1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include <drm/drm_print.h> 39 40 #include "gem/i915_gem_pm.h" 41 #include "gt/intel_context.h" 42 #include "gt/intel_execlists_submission.h" 43 #include "gt/intel_gt_regs.h" 44 #include "gt/intel_lrc.h" 45 #include "gt/intel_ring.h" 46 47 #include "i915_drv.h" 48 #include "i915_gem_gtt.h" 49 #include "i915_perf_oa_regs.h" 50 #include "gvt.h" 51 52 #define RING_CTX_OFF(x) \ 53 offsetof(struct execlist_ring_context, x) 54 55 static void set_context_pdp_root_pointer( 56 struct execlist_ring_context *ring_context, 57 u32 pdp[8]) 58 { 59 int i; 60 61 for (i = 0; i < 8; i++) 62 ring_context->pdps[i].val = pdp[7 - i]; 63 } 64 65 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 66 { 67 struct execlist_ring_context *shadow_ring_context; 68 struct intel_context *ctx = workload->req->context; 69 70 if (WARN_ON(!workload->shadow_mm)) 71 return; 72 73 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 74 return; 75 76 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 77 set_context_pdp_root_pointer(shadow_ring_context, 78 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 79 } 80 81 /* 82 * When populating shadow ctx from guest, we should not override oa related 83 * registers, so that they will not be overlapped by guest oa configs. Thus 84 * made it possible to capture oa data from host for both host and guests. 85 */ 86 static void sr_oa_regs(struct intel_vgpu_workload *workload, 87 u32 *reg_state, bool save) 88 { 89 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 90 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 91 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 92 int i = 0; 93 u32 flex_mmio[] = { 94 i915_mmio_reg_offset(EU_PERF_CNTL0), 95 i915_mmio_reg_offset(EU_PERF_CNTL1), 96 i915_mmio_reg_offset(EU_PERF_CNTL2), 97 i915_mmio_reg_offset(EU_PERF_CNTL3), 98 i915_mmio_reg_offset(EU_PERF_CNTL4), 99 i915_mmio_reg_offset(EU_PERF_CNTL5), 100 i915_mmio_reg_offset(EU_PERF_CNTL6), 101 }; 102 103 if (workload->engine->id != RCS0) 104 return; 105 106 if (save) { 107 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 108 109 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 110 u32 state_offset = ctx_flexeu0 + i * 2; 111 112 workload->flex_mmio[i] = reg_state[state_offset + 1]; 113 } 114 } else { 115 reg_state[ctx_oactxctrl] = 116 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 117 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 118 119 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 120 u32 state_offset = ctx_flexeu0 + i * 2; 121 u32 mmio = flex_mmio[i]; 122 123 reg_state[state_offset] = mmio; 124 reg_state[state_offset + 1] = workload->flex_mmio[i]; 125 } 126 } 127 } 128 129 static int populate_shadow_context(struct intel_vgpu_workload *workload) 130 { 131 struct intel_vgpu *vgpu = workload->vgpu; 132 struct intel_gvt *gvt = vgpu->gvt; 133 struct intel_context *ctx = workload->req->context; 134 struct execlist_ring_context *shadow_ring_context; 135 void *dst; 136 void *context_base; 137 unsigned long context_gpa, context_page_num; 138 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 139 unsigned long gpa_size; /* size of consecutive GPAs */ 140 struct intel_vgpu_submission *s = &vgpu->submission; 141 int i; 142 bool skip = false; 143 int ring_id = workload->engine->id; 144 int ret; 145 146 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 147 148 context_base = (void *) ctx->lrc_reg_state - 149 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 150 151 shadow_ring_context = (void *) ctx->lrc_reg_state; 152 153 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 154 #define COPY_REG(name) \ 155 intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \ 156 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 157 #define COPY_REG_MASKED(name) {\ 158 intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \ 159 + RING_CTX_OFF(name.val),\ 160 &shadow_ring_context->name.val, 4);\ 161 shadow_ring_context->name.val |= 0xffff << 16;\ 162 } 163 164 COPY_REG_MASKED(ctx_ctrl); 165 COPY_REG(ctx_timestamp); 166 167 if (workload->engine->id == RCS0) { 168 COPY_REG(bb_per_ctx_ptr); 169 COPY_REG(rcs_indirect_ctx); 170 COPY_REG(rcs_indirect_ctx_offset); 171 } else if (workload->engine->id == BCS0) 172 intel_gvt_read_gpa(vgpu, 173 workload->ring_context_gpa + 174 BCS_TILE_REGISTER_VAL_OFFSET, 175 (void *)shadow_ring_context + 176 BCS_TILE_REGISTER_VAL_OFFSET, 4); 177 #undef COPY_REG 178 #undef COPY_REG_MASKED 179 180 /* don't copy Ring Context (the first 0x50 dwords), 181 * only copy the Engine Context part from guest 182 */ 183 intel_gvt_read_gpa(vgpu, 184 workload->ring_context_gpa + 185 RING_CTX_SIZE, 186 (void *)shadow_ring_context + 187 RING_CTX_SIZE, 188 I915_GTT_PAGE_SIZE - RING_CTX_SIZE); 189 190 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 191 192 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 193 workload->engine->name, workload->ctx_desc.lrca, 194 workload->ctx_desc.context_id, 195 workload->ring_context_gpa); 196 197 /* only need to ensure this context is not pinned/unpinned during the 198 * period from last submission to this this submission. 199 * Upon reaching this function, the currently submitted context is not 200 * supposed to get unpinned. If a misbehaving guest driver ever does 201 * this, it would corrupt itself. 202 */ 203 if (s->last_ctx[ring_id].valid && 204 (s->last_ctx[ring_id].lrca == 205 workload->ctx_desc.lrca) && 206 (s->last_ctx[ring_id].ring_context_gpa == 207 workload->ring_context_gpa)) 208 skip = true; 209 210 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 211 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 212 213 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 214 return 0; 215 216 s->last_ctx[ring_id].valid = false; 217 context_page_num = workload->engine->context_size; 218 context_page_num = context_page_num >> PAGE_SHIFT; 219 220 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 221 context_page_num = 19; 222 223 /* find consecutive GPAs from gma until the first inconsecutive GPA. 224 * read from the continuous GPAs into dst virtual address 225 */ 226 gpa_size = 0; 227 for (i = 2; i < context_page_num; i++) { 228 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 229 (u32)((workload->ctx_desc.lrca + i) << 230 I915_GTT_PAGE_SHIFT)); 231 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 232 gvt_vgpu_err("Invalid guest context descriptor\n"); 233 return -EFAULT; 234 } 235 236 if (gpa_size == 0) { 237 gpa_base = context_gpa; 238 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 239 } else if (context_gpa != gpa_base + gpa_size) 240 goto read; 241 242 gpa_size += I915_GTT_PAGE_SIZE; 243 244 if (i == context_page_num - 1) 245 goto read; 246 247 continue; 248 249 read: 250 intel_gvt_read_gpa(vgpu, gpa_base, dst, gpa_size); 251 gpa_base = context_gpa; 252 gpa_size = I915_GTT_PAGE_SIZE; 253 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 254 } 255 ret = intel_gvt_scan_engine_context(workload); 256 if (ret) { 257 gvt_vgpu_err("invalid cmd found in guest context pages\n"); 258 return ret; 259 } 260 s->last_ctx[ring_id].valid = true; 261 return 0; 262 } 263 264 static inline bool is_gvt_request(struct i915_request *rq) 265 { 266 return intel_context_force_single_submission(rq->context); 267 } 268 269 static void save_ring_hw_state(struct intel_vgpu *vgpu, 270 const struct intel_engine_cs *engine) 271 { 272 struct intel_uncore *uncore = engine->uncore; 273 i915_reg_t reg; 274 275 reg = RING_INSTDONE(engine->mmio_base); 276 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 277 intel_uncore_read(uncore, reg); 278 279 reg = RING_ACTHD(engine->mmio_base); 280 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 281 intel_uncore_read(uncore, reg); 282 283 reg = RING_ACTHD_UDW(engine->mmio_base); 284 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 285 intel_uncore_read(uncore, reg); 286 } 287 288 static int shadow_context_status_change(struct notifier_block *nb, 289 unsigned long action, void *data) 290 { 291 struct i915_request *rq = data; 292 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 293 shadow_ctx_notifier_block[rq->engine->id]); 294 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 295 enum intel_engine_id ring_id = rq->engine->id; 296 struct intel_vgpu_workload *workload; 297 unsigned long flags; 298 299 if (!is_gvt_request(rq)) { 300 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 301 if (action == INTEL_CONTEXT_SCHEDULE_IN && 302 scheduler->engine_owner[ring_id]) { 303 /* Switch ring from vGPU to host. */ 304 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 305 NULL, rq->engine); 306 scheduler->engine_owner[ring_id] = NULL; 307 } 308 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 309 310 return NOTIFY_OK; 311 } 312 313 workload = scheduler->current_workload[ring_id]; 314 if (unlikely(!workload)) 315 return NOTIFY_OK; 316 317 switch (action) { 318 case INTEL_CONTEXT_SCHEDULE_IN: 319 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 320 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 321 /* Switch ring from host to vGPU or vGPU to vGPU. */ 322 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 323 workload->vgpu, rq->engine); 324 scheduler->engine_owner[ring_id] = workload->vgpu; 325 } else 326 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 327 ring_id, workload->vgpu->id); 328 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 329 atomic_set(&workload->shadow_ctx_active, 1); 330 break; 331 case INTEL_CONTEXT_SCHEDULE_OUT: 332 save_ring_hw_state(workload->vgpu, rq->engine); 333 atomic_set(&workload->shadow_ctx_active, 0); 334 break; 335 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 336 save_ring_hw_state(workload->vgpu, rq->engine); 337 break; 338 default: 339 WARN_ON(1); 340 return NOTIFY_OK; 341 } 342 wake_up(&workload->shadow_ctx_status_wq); 343 return NOTIFY_OK; 344 } 345 346 static void 347 shadow_context_descriptor_update(struct intel_context *ce, 348 struct intel_vgpu_workload *workload) 349 { 350 u64 desc = ce->lrc.desc; 351 352 /* 353 * Update bits 0-11 of the context descriptor which includes flags 354 * like GEN8_CTX_* cached in desc_template 355 */ 356 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 357 desc |= (u64)workload->ctx_desc.addressing_mode << 358 GEN8_CTX_ADDRESSING_MODE_SHIFT; 359 360 ce->lrc.desc = desc; 361 } 362 363 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 364 { 365 struct intel_vgpu *vgpu = workload->vgpu; 366 struct i915_request *req = workload->req; 367 void *shadow_ring_buffer_va; 368 u32 *cs; 369 int err; 370 371 if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context)) 372 intel_vgpu_restore_inhibit_context(vgpu, req); 373 374 /* 375 * To track whether a request has started on HW, we can emit a 376 * breadcrumb at the beginning of the request and check its 377 * timeline's HWSP to see if the breadcrumb has advanced past the 378 * start of this request. Actually, the request must have the 379 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 380 * scheduler might get a wrong state of it during reset. Since the 381 * requests from gvt always set the has_init_breadcrumb flag, here 382 * need to do the emit_init_breadcrumb for all the requests. 383 */ 384 if (req->engine->emit_init_breadcrumb) { 385 err = req->engine->emit_init_breadcrumb(req); 386 if (err) { 387 gvt_vgpu_err("fail to emit init breadcrumb\n"); 388 return err; 389 } 390 } 391 392 /* allocate shadow ring buffer */ 393 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 394 if (IS_ERR(cs)) { 395 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 396 workload->rb_len); 397 return PTR_ERR(cs); 398 } 399 400 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 401 402 /* get shadow ring buffer va */ 403 workload->shadow_ring_buffer_va = cs; 404 405 memcpy(cs, shadow_ring_buffer_va, 406 workload->rb_len); 407 408 cs += workload->rb_len / sizeof(u32); 409 intel_ring_advance(workload->req, cs); 410 411 return 0; 412 } 413 414 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 415 { 416 if (!wa_ctx->indirect_ctx.obj) 417 return; 418 419 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL); 420 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 421 i915_gem_object_unlock(wa_ctx->indirect_ctx.obj); 422 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 423 424 wa_ctx->indirect_ctx.obj = NULL; 425 wa_ctx->indirect_ctx.shadow_va = NULL; 426 } 427 428 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) 429 { 430 struct scatterlist *sg = pd->pt.base->mm.pages->sgl; 431 432 /* This is not a good idea */ 433 sg->dma_address = addr; 434 } 435 436 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 437 struct intel_context *ce) 438 { 439 struct intel_vgpu_mm *mm = workload->shadow_mm; 440 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 441 int i = 0; 442 443 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 444 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); 445 } else { 446 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 447 struct i915_page_directory * const pd = 448 i915_pd_entry(ppgtt->pd, i); 449 /* skip now as current i915 ppgtt alloc won't allocate 450 top level pdp for non 4-level table, won't impact 451 shadow ppgtt. */ 452 if (!pd) 453 break; 454 455 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); 456 } 457 } 458 } 459 460 static int 461 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 462 { 463 struct intel_vgpu *vgpu = workload->vgpu; 464 struct intel_vgpu_submission *s = &vgpu->submission; 465 struct i915_request *rq; 466 467 if (workload->req) 468 return 0; 469 470 rq = i915_request_create(s->shadow[workload->engine->id]); 471 if (IS_ERR(rq)) { 472 gvt_vgpu_err("fail to allocate gem request\n"); 473 return PTR_ERR(rq); 474 } 475 476 workload->req = i915_request_get(rq); 477 return 0; 478 } 479 480 /** 481 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 482 * shadow it as well, include ringbuffer,wa_ctx and ctx. 483 * @workload: an abstract entity for each execlist submission. 484 * 485 * This function is called before the workload submitting to i915, to make 486 * sure the content of the workload is valid. 487 */ 488 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 489 { 490 struct intel_vgpu *vgpu = workload->vgpu; 491 struct intel_vgpu_submission *s = &vgpu->submission; 492 int ret; 493 494 lockdep_assert_held(&vgpu->vgpu_lock); 495 496 if (workload->shadow) 497 return 0; 498 499 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 500 shadow_context_descriptor_update(s->shadow[workload->engine->id], 501 workload); 502 503 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 504 if (ret) 505 return ret; 506 507 if (workload->engine->id == RCS0 && 508 workload->wa_ctx.indirect_ctx.size) { 509 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 510 if (ret) 511 goto err_shadow; 512 } 513 514 workload->shadow = true; 515 return 0; 516 517 err_shadow: 518 release_shadow_wa_ctx(&workload->wa_ctx); 519 return ret; 520 } 521 522 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 523 524 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 525 { 526 struct intel_gvt *gvt = workload->vgpu->gvt; 527 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 528 struct intel_vgpu_shadow_bb *bb; 529 struct i915_gem_ww_ctx ww; 530 int ret; 531 532 list_for_each_entry(bb, &workload->shadow_bb, list) { 533 /* 534 * For privilege batch buffer and not wa_ctx, the bb_start_cmd_va 535 * is only updated into ring_scan_buffer, not real ring address 536 * allocated in later copy_workload_to_ring_buffer. Please be noted 537 * shadow_ring_buffer_va is now pointed to real ring buffer va 538 * in copy_workload_to_ring_buffer. 539 */ 540 541 if (bb->bb_offset) 542 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 543 + bb->bb_offset; 544 545 /* 546 * For non-priv bb, scan&shadow is only for 547 * debugging purpose, so the content of shadow bb 548 * is the same as original bb. Therefore, 549 * here, rather than switch to shadow bb's gma 550 * address, we directly use original batch buffer's 551 * gma address, and send original bb to hardware 552 * directly. 553 */ 554 if (!bb->ppgtt) { 555 i915_gem_ww_ctx_init(&ww, false); 556 retry: 557 i915_gem_object_lock(bb->obj, &ww); 558 559 bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww, 560 NULL, 0, 0, 0); 561 if (IS_ERR(bb->vma)) { 562 ret = PTR_ERR(bb->vma); 563 if (ret == -EDEADLK) { 564 ret = i915_gem_ww_ctx_backoff(&ww); 565 if (!ret) 566 goto retry; 567 } 568 goto err; 569 } 570 571 /* relocate shadow batch buffer */ 572 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 573 if (gmadr_bytes == 8) 574 bb->bb_start_cmd_va[2] = 0; 575 576 ret = i915_vma_move_to_active(bb->vma, workload->req, 577 __EXEC_OBJECT_NO_REQUEST_AWAIT); 578 if (ret) 579 goto err; 580 581 /* No one is going to touch shadow bb from now on. */ 582 i915_gem_object_flush_map(bb->obj); 583 i915_gem_ww_ctx_fini(&ww); 584 } 585 } 586 return 0; 587 err: 588 i915_gem_ww_ctx_fini(&ww); 589 release_shadow_batch_buffer(workload); 590 return ret; 591 } 592 593 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 594 { 595 struct intel_vgpu_workload *workload = 596 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 597 struct i915_request *rq = workload->req; 598 struct execlist_ring_context *shadow_ring_context = 599 (struct execlist_ring_context *)rq->context->lrc_reg_state; 600 601 shadow_ring_context->bb_per_ctx_ptr.val = 602 (shadow_ring_context->bb_per_ctx_ptr.val & 603 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 604 shadow_ring_context->rcs_indirect_ctx.val = 605 (shadow_ring_context->rcs_indirect_ctx.val & 606 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 607 } 608 609 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 610 { 611 struct i915_vma *vma; 612 unsigned char *per_ctx_va = 613 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 614 wa_ctx->indirect_ctx.size; 615 struct i915_gem_ww_ctx ww; 616 int ret; 617 618 if (wa_ctx->indirect_ctx.size == 0) 619 return 0; 620 621 i915_gem_ww_ctx_init(&ww, false); 622 retry: 623 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww); 624 625 vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL, 626 0, CACHELINE_BYTES, 0); 627 if (IS_ERR(vma)) { 628 ret = PTR_ERR(vma); 629 if (ret == -EDEADLK) { 630 ret = i915_gem_ww_ctx_backoff(&ww); 631 if (!ret) 632 goto retry; 633 } 634 return ret; 635 } 636 637 i915_gem_ww_ctx_fini(&ww); 638 639 /* FIXME: we are not tracking our pinned VMA leaving it 640 * up to the core to fix up the stray pin_count upon 641 * free. 642 */ 643 644 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 645 646 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 647 memset(per_ctx_va, 0, CACHELINE_BYTES); 648 649 update_wa_ctx_2_shadow_ctx(wa_ctx); 650 return 0; 651 } 652 653 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 654 { 655 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 656 workload->rb_start; 657 } 658 659 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 660 { 661 struct intel_vgpu_shadow_bb *bb, *pos; 662 663 if (list_empty(&workload->shadow_bb)) 664 return; 665 666 bb = list_first_entry(&workload->shadow_bb, 667 struct intel_vgpu_shadow_bb, list); 668 669 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 670 if (bb->obj) { 671 i915_gem_object_lock(bb->obj, NULL); 672 if (bb->va && !IS_ERR(bb->va)) 673 i915_gem_object_unpin_map(bb->obj); 674 675 if (bb->vma && !IS_ERR(bb->vma)) 676 i915_vma_unpin(bb->vma); 677 678 i915_gem_object_unlock(bb->obj); 679 i915_gem_object_put(bb->obj); 680 } 681 list_del(&bb->list); 682 kfree(bb); 683 } 684 } 685 686 static int 687 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 688 { 689 struct intel_vgpu *vgpu = workload->vgpu; 690 struct intel_vgpu_mm *m; 691 int ret = 0; 692 693 ret = intel_vgpu_pin_mm(workload->shadow_mm); 694 if (ret) { 695 gvt_vgpu_err("fail to vgpu pin mm\n"); 696 return ret; 697 } 698 699 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 700 !workload->shadow_mm->ppgtt_mm.shadowed) { 701 intel_vgpu_unpin_mm(workload->shadow_mm); 702 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 703 return -EINVAL; 704 } 705 706 if (!list_empty(&workload->lri_shadow_mm)) { 707 list_for_each_entry(m, &workload->lri_shadow_mm, 708 ppgtt_mm.link) { 709 ret = intel_vgpu_pin_mm(m); 710 if (ret) { 711 list_for_each_entry_from_reverse(m, 712 &workload->lri_shadow_mm, 713 ppgtt_mm.link) 714 intel_vgpu_unpin_mm(m); 715 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 716 break; 717 } 718 } 719 } 720 721 if (ret) 722 intel_vgpu_unpin_mm(workload->shadow_mm); 723 724 return ret; 725 } 726 727 static void 728 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 729 { 730 struct intel_vgpu_mm *m; 731 732 if (!list_empty(&workload->lri_shadow_mm)) { 733 list_for_each_entry(m, &workload->lri_shadow_mm, 734 ppgtt_mm.link) 735 intel_vgpu_unpin_mm(m); 736 } 737 intel_vgpu_unpin_mm(workload->shadow_mm); 738 } 739 740 static int prepare_workload(struct intel_vgpu_workload *workload) 741 { 742 struct intel_vgpu *vgpu = workload->vgpu; 743 struct intel_vgpu_submission *s = &vgpu->submission; 744 int ret = 0; 745 746 ret = intel_vgpu_shadow_mm_pin(workload); 747 if (ret) { 748 gvt_vgpu_err("fail to pin shadow mm\n"); 749 return ret; 750 } 751 752 update_shadow_pdps(workload); 753 754 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 755 756 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 757 if (ret) { 758 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 759 goto err_unpin_mm; 760 } 761 762 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 763 if (ret) { 764 gvt_vgpu_err("fail to flush post shadow\n"); 765 goto err_unpin_mm; 766 } 767 768 ret = copy_workload_to_ring_buffer(workload); 769 if (ret) { 770 gvt_vgpu_err("fail to generate request\n"); 771 goto err_unpin_mm; 772 } 773 774 ret = prepare_shadow_batch_buffer(workload); 775 if (ret) { 776 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 777 goto err_unpin_mm; 778 } 779 780 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 781 if (ret) { 782 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 783 goto err_shadow_batch; 784 } 785 786 if (workload->prepare) { 787 ret = workload->prepare(workload); 788 if (ret) 789 goto err_shadow_wa_ctx; 790 } 791 792 return 0; 793 err_shadow_wa_ctx: 794 release_shadow_wa_ctx(&workload->wa_ctx); 795 err_shadow_batch: 796 release_shadow_batch_buffer(workload); 797 err_unpin_mm: 798 intel_vgpu_shadow_mm_unpin(workload); 799 return ret; 800 } 801 802 static int dispatch_workload(struct intel_vgpu_workload *workload) 803 { 804 struct intel_vgpu *vgpu = workload->vgpu; 805 struct i915_request *rq; 806 int ret; 807 808 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 809 workload->engine->name, workload); 810 811 mutex_lock(&vgpu->vgpu_lock); 812 813 ret = intel_gvt_workload_req_alloc(workload); 814 if (ret) 815 goto err_req; 816 817 ret = intel_gvt_scan_and_shadow_workload(workload); 818 if (ret) 819 goto out; 820 821 ret = populate_shadow_context(workload); 822 if (ret) { 823 release_shadow_wa_ctx(&workload->wa_ctx); 824 goto out; 825 } 826 827 ret = prepare_workload(workload); 828 out: 829 if (ret) { 830 /* We might still need to add request with 831 * clean ctx to retire it properly.. 832 */ 833 rq = fetch_and_zero(&workload->req); 834 i915_request_put(rq); 835 } 836 837 if (!IS_ERR_OR_NULL(workload->req)) { 838 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 839 workload->engine->name, workload->req); 840 i915_request_add(workload->req); 841 workload->dispatched = true; 842 } 843 err_req: 844 if (ret) 845 workload->status = ret; 846 mutex_unlock(&vgpu->vgpu_lock); 847 return ret; 848 } 849 850 static struct intel_vgpu_workload * 851 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 852 { 853 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 854 struct intel_vgpu_workload *workload = NULL; 855 856 mutex_lock(&gvt->sched_lock); 857 858 /* 859 * no current vgpu / will be scheduled out / no workload 860 * bail out 861 */ 862 if (!scheduler->current_vgpu) { 863 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 864 goto out; 865 } 866 867 if (scheduler->need_reschedule) { 868 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 869 goto out; 870 } 871 872 if (!test_bit(INTEL_VGPU_STATUS_ACTIVE, 873 scheduler->current_vgpu->status) || 874 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 875 goto out; 876 877 /* 878 * still have current workload, maybe the workload disptacher 879 * fail to submit it for some reason, resubmit it. 880 */ 881 if (scheduler->current_workload[engine->id]) { 882 workload = scheduler->current_workload[engine->id]; 883 gvt_dbg_sched("ring %s still have current workload %p\n", 884 engine->name, workload); 885 goto out; 886 } 887 888 /* 889 * pick a workload as current workload 890 * once current workload is set, schedule policy routines 891 * will wait the current workload is finished when trying to 892 * schedule out a vgpu. 893 */ 894 scheduler->current_workload[engine->id] = 895 list_first_entry(workload_q_head(scheduler->current_vgpu, 896 engine), 897 struct intel_vgpu_workload, list); 898 899 workload = scheduler->current_workload[engine->id]; 900 901 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 902 903 atomic_inc(&workload->vgpu->submission.running_workload_num); 904 out: 905 mutex_unlock(&gvt->sched_lock); 906 return workload; 907 } 908 909 static void update_guest_pdps(struct intel_vgpu *vgpu, 910 u64 ring_context_gpa, u32 pdp[8]) 911 { 912 u64 gpa; 913 int i; 914 915 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 916 917 for (i = 0; i < 8; i++) 918 intel_gvt_write_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4); 919 } 920 921 static __maybe_unused bool 922 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 923 { 924 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 925 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 926 927 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 928 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 929 return false; 930 } 931 return true; 932 } else { 933 /* see comment in LRI handler in cmd_parser.c */ 934 gvt_dbg_mm("invalid shadow mm type\n"); 935 return false; 936 } 937 } 938 939 static void update_guest_context(struct intel_vgpu_workload *workload) 940 { 941 struct i915_request *rq = workload->req; 942 struct intel_vgpu *vgpu = workload->vgpu; 943 struct execlist_ring_context *shadow_ring_context; 944 struct intel_context *ctx = workload->req->context; 945 void *context_base; 946 void *src; 947 unsigned long context_gpa, context_page_num; 948 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 949 unsigned long gpa_size; /* size of consecutive GPAs*/ 950 int i; 951 u32 ring_base; 952 u32 head, tail; 953 u16 wrap_count; 954 955 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 956 workload->ctx_desc.lrca); 957 958 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 959 960 head = workload->rb_head; 961 tail = workload->rb_tail; 962 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 963 964 if (tail < head) { 965 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 966 wrap_count = 0; 967 else 968 wrap_count += 1; 969 } 970 971 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 972 973 ring_base = rq->engine->mmio_base; 974 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 975 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 976 977 context_page_num = rq->engine->context_size; 978 context_page_num = context_page_num >> PAGE_SHIFT; 979 980 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0) 981 context_page_num = 19; 982 983 context_base = (void *) ctx->lrc_reg_state - 984 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 985 986 /* find consecutive GPAs from gma until the first inconsecutive GPA. 987 * write to the consecutive GPAs from src virtual address 988 */ 989 gpa_size = 0; 990 for (i = 2; i < context_page_num; i++) { 991 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 992 (u32)((workload->ctx_desc.lrca + i) << 993 I915_GTT_PAGE_SHIFT)); 994 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 995 gvt_vgpu_err("invalid guest context descriptor\n"); 996 return; 997 } 998 999 if (gpa_size == 0) { 1000 gpa_base = context_gpa; 1001 src = context_base + (i << I915_GTT_PAGE_SHIFT); 1002 } else if (context_gpa != gpa_base + gpa_size) 1003 goto write; 1004 1005 gpa_size += I915_GTT_PAGE_SIZE; 1006 1007 if (i == context_page_num - 1) 1008 goto write; 1009 1010 continue; 1011 1012 write: 1013 intel_gvt_write_gpa(vgpu, gpa_base, src, gpa_size); 1014 gpa_base = context_gpa; 1015 gpa_size = I915_GTT_PAGE_SIZE; 1016 src = context_base + (i << I915_GTT_PAGE_SHIFT); 1017 } 1018 1019 intel_gvt_write_gpa(vgpu, workload->ring_context_gpa + 1020 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 1021 1022 shadow_ring_context = (void *) ctx->lrc_reg_state; 1023 1024 if (!list_empty(&workload->lri_shadow_mm)) { 1025 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 1026 struct intel_vgpu_mm, 1027 ppgtt_mm.link); 1028 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 1029 update_guest_pdps(vgpu, workload->ring_context_gpa, 1030 (void *)m->ppgtt_mm.guest_pdps); 1031 } 1032 1033 #define COPY_REG(name) \ 1034 intel_gvt_write_gpa(vgpu, workload->ring_context_gpa + \ 1035 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 1036 1037 COPY_REG(ctx_ctrl); 1038 COPY_REG(ctx_timestamp); 1039 1040 #undef COPY_REG 1041 1042 intel_gvt_write_gpa(vgpu, 1043 workload->ring_context_gpa + 1044 sizeof(*shadow_ring_context), 1045 (void *)shadow_ring_context + 1046 sizeof(*shadow_ring_context), 1047 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 1048 } 1049 1050 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 1051 intel_engine_mask_t engine_mask) 1052 { 1053 struct intel_vgpu_submission *s = &vgpu->submission; 1054 struct intel_engine_cs *engine; 1055 struct intel_vgpu_workload *pos, *n; 1056 intel_engine_mask_t tmp; 1057 1058 /* free the unsubmitted workloads in the queues. */ 1059 for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) { 1060 list_for_each_entry_safe(pos, n, 1061 &s->workload_q_head[engine->id], list) { 1062 list_del_init(&pos->list); 1063 intel_vgpu_destroy_workload(pos); 1064 } 1065 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1066 } 1067 } 1068 1069 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1070 { 1071 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1072 struct intel_vgpu_workload *workload = 1073 scheduler->current_workload[ring_id]; 1074 struct intel_vgpu *vgpu = workload->vgpu; 1075 struct intel_vgpu_submission *s = &vgpu->submission; 1076 struct i915_request *rq = workload->req; 1077 int event; 1078 1079 mutex_lock(&vgpu->vgpu_lock); 1080 mutex_lock(&gvt->sched_lock); 1081 1082 /* For the workload w/ request, needs to wait for the context 1083 * switch to make sure request is completed. 1084 * For the workload w/o request, directly complete the workload. 1085 */ 1086 if (rq) { 1087 wait_event(workload->shadow_ctx_status_wq, 1088 !atomic_read(&workload->shadow_ctx_active)); 1089 1090 /* If this request caused GPU hang, req->fence.error will 1091 * be set to -EIO. Use -EIO to set workload status so 1092 * that when this request caused GPU hang, didn't trigger 1093 * context switch interrupt to guest. 1094 */ 1095 if (likely(workload->status == -EINPROGRESS)) { 1096 if (workload->req->fence.error == -EIO) 1097 workload->status = -EIO; 1098 else 1099 workload->status = 0; 1100 } 1101 1102 if (!workload->status && 1103 !(vgpu->resetting_eng & BIT(ring_id))) { 1104 update_guest_context(workload); 1105 1106 for_each_set_bit(event, workload->pending_events, 1107 INTEL_GVT_EVENT_MAX) 1108 intel_vgpu_trigger_virtual_event(vgpu, event); 1109 } 1110 1111 i915_request_put(fetch_and_zero(&workload->req)); 1112 } 1113 1114 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1115 ring_id, workload, workload->status); 1116 1117 scheduler->current_workload[ring_id] = NULL; 1118 1119 list_del_init(&workload->list); 1120 1121 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1122 /* if workload->status is not successful means HW GPU 1123 * has occurred GPU hang or something wrong with i915/GVT, 1124 * and GVT won't inject context switch interrupt to guest. 1125 * So this error is a vGPU hang actually to the guest. 1126 * According to this we should emunlate a vGPU hang. If 1127 * there are pending workloads which are already submitted 1128 * from guest, we should clean them up like HW GPU does. 1129 * 1130 * if it is in middle of engine resetting, the pending 1131 * workloads won't be submitted to HW GPU and will be 1132 * cleaned up during the resetting process later, so doing 1133 * the workload clean up here doesn't have any impact. 1134 **/ 1135 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1136 } 1137 1138 workload->complete(workload); 1139 1140 intel_vgpu_shadow_mm_unpin(workload); 1141 intel_vgpu_destroy_workload(workload); 1142 1143 atomic_dec(&s->running_workload_num); 1144 wake_up(&scheduler->workload_complete_wq); 1145 1146 if (gvt->scheduler.need_reschedule) 1147 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1148 1149 mutex_unlock(&gvt->sched_lock); 1150 mutex_unlock(&vgpu->vgpu_lock); 1151 } 1152 1153 static int workload_thread(void *arg) 1154 { 1155 struct intel_engine_cs *engine = arg; 1156 const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9; 1157 struct intel_gvt *gvt = engine->i915->gvt; 1158 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1159 struct intel_vgpu_workload *workload = NULL; 1160 struct intel_vgpu *vgpu = NULL; 1161 int ret; 1162 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1163 1164 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1165 1166 while (!kthread_should_stop()) { 1167 intel_wakeref_t wakeref; 1168 1169 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1170 do { 1171 workload = pick_next_workload(gvt, engine); 1172 if (workload) 1173 break; 1174 wait_woken(&wait, TASK_INTERRUPTIBLE, 1175 MAX_SCHEDULE_TIMEOUT); 1176 } while (!kthread_should_stop()); 1177 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1178 1179 if (!workload) 1180 break; 1181 1182 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1183 engine->name, workload, 1184 workload->vgpu->id); 1185 1186 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1187 1188 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1189 engine->name, workload); 1190 1191 if (need_force_wake) 1192 intel_uncore_forcewake_get(engine->uncore, 1193 FORCEWAKE_ALL); 1194 /* 1195 * Update the vReg of the vGPU which submitted this 1196 * workload. The vGPU may use these registers for checking 1197 * the context state. The value comes from GPU commands 1198 * in this workload. 1199 */ 1200 update_vreg_in_ctx(workload); 1201 1202 ret = dispatch_workload(workload); 1203 1204 if (ret) { 1205 vgpu = workload->vgpu; 1206 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1207 goto complete; 1208 } 1209 1210 gvt_dbg_sched("ring %s wait workload %p\n", 1211 engine->name, workload); 1212 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1213 1214 complete: 1215 gvt_dbg_sched("will complete workload %p, status: %d\n", 1216 workload, workload->status); 1217 1218 complete_current_workload(gvt, engine->id); 1219 1220 if (need_force_wake) 1221 intel_uncore_forcewake_put(engine->uncore, 1222 FORCEWAKE_ALL); 1223 1224 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1225 if (ret && (vgpu_is_vm_unhealthy(ret))) 1226 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1227 } 1228 return 0; 1229 } 1230 1231 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1232 { 1233 struct intel_vgpu_submission *s = &vgpu->submission; 1234 struct intel_gvt *gvt = vgpu->gvt; 1235 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1236 1237 if (atomic_read(&s->running_workload_num)) { 1238 gvt_dbg_sched("wait vgpu idle\n"); 1239 1240 wait_event(scheduler->workload_complete_wq, 1241 !atomic_read(&s->running_workload_num)); 1242 } 1243 } 1244 1245 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1246 { 1247 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1248 struct intel_engine_cs *engine; 1249 enum intel_engine_id i; 1250 1251 gvt_dbg_core("clean workload scheduler\n"); 1252 1253 for_each_engine(engine, gvt->gt, i) { 1254 atomic_notifier_chain_unregister( 1255 &engine->context_status_notifier, 1256 &gvt->shadow_ctx_notifier_block[i]); 1257 kthread_stop(scheduler->thread[i]); 1258 } 1259 } 1260 1261 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1262 { 1263 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1264 struct intel_engine_cs *engine; 1265 enum intel_engine_id i; 1266 int ret; 1267 1268 gvt_dbg_core("init workload scheduler\n"); 1269 1270 init_waitqueue_head(&scheduler->workload_complete_wq); 1271 1272 for_each_engine(engine, gvt->gt, i) { 1273 init_waitqueue_head(&scheduler->waitq[i]); 1274 1275 scheduler->thread[i] = kthread_run(workload_thread, engine, 1276 "gvt:%s", engine->name); 1277 if (IS_ERR(scheduler->thread[i])) { 1278 gvt_err("fail to create workload thread\n"); 1279 ret = PTR_ERR(scheduler->thread[i]); 1280 goto err; 1281 } 1282 1283 gvt->shadow_ctx_notifier_block[i].notifier_call = 1284 shadow_context_status_change; 1285 atomic_notifier_chain_register(&engine->context_status_notifier, 1286 &gvt->shadow_ctx_notifier_block[i]); 1287 } 1288 1289 return 0; 1290 1291 err: 1292 intel_gvt_clean_workload_scheduler(gvt); 1293 return ret; 1294 } 1295 1296 static void 1297 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1298 struct i915_ppgtt *ppgtt) 1299 { 1300 int i; 1301 1302 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1303 set_dma_address(ppgtt->pd, s->i915_context_pml4); 1304 } else { 1305 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1306 struct i915_page_directory * const pd = 1307 i915_pd_entry(ppgtt->pd, i); 1308 1309 set_dma_address(pd, s->i915_context_pdps[i]); 1310 } 1311 } 1312 } 1313 1314 /** 1315 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1316 * @vgpu: a vGPU 1317 * 1318 * This function is called when a vGPU is being destroyed. 1319 * 1320 */ 1321 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1322 { 1323 struct intel_vgpu_submission *s = &vgpu->submission; 1324 struct intel_engine_cs *engine; 1325 enum intel_engine_id id; 1326 1327 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1328 1329 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1330 for_each_engine(engine, vgpu->gvt->gt, id) 1331 intel_context_put(s->shadow[id]); 1332 1333 kmem_cache_destroy(s->workloads); 1334 } 1335 1336 1337 /** 1338 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1339 * @vgpu: a vGPU 1340 * @engine_mask: engines expected to be reset 1341 * 1342 * This function is called when a vGPU is being destroyed. 1343 * 1344 */ 1345 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1346 intel_engine_mask_t engine_mask) 1347 { 1348 struct intel_vgpu_submission *s = &vgpu->submission; 1349 1350 if (!s->active) 1351 return; 1352 1353 intel_vgpu_clean_workloads(vgpu, engine_mask); 1354 s->ops->reset(vgpu, engine_mask); 1355 } 1356 1357 static void 1358 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1359 struct i915_ppgtt *ppgtt) 1360 { 1361 int i; 1362 1363 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1364 s->i915_context_pml4 = px_dma(ppgtt->pd); 1365 } else { 1366 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1367 struct i915_page_directory * const pd = 1368 i915_pd_entry(ppgtt->pd, i); 1369 1370 s->i915_context_pdps[i] = px_dma(pd); 1371 } 1372 } 1373 } 1374 1375 /** 1376 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1377 * @vgpu: a vGPU 1378 * 1379 * This function is called when a vGPU is being created. 1380 * 1381 * Returns: 1382 * Zero on success, negative error code if failed. 1383 * 1384 */ 1385 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1386 { 1387 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1388 struct intel_vgpu_submission *s = &vgpu->submission; 1389 struct intel_engine_cs *engine; 1390 struct i915_ppgtt *ppgtt; 1391 enum intel_engine_id i; 1392 int ret; 1393 1394 ppgtt = i915_ppgtt_create(to_gt(i915), I915_BO_ALLOC_PM_EARLY); 1395 if (IS_ERR(ppgtt)) 1396 return PTR_ERR(ppgtt); 1397 1398 i915_context_ppgtt_root_save(s, ppgtt); 1399 1400 for_each_engine(engine, vgpu->gvt->gt, i) { 1401 struct intel_context *ce; 1402 1403 INIT_LIST_HEAD(&s->workload_q_head[i]); 1404 s->shadow[i] = ERR_PTR(-EINVAL); 1405 1406 ce = intel_context_create(engine); 1407 if (IS_ERR(ce)) { 1408 ret = PTR_ERR(ce); 1409 goto out_shadow_ctx; 1410 } 1411 1412 i915_vm_put(ce->vm); 1413 ce->vm = i915_vm_get(&ppgtt->vm); 1414 intel_context_set_single_submission(ce); 1415 1416 /* Max ring buffer size */ 1417 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) 1418 ce->ring_size = SZ_2M; 1419 1420 s->shadow[i] = ce; 1421 } 1422 1423 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1424 1425 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1426 sizeof(struct intel_vgpu_workload), 0, 1427 SLAB_HWCACHE_ALIGN, 1428 offsetof(struct intel_vgpu_workload, rb_tail), 1429 sizeof_field(struct intel_vgpu_workload, rb_tail), 1430 NULL); 1431 1432 if (!s->workloads) { 1433 ret = -ENOMEM; 1434 goto out_shadow_ctx; 1435 } 1436 1437 atomic_set(&s->running_workload_num, 0); 1438 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1439 1440 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1441 1442 i915_vm_put(&ppgtt->vm); 1443 return 0; 1444 1445 out_shadow_ctx: 1446 i915_context_ppgtt_root_restore(s, ppgtt); 1447 for_each_engine(engine, vgpu->gvt->gt, i) { 1448 if (IS_ERR(s->shadow[i])) 1449 break; 1450 1451 intel_context_put(s->shadow[i]); 1452 } 1453 i915_vm_put(&ppgtt->vm); 1454 return ret; 1455 } 1456 1457 /** 1458 * intel_vgpu_select_submission_ops - select virtual submission interface 1459 * @vgpu: a vGPU 1460 * @engine_mask: either ALL_ENGINES or target engine mask 1461 * @interface: expected vGPU virtual submission interface 1462 * 1463 * This function is called when guest configures submission interface. 1464 * 1465 * Returns: 1466 * Zero on success, negative error code if failed. 1467 * 1468 */ 1469 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1470 intel_engine_mask_t engine_mask, 1471 unsigned int interface) 1472 { 1473 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1474 struct intel_vgpu_submission *s = &vgpu->submission; 1475 const struct intel_vgpu_submission_ops *ops[] = { 1476 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1477 &intel_vgpu_execlist_submission_ops, 1478 }; 1479 int ret; 1480 1481 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1482 return -EINVAL; 1483 1484 if (drm_WARN_ON(&i915->drm, 1485 interface == 0 && engine_mask != ALL_ENGINES)) 1486 return -EINVAL; 1487 1488 if (s->active) 1489 s->ops->clean(vgpu, engine_mask); 1490 1491 if (interface == 0) { 1492 s->ops = NULL; 1493 s->virtual_submission_interface = 0; 1494 s->active = false; 1495 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1496 return 0; 1497 } 1498 1499 ret = ops[interface]->init(vgpu, engine_mask); 1500 if (ret) 1501 return ret; 1502 1503 s->ops = ops[interface]; 1504 s->virtual_submission_interface = interface; 1505 s->active = true; 1506 1507 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1508 vgpu->id, s->ops->name); 1509 1510 return 0; 1511 } 1512 1513 /** 1514 * intel_vgpu_destroy_workload - destroy a vGPU workload 1515 * @workload: workload to destroy 1516 * 1517 * This function is called when destroy a vGPU workload. 1518 * 1519 */ 1520 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1521 { 1522 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1523 1524 intel_context_unpin(s->shadow[workload->engine->id]); 1525 release_shadow_batch_buffer(workload); 1526 release_shadow_wa_ctx(&workload->wa_ctx); 1527 1528 if (!list_empty(&workload->lri_shadow_mm)) { 1529 struct intel_vgpu_mm *m, *mm; 1530 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1531 ppgtt_mm.link) { 1532 list_del(&m->ppgtt_mm.link); 1533 intel_vgpu_mm_put(m); 1534 } 1535 } 1536 1537 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1538 if (workload->shadow_mm) 1539 intel_vgpu_mm_put(workload->shadow_mm); 1540 1541 kmem_cache_free(s->workloads, workload); 1542 } 1543 1544 static struct intel_vgpu_workload * 1545 alloc_workload(struct intel_vgpu *vgpu) 1546 { 1547 struct intel_vgpu_submission *s = &vgpu->submission; 1548 struct intel_vgpu_workload *workload; 1549 1550 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1551 if (!workload) 1552 return ERR_PTR(-ENOMEM); 1553 1554 INIT_LIST_HEAD(&workload->list); 1555 INIT_LIST_HEAD(&workload->shadow_bb); 1556 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1557 1558 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1559 atomic_set(&workload->shadow_ctx_active, 0); 1560 1561 workload->status = -EINPROGRESS; 1562 workload->vgpu = vgpu; 1563 1564 return workload; 1565 } 1566 1567 #define RING_CTX_OFF(x) \ 1568 offsetof(struct execlist_ring_context, x) 1569 1570 static void read_guest_pdps(struct intel_vgpu *vgpu, 1571 u64 ring_context_gpa, u32 pdp[8]) 1572 { 1573 u64 gpa; 1574 int i; 1575 1576 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1577 1578 for (i = 0; i < 8; i++) 1579 intel_gvt_read_gpa(vgpu, 1580 gpa + i * 8, &pdp[7 - i], 4); 1581 } 1582 1583 static int prepare_mm(struct intel_vgpu_workload *workload) 1584 { 1585 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1586 struct intel_vgpu_mm *mm; 1587 struct intel_vgpu *vgpu = workload->vgpu; 1588 enum intel_gvt_gtt_type root_entry_type; 1589 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1590 1591 switch (desc->addressing_mode) { 1592 case 1: /* legacy 32-bit */ 1593 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1594 break; 1595 case 3: /* legacy 64-bit */ 1596 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1597 break; 1598 default: 1599 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1600 return -EINVAL; 1601 } 1602 1603 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1604 1605 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1606 if (IS_ERR(mm)) 1607 return PTR_ERR(mm); 1608 1609 workload->shadow_mm = mm; 1610 return 0; 1611 } 1612 1613 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1614 ((a)->lrca == (b)->lrca)) 1615 1616 /** 1617 * intel_vgpu_create_workload - create a vGPU workload 1618 * @vgpu: a vGPU 1619 * @engine: the engine 1620 * @desc: a guest context descriptor 1621 * 1622 * This function is called when creating a vGPU workload. 1623 * 1624 * Returns: 1625 * struct intel_vgpu_workload * on success, negative error code in 1626 * pointer if failed. 1627 * 1628 */ 1629 struct intel_vgpu_workload * 1630 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1631 const struct intel_engine_cs *engine, 1632 struct execlist_ctx_descriptor_format *desc) 1633 { 1634 struct intel_vgpu_submission *s = &vgpu->submission; 1635 struct list_head *q = workload_q_head(vgpu, engine); 1636 struct intel_vgpu_workload *last_workload = NULL; 1637 struct intel_vgpu_workload *workload = NULL; 1638 u64 ring_context_gpa; 1639 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1640 u32 guest_head; 1641 int ret; 1642 1643 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1644 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1645 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1646 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1647 return ERR_PTR(-EINVAL); 1648 } 1649 1650 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1651 RING_CTX_OFF(ring_header.val), &head, 4); 1652 1653 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1654 RING_CTX_OFF(ring_tail.val), &tail, 4); 1655 1656 guest_head = head; 1657 1658 head &= RB_HEAD_OFF_MASK; 1659 tail &= RB_TAIL_OFF_MASK; 1660 1661 list_for_each_entry_reverse(last_workload, q, list) { 1662 1663 if (same_context(&last_workload->ctx_desc, desc)) { 1664 gvt_dbg_el("ring %s cur workload == last\n", 1665 engine->name); 1666 gvt_dbg_el("ctx head %x real head %lx\n", head, 1667 last_workload->rb_tail); 1668 /* 1669 * cannot use guest context head pointer here, 1670 * as it might not be updated at this time 1671 */ 1672 head = last_workload->rb_tail; 1673 break; 1674 } 1675 } 1676 1677 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1678 1679 /* record some ring buffer register values for scan and shadow */ 1680 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1681 RING_CTX_OFF(rb_start.val), &start, 4); 1682 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1683 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1684 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1685 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1686 1687 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1688 _RING_CTL_BUF_SIZE(ctl))) { 1689 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1690 return ERR_PTR(-EINVAL); 1691 } 1692 1693 workload = alloc_workload(vgpu); 1694 if (IS_ERR(workload)) 1695 return workload; 1696 1697 workload->engine = engine; 1698 workload->ctx_desc = *desc; 1699 workload->ring_context_gpa = ring_context_gpa; 1700 workload->rb_head = head; 1701 workload->guest_rb_head = guest_head; 1702 workload->rb_tail = tail; 1703 workload->rb_start = start; 1704 workload->rb_ctl = ctl; 1705 1706 if (engine->id == RCS0) { 1707 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1708 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1709 intel_gvt_read_gpa(vgpu, ring_context_gpa + 1710 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1711 1712 workload->wa_ctx.indirect_ctx.guest_gma = 1713 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1714 workload->wa_ctx.indirect_ctx.size = 1715 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1716 CACHELINE_BYTES; 1717 1718 if (workload->wa_ctx.indirect_ctx.size != 0) { 1719 if (!intel_gvt_ggtt_validate_range(vgpu, 1720 workload->wa_ctx.indirect_ctx.guest_gma, 1721 workload->wa_ctx.indirect_ctx.size)) { 1722 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1723 workload->wa_ctx.indirect_ctx.guest_gma); 1724 kmem_cache_free(s->workloads, workload); 1725 return ERR_PTR(-EINVAL); 1726 } 1727 } 1728 1729 workload->wa_ctx.per_ctx.guest_gma = 1730 per_ctx & PER_CTX_ADDR_MASK; 1731 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1732 if (workload->wa_ctx.per_ctx.valid) { 1733 if (!intel_gvt_ggtt_validate_range(vgpu, 1734 workload->wa_ctx.per_ctx.guest_gma, 1735 CACHELINE_BYTES)) { 1736 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1737 workload->wa_ctx.per_ctx.guest_gma); 1738 kmem_cache_free(s->workloads, workload); 1739 return ERR_PTR(-EINVAL); 1740 } 1741 } 1742 } 1743 1744 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1745 workload, engine->name, head, tail, start, ctl); 1746 1747 ret = prepare_mm(workload); 1748 if (ret) { 1749 kmem_cache_free(s->workloads, workload); 1750 return ERR_PTR(ret); 1751 } 1752 1753 /* Only scan and shadow the first workload in the queue 1754 * as there is only one pre-allocated buf-obj for shadow. 1755 */ 1756 if (list_empty(q)) { 1757 intel_wakeref_t wakeref; 1758 1759 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1760 ret = intel_gvt_scan_and_shadow_workload(workload); 1761 } 1762 1763 if (ret) { 1764 if (vgpu_is_vm_unhealthy(ret)) 1765 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1766 intel_vgpu_destroy_workload(workload); 1767 return ERR_PTR(ret); 1768 } 1769 1770 ret = intel_context_pin(s->shadow[engine->id]); 1771 if (ret) { 1772 intel_vgpu_destroy_workload(workload); 1773 return ERR_PTR(ret); 1774 } 1775 1776 return workload; 1777 } 1778 1779 /** 1780 * intel_vgpu_queue_workload - Queue a vGPU workload 1781 * @workload: the workload to queue in 1782 */ 1783 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1784 { 1785 list_add_tail(&workload->list, 1786 workload_q_head(workload->vgpu, workload->engine)); 1787 intel_gvt_kick_schedule(workload->vgpu->gvt); 1788 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1789 } 1790