTEL_INFO(dev)->subslice_per_slice);
5240 	seq_printf(m, "  Available EU Total: %u\n",
5241 		   INTEL_INFO(dev)->eu_total);
5242 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5243 		   INTEL_INFO(dev)->eu_per_subslice);
5244 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5245 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5246 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5247 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5248 	seq_printf(m, "  Has EU Power Gating: %s\n",
5249 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5250 
5251 	seq_puts(m, "SSEU Device Status\n");
5252 	memset(&stat, 0, sizeof(stat));
5253 	if (IS_CHERRYVIEW(dev)) {
5254 		cherryview_sseu_device_status(dev, &stat);
5255 	} else if (IS_BROADWELL(dev)) {
5256 		broadwell_sseu_device_status(dev, &stat);
5257 	} else if (INTEL_INFO(dev)->gen >= 9) {
5258 		gen9_sseu_device_status(dev, &stat);
5259 	}
5260 	seq_printf(m, "  Enabled Slice Total: %u\n",
5261 		   stat.slice_total);
5262 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5263 		   stat.subslice_total);
5264 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5265 		   stat.subslice_per_slice);
5266 	seq_printf(m, "  Enabled EU Total: %u\n",
5267 		   stat.eu_total);
5268 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5269 		   stat.eu_per_subslice);
5270 
5271 	return 0;
5272 }
5273 
5274 static int i915_forcewake_open(struct inode *inode, struct file *file)
5275 {
5276 	struct drm_device *dev = inode->i_private;
5277 	struct drm_i915_private *dev_priv = dev->dev_private;
5278 
5279 	if (INTEL_INFO(dev)->gen < 6)
5280 		return 0;
5281 
5282 	intel_runtime_pm_get(dev_priv);
5283 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5284 
5285 	return 0;
5286 }
5287 
5288 static int i915_forcewake_release(struct inode *inode, struct file *file)
5289 {
5290 	struct drm_device *dev = inode->i_private;
5291 	struct drm_i915_private *dev_priv = dev->dev_private;
5292 
5293 	if (INTEL_INFO(dev)->gen < 6)
5294 		return 0;
5295 
5296 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5297 	intel_runtime_pm_put(dev_priv);
5298 
5299 	return 0;
5300 }
5301 
5302 static const struct file_operations i915_forcewake_fops = {
5303 	.owner = THIS_MODULE,
5304 	.open = i915_forcewake_open,
5305 	.release = i915_forcewake_release,
5306 };
5307 
5308 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5309 {
5310 	struct drm_device *dev = minor->dev;
5311 	struct dentry *ent;
5312 
5313 	ent = debugfs_create_file("i915_forcewake_user",
5314 				  S_IRUSR,
5315 				  root, dev,
5316 				  &i915_forcewake_fops);
5317 	if (!ent)
5318 		return -ENOMEM;
5319 
5320 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5321 }
5322 
5323 static int i915_debugfs_create(struct dentry *root,
5324 			       struct drm_minor *minor,
5325 			       const char *name,
5326 			       const struct file_operations *fops)
5327 {
5328 	struct drm_device *dev = minor->dev;
5329 	struct dentry *ent;
5330 
5331 	ent = debugfs_create_file(name,
5332 				  S_IRUGO | S_IWUSR,
5333 				  root, dev,
5334 				  fops);
5335 	if (!ent)
5336 		return -ENOMEM;
5337 
5338 	return drm_add_fake_info_node(minor, ent, fops);
5339 }
5340 
5341 static const struct drm_info_list i915_debugfs_list[] = {
5342 	{"i915_capabilities", i915_capabilities, 0},
5343 	{"i915_gem_objects", i915_gem_object_info, 0},
5344 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5345 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5346 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5347 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5348 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5349 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5350 	{"i915_gem_request", i915_gem_request_info, 0},
5351 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5352 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5353 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5354 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5355 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5356 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5357 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5358 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5359 	{"i915_guc_info", i915_guc_info, 0},
5360 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5361 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5362 	{"i915_frequency_info", i915_frequency_info, 0},
5363 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5364 	{"i915_drpc_info", i915_drpc_info, 0},
5365 	{"i915_emon_status", i915_emon_status, 0},
5366 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5367 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5368 	{"i915_fbc_status", i915_fbc_status, 0},
5369 	{"i915_ips_status", i915_ips_status, 0},
5370 	{"i915_sr_status", i915_sr_status, 0},
5371 	{"i915_opregion", i915_opregion, 0},
5372 	{"i915_vbt", i915_vbt, 0},
5373 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5374 	{"i915_context_status", i915_context_status, 0},
5375 	{"i915_dump_lrc", i915_dump_lrc, 0},
5376 	{"i915_execlists", i915_execlists, 0},
5377 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5378 	{"i915_swizzle_info", i915_swizzle_info, 0},
5379 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5380 	{"i915_llc", i915_llc, 0},
5381 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5382 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5383 	{"i915_energy_uJ", i915_energy_uJ, 0},
5384 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5385 	{"i915_power_domain_info", i915_power_domain_info, 0},
5386 	{"i915_dmc_info", i915_dmc_info, 0},
5387 	{"i915_display_info", i915_display_info, 0},
5388 	{"i915_semaphore_status", i915_semaphore_status, 0},
5389 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5390 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5391 	{"i915_wa_registers", i915_wa_registers, 0},
5392 	{"i915_ddb_info", i915_ddb_info, 0},
5393 	{"i915_sseu_status", i915_sseu_status, 0},
5394 	{"i915_drrs_status", i915_drrs_status, 0},
5395 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5396 };
5397 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5398 
5399 static const struct i915_debugfs_files {
5400 	const char *name;
5401 	const struct file_operations *fops;
5402 } i915_debugfs_files[] = {
5403 	{"i915_wedged", &i915_wedged_fops},
5404 	{"i915_max_freq", &i915_max_freq_fops},
5405 	{"i915_min_freq", &i915_min_freq_fops},
5406 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5407 	{"i915_ring_stop", &i915_ring_stop_fops},
5408 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5409 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5410 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5411 	{"i915_error_state", &i915_error_state_fops},
5412 	{"i915_next_seqno", &i915_next_seqno_fops},
5413 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5414 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5415 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5416 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5417 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5418 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5419 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5420 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5421 };
5422 
5423 void intel_display_crc_init(struct drm_device *dev)
5424 {
5425 	struct drm_i915_private *dev_priv = dev->dev_private;
5426 	enum pipe pipe;
5427 
5428 	for_each_pipe(dev_priv, pipe) {
5429 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5430 
5431 		pipe_crc->opened = false;
5432 		spin_lock_init(&pipe_crc->lock);
5433 		init_waitqueue_head(&pipe_crc->wq);
5434 	}
5435 }
5436 
5437 int i915_debugfs_init(struct drm_minor *minor)
5438 {
5439 	int ret, i;
5440 
5441 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5442 	if (ret)
5443 		return ret;
5444 
5445 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5446 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5447 		if (ret)
5448 			return ret;
5449 	}
5450 
5451 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5452 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5453 					  i915_debugfs_files[i].name,
5454 					  i915_debugfs_files[i].fops);
5455 		if (ret)
5456 			return ret;
5457 	}
5458 
5459 	return drm_debugfs_create_files(i915_debugfs_list,
5460 					I915_DEBUGFS_ENTRIES,
5461 					minor->debugfs_root, minor);
5462 }
5463 
5464 void i915_debugfs_cleanup(struct drm_minor *minor)
5465 {
5466 	int i;
5467 
5468 	drm_debugfs_remove_files(i915_debugfs_list,
5469 				 I915_DEBUGFS_ENTRIES, minor);
5470 
5471 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5472 				 1, minor);
5473 
5474 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5475 		struct drm_info_list *info_list =
5476 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5477 
5478 		drm_debugfs_remove_files(info_list, 1, minor);
5479 	}
5480 
5481 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5482 		struct drm_info_list *info_list =
5483 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5484 
5485 		drm_debugfs_remove_files(info_list, 1, minor);
5486 	}
5487 }
5488 
5489 struct dpcd_block {
5490 	/* DPCD dump start address. */
5491 	unsigned int offset;
5492 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5493 	unsigned int end;
5494 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5495 	size_t size;
5496 	/* Only valid for eDP. */
5497 	bool edp;
5498 };
5499 
5500 static const struct dpcd_block i915_dpcd_debug[] = {
5501 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5502 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5503 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5504 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5505 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5506 	{ .offset = DP_SET_POWER },
5507 	{ .offset = DP_EDP_DPCD_REV },
5508 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5509 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5510 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5511 };
5512 
5513 static int i915_dpcd_show(struct seq_file *m, void *data)
5514 {
5515 	struct drm_connector *connector = m->private;
5516 	struct intel_dp *intel_dp =
5517 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5518 	uint8_t buf[16];
5519 	ssize_t err;
5520 	int i;
5521 
5522 	if (connector->status != connector_status_connected)
5523 		return -ENODEV;
5524 
5525 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5526 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5527 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5528 
5529 		if (b->edp &&
5530 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5531 			continue;
5532 
5533 		/* low tech for now */
5534 		if (WARN_ON(size > sizeof(buf)))
5535 			continue;
5536 
5537 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5538 		if (err <= 0) {
5539 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5540 				  size, b->offset, err);
5541 			continue;
5542 		}
5543 
5544 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5545 	}
5546 
5547 	return 0;
5548 }
5549 
5550 static int i915_dpcd_open(struct inode *inode, struct file *file)
5551 {
5552 	return single_open(file, i915_dpcd_show, inode->i_private);
5553 }
5554 
5555 static const struct file_operations i915_dpcd_fops = {
5556 	.owner = THIS_MODULE,
5557 	.open = i915_dpcd_open,
5558 	.read = seq_read,
5559 	.llseek = seq_lseek,
5560 	.release = single_release,
5561 };
5562 
5563 /**
5564  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5565  * @connector: pointer to a registered drm_connector
5566  *
5567  * Cleanup will be done by drm_connector_unregister() through a call to
5568  * drm_debugfs_connector_remove().
5569  *
5570  * Returns 0 on success, negative error codes on error.
5571  */
5572 int i915_debugfs_connector_add(struct drm_connector *connector)
5573 {
5574 	struct dentry *root = connector->debugfs_entry;
5575 
5576 	/* The connector must have been registered beforehands. */
5577 	if (!root)
5578 		return -ENODEV;
5579 
5580 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5581 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5582 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5583 				    &i915_dpcd_fops);
5584 
5585 	return 0;
5586 }
5587