xref: /linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include <drm/drm_print.h>
39 
40 #include "gem/i915_gem_pm.h"
41 #include "gt/intel_context.h"
42 #include "gt/intel_execlists_submission.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 
47 #include "i915_drv.h"
48 #include "i915_gem_gtt.h"
49 #include "i915_perf_oa_regs.h"
50 #include "gvt.h"
51 
52 #define RING_CTX_OFF(x) \
53 	offsetof(struct execlist_ring_context, x)
54 
55 static void set_context_pdp_root_pointer(
56 		struct execlist_ring_context *ring_context,
57 		u32 pdp[8])
58 {
59 	int i;
60 
61 	for (i = 0; i < 8; i++)
62 		ring_context->pdps[i].val = pdp[7 - i];
63 }
64 
65 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
66 {
67 	struct execlist_ring_context *shadow_ring_context;
68 	struct intel_context *ctx = workload->req->context;
69 
70 	if (WARN_ON(!workload->shadow_mm))
71 		return;
72 
73 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
74 		return;
75 
76 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
77 	set_context_pdp_root_pointer(shadow_ring_context,
78 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
79 }
80 
81 /*
82  * When populating shadow ctx from guest, we should not override oa related
83  * registers, so that they will not be overlapped by guest oa configs. Thus
84  * made it possible to capture oa data from host for both host and guests.
85  */
86 static void sr_oa_regs(struct intel_vgpu_workload *workload,
87 		u32 *reg_state, bool save)
88 {
89 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
90 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
91 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
92 	int i = 0;
93 	u32 flex_mmio[] = {
94 		i915_mmio_reg_offset(EU_PERF_CNTL0),
95 		i915_mmio_reg_offset(EU_PERF_CNTL1),
96 		i915_mmio_reg_offset(EU_PERF_CNTL2),
97 		i915_mmio_reg_offset(EU_PERF_CNTL3),
98 		i915_mmio_reg_offset(EU_PERF_CNTL4),
99 		i915_mmio_reg_offset(EU_PERF_CNTL5),
100 		i915_mmio_reg_offset(EU_PERF_CNTL6),
101 	};
102 
103 	if (workload->engine->id != RCS0)
104 		return;
105 
106 	if (save) {
107 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
108 
109 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
110 			u32 state_offset = ctx_flexeu0 + i * 2;
111 
112 			workload->flex_mmio[i] = reg_state[state_offset + 1];
113 		}
114 	} else {
115 		reg_state[ctx_oactxctrl] =
116 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
117 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
118 
119 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
120 			u32 state_offset = ctx_flexeu0 + i * 2;
121 			u32 mmio = flex_mmio[i];
122 
123 			reg_state[state_offset] = mmio;
124 			reg_state[state_offset + 1] = workload->flex_mmio[i];
125 		}
126 	}
127 }
128 
129 static int populate_shadow_context(struct intel_vgpu_workload *workload)
130 {
131 	struct intel_vgpu *vgpu = workload->vgpu;
132 	struct intel_gvt *gvt = vgpu->gvt;
133 	struct intel_context *ctx = workload->req->context;
134 	struct execlist_ring_context *shadow_ring_context;
135 	void *dst;
136 	void *context_base;
137 	unsigned long context_gpa, context_page_num;
138 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
139 	unsigned long gpa_size; /* size of consecutive GPAs */
140 	struct intel_vgpu_submission *s = &vgpu->submission;
141 	int i;
142 	bool skip = false;
143 	int ring_id = workload->engine->id;
144 	int ret;
145 
146 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
147 
148 	context_base = (void *) ctx->lrc_reg_state -
149 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
150 
151 	shadow_ring_context = (void *) ctx->lrc_reg_state;
152 
153 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
154 #define COPY_REG(name) \
155 	intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
156 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
157 #define COPY_REG_MASKED(name) {\
158 		intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
159 					      + RING_CTX_OFF(name.val),\
160 					      &shadow_ring_context->name.val, 4);\
161 		shadow_ring_context->name.val |= 0xffff << 16;\
162 	}
163 
164 	COPY_REG_MASKED(ctx_ctrl);
165 	COPY_REG(ctx_timestamp);
166 
167 	if (workload->engine->id == RCS0) {
168 		COPY_REG(bb_per_ctx_ptr);
169 		COPY_REG(rcs_indirect_ctx);
170 		COPY_REG(rcs_indirect_ctx_offset);
171 	} else if (workload->engine->id == BCS0)
172 		intel_gvt_read_gpa(vgpu,
173 				workload->ring_context_gpa +
174 				BCS_TILE_REGISTER_VAL_OFFSET,
175 				(void *)shadow_ring_context +
176 				BCS_TILE_REGISTER_VAL_OFFSET, 4);
177 #undef COPY_REG
178 #undef COPY_REG_MASKED
179 
180 	/* don't copy Ring Context (the first 0x50 dwords),
181 	 * only copy the Engine Context part from guest
182 	 */
183 	intel_gvt_read_gpa(vgpu,
184 			workload->ring_context_gpa +
185 			RING_CTX_SIZE,
186 			(void *)shadow_ring_context +
187 			RING_CTX_SIZE,
188 			I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
189 
190 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
191 
192 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
193 			workload->engine->name, workload->ctx_desc.lrca,
194 			workload->ctx_desc.context_id,
195 			workload->ring_context_gpa);
196 
197 	/* only need to ensure this context is not pinned/unpinned during the
198 	 * period from last submission to this this submission.
199 	 * Upon reaching this function, the currently submitted context is not
200 	 * supposed to get unpinned. If a misbehaving guest driver ever does
201 	 * this, it would corrupt itself.
202 	 */
203 	if (s->last_ctx[ring_id].valid &&
204 			(s->last_ctx[ring_id].lrca ==
205 				workload->ctx_desc.lrca) &&
206 			(s->last_ctx[ring_id].ring_context_gpa ==
207 				workload->ring_context_gpa))
208 		skip = true;
209 
210 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
211 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
212 
213 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
214 		return 0;
215 
216 	s->last_ctx[ring_id].valid = false;
217 	context_page_num = workload->engine->context_size;
218 	context_page_num = context_page_num >> PAGE_SHIFT;
219 
220 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
221 		context_page_num = 19;
222 
223 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
224 	 * read from the continuous GPAs into dst virtual address
225 	 */
226 	gpa_size = 0;
227 	for (i = 2; i < context_page_num; i++) {
228 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
229 				(u32)((workload->ctx_desc.lrca + i) <<
230 				I915_GTT_PAGE_SHIFT));
231 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
232 			gvt_vgpu_err("Invalid guest context descriptor\n");
233 			return -EFAULT;
234 		}
235 
236 		if (gpa_size == 0) {
237 			gpa_base = context_gpa;
238 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 		} else if (context_gpa != gpa_base + gpa_size)
240 			goto read;
241 
242 		gpa_size += I915_GTT_PAGE_SIZE;
243 
244 		if (i == context_page_num - 1)
245 			goto read;
246 
247 		continue;
248 
249 read:
250 		intel_gvt_read_gpa(vgpu, gpa_base, dst, gpa_size);
251 		gpa_base = context_gpa;
252 		gpa_size = I915_GTT_PAGE_SIZE;
253 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
254 	}
255 	ret = intel_gvt_scan_engine_context(workload);
256 	if (ret) {
257 		gvt_vgpu_err("invalid cmd found in guest context pages\n");
258 		return ret;
259 	}
260 	s->last_ctx[ring_id].valid = true;
261 	return 0;
262 }
263 
264 static inline bool is_gvt_request(struct i915_request *rq)
265 {
266 	return intel_context_force_single_submission(rq->context);
267 }
268 
269 static void save_ring_hw_state(struct intel_vgpu *vgpu,
270 			       const struct intel_engine_cs *engine)
271 {
272 	struct intel_uncore *uncore = engine->uncore;
273 	i915_reg_t reg;
274 
275 	reg = RING_INSTDONE(engine->mmio_base);
276 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
277 		intel_uncore_read(uncore, reg);
278 
279 	reg = RING_ACTHD(engine->mmio_base);
280 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
281 		intel_uncore_read(uncore, reg);
282 
283 	reg = RING_ACTHD_UDW(engine->mmio_base);
284 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
285 		intel_uncore_read(uncore, reg);
286 }
287 
288 static int shadow_context_status_change(struct notifier_block *nb,
289 		unsigned long action, void *data)
290 {
291 	struct i915_request *rq = data;
292 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
293 				shadow_ctx_notifier_block[rq->engine->id]);
294 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
295 	enum intel_engine_id ring_id = rq->engine->id;
296 	struct intel_vgpu_workload *workload;
297 	unsigned long flags;
298 
299 	if (!is_gvt_request(rq)) {
300 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
301 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
302 		    scheduler->engine_owner[ring_id]) {
303 			/* Switch ring from vGPU to host. */
304 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
305 					      NULL, rq->engine);
306 			scheduler->engine_owner[ring_id] = NULL;
307 		}
308 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 
310 		return NOTIFY_OK;
311 	}
312 
313 	workload = scheduler->current_workload[ring_id];
314 	if (unlikely(!workload))
315 		return NOTIFY_OK;
316 
317 	switch (action) {
318 	case INTEL_CONTEXT_SCHEDULE_IN:
319 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
320 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
321 			/* Switch ring from host to vGPU or vGPU to vGPU. */
322 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
323 					      workload->vgpu, rq->engine);
324 			scheduler->engine_owner[ring_id] = workload->vgpu;
325 		} else
326 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
327 				      ring_id, workload->vgpu->id);
328 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
329 		atomic_set(&workload->shadow_ctx_active, 1);
330 		break;
331 	case INTEL_CONTEXT_SCHEDULE_OUT:
332 		save_ring_hw_state(workload->vgpu, rq->engine);
333 		atomic_set(&workload->shadow_ctx_active, 0);
334 		break;
335 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
336 		save_ring_hw_state(workload->vgpu, rq->engine);
337 		break;
338 	default:
339 		WARN_ON(1);
340 		return NOTIFY_OK;
341 	}
342 	wake_up(&workload->shadow_ctx_status_wq);
343 	return NOTIFY_OK;
344 }
345 
346 static void
347 shadow_context_descriptor_update(struct intel_context *ce,
348 				 struct intel_vgpu_workload *workload)
349 {
350 	u64 desc = ce->lrc.desc;
351 
352 	/*
353 	 * Update bits 0-11 of the context descriptor which includes flags
354 	 * like GEN8_CTX_* cached in desc_template
355 	 */
356 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
357 	desc |= (u64)workload->ctx_desc.addressing_mode <<
358 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
359 
360 	ce->lrc.desc = desc;
361 }
362 
363 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
364 {
365 	struct intel_vgpu *vgpu = workload->vgpu;
366 	struct i915_request *req = workload->req;
367 	void *shadow_ring_buffer_va;
368 	u32 *cs;
369 	int err;
370 
371 	if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context))
372 		intel_vgpu_restore_inhibit_context(vgpu, req);
373 
374 	/*
375 	 * To track whether a request has started on HW, we can emit a
376 	 * breadcrumb at the beginning of the request and check its
377 	 * timeline's HWSP to see if the breadcrumb has advanced past the
378 	 * start of this request. Actually, the request must have the
379 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
380 	 * scheduler might get a wrong state of it during reset. Since the
381 	 * requests from gvt always set the has_init_breadcrumb flag, here
382 	 * need to do the emit_init_breadcrumb for all the requests.
383 	 */
384 	if (req->engine->emit_init_breadcrumb) {
385 		err = req->engine->emit_init_breadcrumb(req);
386 		if (err) {
387 			gvt_vgpu_err("fail to emit init breadcrumb\n");
388 			return err;
389 		}
390 	}
391 
392 	/* allocate shadow ring buffer */
393 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
394 	if (IS_ERR(cs)) {
395 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
396 			workload->rb_len);
397 		return PTR_ERR(cs);
398 	}
399 
400 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
401 
402 	/* get shadow ring buffer va */
403 	workload->shadow_ring_buffer_va = cs;
404 
405 	memcpy(cs, shadow_ring_buffer_va,
406 			workload->rb_len);
407 
408 	cs += workload->rb_len / sizeof(u32);
409 	intel_ring_advance(workload->req, cs);
410 
411 	return 0;
412 }
413 
414 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
415 {
416 	if (!wa_ctx->indirect_ctx.obj)
417 		return;
418 
419 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
420 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
421 	i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
422 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
423 
424 	wa_ctx->indirect_ctx.obj = NULL;
425 	wa_ctx->indirect_ctx.shadow_va = NULL;
426 }
427 
428 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
429 {
430 	struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
431 
432 	/* This is not a good idea */
433 	sg->dma_address = addr;
434 }
435 
436 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
437 					  struct intel_context *ce)
438 {
439 	struct intel_vgpu_mm *mm = workload->shadow_mm;
440 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
441 	int i = 0;
442 
443 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
444 		set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
445 	} else {
446 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
447 			struct i915_page_directory * const pd =
448 				i915_pd_entry(ppgtt->pd, i);
449 			/* skip now as current i915 ppgtt alloc won't allocate
450 			   top level pdp for non 4-level table, won't impact
451 			   shadow ppgtt. */
452 			if (!pd)
453 				break;
454 
455 			set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
456 		}
457 	}
458 }
459 
460 static int
461 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
462 {
463 	struct intel_vgpu *vgpu = workload->vgpu;
464 	struct intel_vgpu_submission *s = &vgpu->submission;
465 	struct i915_request *rq;
466 
467 	if (workload->req)
468 		return 0;
469 
470 	rq = i915_request_create(s->shadow[workload->engine->id]);
471 	if (IS_ERR(rq)) {
472 		gvt_vgpu_err("fail to allocate gem request\n");
473 		return PTR_ERR(rq);
474 	}
475 
476 	workload->req = i915_request_get(rq);
477 	return 0;
478 }
479 
480 /**
481  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
482  * shadow it as well, include ringbuffer,wa_ctx and ctx.
483  * @workload: an abstract entity for each execlist submission.
484  *
485  * This function is called before the workload submitting to i915, to make
486  * sure the content of the workload is valid.
487  */
488 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
489 {
490 	struct intel_vgpu *vgpu = workload->vgpu;
491 	struct intel_vgpu_submission *s = &vgpu->submission;
492 	int ret;
493 
494 	lockdep_assert_held(&vgpu->vgpu_lock);
495 
496 	if (workload->shadow)
497 		return 0;
498 
499 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
500 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
501 						 workload);
502 
503 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
504 	if (ret)
505 		return ret;
506 
507 	if (workload->engine->id == RCS0 &&
508 	    workload->wa_ctx.indirect_ctx.size) {
509 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
510 		if (ret)
511 			goto err_shadow;
512 	}
513 
514 	workload->shadow = true;
515 	return 0;
516 
517 err_shadow:
518 	release_shadow_wa_ctx(&workload->wa_ctx);
519 	return ret;
520 }
521 
522 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
523 
524 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
525 {
526 	struct intel_gvt *gvt = workload->vgpu->gvt;
527 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
528 	struct intel_vgpu_shadow_bb *bb;
529 	struct i915_gem_ww_ctx ww;
530 	int ret;
531 
532 	list_for_each_entry(bb, &workload->shadow_bb, list) {
533 		/*
534 		 * For privilege batch buffer and not wa_ctx, the bb_start_cmd_va
535 		 * is only updated into ring_scan_buffer, not real ring address
536 		 * allocated in later copy_workload_to_ring_buffer. Please be noted
537 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
538 		 * in copy_workload_to_ring_buffer.
539 		 */
540 
541 		if (bb->bb_offset)
542 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
543 				+ bb->bb_offset;
544 
545 		/*
546 		 * For non-priv bb, scan&shadow is only for
547 		 * debugging purpose, so the content of shadow bb
548 		 * is the same as original bb. Therefore,
549 		 * here, rather than switch to shadow bb's gma
550 		 * address, we directly use original batch buffer's
551 		 * gma address, and send original bb to hardware
552 		 * directly.
553 		 */
554 		if (!bb->ppgtt) {
555 			i915_gem_ww_ctx_init(&ww, false);
556 retry:
557 			i915_gem_object_lock(bb->obj, &ww);
558 
559 			bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
560 							      NULL, 0, 0, 0);
561 			if (IS_ERR(bb->vma)) {
562 				ret = PTR_ERR(bb->vma);
563 				if (ret == -EDEADLK) {
564 					ret = i915_gem_ww_ctx_backoff(&ww);
565 					if (!ret)
566 						goto retry;
567 				}
568 				goto err;
569 			}
570 
571 			/* relocate shadow batch buffer */
572 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
573 			if (gmadr_bytes == 8)
574 				bb->bb_start_cmd_va[2] = 0;
575 
576 			ret = i915_vma_move_to_active(bb->vma, workload->req,
577 						      __EXEC_OBJECT_NO_REQUEST_AWAIT);
578 			if (ret)
579 				goto err;
580 
581 			/* No one is going to touch shadow bb from now on. */
582 			i915_gem_object_flush_map(bb->obj);
583 			i915_gem_ww_ctx_fini(&ww);
584 		}
585 	}
586 	return 0;
587 err:
588 	i915_gem_ww_ctx_fini(&ww);
589 	release_shadow_batch_buffer(workload);
590 	return ret;
591 }
592 
593 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
594 {
595 	struct intel_vgpu_workload *workload =
596 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
597 	struct i915_request *rq = workload->req;
598 	struct execlist_ring_context *shadow_ring_context =
599 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
600 
601 	shadow_ring_context->bb_per_ctx_ptr.val =
602 		(shadow_ring_context->bb_per_ctx_ptr.val &
603 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
604 	shadow_ring_context->rcs_indirect_ctx.val =
605 		(shadow_ring_context->rcs_indirect_ctx.val &
606 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
607 }
608 
609 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
610 {
611 	struct i915_vma *vma;
612 	unsigned char *per_ctx_va =
613 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
614 		wa_ctx->indirect_ctx.size;
615 	struct i915_gem_ww_ctx ww;
616 	int ret;
617 
618 	if (wa_ctx->indirect_ctx.size == 0)
619 		return 0;
620 
621 	i915_gem_ww_ctx_init(&ww, false);
622 retry:
623 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
624 
625 	vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
626 					  0, CACHELINE_BYTES, 0);
627 	if (IS_ERR(vma)) {
628 		ret = PTR_ERR(vma);
629 		if (ret == -EDEADLK) {
630 			ret = i915_gem_ww_ctx_backoff(&ww);
631 			if (!ret)
632 				goto retry;
633 		}
634 		return ret;
635 	}
636 
637 	i915_gem_ww_ctx_fini(&ww);
638 
639 	/* FIXME: we are not tracking our pinned VMA leaving it
640 	 * up to the core to fix up the stray pin_count upon
641 	 * free.
642 	 */
643 
644 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
645 
646 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
647 	memset(per_ctx_va, 0, CACHELINE_BYTES);
648 
649 	update_wa_ctx_2_shadow_ctx(wa_ctx);
650 	return 0;
651 }
652 
653 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
654 {
655 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
656 		workload->rb_start;
657 }
658 
659 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
660 {
661 	struct intel_vgpu_shadow_bb *bb, *pos;
662 
663 	if (list_empty(&workload->shadow_bb))
664 		return;
665 
666 	bb = list_first_entry(&workload->shadow_bb,
667 			struct intel_vgpu_shadow_bb, list);
668 
669 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
670 		if (bb->obj) {
671 			i915_gem_object_lock(bb->obj, NULL);
672 			if (bb->va && !IS_ERR(bb->va))
673 				i915_gem_object_unpin_map(bb->obj);
674 
675 			if (bb->vma && !IS_ERR(bb->vma))
676 				i915_vma_unpin(bb->vma);
677 
678 			i915_gem_object_unlock(bb->obj);
679 			i915_gem_object_put(bb->obj);
680 		}
681 		list_del(&bb->list);
682 		kfree(bb);
683 	}
684 }
685 
686 static int
687 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
688 {
689 	struct intel_vgpu *vgpu = workload->vgpu;
690 	struct intel_vgpu_mm *m;
691 	int ret = 0;
692 
693 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
694 	if (ret) {
695 		gvt_vgpu_err("fail to vgpu pin mm\n");
696 		return ret;
697 	}
698 
699 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
700 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
701 		intel_vgpu_unpin_mm(workload->shadow_mm);
702 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
703 		return -EINVAL;
704 	}
705 
706 	if (!list_empty(&workload->lri_shadow_mm)) {
707 		list_for_each_entry(m, &workload->lri_shadow_mm,
708 				    ppgtt_mm.link) {
709 			ret = intel_vgpu_pin_mm(m);
710 			if (ret) {
711 				list_for_each_entry_from_reverse(m,
712 								 &workload->lri_shadow_mm,
713 								 ppgtt_mm.link)
714 					intel_vgpu_unpin_mm(m);
715 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
716 				break;
717 			}
718 		}
719 	}
720 
721 	if (ret)
722 		intel_vgpu_unpin_mm(workload->shadow_mm);
723 
724 	return ret;
725 }
726 
727 static void
728 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
729 {
730 	struct intel_vgpu_mm *m;
731 
732 	if (!list_empty(&workload->lri_shadow_mm)) {
733 		list_for_each_entry(m, &workload->lri_shadow_mm,
734 				    ppgtt_mm.link)
735 			intel_vgpu_unpin_mm(m);
736 	}
737 	intel_vgpu_unpin_mm(workload->shadow_mm);
738 }
739 
740 static int prepare_workload(struct intel_vgpu_workload *workload)
741 {
742 	struct intel_vgpu *vgpu = workload->vgpu;
743 	struct intel_vgpu_submission *s = &vgpu->submission;
744 	int ret = 0;
745 
746 	ret = intel_vgpu_shadow_mm_pin(workload);
747 	if (ret) {
748 		gvt_vgpu_err("fail to pin shadow mm\n");
749 		return ret;
750 	}
751 
752 	update_shadow_pdps(workload);
753 
754 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
755 
756 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
757 	if (ret) {
758 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
759 		goto err_unpin_mm;
760 	}
761 
762 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
763 	if (ret) {
764 		gvt_vgpu_err("fail to flush post shadow\n");
765 		goto err_unpin_mm;
766 	}
767 
768 	ret = copy_workload_to_ring_buffer(workload);
769 	if (ret) {
770 		gvt_vgpu_err("fail to generate request\n");
771 		goto err_unpin_mm;
772 	}
773 
774 	ret = prepare_shadow_batch_buffer(workload);
775 	if (ret) {
776 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
777 		goto err_unpin_mm;
778 	}
779 
780 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
781 	if (ret) {
782 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
783 		goto err_shadow_batch;
784 	}
785 
786 	if (workload->prepare) {
787 		ret = workload->prepare(workload);
788 		if (ret)
789 			goto err_shadow_wa_ctx;
790 	}
791 
792 	return 0;
793 err_shadow_wa_ctx:
794 	release_shadow_wa_ctx(&workload->wa_ctx);
795 err_shadow_batch:
796 	release_shadow_batch_buffer(workload);
797 err_unpin_mm:
798 	intel_vgpu_shadow_mm_unpin(workload);
799 	return ret;
800 }
801 
802 static int dispatch_workload(struct intel_vgpu_workload *workload)
803 {
804 	struct intel_vgpu *vgpu = workload->vgpu;
805 	struct i915_request *rq;
806 	int ret;
807 
808 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
809 		      workload->engine->name, workload);
810 
811 	mutex_lock(&vgpu->vgpu_lock);
812 
813 	ret = intel_gvt_workload_req_alloc(workload);
814 	if (ret)
815 		goto err_req;
816 
817 	ret = intel_gvt_scan_and_shadow_workload(workload);
818 	if (ret)
819 		goto out;
820 
821 	ret = populate_shadow_context(workload);
822 	if (ret) {
823 		release_shadow_wa_ctx(&workload->wa_ctx);
824 		goto out;
825 	}
826 
827 	ret = prepare_workload(workload);
828 out:
829 	if (ret) {
830 		/* We might still need to add request with
831 		 * clean ctx to retire it properly..
832 		 */
833 		rq = fetch_and_zero(&workload->req);
834 		i915_request_put(rq);
835 	}
836 
837 	if (!IS_ERR_OR_NULL(workload->req)) {
838 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
839 			      workload->engine->name, workload->req);
840 		i915_request_add(workload->req);
841 		workload->dispatched = true;
842 	}
843 err_req:
844 	if (ret)
845 		workload->status = ret;
846 	mutex_unlock(&vgpu->vgpu_lock);
847 	return ret;
848 }
849 
850 static struct intel_vgpu_workload *
851 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
852 {
853 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
854 	struct intel_vgpu_workload *workload = NULL;
855 
856 	mutex_lock(&gvt->sched_lock);
857 
858 	/*
859 	 * no current vgpu / will be scheduled out / no workload
860 	 * bail out
861 	 */
862 	if (!scheduler->current_vgpu) {
863 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
864 		goto out;
865 	}
866 
867 	if (scheduler->need_reschedule) {
868 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
869 		goto out;
870 	}
871 
872 	if (!test_bit(INTEL_VGPU_STATUS_ACTIVE,
873 		      scheduler->current_vgpu->status) ||
874 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
875 		goto out;
876 
877 	/*
878 	 * still have current workload, maybe the workload disptacher
879 	 * fail to submit it for some reason, resubmit it.
880 	 */
881 	if (scheduler->current_workload[engine->id]) {
882 		workload = scheduler->current_workload[engine->id];
883 		gvt_dbg_sched("ring %s still have current workload %p\n",
884 			      engine->name, workload);
885 		goto out;
886 	}
887 
888 	/*
889 	 * pick a workload as current workload
890 	 * once current workload is set, schedule policy routines
891 	 * will wait the current workload is finished when trying to
892 	 * schedule out a vgpu.
893 	 */
894 	scheduler->current_workload[engine->id] =
895 		list_first_entry(workload_q_head(scheduler->current_vgpu,
896 						 engine),
897 				 struct intel_vgpu_workload, list);
898 
899 	workload = scheduler->current_workload[engine->id];
900 
901 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
902 
903 	atomic_inc(&workload->vgpu->submission.running_workload_num);
904 out:
905 	mutex_unlock(&gvt->sched_lock);
906 	return workload;
907 }
908 
909 static void update_guest_pdps(struct intel_vgpu *vgpu,
910 			      u64 ring_context_gpa, u32 pdp[8])
911 {
912 	u64 gpa;
913 	int i;
914 
915 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
916 
917 	for (i = 0; i < 8; i++)
918 		intel_gvt_write_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4);
919 }
920 
921 static __maybe_unused bool
922 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
923 {
924 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
925 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
926 
927 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
928 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
929 			return false;
930 		}
931 		return true;
932 	} else {
933 		/* see comment in LRI handler in cmd_parser.c */
934 		gvt_dbg_mm("invalid shadow mm type\n");
935 		return false;
936 	}
937 }
938 
939 static void update_guest_context(struct intel_vgpu_workload *workload)
940 {
941 	struct i915_request *rq = workload->req;
942 	struct intel_vgpu *vgpu = workload->vgpu;
943 	struct execlist_ring_context *shadow_ring_context;
944 	struct intel_context *ctx = workload->req->context;
945 	void *context_base;
946 	void *src;
947 	unsigned long context_gpa, context_page_num;
948 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
949 	unsigned long gpa_size; /* size of consecutive GPAs*/
950 	int i;
951 	u32 ring_base;
952 	u32 head, tail;
953 	u16 wrap_count;
954 
955 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
956 		      workload->ctx_desc.lrca);
957 
958 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
959 
960 	head = workload->rb_head;
961 	tail = workload->rb_tail;
962 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
963 
964 	if (tail < head) {
965 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
966 			wrap_count = 0;
967 		else
968 			wrap_count += 1;
969 	}
970 
971 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
972 
973 	ring_base = rq->engine->mmio_base;
974 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
975 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
976 
977 	context_page_num = rq->engine->context_size;
978 	context_page_num = context_page_num >> PAGE_SHIFT;
979 
980 	if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
981 		context_page_num = 19;
982 
983 	context_base = (void *) ctx->lrc_reg_state -
984 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
985 
986 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
987 	 * write to the consecutive GPAs from src virtual address
988 	 */
989 	gpa_size = 0;
990 	for (i = 2; i < context_page_num; i++) {
991 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
992 				(u32)((workload->ctx_desc.lrca + i) <<
993 					I915_GTT_PAGE_SHIFT));
994 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
995 			gvt_vgpu_err("invalid guest context descriptor\n");
996 			return;
997 		}
998 
999 		if (gpa_size == 0) {
1000 			gpa_base = context_gpa;
1001 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
1002 		} else if (context_gpa != gpa_base + gpa_size)
1003 			goto write;
1004 
1005 		gpa_size += I915_GTT_PAGE_SIZE;
1006 
1007 		if (i == context_page_num - 1)
1008 			goto write;
1009 
1010 		continue;
1011 
1012 write:
1013 		intel_gvt_write_gpa(vgpu, gpa_base, src, gpa_size);
1014 		gpa_base = context_gpa;
1015 		gpa_size = I915_GTT_PAGE_SIZE;
1016 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
1017 	}
1018 
1019 	intel_gvt_write_gpa(vgpu, workload->ring_context_gpa +
1020 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
1021 
1022 	shadow_ring_context = (void *) ctx->lrc_reg_state;
1023 
1024 	if (!list_empty(&workload->lri_shadow_mm)) {
1025 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
1026 							  struct intel_vgpu_mm,
1027 							  ppgtt_mm.link);
1028 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
1029 		update_guest_pdps(vgpu, workload->ring_context_gpa,
1030 				  (void *)m->ppgtt_mm.guest_pdps);
1031 	}
1032 
1033 #define COPY_REG(name) \
1034 	intel_gvt_write_gpa(vgpu, workload->ring_context_gpa + \
1035 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
1036 
1037 	COPY_REG(ctx_ctrl);
1038 	COPY_REG(ctx_timestamp);
1039 
1040 #undef COPY_REG
1041 
1042 	intel_gvt_write_gpa(vgpu,
1043 			workload->ring_context_gpa +
1044 			sizeof(*shadow_ring_context),
1045 			(void *)shadow_ring_context +
1046 			sizeof(*shadow_ring_context),
1047 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1048 }
1049 
1050 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1051 				intel_engine_mask_t engine_mask)
1052 {
1053 	struct intel_vgpu_submission *s = &vgpu->submission;
1054 	struct intel_engine_cs *engine;
1055 	struct intel_vgpu_workload *pos, *n;
1056 	intel_engine_mask_t tmp;
1057 
1058 	/* free the unsubmitted workloads in the queues. */
1059 	for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
1060 		list_for_each_entry_safe(pos, n,
1061 			&s->workload_q_head[engine->id], list) {
1062 			list_del_init(&pos->list);
1063 			intel_vgpu_destroy_workload(pos);
1064 		}
1065 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1066 	}
1067 }
1068 
1069 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1070 {
1071 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1072 	struct intel_vgpu_workload *workload =
1073 		scheduler->current_workload[ring_id];
1074 	struct intel_vgpu *vgpu = workload->vgpu;
1075 	struct intel_vgpu_submission *s = &vgpu->submission;
1076 	struct i915_request *rq = workload->req;
1077 	int event;
1078 
1079 	mutex_lock(&vgpu->vgpu_lock);
1080 	mutex_lock(&gvt->sched_lock);
1081 
1082 	/* For the workload w/ request, needs to wait for the context
1083 	 * switch to make sure request is completed.
1084 	 * For the workload w/o request, directly complete the workload.
1085 	 */
1086 	if (rq) {
1087 		wait_event(workload->shadow_ctx_status_wq,
1088 			   !atomic_read(&workload->shadow_ctx_active));
1089 
1090 		/* If this request caused GPU hang, req->fence.error will
1091 		 * be set to -EIO. Use -EIO to set workload status so
1092 		 * that when this request caused GPU hang, didn't trigger
1093 		 * context switch interrupt to guest.
1094 		 */
1095 		if (likely(workload->status == -EINPROGRESS)) {
1096 			if (workload->req->fence.error == -EIO)
1097 				workload->status = -EIO;
1098 			else
1099 				workload->status = 0;
1100 		}
1101 
1102 		if (!workload->status &&
1103 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1104 			update_guest_context(workload);
1105 
1106 			for_each_set_bit(event, workload->pending_events,
1107 					 INTEL_GVT_EVENT_MAX)
1108 				intel_vgpu_trigger_virtual_event(vgpu, event);
1109 		}
1110 
1111 		i915_request_put(fetch_and_zero(&workload->req));
1112 	}
1113 
1114 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1115 			ring_id, workload, workload->status);
1116 
1117 	scheduler->current_workload[ring_id] = NULL;
1118 
1119 	list_del_init(&workload->list);
1120 
1121 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1122 		/* if workload->status is not successful means HW GPU
1123 		 * has occurred GPU hang or something wrong with i915/GVT,
1124 		 * and GVT won't inject context switch interrupt to guest.
1125 		 * So this error is a vGPU hang actually to the guest.
1126 		 * According to this we should emunlate a vGPU hang. If
1127 		 * there are pending workloads which are already submitted
1128 		 * from guest, we should clean them up like HW GPU does.
1129 		 *
1130 		 * if it is in middle of engine resetting, the pending
1131 		 * workloads won't be submitted to HW GPU and will be
1132 		 * cleaned up during the resetting process later, so doing
1133 		 * the workload clean up here doesn't have any impact.
1134 		 **/
1135 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1136 	}
1137 
1138 	workload->complete(workload);
1139 
1140 	intel_vgpu_shadow_mm_unpin(workload);
1141 	intel_vgpu_destroy_workload(workload);
1142 
1143 	atomic_dec(&s->running_workload_num);
1144 	wake_up(&scheduler->workload_complete_wq);
1145 
1146 	if (gvt->scheduler.need_reschedule)
1147 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1148 
1149 	mutex_unlock(&gvt->sched_lock);
1150 	mutex_unlock(&vgpu->vgpu_lock);
1151 }
1152 
1153 static int workload_thread(void *arg)
1154 {
1155 	struct intel_engine_cs *engine = arg;
1156 	const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9;
1157 	struct intel_gvt *gvt = engine->i915->gvt;
1158 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1159 	struct intel_vgpu_workload *workload = NULL;
1160 	struct intel_vgpu *vgpu = NULL;
1161 	int ret;
1162 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1163 
1164 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1165 
1166 	while (!kthread_should_stop()) {
1167 		intel_wakeref_t wakeref;
1168 
1169 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1170 		do {
1171 			workload = pick_next_workload(gvt, engine);
1172 			if (workload)
1173 				break;
1174 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1175 				   MAX_SCHEDULE_TIMEOUT);
1176 		} while (!kthread_should_stop());
1177 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1178 
1179 		if (!workload)
1180 			break;
1181 
1182 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1183 			      engine->name, workload,
1184 			      workload->vgpu->id);
1185 
1186 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1187 
1188 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1189 			      engine->name, workload);
1190 
1191 		if (need_force_wake)
1192 			intel_uncore_forcewake_get(engine->uncore,
1193 						   FORCEWAKE_ALL);
1194 		/*
1195 		 * Update the vReg of the vGPU which submitted this
1196 		 * workload. The vGPU may use these registers for checking
1197 		 * the context state. The value comes from GPU commands
1198 		 * in this workload.
1199 		 */
1200 		update_vreg_in_ctx(workload);
1201 
1202 		ret = dispatch_workload(workload);
1203 
1204 		if (ret) {
1205 			vgpu = workload->vgpu;
1206 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1207 			goto complete;
1208 		}
1209 
1210 		gvt_dbg_sched("ring %s wait workload %p\n",
1211 			      engine->name, workload);
1212 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1213 
1214 complete:
1215 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1216 			      workload, workload->status);
1217 
1218 		complete_current_workload(gvt, engine->id);
1219 
1220 		if (need_force_wake)
1221 			intel_uncore_forcewake_put(engine->uncore,
1222 						   FORCEWAKE_ALL);
1223 
1224 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1225 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1226 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1227 	}
1228 	return 0;
1229 }
1230 
1231 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1232 {
1233 	struct intel_vgpu_submission *s = &vgpu->submission;
1234 	struct intel_gvt *gvt = vgpu->gvt;
1235 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1236 
1237 	if (atomic_read(&s->running_workload_num)) {
1238 		gvt_dbg_sched("wait vgpu idle\n");
1239 
1240 		wait_event(scheduler->workload_complete_wq,
1241 				!atomic_read(&s->running_workload_num));
1242 	}
1243 }
1244 
1245 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1246 {
1247 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1248 	struct intel_engine_cs *engine;
1249 	enum intel_engine_id i;
1250 
1251 	gvt_dbg_core("clean workload scheduler\n");
1252 
1253 	for_each_engine(engine, gvt->gt, i) {
1254 		atomic_notifier_chain_unregister(
1255 					&engine->context_status_notifier,
1256 					&gvt->shadow_ctx_notifier_block[i]);
1257 		kthread_stop(scheduler->thread[i]);
1258 	}
1259 }
1260 
1261 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1262 {
1263 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1264 	struct intel_engine_cs *engine;
1265 	enum intel_engine_id i;
1266 	int ret;
1267 
1268 	gvt_dbg_core("init workload scheduler\n");
1269 
1270 	init_waitqueue_head(&scheduler->workload_complete_wq);
1271 
1272 	for_each_engine(engine, gvt->gt, i) {
1273 		init_waitqueue_head(&scheduler->waitq[i]);
1274 
1275 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1276 						   "gvt:%s", engine->name);
1277 		if (IS_ERR(scheduler->thread[i])) {
1278 			gvt_err("fail to create workload thread\n");
1279 			ret = PTR_ERR(scheduler->thread[i]);
1280 			goto err;
1281 		}
1282 
1283 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1284 					shadow_context_status_change;
1285 		atomic_notifier_chain_register(&engine->context_status_notifier,
1286 					&gvt->shadow_ctx_notifier_block[i]);
1287 	}
1288 
1289 	return 0;
1290 
1291 err:
1292 	intel_gvt_clean_workload_scheduler(gvt);
1293 	return ret;
1294 }
1295 
1296 static void
1297 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1298 				struct i915_ppgtt *ppgtt)
1299 {
1300 	int i;
1301 
1302 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1303 		set_dma_address(ppgtt->pd, s->i915_context_pml4);
1304 	} else {
1305 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1306 			struct i915_page_directory * const pd =
1307 				i915_pd_entry(ppgtt->pd, i);
1308 
1309 			set_dma_address(pd, s->i915_context_pdps[i]);
1310 		}
1311 	}
1312 }
1313 
1314 /**
1315  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1316  * @vgpu: a vGPU
1317  *
1318  * This function is called when a vGPU is being destroyed.
1319  *
1320  */
1321 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1322 {
1323 	struct intel_vgpu_submission *s = &vgpu->submission;
1324 	struct intel_engine_cs *engine;
1325 	enum intel_engine_id id;
1326 
1327 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1328 
1329 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1330 	for_each_engine(engine, vgpu->gvt->gt, id)
1331 		intel_context_put(s->shadow[id]);
1332 
1333 	kmem_cache_destroy(s->workloads);
1334 }
1335 
1336 
1337 /**
1338  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1339  * @vgpu: a vGPU
1340  * @engine_mask: engines expected to be reset
1341  *
1342  * This function is called when a vGPU is being destroyed.
1343  *
1344  */
1345 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1346 				 intel_engine_mask_t engine_mask)
1347 {
1348 	struct intel_vgpu_submission *s = &vgpu->submission;
1349 
1350 	if (!s->active)
1351 		return;
1352 
1353 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1354 	s->ops->reset(vgpu, engine_mask);
1355 }
1356 
1357 static void
1358 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1359 			     struct i915_ppgtt *ppgtt)
1360 {
1361 	int i;
1362 
1363 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1364 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1365 	} else {
1366 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1367 			struct i915_page_directory * const pd =
1368 				i915_pd_entry(ppgtt->pd, i);
1369 
1370 			s->i915_context_pdps[i] = px_dma(pd);
1371 		}
1372 	}
1373 }
1374 
1375 /**
1376  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1377  * @vgpu: a vGPU
1378  *
1379  * This function is called when a vGPU is being created.
1380  *
1381  * Returns:
1382  * Zero on success, negative error code if failed.
1383  *
1384  */
1385 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1386 {
1387 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1388 	struct intel_vgpu_submission *s = &vgpu->submission;
1389 	struct intel_engine_cs *engine;
1390 	struct i915_ppgtt *ppgtt;
1391 	enum intel_engine_id i;
1392 	int ret;
1393 
1394 	ppgtt = i915_ppgtt_create(to_gt(i915), I915_BO_ALLOC_PM_EARLY);
1395 	if (IS_ERR(ppgtt))
1396 		return PTR_ERR(ppgtt);
1397 
1398 	i915_context_ppgtt_root_save(s, ppgtt);
1399 
1400 	for_each_engine(engine, vgpu->gvt->gt, i) {
1401 		struct intel_context *ce;
1402 
1403 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1404 		s->shadow[i] = ERR_PTR(-EINVAL);
1405 
1406 		ce = intel_context_create(engine);
1407 		if (IS_ERR(ce)) {
1408 			ret = PTR_ERR(ce);
1409 			goto out_shadow_ctx;
1410 		}
1411 
1412 		i915_vm_put(ce->vm);
1413 		ce->vm = i915_vm_get(&ppgtt->vm);
1414 		intel_context_set_single_submission(ce);
1415 
1416 		/* Max ring buffer size */
1417 		if (!intel_uc_wants_guc_submission(&engine->gt->uc))
1418 			ce->ring_size = SZ_2M;
1419 
1420 		s->shadow[i] = ce;
1421 	}
1422 
1423 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1424 
1425 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1426 						  sizeof(struct intel_vgpu_workload), 0,
1427 						  SLAB_HWCACHE_ALIGN,
1428 						  offsetof(struct intel_vgpu_workload, rb_tail),
1429 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1430 						  NULL);
1431 
1432 	if (!s->workloads) {
1433 		ret = -ENOMEM;
1434 		goto out_shadow_ctx;
1435 	}
1436 
1437 	atomic_set(&s->running_workload_num, 0);
1438 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1439 
1440 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1441 
1442 	i915_vm_put(&ppgtt->vm);
1443 	return 0;
1444 
1445 out_shadow_ctx:
1446 	i915_context_ppgtt_root_restore(s, ppgtt);
1447 	for_each_engine(engine, vgpu->gvt->gt, i) {
1448 		if (IS_ERR(s->shadow[i]))
1449 			break;
1450 
1451 		intel_context_put(s->shadow[i]);
1452 	}
1453 	i915_vm_put(&ppgtt->vm);
1454 	return ret;
1455 }
1456 
1457 /**
1458  * intel_vgpu_select_submission_ops - select virtual submission interface
1459  * @vgpu: a vGPU
1460  * @engine_mask: either ALL_ENGINES or target engine mask
1461  * @interface: expected vGPU virtual submission interface
1462  *
1463  * This function is called when guest configures submission interface.
1464  *
1465  * Returns:
1466  * Zero on success, negative error code if failed.
1467  *
1468  */
1469 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1470 				     intel_engine_mask_t engine_mask,
1471 				     unsigned int interface)
1472 {
1473 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1474 	struct intel_vgpu_submission *s = &vgpu->submission;
1475 	const struct intel_vgpu_submission_ops *ops[] = {
1476 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1477 			&intel_vgpu_execlist_submission_ops,
1478 	};
1479 	int ret;
1480 
1481 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1482 		return -EINVAL;
1483 
1484 	if (drm_WARN_ON(&i915->drm,
1485 			interface == 0 && engine_mask != ALL_ENGINES))
1486 		return -EINVAL;
1487 
1488 	if (s->active)
1489 		s->ops->clean(vgpu, engine_mask);
1490 
1491 	if (interface == 0) {
1492 		s->ops = NULL;
1493 		s->virtual_submission_interface = 0;
1494 		s->active = false;
1495 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1496 		return 0;
1497 	}
1498 
1499 	ret = ops[interface]->init(vgpu, engine_mask);
1500 	if (ret)
1501 		return ret;
1502 
1503 	s->ops = ops[interface];
1504 	s->virtual_submission_interface = interface;
1505 	s->active = true;
1506 
1507 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1508 			vgpu->id, s->ops->name);
1509 
1510 	return 0;
1511 }
1512 
1513 /**
1514  * intel_vgpu_destroy_workload - destroy a vGPU workload
1515  * @workload: workload to destroy
1516  *
1517  * This function is called when destroy a vGPU workload.
1518  *
1519  */
1520 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1521 {
1522 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1523 
1524 	intel_context_unpin(s->shadow[workload->engine->id]);
1525 	release_shadow_batch_buffer(workload);
1526 	release_shadow_wa_ctx(&workload->wa_ctx);
1527 
1528 	if (!list_empty(&workload->lri_shadow_mm)) {
1529 		struct intel_vgpu_mm *m, *mm;
1530 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1531 					 ppgtt_mm.link) {
1532 			list_del(&m->ppgtt_mm.link);
1533 			intel_vgpu_mm_put(m);
1534 		}
1535 	}
1536 
1537 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1538 	if (workload->shadow_mm)
1539 		intel_vgpu_mm_put(workload->shadow_mm);
1540 
1541 	kmem_cache_free(s->workloads, workload);
1542 }
1543 
1544 static struct intel_vgpu_workload *
1545 alloc_workload(struct intel_vgpu *vgpu)
1546 {
1547 	struct intel_vgpu_submission *s = &vgpu->submission;
1548 	struct intel_vgpu_workload *workload;
1549 
1550 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1551 	if (!workload)
1552 		return ERR_PTR(-ENOMEM);
1553 
1554 	INIT_LIST_HEAD(&workload->list);
1555 	INIT_LIST_HEAD(&workload->shadow_bb);
1556 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1557 
1558 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1559 	atomic_set(&workload->shadow_ctx_active, 0);
1560 
1561 	workload->status = -EINPROGRESS;
1562 	workload->vgpu = vgpu;
1563 
1564 	return workload;
1565 }
1566 
1567 #define RING_CTX_OFF(x) \
1568 	offsetof(struct execlist_ring_context, x)
1569 
1570 static void read_guest_pdps(struct intel_vgpu *vgpu,
1571 		u64 ring_context_gpa, u32 pdp[8])
1572 {
1573 	u64 gpa;
1574 	int i;
1575 
1576 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1577 
1578 	for (i = 0; i < 8; i++)
1579 		intel_gvt_read_gpa(vgpu,
1580 				gpa + i * 8, &pdp[7 - i], 4);
1581 }
1582 
1583 static int prepare_mm(struct intel_vgpu_workload *workload)
1584 {
1585 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1586 	struct intel_vgpu_mm *mm;
1587 	struct intel_vgpu *vgpu = workload->vgpu;
1588 	enum intel_gvt_gtt_type root_entry_type;
1589 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1590 
1591 	switch (desc->addressing_mode) {
1592 	case 1: /* legacy 32-bit */
1593 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1594 		break;
1595 	case 3: /* legacy 64-bit */
1596 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1597 		break;
1598 	default:
1599 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1600 		return -EINVAL;
1601 	}
1602 
1603 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1604 
1605 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1606 	if (IS_ERR(mm))
1607 		return PTR_ERR(mm);
1608 
1609 	workload->shadow_mm = mm;
1610 	return 0;
1611 }
1612 
1613 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1614 		((a)->lrca == (b)->lrca))
1615 
1616 /**
1617  * intel_vgpu_create_workload - create a vGPU workload
1618  * @vgpu: a vGPU
1619  * @engine: the engine
1620  * @desc: a guest context descriptor
1621  *
1622  * This function is called when creating a vGPU workload.
1623  *
1624  * Returns:
1625  * struct intel_vgpu_workload * on success, negative error code in
1626  * pointer if failed.
1627  *
1628  */
1629 struct intel_vgpu_workload *
1630 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1631 			   const struct intel_engine_cs *engine,
1632 			   struct execlist_ctx_descriptor_format *desc)
1633 {
1634 	struct intel_vgpu_submission *s = &vgpu->submission;
1635 	struct list_head *q = workload_q_head(vgpu, engine);
1636 	struct intel_vgpu_workload *last_workload = NULL;
1637 	struct intel_vgpu_workload *workload = NULL;
1638 	u64 ring_context_gpa;
1639 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1640 	u32 guest_head;
1641 	int ret;
1642 
1643 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1644 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1645 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1646 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1647 		return ERR_PTR(-EINVAL);
1648 	}
1649 
1650 	intel_gvt_read_gpa(vgpu, ring_context_gpa +
1651 			RING_CTX_OFF(ring_header.val), &head, 4);
1652 
1653 	intel_gvt_read_gpa(vgpu, ring_context_gpa +
1654 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1655 
1656 	guest_head = head;
1657 
1658 	head &= RB_HEAD_OFF_MASK;
1659 	tail &= RB_TAIL_OFF_MASK;
1660 
1661 	list_for_each_entry_reverse(last_workload, q, list) {
1662 
1663 		if (same_context(&last_workload->ctx_desc, desc)) {
1664 			gvt_dbg_el("ring %s cur workload == last\n",
1665 				   engine->name);
1666 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1667 				   last_workload->rb_tail);
1668 			/*
1669 			 * cannot use guest context head pointer here,
1670 			 * as it might not be updated at this time
1671 			 */
1672 			head = last_workload->rb_tail;
1673 			break;
1674 		}
1675 	}
1676 
1677 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1678 
1679 	/* record some ring buffer register values for scan and shadow */
1680 	intel_gvt_read_gpa(vgpu, ring_context_gpa +
1681 			RING_CTX_OFF(rb_start.val), &start, 4);
1682 	intel_gvt_read_gpa(vgpu, ring_context_gpa +
1683 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1684 	intel_gvt_read_gpa(vgpu, ring_context_gpa +
1685 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1686 
1687 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1688 				_RING_CTL_BUF_SIZE(ctl))) {
1689 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1690 		return ERR_PTR(-EINVAL);
1691 	}
1692 
1693 	workload = alloc_workload(vgpu);
1694 	if (IS_ERR(workload))
1695 		return workload;
1696 
1697 	workload->engine = engine;
1698 	workload->ctx_desc = *desc;
1699 	workload->ring_context_gpa = ring_context_gpa;
1700 	workload->rb_head = head;
1701 	workload->guest_rb_head = guest_head;
1702 	workload->rb_tail = tail;
1703 	workload->rb_start = start;
1704 	workload->rb_ctl = ctl;
1705 
1706 	if (engine->id == RCS0) {
1707 		intel_gvt_read_gpa(vgpu, ring_context_gpa +
1708 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1709 		intel_gvt_read_gpa(vgpu, ring_context_gpa +
1710 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1711 
1712 		workload->wa_ctx.indirect_ctx.guest_gma =
1713 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1714 		workload->wa_ctx.indirect_ctx.size =
1715 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1716 			CACHELINE_BYTES;
1717 
1718 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1719 			if (!intel_gvt_ggtt_validate_range(vgpu,
1720 				workload->wa_ctx.indirect_ctx.guest_gma,
1721 				workload->wa_ctx.indirect_ctx.size)) {
1722 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1723 				    workload->wa_ctx.indirect_ctx.guest_gma);
1724 				kmem_cache_free(s->workloads, workload);
1725 				return ERR_PTR(-EINVAL);
1726 			}
1727 		}
1728 
1729 		workload->wa_ctx.per_ctx.guest_gma =
1730 			per_ctx & PER_CTX_ADDR_MASK;
1731 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1732 		if (workload->wa_ctx.per_ctx.valid) {
1733 			if (!intel_gvt_ggtt_validate_range(vgpu,
1734 				workload->wa_ctx.per_ctx.guest_gma,
1735 				CACHELINE_BYTES)) {
1736 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1737 					workload->wa_ctx.per_ctx.guest_gma);
1738 				kmem_cache_free(s->workloads, workload);
1739 				return ERR_PTR(-EINVAL);
1740 			}
1741 		}
1742 	}
1743 
1744 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1745 		   workload, engine->name, head, tail, start, ctl);
1746 
1747 	ret = prepare_mm(workload);
1748 	if (ret) {
1749 		kmem_cache_free(s->workloads, workload);
1750 		return ERR_PTR(ret);
1751 	}
1752 
1753 	/* Only scan and shadow the first workload in the queue
1754 	 * as there is only one pre-allocated buf-obj for shadow.
1755 	 */
1756 	if (list_empty(q)) {
1757 		intel_wakeref_t wakeref;
1758 
1759 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1760 			ret = intel_gvt_scan_and_shadow_workload(workload);
1761 	}
1762 
1763 	if (ret) {
1764 		if (vgpu_is_vm_unhealthy(ret))
1765 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1766 		intel_vgpu_destroy_workload(workload);
1767 		return ERR_PTR(ret);
1768 	}
1769 
1770 	ret = intel_context_pin(s->shadow[engine->id]);
1771 	if (ret) {
1772 		intel_vgpu_destroy_workload(workload);
1773 		return ERR_PTR(ret);
1774 	}
1775 
1776 	return workload;
1777 }
1778 
1779 /**
1780  * intel_vgpu_queue_workload - Queue a vGPU workload
1781  * @workload: the workload to queue in
1782  */
1783 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1784 {
1785 	list_add_tail(&workload->list,
1786 		      workload_q_head(workload->vgpu, workload->engine));
1787 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1788 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1789 }
1790