xref: /linux/drivers/gpu/drm/i915/gvt/gtt.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53 				vgpu->id, addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156 
157 struct gtt_type_table_entry {
158 	int entry_type;
159 	int next_pt_type;
160 	int pse_entry_type;
161 };
162 
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 	[type] = { \
165 		.entry_type = e_type, \
166 		.next_pt_type = npt_type, \
167 		.pse_entry_type = pse_type, \
168 	}
169 
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 			GTT_TYPE_PPGTT_PML4_PT,
174 			GTT_TYPE_INVALID),
175 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 			GTT_TYPE_PPGTT_PML4_ENTRY,
177 			GTT_TYPE_PPGTT_PDP_PT,
178 			GTT_TYPE_INVALID),
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 			GTT_TYPE_PPGTT_PML4_ENTRY,
181 			GTT_TYPE_PPGTT_PDP_PT,
182 			GTT_TYPE_INVALID),
183 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 			GTT_TYPE_PPGTT_PDP_ENTRY,
185 			GTT_TYPE_PPGTT_PDE_PT,
186 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 			GTT_TYPE_PPGTT_PDE_PT,
190 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 			GTT_TYPE_PPGTT_PDP_ENTRY,
193 			GTT_TYPE_PPGTT_PDE_PT,
194 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 			GTT_TYPE_PPGTT_PDE_ENTRY,
197 			GTT_TYPE_PPGTT_PTE_PT,
198 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 			GTT_TYPE_PPGTT_PDE_ENTRY,
201 			GTT_TYPE_PPGTT_PTE_PT,
202 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 			GTT_TYPE_INVALID,
206 			GTT_TYPE_INVALID),
207 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 			GTT_TYPE_INVALID,
210 			GTT_TYPE_INVALID),
211 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 			GTT_TYPE_PPGTT_PDE_ENTRY,
213 			GTT_TYPE_INVALID,
214 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_ENTRY,
217 			GTT_TYPE_INVALID,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 			GTT_TYPE_GGTT_PTE,
221 			GTT_TYPE_INVALID,
222 			GTT_TYPE_INVALID),
223 };
224 
225 static inline int get_next_pt_type(int type)
226 {
227 	return gtt_type_table[type].next_pt_type;
228 }
229 
230 static inline int get_entry_type(int type)
231 {
232 	return gtt_type_table[type].entry_type;
233 }
234 
235 static inline int get_pse_type(int type)
236 {
237 	return gtt_type_table[type].pse_entry_type;
238 }
239 
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243 
244 	return readq(addr);
245 }
246 
247 static void write_pte64(struct drm_i915_private *dev_priv,
248 		unsigned long index, u64 pte)
249 {
250 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
251 
252 	writeq(pte, addr);
253 
254 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
255 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
256 }
257 
258 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
259 		struct intel_gvt_gtt_entry *e,
260 		unsigned long index, bool hypervisor_access, unsigned long gpa,
261 		struct intel_vgpu *vgpu)
262 {
263 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
264 	int ret;
265 
266 	if (WARN_ON(info->gtt_entry_size != 8))
267 		return e;
268 
269 	if (hypervisor_access) {
270 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
271 				(index << info->gtt_entry_size_shift),
272 				&e->val64, 8);
273 		WARN_ON(ret);
274 	} else if (!pt) {
275 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
276 	} else {
277 		e->val64 = *((u64 *)pt + index);
278 	}
279 	return e;
280 }
281 
282 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
283 		struct intel_gvt_gtt_entry *e,
284 		unsigned long index, bool hypervisor_access, unsigned long gpa,
285 		struct intel_vgpu *vgpu)
286 {
287 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288 	int ret;
289 
290 	if (WARN_ON(info->gtt_entry_size != 8))
291 		return e;
292 
293 	if (hypervisor_access) {
294 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
295 				(index << info->gtt_entry_size_shift),
296 				&e->val64, 8);
297 		WARN_ON(ret);
298 	} else if (!pt) {
299 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
300 	} else {
301 		*((u64 *)pt + index) = e->val64;
302 	}
303 	return e;
304 }
305 
306 #define GTT_HAW 46
307 
308 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
309 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
310 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
311 
312 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
313 {
314 	unsigned long pfn;
315 
316 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
317 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
318 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
319 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
320 	else
321 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
322 	return pfn;
323 }
324 
325 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
326 {
327 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
328 		e->val64 &= ~ADDR_1G_MASK;
329 		pfn &= (ADDR_1G_MASK >> 12);
330 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
331 		e->val64 &= ~ADDR_2M_MASK;
332 		pfn &= (ADDR_2M_MASK >> 12);
333 	} else {
334 		e->val64 &= ~ADDR_4K_MASK;
335 		pfn &= (ADDR_4K_MASK >> 12);
336 	}
337 
338 	e->val64 |= (pfn << 12);
339 }
340 
341 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
342 {
343 	/* Entry doesn't have PSE bit. */
344 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
345 		return false;
346 
347 	e->type = get_entry_type(e->type);
348 	if (!(e->val64 & (1 << 7)))
349 		return false;
350 
351 	e->type = get_pse_type(e->type);
352 	return true;
353 }
354 
355 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
356 {
357 	/*
358 	 * i915 writes PDP root pointer registers without present bit,
359 	 * it also works, so we need to treat root pointer entry
360 	 * specifically.
361 	 */
362 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
363 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
364 		return (e->val64 != 0);
365 	else
366 		return (e->val64 & (1 << 0));
367 }
368 
369 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
370 {
371 	e->val64 &= ~(1 << 0);
372 }
373 
374 /*
375  * Per-platform GMA routines.
376  */
377 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
378 {
379 	unsigned long x = (gma >> GTT_PAGE_SHIFT);
380 
381 	trace_gma_index(__func__, gma, x);
382 	return x;
383 }
384 
385 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
386 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
387 { \
388 	unsigned long x = (exp); \
389 	trace_gma_index(__func__, gma, x); \
390 	return x; \
391 }
392 
393 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
394 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
395 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
396 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
398 
399 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
400 	.get_entry = gtt_get_entry64,
401 	.set_entry = gtt_set_entry64,
402 	.clear_present = gtt_entry_clear_present,
403 	.test_present = gen8_gtt_test_present,
404 	.test_pse = gen8_gtt_test_pse,
405 	.get_pfn = gen8_gtt_get_pfn,
406 	.set_pfn = gen8_gtt_set_pfn,
407 };
408 
409 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
410 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
411 	.gma_to_pte_index = gen8_gma_to_pte_index,
412 	.gma_to_pde_index = gen8_gma_to_pde_index,
413 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
414 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
415 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
416 };
417 
418 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
419 		struct intel_gvt_gtt_entry *m)
420 {
421 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
422 	unsigned long gfn, mfn;
423 
424 	*m = *p;
425 
426 	if (!ops->test_present(p))
427 		return 0;
428 
429 	gfn = ops->get_pfn(p);
430 
431 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
432 	if (mfn == INTEL_GVT_INVALID_ADDR) {
433 		gvt_err("fail to translate gfn: 0x%lx\n", gfn);
434 		return -ENXIO;
435 	}
436 
437 	ops->set_pfn(m, mfn);
438 	return 0;
439 }
440 
441 /*
442  * MM helpers.
443  */
444 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
445 		void *page_table, struct intel_gvt_gtt_entry *e,
446 		unsigned long index)
447 {
448 	struct intel_gvt *gvt = mm->vgpu->gvt;
449 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
450 
451 	e->type = mm->page_table_entry_type;
452 
453 	ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
454 	ops->test_pse(e);
455 	return e;
456 }
457 
458 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
459 		void *page_table, struct intel_gvt_gtt_entry *e,
460 		unsigned long index)
461 {
462 	struct intel_gvt *gvt = mm->vgpu->gvt;
463 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
464 
465 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
466 }
467 
468 /*
469  * PPGTT shadow page table helpers.
470  */
471 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
472 		struct intel_vgpu_ppgtt_spt *spt,
473 		void *page_table, int type,
474 		struct intel_gvt_gtt_entry *e, unsigned long index,
475 		bool guest)
476 {
477 	struct intel_gvt *gvt = spt->vgpu->gvt;
478 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
479 
480 	e->type = get_entry_type(type);
481 
482 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
483 		return e;
484 
485 	ops->get_entry(page_table, e, index, guest,
486 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
487 			spt->vgpu);
488 	ops->test_pse(e);
489 	return e;
490 }
491 
492 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
493 		struct intel_vgpu_ppgtt_spt *spt,
494 		void *page_table, int type,
495 		struct intel_gvt_gtt_entry *e, unsigned long index,
496 		bool guest)
497 {
498 	struct intel_gvt *gvt = spt->vgpu->gvt;
499 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500 
501 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
502 		return e;
503 
504 	return ops->set_entry(page_table, e, index, guest,
505 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
506 			spt->vgpu);
507 }
508 
509 #define ppgtt_get_guest_entry(spt, e, index) \
510 	ppgtt_spt_get_entry(spt, NULL, \
511 		spt->guest_page_type, e, index, true)
512 
513 #define ppgtt_set_guest_entry(spt, e, index) \
514 	ppgtt_spt_set_entry(spt, NULL, \
515 		spt->guest_page_type, e, index, true)
516 
517 #define ppgtt_get_shadow_entry(spt, e, index) \
518 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
519 		spt->shadow_page.type, e, index, false)
520 
521 #define ppgtt_set_shadow_entry(spt, e, index) \
522 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
523 		spt->shadow_page.type, e, index, false)
524 
525 /**
526  * intel_vgpu_init_guest_page - init a guest page data structure
527  * @vgpu: a vGPU
528  * @p: a guest page data structure
529  * @gfn: guest memory page frame number
530  * @handler: function will be called when target guest memory page has
531  * been modified.
532  *
533  * This function is called when user wants to track a guest memory page.
534  *
535  * Returns:
536  * Zero on success, negative error code if failed.
537  */
538 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
539 		struct intel_vgpu_guest_page *p,
540 		unsigned long gfn,
541 		int (*handler)(void *, u64, void *, int),
542 		void *data)
543 {
544 	INIT_HLIST_NODE(&p->node);
545 
546 	p->writeprotection = false;
547 	p->gfn = gfn;
548 	p->handler = handler;
549 	p->data = data;
550 	p->oos_page = NULL;
551 	p->write_cnt = 0;
552 
553 	hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
554 	return 0;
555 }
556 
557 static int detach_oos_page(struct intel_vgpu *vgpu,
558 		struct intel_vgpu_oos_page *oos_page);
559 
560 /**
561  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
562  * structure
563  * @vgpu: a vGPU
564  * @p: a tracked guest page
565  *
566  * This function is called when user tries to stop tracking a guest memory
567  * page.
568  */
569 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
570 		struct intel_vgpu_guest_page *p)
571 {
572 	if (!hlist_unhashed(&p->node))
573 		hash_del(&p->node);
574 
575 	if (p->oos_page)
576 		detach_oos_page(vgpu, p->oos_page);
577 
578 	if (p->writeprotection)
579 		intel_gvt_hypervisor_unset_wp_page(vgpu, p);
580 }
581 
582 /**
583  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
584  * @vgpu: a vGPU
585  * @gfn: guest memory page frame number
586  *
587  * This function is called when emulation logic wants to know if a trapped GFN
588  * is a tracked guest page.
589  *
590  * Returns:
591  * Pointer to guest page data structure, NULL if failed.
592  */
593 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
594 		struct intel_vgpu *vgpu, unsigned long gfn)
595 {
596 	struct intel_vgpu_guest_page *p;
597 
598 	hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
599 		p, node, gfn) {
600 		if (p->gfn == gfn)
601 			return p;
602 	}
603 	return NULL;
604 }
605 
606 static inline int init_shadow_page(struct intel_vgpu *vgpu,
607 		struct intel_vgpu_shadow_page *p, int type)
608 {
609 	p->vaddr = page_address(p->page);
610 	p->type = type;
611 
612 	INIT_HLIST_NODE(&p->node);
613 
614 	p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr);
615 	if (p->mfn == INTEL_GVT_INVALID_ADDR)
616 		return -EFAULT;
617 
618 	hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
619 	return 0;
620 }
621 
622 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p)
623 {
624 	if (!hlist_unhashed(&p->node))
625 		hash_del(&p->node);
626 }
627 
628 static inline struct intel_vgpu_shadow_page *find_shadow_page(
629 		struct intel_vgpu *vgpu, unsigned long mfn)
630 {
631 	struct intel_vgpu_shadow_page *p;
632 
633 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
634 		p, node, mfn) {
635 		if (p->mfn == mfn)
636 			return p;
637 	}
638 	return NULL;
639 }
640 
641 #define guest_page_to_ppgtt_spt(ptr) \
642 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
643 
644 #define shadow_page_to_ppgtt_spt(ptr) \
645 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
646 
647 static void *alloc_spt(gfp_t gfp_mask)
648 {
649 	struct intel_vgpu_ppgtt_spt *spt;
650 
651 	spt = kzalloc(sizeof(*spt), gfp_mask);
652 	if (!spt)
653 		return NULL;
654 
655 	spt->shadow_page.page = alloc_page(gfp_mask);
656 	if (!spt->shadow_page.page) {
657 		kfree(spt);
658 		return NULL;
659 	}
660 	return spt;
661 }
662 
663 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
664 {
665 	__free_page(spt->shadow_page.page);
666 	kfree(spt);
667 }
668 
669 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
670 {
671 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
672 
673 	clean_shadow_page(&spt->shadow_page);
674 	intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
675 	list_del_init(&spt->post_shadow_list);
676 
677 	free_spt(spt);
678 }
679 
680 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
681 {
682 	struct hlist_node *n;
683 	struct intel_vgpu_shadow_page *sp;
684 	int i;
685 
686 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
687 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
688 }
689 
690 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
691 		u64 pa, void *p_data, int bytes);
692 
693 static int ppgtt_write_protection_handler(void *gp, u64 pa,
694 		void *p_data, int bytes)
695 {
696 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
697 	int ret;
698 
699 	if (bytes != 4 && bytes != 8)
700 		return -EINVAL;
701 
702 	if (!gpt->writeprotection)
703 		return -EINVAL;
704 
705 	ret = ppgtt_handle_guest_write_page_table_bytes(gp,
706 		pa, p_data, bytes);
707 	if (ret)
708 		return ret;
709 	return ret;
710 }
711 
712 static int reclaim_one_mm(struct intel_gvt *gvt);
713 
714 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
715 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
716 {
717 	struct intel_vgpu_ppgtt_spt *spt = NULL;
718 	int ret;
719 
720 retry:
721 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
722 	if (!spt) {
723 		if (reclaim_one_mm(vgpu->gvt))
724 			goto retry;
725 
726 		gvt_err("fail to allocate ppgtt shadow page\n");
727 		return ERR_PTR(-ENOMEM);
728 	}
729 
730 	spt->vgpu = vgpu;
731 	spt->guest_page_type = type;
732 	atomic_set(&spt->refcount, 1);
733 	INIT_LIST_HEAD(&spt->post_shadow_list);
734 
735 	/*
736 	 * TODO: guest page type may be different with shadow page type,
737 	 *	 when we support PSE page in future.
738 	 */
739 	ret = init_shadow_page(vgpu, &spt->shadow_page, type);
740 	if (ret) {
741 		gvt_err("fail to initialize shadow page for spt\n");
742 		goto err;
743 	}
744 
745 	ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
746 			gfn, ppgtt_write_protection_handler, NULL);
747 	if (ret) {
748 		gvt_err("fail to initialize guest page for spt\n");
749 		goto err;
750 	}
751 
752 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
753 	return spt;
754 err:
755 	ppgtt_free_shadow_page(spt);
756 	return ERR_PTR(ret);
757 }
758 
759 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
760 		struct intel_vgpu *vgpu, unsigned long mfn)
761 {
762 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
763 
764 	if (p)
765 		return shadow_page_to_ppgtt_spt(p);
766 
767 	gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
768 			vgpu->id, mfn);
769 	return NULL;
770 }
771 
772 #define pt_entry_size_shift(spt) \
773 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
774 
775 #define pt_entries(spt) \
776 	(GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
777 
778 #define for_each_present_guest_entry(spt, e, i) \
779 	for (i = 0; i < pt_entries(spt); i++) \
780 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
781 		ppgtt_get_guest_entry(spt, e, i)))
782 
783 #define for_each_present_shadow_entry(spt, e, i) \
784 	for (i = 0; i < pt_entries(spt); i++) \
785 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
786 		ppgtt_get_shadow_entry(spt, e, i)))
787 
788 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
789 {
790 	int v = atomic_read(&spt->refcount);
791 
792 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
793 
794 	atomic_inc(&spt->refcount);
795 }
796 
797 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
798 
799 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
800 		struct intel_gvt_gtt_entry *e)
801 {
802 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
803 	struct intel_vgpu_ppgtt_spt *s;
804 	intel_gvt_gtt_type_t cur_pt_type;
805 
806 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
807 		return -EINVAL;
808 
809 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
810 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
811 		cur_pt_type = get_next_pt_type(e->type) + 1;
812 		if (ops->get_pfn(e) ==
813 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
814 			return 0;
815 	}
816 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
817 	if (!s) {
818 		gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
819 				vgpu->id, ops->get_pfn(e));
820 		return -ENXIO;
821 	}
822 	return ppgtt_invalidate_shadow_page(s);
823 }
824 
825 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
826 {
827 	struct intel_gvt_gtt_entry e;
828 	unsigned long index;
829 	int ret;
830 	int v = atomic_read(&spt->refcount);
831 
832 	trace_spt_change(spt->vgpu->id, "die", spt,
833 			spt->guest_page.gfn, spt->shadow_page.type);
834 
835 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
836 
837 	if (atomic_dec_return(&spt->refcount) > 0)
838 		return 0;
839 
840 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
841 		goto release;
842 
843 	for_each_present_shadow_entry(spt, &e, index) {
844 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
845 			gvt_err("GVT doesn't support pse bit for now\n");
846 			return -EINVAL;
847 		}
848 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
849 				spt->vgpu, &e);
850 		if (ret)
851 			goto fail;
852 	}
853 release:
854 	trace_spt_change(spt->vgpu->id, "release", spt,
855 			spt->guest_page.gfn, spt->shadow_page.type);
856 	ppgtt_free_shadow_page(spt);
857 	return 0;
858 fail:
859 	gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
860 			spt->vgpu->id, spt, e.val64, e.type);
861 	return ret;
862 }
863 
864 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
865 
866 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
867 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
868 {
869 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
870 	struct intel_vgpu_ppgtt_spt *s = NULL;
871 	struct intel_vgpu_guest_page *g;
872 	int ret;
873 
874 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
875 		ret = -EINVAL;
876 		goto fail;
877 	}
878 
879 	g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
880 	if (g) {
881 		s = guest_page_to_ppgtt_spt(g);
882 		ppgtt_get_shadow_page(s);
883 	} else {
884 		int type = get_next_pt_type(we->type);
885 
886 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
887 		if (IS_ERR(s)) {
888 			ret = PTR_ERR(s);
889 			goto fail;
890 		}
891 
892 		ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
893 		if (ret)
894 			goto fail;
895 
896 		ret = ppgtt_populate_shadow_page(s);
897 		if (ret)
898 			goto fail;
899 
900 		trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
901 			s->shadow_page.type);
902 	}
903 	return s;
904 fail:
905 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
906 			vgpu->id, s, we->val64, we->type);
907 	return ERR_PTR(ret);
908 }
909 
910 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
911 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
912 {
913 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
914 
915 	se->type = ge->type;
916 	se->val64 = ge->val64;
917 
918 	ops->set_pfn(se, s->shadow_page.mfn);
919 }
920 
921 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
922 {
923 	struct intel_vgpu *vgpu = spt->vgpu;
924 	struct intel_vgpu_ppgtt_spt *s;
925 	struct intel_gvt_gtt_entry se, ge;
926 	unsigned long i;
927 	int ret;
928 
929 	trace_spt_change(spt->vgpu->id, "born", spt,
930 			spt->guest_page.gfn, spt->shadow_page.type);
931 
932 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
933 		for_each_present_guest_entry(spt, &ge, i) {
934 			ret = gtt_entry_p2m(vgpu, &ge, &se);
935 			if (ret)
936 				goto fail;
937 			ppgtt_set_shadow_entry(spt, &se, i);
938 		}
939 		return 0;
940 	}
941 
942 	for_each_present_guest_entry(spt, &ge, i) {
943 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
944 			gvt_err("GVT doesn't support pse bit now\n");
945 			ret = -EINVAL;
946 			goto fail;
947 		}
948 
949 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
950 		if (IS_ERR(s)) {
951 			ret = PTR_ERR(s);
952 			goto fail;
953 		}
954 		ppgtt_get_shadow_entry(spt, &se, i);
955 		ppgtt_generate_shadow_entry(&se, s, &ge);
956 		ppgtt_set_shadow_entry(spt, &se, i);
957 	}
958 	return 0;
959 fail:
960 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
961 			vgpu->id, spt, ge.val64, ge.type);
962 	return ret;
963 }
964 
965 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
966 		unsigned long index)
967 {
968 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
969 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
970 	struct intel_vgpu *vgpu = spt->vgpu;
971 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
972 	struct intel_gvt_gtt_entry e;
973 	int ret;
974 
975 	ppgtt_get_shadow_entry(spt, &e, index);
976 
977 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
978 			 index);
979 
980 	if (!ops->test_present(&e))
981 		return 0;
982 
983 	if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
984 		return 0;
985 
986 	if (gtt_type_is_pt(get_next_pt_type(e.type))) {
987 		struct intel_vgpu_ppgtt_spt *s =
988 			ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
989 		if (!s) {
990 			gvt_err("fail to find guest page\n");
991 			ret = -ENXIO;
992 			goto fail;
993 		}
994 		ret = ppgtt_invalidate_shadow_page(s);
995 		if (ret)
996 			goto fail;
997 	}
998 	ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
999 	ppgtt_set_shadow_entry(spt, &e, index);
1000 	return 0;
1001 fail:
1002 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1003 			vgpu->id, spt, e.val64, e.type);
1004 	return ret;
1005 }
1006 
1007 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1008 		struct intel_gvt_gtt_entry *we, unsigned long index)
1009 {
1010 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1011 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1012 	struct intel_vgpu *vgpu = spt->vgpu;
1013 	struct intel_gvt_gtt_entry m;
1014 	struct intel_vgpu_ppgtt_spt *s;
1015 	int ret;
1016 
1017 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1018 		we->val64, index);
1019 
1020 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1021 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1022 		if (IS_ERR(s)) {
1023 			ret = PTR_ERR(s);
1024 			goto fail;
1025 		}
1026 		ppgtt_get_shadow_entry(spt, &m, index);
1027 		ppgtt_generate_shadow_entry(&m, s, we);
1028 		ppgtt_set_shadow_entry(spt, &m, index);
1029 	} else {
1030 		ret = gtt_entry_p2m(vgpu, we, &m);
1031 		if (ret)
1032 			goto fail;
1033 		ppgtt_set_shadow_entry(spt, &m, index);
1034 	}
1035 	return 0;
1036 fail:
1037 	gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1038 			spt, we->val64, we->type);
1039 	return ret;
1040 }
1041 
1042 static int sync_oos_page(struct intel_vgpu *vgpu,
1043 		struct intel_vgpu_oos_page *oos_page)
1044 {
1045 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1046 	struct intel_gvt *gvt = vgpu->gvt;
1047 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1048 	struct intel_vgpu_ppgtt_spt *spt =
1049 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1050 	struct intel_gvt_gtt_entry old, new, m;
1051 	int index;
1052 	int ret;
1053 
1054 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1055 			oos_page->guest_page, spt->guest_page_type);
1056 
1057 	old.type = new.type = get_entry_type(spt->guest_page_type);
1058 	old.val64 = new.val64 = 0;
1059 
1060 	for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1061 		index++) {
1062 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1063 		ops->get_entry(NULL, &new, index, true,
1064 			oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1065 
1066 		if (old.val64 == new.val64
1067 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1068 			continue;
1069 
1070 		trace_oos_sync(vgpu->id, oos_page->id,
1071 				oos_page->guest_page, spt->guest_page_type,
1072 				new.val64, index);
1073 
1074 		ret = gtt_entry_p2m(vgpu, &new, &m);
1075 		if (ret)
1076 			return ret;
1077 
1078 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1079 		ppgtt_set_shadow_entry(spt, &m, index);
1080 	}
1081 
1082 	oos_page->guest_page->write_cnt = 0;
1083 	list_del_init(&spt->post_shadow_list);
1084 	return 0;
1085 }
1086 
1087 static int detach_oos_page(struct intel_vgpu *vgpu,
1088 		struct intel_vgpu_oos_page *oos_page)
1089 {
1090 	struct intel_gvt *gvt = vgpu->gvt;
1091 	struct intel_vgpu_ppgtt_spt *spt =
1092 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1093 
1094 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1095 			oos_page->guest_page, spt->guest_page_type);
1096 
1097 	oos_page->guest_page->write_cnt = 0;
1098 	oos_page->guest_page->oos_page = NULL;
1099 	oos_page->guest_page = NULL;
1100 
1101 	list_del_init(&oos_page->vm_list);
1102 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1103 
1104 	return 0;
1105 }
1106 
1107 static int attach_oos_page(struct intel_vgpu *vgpu,
1108 		struct intel_vgpu_oos_page *oos_page,
1109 		struct intel_vgpu_guest_page *gpt)
1110 {
1111 	struct intel_gvt *gvt = vgpu->gvt;
1112 	int ret;
1113 
1114 	ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1115 		oos_page->mem, GTT_PAGE_SIZE);
1116 	if (ret)
1117 		return ret;
1118 
1119 	oos_page->guest_page = gpt;
1120 	gpt->oos_page = oos_page;
1121 
1122 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1123 
1124 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1125 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1126 	return 0;
1127 }
1128 
1129 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1130 		struct intel_vgpu_guest_page *gpt)
1131 {
1132 	int ret;
1133 
1134 	ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1135 	if (ret)
1136 		return ret;
1137 
1138 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1139 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1140 
1141 	list_del_init(&gpt->oos_page->vm_list);
1142 	return sync_oos_page(vgpu, gpt->oos_page);
1143 }
1144 
1145 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1146 		struct intel_vgpu_guest_page *gpt)
1147 {
1148 	struct intel_gvt *gvt = vgpu->gvt;
1149 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1150 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1151 	int ret;
1152 
1153 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1154 
1155 	if (list_empty(&gtt->oos_page_free_list_head)) {
1156 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1157 			struct intel_vgpu_oos_page, list);
1158 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1159 		if (ret)
1160 			return ret;
1161 		ret = detach_oos_page(vgpu, oos_page);
1162 		if (ret)
1163 			return ret;
1164 	} else
1165 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1166 			struct intel_vgpu_oos_page, list);
1167 	return attach_oos_page(vgpu, oos_page, gpt);
1168 }
1169 
1170 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1171 		struct intel_vgpu_guest_page *gpt)
1172 {
1173 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1174 
1175 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1176 		return -EINVAL;
1177 
1178 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1179 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1180 
1181 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1182 	return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1183 }
1184 
1185 /**
1186  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1187  * @vgpu: a vGPU
1188  *
1189  * This function is called before submitting a guest workload to host,
1190  * to sync all the out-of-synced shadow for vGPU
1191  *
1192  * Returns:
1193  * Zero on success, negative error code if failed.
1194  */
1195 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1196 {
1197 	struct list_head *pos, *n;
1198 	struct intel_vgpu_oos_page *oos_page;
1199 	int ret;
1200 
1201 	if (!enable_out_of_sync)
1202 		return 0;
1203 
1204 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1205 		oos_page = container_of(pos,
1206 				struct intel_vgpu_oos_page, vm_list);
1207 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1208 		if (ret)
1209 			return ret;
1210 	}
1211 	return 0;
1212 }
1213 
1214 /*
1215  * The heart of PPGTT shadow page table.
1216  */
1217 static int ppgtt_handle_guest_write_page_table(
1218 		struct intel_vgpu_guest_page *gpt,
1219 		struct intel_gvt_gtt_entry *we, unsigned long index)
1220 {
1221 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1222 	struct intel_vgpu *vgpu = spt->vgpu;
1223 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224 
1225 	int ret;
1226 	int new_present;
1227 
1228 	new_present = ops->test_present(we);
1229 
1230 	ret = ppgtt_handle_guest_entry_removal(gpt, index);
1231 	if (ret)
1232 		goto fail;
1233 
1234 	if (new_present) {
1235 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1236 		if (ret)
1237 			goto fail;
1238 	}
1239 	return 0;
1240 fail:
1241 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1242 			vgpu->id, spt, we->val64, we->type);
1243 	return ret;
1244 }
1245 
1246 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1247 {
1248 	return enable_out_of_sync
1249 		&& gtt_type_is_pte_pt(
1250 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1251 		&& gpt->write_cnt >= 2;
1252 }
1253 
1254 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1255 		unsigned long index)
1256 {
1257 	set_bit(index, spt->post_shadow_bitmap);
1258 	if (!list_empty(&spt->post_shadow_list))
1259 		return;
1260 
1261 	list_add_tail(&spt->post_shadow_list,
1262 			&spt->vgpu->gtt.post_shadow_list_head);
1263 }
1264 
1265 /**
1266  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1267  * @vgpu: a vGPU
1268  *
1269  * This function is called before submitting a guest workload to host,
1270  * to flush all the post shadows for a vGPU.
1271  *
1272  * Returns:
1273  * Zero on success, negative error code if failed.
1274  */
1275 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1276 {
1277 	struct list_head *pos, *n;
1278 	struct intel_vgpu_ppgtt_spt *spt;
1279 	struct intel_gvt_gtt_entry ge;
1280 	unsigned long index;
1281 	int ret;
1282 
1283 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1284 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1285 				post_shadow_list);
1286 
1287 		for_each_set_bit(index, spt->post_shadow_bitmap,
1288 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1289 			ppgtt_get_guest_entry(spt, &ge, index);
1290 
1291 			ret = ppgtt_handle_guest_write_page_table(
1292 					&spt->guest_page, &ge, index);
1293 			if (ret)
1294 				return ret;
1295 			clear_bit(index, spt->post_shadow_bitmap);
1296 		}
1297 		list_del_init(&spt->post_shadow_list);
1298 	}
1299 	return 0;
1300 }
1301 
1302 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1303 		u64 pa, void *p_data, int bytes)
1304 {
1305 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1306 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1307 	struct intel_vgpu *vgpu = spt->vgpu;
1308 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1309 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1310 	struct intel_gvt_gtt_entry we;
1311 	unsigned long index;
1312 	int ret;
1313 
1314 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1315 
1316 	ppgtt_get_guest_entry(spt, &we, index);
1317 
1318 	ops->test_pse(&we);
1319 
1320 	if (bytes == info->gtt_entry_size) {
1321 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1322 		if (ret)
1323 			return ret;
1324 	} else {
1325 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1326 			ret = ppgtt_handle_guest_entry_removal(gpt, index);
1327 			if (ret)
1328 				return ret;
1329 		}
1330 
1331 		ppgtt_set_post_shadow(spt, index);
1332 	}
1333 
1334 	if (!enable_out_of_sync)
1335 		return 0;
1336 
1337 	gpt->write_cnt++;
1338 
1339 	if (gpt->oos_page)
1340 		ops->set_entry(gpt->oos_page->mem, &we, index,
1341 				false, 0, vgpu);
1342 
1343 	if (can_do_out_of_sync(gpt)) {
1344 		if (!gpt->oos_page)
1345 			ppgtt_allocate_oos_page(vgpu, gpt);
1346 
1347 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1348 		if (ret < 0)
1349 			return ret;
1350 	}
1351 	return 0;
1352 }
1353 
1354 /*
1355  * mm page table allocation policy for bdw+
1356  *  - for ggtt, only virtual page table will be allocated.
1357  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1358  */
1359 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1360 {
1361 	struct intel_vgpu *vgpu = mm->vgpu;
1362 	struct intel_gvt *gvt = vgpu->gvt;
1363 	const struct intel_gvt_device_info *info = &gvt->device_info;
1364 	void *mem;
1365 
1366 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1367 		mm->page_table_entry_cnt = 4;
1368 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1369 			info->gtt_entry_size;
1370 		mem = kzalloc(mm->has_shadow_page_table ?
1371 			mm->page_table_entry_size * 2
1372 				: mm->page_table_entry_size, GFP_KERNEL);
1373 		if (!mem)
1374 			return -ENOMEM;
1375 		mm->virtual_page_table = mem;
1376 		if (!mm->has_shadow_page_table)
1377 			return 0;
1378 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1379 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1380 		mm->page_table_entry_cnt =
1381 			(gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1382 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1383 			info->gtt_entry_size;
1384 		mem = vzalloc(mm->page_table_entry_size);
1385 		if (!mem)
1386 			return -ENOMEM;
1387 		mm->virtual_page_table = mem;
1388 	}
1389 	return 0;
1390 }
1391 
1392 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1393 {
1394 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1395 		kfree(mm->virtual_page_table);
1396 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1397 		if (mm->virtual_page_table)
1398 			vfree(mm->virtual_page_table);
1399 	}
1400 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1401 }
1402 
1403 static void invalidate_mm(struct intel_vgpu_mm *mm)
1404 {
1405 	struct intel_vgpu *vgpu = mm->vgpu;
1406 	struct intel_gvt *gvt = vgpu->gvt;
1407 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1408 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1409 	struct intel_gvt_gtt_entry se;
1410 	int i;
1411 
1412 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1413 		return;
1414 
1415 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1416 		ppgtt_get_shadow_root_entry(mm, &se, i);
1417 		if (!ops->test_present(&se))
1418 			continue;
1419 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1420 				vgpu, &se);
1421 		se.val64 = 0;
1422 		ppgtt_set_shadow_root_entry(mm, &se, i);
1423 
1424 		trace_gpt_change(vgpu->id, "destroy root pointer",
1425 				NULL, se.type, se.val64, i);
1426 	}
1427 	mm->shadowed = false;
1428 }
1429 
1430 /**
1431  * intel_vgpu_destroy_mm - destroy a mm object
1432  * @mm: a kref object
1433  *
1434  * This function is used to destroy a mm object for vGPU
1435  *
1436  */
1437 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1438 {
1439 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1440 	struct intel_vgpu *vgpu = mm->vgpu;
1441 	struct intel_gvt *gvt = vgpu->gvt;
1442 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1443 
1444 	if (!mm->initialized)
1445 		goto out;
1446 
1447 	list_del(&mm->list);
1448 	list_del(&mm->lru_list);
1449 
1450 	if (mm->has_shadow_page_table)
1451 		invalidate_mm(mm);
1452 
1453 	gtt->mm_free_page_table(mm);
1454 out:
1455 	kfree(mm);
1456 }
1457 
1458 static int shadow_mm(struct intel_vgpu_mm *mm)
1459 {
1460 	struct intel_vgpu *vgpu = mm->vgpu;
1461 	struct intel_gvt *gvt = vgpu->gvt;
1462 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1463 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1464 	struct intel_vgpu_ppgtt_spt *spt;
1465 	struct intel_gvt_gtt_entry ge, se;
1466 	int i;
1467 	int ret;
1468 
1469 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1470 		return 0;
1471 
1472 	mm->shadowed = true;
1473 
1474 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1475 		ppgtt_get_guest_root_entry(mm, &ge, i);
1476 		if (!ops->test_present(&ge))
1477 			continue;
1478 
1479 		trace_gpt_change(vgpu->id, __func__, NULL,
1480 				ge.type, ge.val64, i);
1481 
1482 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1483 		if (IS_ERR(spt)) {
1484 			gvt_err("fail to populate guest root pointer\n");
1485 			ret = PTR_ERR(spt);
1486 			goto fail;
1487 		}
1488 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1489 		ppgtt_set_shadow_root_entry(mm, &se, i);
1490 
1491 		trace_gpt_change(vgpu->id, "populate root pointer",
1492 				NULL, se.type, se.val64, i);
1493 	}
1494 	return 0;
1495 fail:
1496 	invalidate_mm(mm);
1497 	return ret;
1498 }
1499 
1500 /**
1501  * intel_vgpu_create_mm - create a mm object for a vGPU
1502  * @vgpu: a vGPU
1503  * @mm_type: mm object type, should be PPGTT or GGTT
1504  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1505  *	to populate shadow later.
1506  * @page_table_level: describe the page table level of the mm object
1507  * @pde_base_index: pde root pointer base in GGTT MMIO.
1508  *
1509  * This function is used to create a mm object for a vGPU.
1510  *
1511  * Returns:
1512  * Zero on success, negative error code in pointer if failed.
1513  */
1514 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1515 		int mm_type, void *virtual_page_table, int page_table_level,
1516 		u32 pde_base_index)
1517 {
1518 	struct intel_gvt *gvt = vgpu->gvt;
1519 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1520 	struct intel_vgpu_mm *mm;
1521 	int ret;
1522 
1523 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1524 	if (!mm) {
1525 		ret = -ENOMEM;
1526 		goto fail;
1527 	}
1528 
1529 	mm->type = mm_type;
1530 
1531 	if (page_table_level == 1)
1532 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1533 	else if (page_table_level == 3)
1534 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1535 	else if (page_table_level == 4)
1536 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1537 	else {
1538 		WARN_ON(1);
1539 		ret = -EINVAL;
1540 		goto fail;
1541 	}
1542 
1543 	mm->page_table_level = page_table_level;
1544 	mm->pde_base_index = pde_base_index;
1545 
1546 	mm->vgpu = vgpu;
1547 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1548 
1549 	kref_init(&mm->ref);
1550 	atomic_set(&mm->pincount, 0);
1551 	INIT_LIST_HEAD(&mm->list);
1552 	INIT_LIST_HEAD(&mm->lru_list);
1553 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1554 
1555 	ret = gtt->mm_alloc_page_table(mm);
1556 	if (ret) {
1557 		gvt_err("fail to allocate page table for mm\n");
1558 		goto fail;
1559 	}
1560 
1561 	mm->initialized = true;
1562 
1563 	if (virtual_page_table)
1564 		memcpy(mm->virtual_page_table, virtual_page_table,
1565 				mm->page_table_entry_size);
1566 
1567 	if (mm->has_shadow_page_table) {
1568 		ret = shadow_mm(mm);
1569 		if (ret)
1570 			goto fail;
1571 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1572 	}
1573 	return mm;
1574 fail:
1575 	gvt_err("fail to create mm\n");
1576 	if (mm)
1577 		intel_gvt_mm_unreference(mm);
1578 	return ERR_PTR(ret);
1579 }
1580 
1581 /**
1582  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1583  * @mm: a vGPU mm object
1584  *
1585  * This function is called when user doesn't want to use a vGPU mm object
1586  */
1587 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1588 {
1589 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1590 		return;
1591 
1592 	atomic_dec(&mm->pincount);
1593 }
1594 
1595 /**
1596  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1597  * @vgpu: a vGPU
1598  *
1599  * This function is called when user wants to use a vGPU mm object. If this
1600  * mm object hasn't been shadowed yet, the shadow will be populated at this
1601  * time.
1602  *
1603  * Returns:
1604  * Zero on success, negative error code if failed.
1605  */
1606 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1607 {
1608 	int ret;
1609 
1610 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1611 		return 0;
1612 
1613 	atomic_inc(&mm->pincount);
1614 
1615 	if (!mm->shadowed) {
1616 		ret = shadow_mm(mm);
1617 		if (ret)
1618 			return ret;
1619 	}
1620 
1621 	list_del_init(&mm->lru_list);
1622 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1623 	return 0;
1624 }
1625 
1626 static int reclaim_one_mm(struct intel_gvt *gvt)
1627 {
1628 	struct intel_vgpu_mm *mm;
1629 	struct list_head *pos, *n;
1630 
1631 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1632 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1633 
1634 		if (mm->type != INTEL_GVT_MM_PPGTT)
1635 			continue;
1636 		if (atomic_read(&mm->pincount))
1637 			continue;
1638 
1639 		list_del_init(&mm->lru_list);
1640 		invalidate_mm(mm);
1641 		return 1;
1642 	}
1643 	return 0;
1644 }
1645 
1646 /*
1647  * GMA translation APIs.
1648  */
1649 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1650 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1651 {
1652 	struct intel_vgpu *vgpu = mm->vgpu;
1653 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1654 	struct intel_vgpu_ppgtt_spt *s;
1655 
1656 	if (WARN_ON(!mm->has_shadow_page_table))
1657 		return -EINVAL;
1658 
1659 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1660 	if (!s)
1661 		return -ENXIO;
1662 
1663 	if (!guest)
1664 		ppgtt_get_shadow_entry(s, e, index);
1665 	else
1666 		ppgtt_get_guest_entry(s, e, index);
1667 	return 0;
1668 }
1669 
1670 /**
1671  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1672  * @mm: mm object. could be a PPGTT or GGTT mm object
1673  * @gma: graphics memory address in this mm object
1674  *
1675  * This function is used to translate a graphics memory address in specific
1676  * graphics memory space to guest physical address.
1677  *
1678  * Returns:
1679  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1680  */
1681 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1682 {
1683 	struct intel_vgpu *vgpu = mm->vgpu;
1684 	struct intel_gvt *gvt = vgpu->gvt;
1685 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1686 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1687 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1688 	unsigned long gma_index[4];
1689 	struct intel_gvt_gtt_entry e;
1690 	int i, index;
1691 	int ret;
1692 
1693 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1694 		return INTEL_GVT_INVALID_ADDR;
1695 
1696 	if (mm->type == INTEL_GVT_MM_GGTT) {
1697 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1698 			goto err;
1699 
1700 		ggtt_get_guest_entry(mm, &e,
1701 			gma_ops->gma_to_ggtt_pte_index(gma));
1702 		gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1703 			+ (gma & ~GTT_PAGE_MASK);
1704 
1705 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1706 		return gpa;
1707 	}
1708 
1709 	switch (mm->page_table_level) {
1710 	case 4:
1711 		ppgtt_get_shadow_root_entry(mm, &e, 0);
1712 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1713 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1714 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1715 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1716 		index = 4;
1717 		break;
1718 	case 3:
1719 		ppgtt_get_shadow_root_entry(mm, &e,
1720 				gma_ops->gma_to_l3_pdp_index(gma));
1721 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1722 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1723 		index = 2;
1724 		break;
1725 	case 2:
1726 		ppgtt_get_shadow_root_entry(mm, &e,
1727 				gma_ops->gma_to_pde_index(gma));
1728 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1729 		index = 1;
1730 		break;
1731 	default:
1732 		WARN_ON(1);
1733 		goto err;
1734 	}
1735 
1736 	/* walk into the shadow page table and get gpa from guest entry */
1737 	for (i = 0; i < index; i++) {
1738 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1739 			(i == index - 1));
1740 		if (ret)
1741 			goto err;
1742 	}
1743 
1744 	gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1745 		+ (gma & ~GTT_PAGE_MASK);
1746 
1747 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1748 			mm->page_table_level, gma, gpa);
1749 	return gpa;
1750 err:
1751 	gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1752 	return INTEL_GVT_INVALID_ADDR;
1753 }
1754 
1755 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1756 	unsigned int off, void *p_data, unsigned int bytes)
1757 {
1758 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1759 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1760 	unsigned long index = off >> info->gtt_entry_size_shift;
1761 	struct intel_gvt_gtt_entry e;
1762 
1763 	if (bytes != 4 && bytes != 8)
1764 		return -EINVAL;
1765 
1766 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1767 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1768 			bytes);
1769 	return 0;
1770 }
1771 
1772 /**
1773  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1774  * @vgpu: a vGPU
1775  * @off: register offset
1776  * @p_data: data will be returned to guest
1777  * @bytes: data length
1778  *
1779  * This function is used to emulate the GTT MMIO register read
1780  *
1781  * Returns:
1782  * Zero on success, error code if failed.
1783  */
1784 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1785 	void *p_data, unsigned int bytes)
1786 {
1787 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1788 	int ret;
1789 
1790 	if (bytes != 4 && bytes != 8)
1791 		return -EINVAL;
1792 
1793 	off -= info->gtt_start_offset;
1794 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1795 	return ret;
1796 }
1797 
1798 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1799 	void *p_data, unsigned int bytes)
1800 {
1801 	struct intel_gvt *gvt = vgpu->gvt;
1802 	const struct intel_gvt_device_info *info = &gvt->device_info;
1803 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1804 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1805 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1806 	unsigned long gma;
1807 	struct intel_gvt_gtt_entry e, m;
1808 	int ret;
1809 
1810 	if (bytes != 4 && bytes != 8)
1811 		return -EINVAL;
1812 
1813 	gma = g_gtt_index << GTT_PAGE_SHIFT;
1814 
1815 	/* the VM may configure the whole GM space when ballooning is used */
1816 	if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1817 				"vgpu%d: found oob ggtt write, offset %x\n",
1818 				vgpu->id, off)) {
1819 		return 0;
1820 	}
1821 
1822 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1823 
1824 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1825 			bytes);
1826 
1827 	if (ops->test_present(&e)) {
1828 		ret = gtt_entry_p2m(vgpu, &e, &m);
1829 		if (ret) {
1830 			gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1831 					vgpu->id);
1832 			return ret;
1833 		}
1834 	} else {
1835 		m = e;
1836 		m.val64 = 0;
1837 	}
1838 
1839 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1840 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1841 	return 0;
1842 }
1843 
1844 /*
1845  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1846  * @vgpu: a vGPU
1847  * @off: register offset
1848  * @p_data: data from guest write
1849  * @bytes: data length
1850  *
1851  * This function is used to emulate the GTT MMIO register write
1852  *
1853  * Returns:
1854  * Zero on success, error code if failed.
1855  */
1856 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1857 	void *p_data, unsigned int bytes)
1858 {
1859 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1860 	int ret;
1861 
1862 	if (bytes != 4 && bytes != 8)
1863 		return -EINVAL;
1864 
1865 	off -= info->gtt_start_offset;
1866 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1867 	return ret;
1868 }
1869 
1870 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1871 		intel_gvt_gtt_type_t type)
1872 {
1873 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1874 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1875 	int page_entry_num = GTT_PAGE_SIZE >>
1876 				vgpu->gvt->device_info.gtt_entry_size_shift;
1877 	void *scratch_pt;
1878 	unsigned long mfn;
1879 	int i;
1880 
1881 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1882 		return -EINVAL;
1883 
1884 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1885 	if (!scratch_pt) {
1886 		gvt_err("fail to allocate scratch page\n");
1887 		return -ENOMEM;
1888 	}
1889 
1890 	mfn = intel_gvt_hypervisor_virt_to_mfn(scratch_pt);
1891 	if (mfn == INTEL_GVT_INVALID_ADDR) {
1892 		gvt_err("fail to translate vaddr:0x%lx\n", (unsigned long)scratch_pt);
1893 		free_page((unsigned long)scratch_pt);
1894 		return -EFAULT;
1895 	}
1896 	gtt->scratch_pt[type].page_mfn = mfn;
1897 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1898 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1899 			vgpu->id, type, mfn);
1900 
1901 	/* Build the tree by full filled the scratch pt with the entries which
1902 	 * point to the next level scratch pt or scratch page. The
1903 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1904 	 * 'type' pt.
1905 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1906 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1907 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1908 	 */
1909 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1910 		struct intel_gvt_gtt_entry se;
1911 
1912 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1913 		se.type = get_entry_type(type - 1);
1914 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1915 
1916 		/* The entry parameters like present/writeable/cache type
1917 		 * set to the same as i915's scratch page tree.
1918 		 */
1919 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1920 		if (type == GTT_TYPE_PPGTT_PDE_PT)
1921 			se.val64 |= PPAT_CACHED_INDEX;
1922 
1923 		for (i = 0; i < page_entry_num; i++)
1924 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1931 {
1932 	int i;
1933 
1934 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1935 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
1936 			__free_page(vgpu->gtt.scratch_pt[i].page);
1937 			vgpu->gtt.scratch_pt[i].page = NULL;
1938 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
1939 		}
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1946 {
1947 	int i, ret;
1948 
1949 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1950 		ret = alloc_scratch_pages(vgpu, i);
1951 		if (ret)
1952 			goto err;
1953 	}
1954 
1955 	return 0;
1956 
1957 err:
1958 	release_scratch_page_tree(vgpu);
1959 	return ret;
1960 }
1961 
1962 /**
1963  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1964  * @vgpu: a vGPU
1965  *
1966  * This function is used to initialize per-vGPU graphics memory virtualization
1967  * components.
1968  *
1969  * Returns:
1970  * Zero on success, error code if failed.
1971  */
1972 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1973 {
1974 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1975 	struct intel_vgpu_mm *ggtt_mm;
1976 
1977 	hash_init(gtt->guest_page_hash_table);
1978 	hash_init(gtt->shadow_page_hash_table);
1979 
1980 	INIT_LIST_HEAD(&gtt->mm_list_head);
1981 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
1982 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
1983 
1984 	intel_vgpu_reset_ggtt(vgpu);
1985 
1986 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
1987 			NULL, 1, 0);
1988 	if (IS_ERR(ggtt_mm)) {
1989 		gvt_err("fail to create mm for ggtt.\n");
1990 		return PTR_ERR(ggtt_mm);
1991 	}
1992 
1993 	gtt->ggtt_mm = ggtt_mm;
1994 
1995 	return create_scratch_page_tree(vgpu);
1996 }
1997 
1998 /**
1999  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2000  * @vgpu: a vGPU
2001  *
2002  * This function is used to clean up per-vGPU graphics memory virtualization
2003  * components.
2004  *
2005  * Returns:
2006  * Zero on success, error code if failed.
2007  */
2008 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2009 {
2010 	struct list_head *pos, *n;
2011 	struct intel_vgpu_mm *mm;
2012 
2013 	ppgtt_free_all_shadow_page(vgpu);
2014 	release_scratch_page_tree(vgpu);
2015 
2016 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2017 		mm = container_of(pos, struct intel_vgpu_mm, list);
2018 		vgpu->gvt->gtt.mm_free_page_table(mm);
2019 		list_del(&mm->list);
2020 		list_del(&mm->lru_list);
2021 		kfree(mm);
2022 	}
2023 }
2024 
2025 static void clean_spt_oos(struct intel_gvt *gvt)
2026 {
2027 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2028 	struct list_head *pos, *n;
2029 	struct intel_vgpu_oos_page *oos_page;
2030 
2031 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2032 		"someone is still using oos page\n");
2033 
2034 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2035 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2036 		list_del(&oos_page->list);
2037 		kfree(oos_page);
2038 	}
2039 }
2040 
2041 static int setup_spt_oos(struct intel_gvt *gvt)
2042 {
2043 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2044 	struct intel_vgpu_oos_page *oos_page;
2045 	int i;
2046 	int ret;
2047 
2048 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2049 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2050 
2051 	for (i = 0; i < preallocated_oos_pages; i++) {
2052 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2053 		if (!oos_page) {
2054 			gvt_err("fail to pre-allocate oos page\n");
2055 			ret = -ENOMEM;
2056 			goto fail;
2057 		}
2058 
2059 		INIT_LIST_HEAD(&oos_page->list);
2060 		INIT_LIST_HEAD(&oos_page->vm_list);
2061 		oos_page->id = i;
2062 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2063 	}
2064 
2065 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2066 
2067 	return 0;
2068 fail:
2069 	clean_spt_oos(gvt);
2070 	return ret;
2071 }
2072 
2073 /**
2074  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2075  * @vgpu: a vGPU
2076  * @page_table_level: PPGTT page table level
2077  * @root_entry: PPGTT page table root pointers
2078  *
2079  * This function is used to find a PPGTT mm object from mm object pool
2080  *
2081  * Returns:
2082  * pointer to mm object on success, NULL if failed.
2083  */
2084 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2085 		int page_table_level, void *root_entry)
2086 {
2087 	struct list_head *pos;
2088 	struct intel_vgpu_mm *mm;
2089 	u64 *src, *dst;
2090 
2091 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2092 		mm = container_of(pos, struct intel_vgpu_mm, list);
2093 		if (mm->type != INTEL_GVT_MM_PPGTT)
2094 			continue;
2095 
2096 		if (mm->page_table_level != page_table_level)
2097 			continue;
2098 
2099 		src = root_entry;
2100 		dst = mm->virtual_page_table;
2101 
2102 		if (page_table_level == 3) {
2103 			if (src[0] == dst[0]
2104 					&& src[1] == dst[1]
2105 					&& src[2] == dst[2]
2106 					&& src[3] == dst[3])
2107 				return mm;
2108 		} else {
2109 			if (src[0] == dst[0])
2110 				return mm;
2111 		}
2112 	}
2113 	return NULL;
2114 }
2115 
2116 /**
2117  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2118  * g2v notification
2119  * @vgpu: a vGPU
2120  * @page_table_level: PPGTT page table level
2121  *
2122  * This function is used to create a PPGTT mm object from a guest to GVT-g
2123  * notification.
2124  *
2125  * Returns:
2126  * Zero on success, negative error code if failed.
2127  */
2128 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2129 		int page_table_level)
2130 {
2131 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2132 	struct intel_vgpu_mm *mm;
2133 
2134 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2135 		return -EINVAL;
2136 
2137 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2138 	if (mm) {
2139 		intel_gvt_mm_reference(mm);
2140 	} else {
2141 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2142 				pdp, page_table_level, 0);
2143 		if (IS_ERR(mm)) {
2144 			gvt_err("fail to create mm\n");
2145 			return PTR_ERR(mm);
2146 		}
2147 	}
2148 	return 0;
2149 }
2150 
2151 /**
2152  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2153  * g2v notification
2154  * @vgpu: a vGPU
2155  * @page_table_level: PPGTT page table level
2156  *
2157  * This function is used to create a PPGTT mm object from a guest to GVT-g
2158  * notification.
2159  *
2160  * Returns:
2161  * Zero on success, negative error code if failed.
2162  */
2163 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2164 		int page_table_level)
2165 {
2166 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2167 	struct intel_vgpu_mm *mm;
2168 
2169 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2170 		return -EINVAL;
2171 
2172 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2173 	if (!mm) {
2174 		gvt_err("fail to find ppgtt instance.\n");
2175 		return -EINVAL;
2176 	}
2177 	intel_gvt_mm_unreference(mm);
2178 	return 0;
2179 }
2180 
2181 /**
2182  * intel_gvt_init_gtt - initialize mm components of a GVT device
2183  * @gvt: GVT device
2184  *
2185  * This function is called at the initialization stage, to initialize
2186  * the mm components of a GVT device.
2187  *
2188  * Returns:
2189  * zero on success, negative error code if failed.
2190  */
2191 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2192 {
2193 	int ret;
2194 	void *page;
2195 
2196 	gvt_dbg_core("init gtt\n");
2197 
2198 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2199 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2200 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2201 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2202 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2203 	} else {
2204 		return -ENODEV;
2205 	}
2206 
2207 	page = (void *)get_zeroed_page(GFP_KERNEL);
2208 	if (!page) {
2209 		gvt_err("fail to allocate scratch ggtt page\n");
2210 		return -ENOMEM;
2211 	}
2212 	gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2213 
2214 	gvt->gtt.scratch_ggtt_mfn = intel_gvt_hypervisor_virt_to_mfn(page);
2215 	if (gvt->gtt.scratch_ggtt_mfn == INTEL_GVT_INVALID_ADDR) {
2216 		gvt_err("fail to translate scratch ggtt page\n");
2217 		__free_page(gvt->gtt.scratch_ggtt_page);
2218 		return -EFAULT;
2219 	}
2220 
2221 	if (enable_out_of_sync) {
2222 		ret = setup_spt_oos(gvt);
2223 		if (ret) {
2224 			gvt_err("fail to initialize SPT oos\n");
2225 			return ret;
2226 		}
2227 	}
2228 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2229 	return 0;
2230 }
2231 
2232 /**
2233  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2234  * @gvt: GVT device
2235  *
2236  * This function is called at the driver unloading stage, to clean up the
2237  * the mm components of a GVT device.
2238  *
2239  */
2240 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2241 {
2242 	__free_page(gvt->gtt.scratch_ggtt_page);
2243 
2244 	if (enable_out_of_sync)
2245 		clean_spt_oos(gvt);
2246 }
2247 
2248 /**
2249  * intel_vgpu_reset_ggtt - reset the GGTT entry
2250  * @vgpu: a vGPU
2251  *
2252  * This function is called at the vGPU create stage
2253  * to reset all the GGTT entries.
2254  *
2255  */
2256 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2257 {
2258 	struct intel_gvt *gvt = vgpu->gvt;
2259 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2260 	u32 index;
2261 	u32 offset;
2262 	u32 num_entries;
2263 	struct intel_gvt_gtt_entry e;
2264 
2265 	memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2266 	e.type = GTT_TYPE_GGTT_PTE;
2267 	ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2268 	e.val64 |= _PAGE_PRESENT;
2269 
2270 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2271 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2272 	for (offset = 0; offset < num_entries; offset++)
2273 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2274 
2275 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2276 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2277 	for (offset = 0; offset < num_entries; offset++)
2278 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2279 }
2280 
2281 /**
2282  * intel_vgpu_reset_gtt - reset the all GTT related status
2283  * @vgpu: a vGPU
2284  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2285  *
2286  * This function is called from vfio core to reset reset all
2287  * GTT related status, including GGTT, PPGTT, scratch page.
2288  *
2289  */
2290 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2291 {
2292 	int i;
2293 
2294 	ppgtt_free_all_shadow_page(vgpu);
2295 	if (!dmlr)
2296 		return;
2297 
2298 	intel_vgpu_reset_ggtt(vgpu);
2299 
2300 	/* clear scratch page for security */
2301 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2302 		if (vgpu->gtt.scratch_pt[i].page != NULL)
2303 			memset(page_address(vgpu->gtt.scratch_pt[i].page),
2304 				0, PAGE_SIZE);
2305 	}
2306 }
2307