1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 static bool enable_out_of_sync = false; 42 static int preallocated_oos_pages = 8192; 43 44 /* 45 * validate a gm address and related range size, 46 * translate it to host gm address 47 */ 48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 49 { 50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size 51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) { 52 gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n", 53 vgpu->id, addr, size); 54 return false; 55 } 56 return true; 57 } 58 59 /* translate a guest gmadr to host gmadr */ 60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 61 { 62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 63 "invalid guest gmadr %llx\n", g_addr)) 64 return -EACCES; 65 66 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 67 *h_addr = vgpu_aperture_gmadr_base(vgpu) 68 + (g_addr - vgpu_aperture_offset(vgpu)); 69 else 70 *h_addr = vgpu_hidden_gmadr_base(vgpu) 71 + (g_addr - vgpu_hidden_offset(vgpu)); 72 return 0; 73 } 74 75 /* translate a host gmadr to guest gmadr */ 76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 77 { 78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 79 "invalid host gmadr %llx\n", h_addr)) 80 return -EACCES; 81 82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 83 *g_addr = vgpu_aperture_gmadr_base(vgpu) 84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 85 else 86 *g_addr = vgpu_hidden_gmadr_base(vgpu) 87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 88 return 0; 89 } 90 91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 92 unsigned long *h_index) 93 { 94 u64 h_addr; 95 int ret; 96 97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT, 98 &h_addr); 99 if (ret) 100 return ret; 101 102 *h_index = h_addr >> GTT_PAGE_SHIFT; 103 return 0; 104 } 105 106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 107 unsigned long *g_index) 108 { 109 u64 g_addr; 110 int ret; 111 112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT, 113 &g_addr); 114 if (ret) 115 return ret; 116 117 *g_index = g_addr >> GTT_PAGE_SHIFT; 118 return 0; 119 } 120 121 #define gtt_type_is_entry(type) \ 122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 125 126 #define gtt_type_is_pt(type) \ 127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 128 129 #define gtt_type_is_pte_pt(type) \ 130 (type == GTT_TYPE_PPGTT_PTE_PT) 131 132 #define gtt_type_is_root_pointer(type) \ 133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 134 135 #define gtt_init_entry(e, t, p, v) do { \ 136 (e)->type = t; \ 137 (e)->pdev = p; \ 138 memcpy(&(e)->val64, &v, sizeof(v)); \ 139 } while (0) 140 141 /* 142 * Mappings between GTT_TYPE* enumerations. 143 * Following information can be found according to the given type: 144 * - type of next level page table 145 * - type of entry inside this level page table 146 * - type of entry with PSE set 147 * 148 * If the given type doesn't have such a kind of information, 149 * e.g. give a l4 root entry type, then request to get its PSE type, 150 * give a PTE page table type, then request to get its next level page 151 * table type, as we know l4 root entry doesn't have a PSE bit, 152 * and a PTE page table doesn't have a next level page table type, 153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 154 * page table. 155 */ 156 157 struct gtt_type_table_entry { 158 int entry_type; 159 int next_pt_type; 160 int pse_entry_type; 161 }; 162 163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \ 164 [type] = { \ 165 .entry_type = e_type, \ 166 .next_pt_type = npt_type, \ 167 .pse_entry_type = pse_type, \ 168 } 169 170 static struct gtt_type_table_entry gtt_type_table[] = { 171 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 172 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 173 GTT_TYPE_PPGTT_PML4_PT, 174 GTT_TYPE_INVALID), 175 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 176 GTT_TYPE_PPGTT_PML4_ENTRY, 177 GTT_TYPE_PPGTT_PDP_PT, 178 GTT_TYPE_INVALID), 179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 180 GTT_TYPE_PPGTT_PML4_ENTRY, 181 GTT_TYPE_PPGTT_PDP_PT, 182 GTT_TYPE_INVALID), 183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 184 GTT_TYPE_PPGTT_PDP_ENTRY, 185 GTT_TYPE_PPGTT_PDE_PT, 186 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 187 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 188 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 189 GTT_TYPE_PPGTT_PDE_PT, 190 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 192 GTT_TYPE_PPGTT_PDP_ENTRY, 193 GTT_TYPE_PPGTT_PDE_PT, 194 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 196 GTT_TYPE_PPGTT_PDE_ENTRY, 197 GTT_TYPE_PPGTT_PTE_PT, 198 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 200 GTT_TYPE_PPGTT_PDE_ENTRY, 201 GTT_TYPE_PPGTT_PTE_PT, 202 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 204 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 205 GTT_TYPE_INVALID, 206 GTT_TYPE_INVALID), 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 208 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_INVALID), 211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 212 GTT_TYPE_PPGTT_PDE_ENTRY, 213 GTT_TYPE_INVALID, 214 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 216 GTT_TYPE_PPGTT_PDP_ENTRY, 217 GTT_TYPE_INVALID, 218 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 220 GTT_TYPE_GGTT_PTE, 221 GTT_TYPE_INVALID, 222 GTT_TYPE_INVALID), 223 }; 224 225 static inline int get_next_pt_type(int type) 226 { 227 return gtt_type_table[type].next_pt_type; 228 } 229 230 static inline int get_entry_type(int type) 231 { 232 return gtt_type_table[type].entry_type; 233 } 234 235 static inline int get_pse_type(int type) 236 { 237 return gtt_type_table[type].pse_entry_type; 238 } 239 240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 241 { 242 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 243 244 return readq(addr); 245 } 246 247 static void write_pte64(struct drm_i915_private *dev_priv, 248 unsigned long index, u64 pte) 249 { 250 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 251 252 writeq(pte, addr); 253 254 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 255 POSTING_READ(GFX_FLSH_CNTL_GEN6); 256 } 257 258 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt, 259 struct intel_gvt_gtt_entry *e, 260 unsigned long index, bool hypervisor_access, unsigned long gpa, 261 struct intel_vgpu *vgpu) 262 { 263 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 264 int ret; 265 266 if (WARN_ON(info->gtt_entry_size != 8)) 267 return e; 268 269 if (hypervisor_access) { 270 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 271 (index << info->gtt_entry_size_shift), 272 &e->val64, 8); 273 WARN_ON(ret); 274 } else if (!pt) { 275 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 276 } else { 277 e->val64 = *((u64 *)pt + index); 278 } 279 return e; 280 } 281 282 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt, 283 struct intel_gvt_gtt_entry *e, 284 unsigned long index, bool hypervisor_access, unsigned long gpa, 285 struct intel_vgpu *vgpu) 286 { 287 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 288 int ret; 289 290 if (WARN_ON(info->gtt_entry_size != 8)) 291 return e; 292 293 if (hypervisor_access) { 294 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 295 (index << info->gtt_entry_size_shift), 296 &e->val64, 8); 297 WARN_ON(ret); 298 } else if (!pt) { 299 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 300 } else { 301 *((u64 *)pt + index) = e->val64; 302 } 303 return e; 304 } 305 306 #define GTT_HAW 46 307 308 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30) 309 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21) 310 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12) 311 312 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 313 { 314 unsigned long pfn; 315 316 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 317 pfn = (e->val64 & ADDR_1G_MASK) >> 12; 318 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 319 pfn = (e->val64 & ADDR_2M_MASK) >> 12; 320 else 321 pfn = (e->val64 & ADDR_4K_MASK) >> 12; 322 return pfn; 323 } 324 325 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 326 { 327 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 328 e->val64 &= ~ADDR_1G_MASK; 329 pfn &= (ADDR_1G_MASK >> 12); 330 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 331 e->val64 &= ~ADDR_2M_MASK; 332 pfn &= (ADDR_2M_MASK >> 12); 333 } else { 334 e->val64 &= ~ADDR_4K_MASK; 335 pfn &= (ADDR_4K_MASK >> 12); 336 } 337 338 e->val64 |= (pfn << 12); 339 } 340 341 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 342 { 343 /* Entry doesn't have PSE bit. */ 344 if (get_pse_type(e->type) == GTT_TYPE_INVALID) 345 return false; 346 347 e->type = get_entry_type(e->type); 348 if (!(e->val64 & (1 << 7))) 349 return false; 350 351 e->type = get_pse_type(e->type); 352 return true; 353 } 354 355 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 356 { 357 /* 358 * i915 writes PDP root pointer registers without present bit, 359 * it also works, so we need to treat root pointer entry 360 * specifically. 361 */ 362 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 363 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 364 return (e->val64 != 0); 365 else 366 return (e->val64 & (1 << 0)); 367 } 368 369 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 370 { 371 e->val64 &= ~(1 << 0); 372 } 373 374 /* 375 * Per-platform GMA routines. 376 */ 377 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 378 { 379 unsigned long x = (gma >> GTT_PAGE_SHIFT); 380 381 trace_gma_index(__func__, gma, x); 382 return x; 383 } 384 385 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 386 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 387 { \ 388 unsigned long x = (exp); \ 389 trace_gma_index(__func__, gma, x); \ 390 return x; \ 391 } 392 393 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 394 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 395 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 396 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 398 399 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 400 .get_entry = gtt_get_entry64, 401 .set_entry = gtt_set_entry64, 402 .clear_present = gtt_entry_clear_present, 403 .test_present = gen8_gtt_test_present, 404 .test_pse = gen8_gtt_test_pse, 405 .get_pfn = gen8_gtt_get_pfn, 406 .set_pfn = gen8_gtt_set_pfn, 407 }; 408 409 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 410 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 411 .gma_to_pte_index = gen8_gma_to_pte_index, 412 .gma_to_pde_index = gen8_gma_to_pde_index, 413 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 414 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 415 .gma_to_pml4_index = gen8_gma_to_pml4_index, 416 }; 417 418 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p, 419 struct intel_gvt_gtt_entry *m) 420 { 421 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 422 unsigned long gfn, mfn; 423 424 *m = *p; 425 426 if (!ops->test_present(p)) 427 return 0; 428 429 gfn = ops->get_pfn(p); 430 431 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn); 432 if (mfn == INTEL_GVT_INVALID_ADDR) { 433 gvt_err("fail to translate gfn: 0x%lx\n", gfn); 434 return -ENXIO; 435 } 436 437 ops->set_pfn(m, mfn); 438 return 0; 439 } 440 441 /* 442 * MM helpers. 443 */ 444 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm, 445 void *page_table, struct intel_gvt_gtt_entry *e, 446 unsigned long index) 447 { 448 struct intel_gvt *gvt = mm->vgpu->gvt; 449 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 450 451 e->type = mm->page_table_entry_type; 452 453 ops->get_entry(page_table, e, index, false, 0, mm->vgpu); 454 ops->test_pse(e); 455 return e; 456 } 457 458 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm, 459 void *page_table, struct intel_gvt_gtt_entry *e, 460 unsigned long index) 461 { 462 struct intel_gvt *gvt = mm->vgpu->gvt; 463 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 464 465 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu); 466 } 467 468 /* 469 * PPGTT shadow page table helpers. 470 */ 471 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry( 472 struct intel_vgpu_ppgtt_spt *spt, 473 void *page_table, int type, 474 struct intel_gvt_gtt_entry *e, unsigned long index, 475 bool guest) 476 { 477 struct intel_gvt *gvt = spt->vgpu->gvt; 478 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 479 480 e->type = get_entry_type(type); 481 482 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 483 return e; 484 485 ops->get_entry(page_table, e, index, guest, 486 spt->guest_page.gfn << GTT_PAGE_SHIFT, 487 spt->vgpu); 488 ops->test_pse(e); 489 return e; 490 } 491 492 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry( 493 struct intel_vgpu_ppgtt_spt *spt, 494 void *page_table, int type, 495 struct intel_gvt_gtt_entry *e, unsigned long index, 496 bool guest) 497 { 498 struct intel_gvt *gvt = spt->vgpu->gvt; 499 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 500 501 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 502 return e; 503 504 return ops->set_entry(page_table, e, index, guest, 505 spt->guest_page.gfn << GTT_PAGE_SHIFT, 506 spt->vgpu); 507 } 508 509 #define ppgtt_get_guest_entry(spt, e, index) \ 510 ppgtt_spt_get_entry(spt, NULL, \ 511 spt->guest_page_type, e, index, true) 512 513 #define ppgtt_set_guest_entry(spt, e, index) \ 514 ppgtt_spt_set_entry(spt, NULL, \ 515 spt->guest_page_type, e, index, true) 516 517 #define ppgtt_get_shadow_entry(spt, e, index) \ 518 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 519 spt->shadow_page.type, e, index, false) 520 521 #define ppgtt_set_shadow_entry(spt, e, index) \ 522 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 523 spt->shadow_page.type, e, index, false) 524 525 /** 526 * intel_vgpu_init_guest_page - init a guest page data structure 527 * @vgpu: a vGPU 528 * @p: a guest page data structure 529 * @gfn: guest memory page frame number 530 * @handler: function will be called when target guest memory page has 531 * been modified. 532 * 533 * This function is called when user wants to track a guest memory page. 534 * 535 * Returns: 536 * Zero on success, negative error code if failed. 537 */ 538 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu, 539 struct intel_vgpu_guest_page *p, 540 unsigned long gfn, 541 int (*handler)(void *, u64, void *, int), 542 void *data) 543 { 544 INIT_HLIST_NODE(&p->node); 545 546 p->writeprotection = false; 547 p->gfn = gfn; 548 p->handler = handler; 549 p->data = data; 550 p->oos_page = NULL; 551 p->write_cnt = 0; 552 553 hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn); 554 return 0; 555 } 556 557 static int detach_oos_page(struct intel_vgpu *vgpu, 558 struct intel_vgpu_oos_page *oos_page); 559 560 /** 561 * intel_vgpu_clean_guest_page - release the resource owned by guest page data 562 * structure 563 * @vgpu: a vGPU 564 * @p: a tracked guest page 565 * 566 * This function is called when user tries to stop tracking a guest memory 567 * page. 568 */ 569 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu, 570 struct intel_vgpu_guest_page *p) 571 { 572 if (!hlist_unhashed(&p->node)) 573 hash_del(&p->node); 574 575 if (p->oos_page) 576 detach_oos_page(vgpu, p->oos_page); 577 578 if (p->writeprotection) 579 intel_gvt_hypervisor_unset_wp_page(vgpu, p); 580 } 581 582 /** 583 * intel_vgpu_find_guest_page - find a guest page data structure by GFN. 584 * @vgpu: a vGPU 585 * @gfn: guest memory page frame number 586 * 587 * This function is called when emulation logic wants to know if a trapped GFN 588 * is a tracked guest page. 589 * 590 * Returns: 591 * Pointer to guest page data structure, NULL if failed. 592 */ 593 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page( 594 struct intel_vgpu *vgpu, unsigned long gfn) 595 { 596 struct intel_vgpu_guest_page *p; 597 598 hash_for_each_possible(vgpu->gtt.guest_page_hash_table, 599 p, node, gfn) { 600 if (p->gfn == gfn) 601 return p; 602 } 603 return NULL; 604 } 605 606 static inline int init_shadow_page(struct intel_vgpu *vgpu, 607 struct intel_vgpu_shadow_page *p, int type) 608 { 609 p->vaddr = page_address(p->page); 610 p->type = type; 611 612 INIT_HLIST_NODE(&p->node); 613 614 p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr); 615 if (p->mfn == INTEL_GVT_INVALID_ADDR) 616 return -EFAULT; 617 618 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn); 619 return 0; 620 } 621 622 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p) 623 { 624 if (!hlist_unhashed(&p->node)) 625 hash_del(&p->node); 626 } 627 628 static inline struct intel_vgpu_shadow_page *find_shadow_page( 629 struct intel_vgpu *vgpu, unsigned long mfn) 630 { 631 struct intel_vgpu_shadow_page *p; 632 633 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table, 634 p, node, mfn) { 635 if (p->mfn == mfn) 636 return p; 637 } 638 return NULL; 639 } 640 641 #define guest_page_to_ppgtt_spt(ptr) \ 642 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page) 643 644 #define shadow_page_to_ppgtt_spt(ptr) \ 645 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page) 646 647 static void *alloc_spt(gfp_t gfp_mask) 648 { 649 struct intel_vgpu_ppgtt_spt *spt; 650 651 spt = kzalloc(sizeof(*spt), gfp_mask); 652 if (!spt) 653 return NULL; 654 655 spt->shadow_page.page = alloc_page(gfp_mask); 656 if (!spt->shadow_page.page) { 657 kfree(spt); 658 return NULL; 659 } 660 return spt; 661 } 662 663 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 664 { 665 __free_page(spt->shadow_page.page); 666 kfree(spt); 667 } 668 669 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 670 { 671 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type); 672 673 clean_shadow_page(&spt->shadow_page); 674 intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page); 675 list_del_init(&spt->post_shadow_list); 676 677 free_spt(spt); 678 } 679 680 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu) 681 { 682 struct hlist_node *n; 683 struct intel_vgpu_shadow_page *sp; 684 int i; 685 686 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node) 687 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp)); 688 } 689 690 static int ppgtt_handle_guest_write_page_table_bytes(void *gp, 691 u64 pa, void *p_data, int bytes); 692 693 static int ppgtt_write_protection_handler(void *gp, u64 pa, 694 void *p_data, int bytes) 695 { 696 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; 697 int ret; 698 699 if (bytes != 4 && bytes != 8) 700 return -EINVAL; 701 702 if (!gpt->writeprotection) 703 return -EINVAL; 704 705 ret = ppgtt_handle_guest_write_page_table_bytes(gp, 706 pa, p_data, bytes); 707 if (ret) 708 return ret; 709 return ret; 710 } 711 712 static int reclaim_one_mm(struct intel_gvt *gvt); 713 714 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page( 715 struct intel_vgpu *vgpu, int type, unsigned long gfn) 716 { 717 struct intel_vgpu_ppgtt_spt *spt = NULL; 718 int ret; 719 720 retry: 721 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 722 if (!spt) { 723 if (reclaim_one_mm(vgpu->gvt)) 724 goto retry; 725 726 gvt_err("fail to allocate ppgtt shadow page\n"); 727 return ERR_PTR(-ENOMEM); 728 } 729 730 spt->vgpu = vgpu; 731 spt->guest_page_type = type; 732 atomic_set(&spt->refcount, 1); 733 INIT_LIST_HEAD(&spt->post_shadow_list); 734 735 /* 736 * TODO: guest page type may be different with shadow page type, 737 * when we support PSE page in future. 738 */ 739 ret = init_shadow_page(vgpu, &spt->shadow_page, type); 740 if (ret) { 741 gvt_err("fail to initialize shadow page for spt\n"); 742 goto err; 743 } 744 745 ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page, 746 gfn, ppgtt_write_protection_handler, NULL); 747 if (ret) { 748 gvt_err("fail to initialize guest page for spt\n"); 749 goto err; 750 } 751 752 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 753 return spt; 754 err: 755 ppgtt_free_shadow_page(spt); 756 return ERR_PTR(ret); 757 } 758 759 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page( 760 struct intel_vgpu *vgpu, unsigned long mfn) 761 { 762 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn); 763 764 if (p) 765 return shadow_page_to_ppgtt_spt(p); 766 767 gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n", 768 vgpu->id, mfn); 769 return NULL; 770 } 771 772 #define pt_entry_size_shift(spt) \ 773 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 774 775 #define pt_entries(spt) \ 776 (GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 777 778 #define for_each_present_guest_entry(spt, e, i) \ 779 for (i = 0; i < pt_entries(spt); i++) \ 780 if (spt->vgpu->gvt->gtt.pte_ops->test_present( \ 781 ppgtt_get_guest_entry(spt, e, i))) 782 783 #define for_each_present_shadow_entry(spt, e, i) \ 784 for (i = 0; i < pt_entries(spt); i++) \ 785 if (spt->vgpu->gvt->gtt.pte_ops->test_present( \ 786 ppgtt_get_shadow_entry(spt, e, i))) 787 788 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 789 { 790 int v = atomic_read(&spt->refcount); 791 792 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 793 794 atomic_inc(&spt->refcount); 795 } 796 797 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); 798 799 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu, 800 struct intel_gvt_gtt_entry *e) 801 { 802 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 803 struct intel_vgpu_ppgtt_spt *s; 804 intel_gvt_gtt_type_t cur_pt_type; 805 806 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type)))) 807 return -EINVAL; 808 809 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 810 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 811 cur_pt_type = get_next_pt_type(e->type) + 1; 812 if (ops->get_pfn(e) == 813 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 814 return 0; 815 } 816 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); 817 if (!s) { 818 gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n", 819 vgpu->id, ops->get_pfn(e)); 820 return -ENXIO; 821 } 822 return ppgtt_invalidate_shadow_page(s); 823 } 824 825 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 826 { 827 struct intel_gvt_gtt_entry e; 828 unsigned long index; 829 int ret; 830 int v = atomic_read(&spt->refcount); 831 832 trace_spt_change(spt->vgpu->id, "die", spt, 833 spt->guest_page.gfn, spt->shadow_page.type); 834 835 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 836 837 if (atomic_dec_return(&spt->refcount) > 0) 838 return 0; 839 840 if (gtt_type_is_pte_pt(spt->shadow_page.type)) 841 goto release; 842 843 for_each_present_shadow_entry(spt, &e, index) { 844 if (!gtt_type_is_pt(get_next_pt_type(e.type))) { 845 gvt_err("GVT doesn't support pse bit for now\n"); 846 return -EINVAL; 847 } 848 ret = ppgtt_invalidate_shadow_page_by_shadow_entry( 849 spt->vgpu, &e); 850 if (ret) 851 goto fail; 852 } 853 release: 854 trace_spt_change(spt->vgpu->id, "release", spt, 855 spt->guest_page.gfn, spt->shadow_page.type); 856 ppgtt_free_shadow_page(spt); 857 return 0; 858 fail: 859 gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n", 860 spt->vgpu->id, spt, e.val64, e.type); 861 return ret; 862 } 863 864 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); 865 866 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry( 867 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 868 { 869 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 870 struct intel_vgpu_ppgtt_spt *s = NULL; 871 struct intel_vgpu_guest_page *g; 872 int ret; 873 874 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) { 875 ret = -EINVAL; 876 goto fail; 877 } 878 879 g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we)); 880 if (g) { 881 s = guest_page_to_ppgtt_spt(g); 882 ppgtt_get_shadow_page(s); 883 } else { 884 int type = get_next_pt_type(we->type); 885 886 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we)); 887 if (IS_ERR(s)) { 888 ret = PTR_ERR(s); 889 goto fail; 890 } 891 892 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page); 893 if (ret) 894 goto fail; 895 896 ret = ppgtt_populate_shadow_page(s); 897 if (ret) 898 goto fail; 899 900 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn, 901 s->shadow_page.type); 902 } 903 return s; 904 fail: 905 gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n", 906 vgpu->id, s, we->val64, we->type); 907 return ERR_PTR(ret); 908 } 909 910 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 911 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 912 { 913 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 914 915 se->type = ge->type; 916 se->val64 = ge->val64; 917 918 ops->set_pfn(se, s->shadow_page.mfn); 919 } 920 921 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 922 { 923 struct intel_vgpu *vgpu = spt->vgpu; 924 struct intel_vgpu_ppgtt_spt *s; 925 struct intel_gvt_gtt_entry se, ge; 926 unsigned long i; 927 int ret; 928 929 trace_spt_change(spt->vgpu->id, "born", spt, 930 spt->guest_page.gfn, spt->shadow_page.type); 931 932 if (gtt_type_is_pte_pt(spt->shadow_page.type)) { 933 for_each_present_guest_entry(spt, &ge, i) { 934 ret = gtt_entry_p2m(vgpu, &ge, &se); 935 if (ret) 936 goto fail; 937 ppgtt_set_shadow_entry(spt, &se, i); 938 } 939 return 0; 940 } 941 942 for_each_present_guest_entry(spt, &ge, i) { 943 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) { 944 gvt_err("GVT doesn't support pse bit now\n"); 945 ret = -EINVAL; 946 goto fail; 947 } 948 949 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); 950 if (IS_ERR(s)) { 951 ret = PTR_ERR(s); 952 goto fail; 953 } 954 ppgtt_get_shadow_entry(spt, &se, i); 955 ppgtt_generate_shadow_entry(&se, s, &ge); 956 ppgtt_set_shadow_entry(spt, &se, i); 957 } 958 return 0; 959 fail: 960 gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n", 961 vgpu->id, spt, ge.val64, ge.type); 962 return ret; 963 } 964 965 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt, 966 unsigned long index) 967 { 968 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 969 struct intel_vgpu_shadow_page *sp = &spt->shadow_page; 970 struct intel_vgpu *vgpu = spt->vgpu; 971 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 972 struct intel_gvt_gtt_entry e; 973 int ret; 974 975 ppgtt_get_shadow_entry(spt, &e, index); 976 977 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64, 978 index); 979 980 if (!ops->test_present(&e)) 981 return 0; 982 983 if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn) 984 return 0; 985 986 if (gtt_type_is_pt(get_next_pt_type(e.type))) { 987 struct intel_vgpu_ppgtt_spt *s = 988 ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e)); 989 if (!s) { 990 gvt_err("fail to find guest page\n"); 991 ret = -ENXIO; 992 goto fail; 993 } 994 ret = ppgtt_invalidate_shadow_page(s); 995 if (ret) 996 goto fail; 997 } 998 ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn); 999 ppgtt_set_shadow_entry(spt, &e, index); 1000 return 0; 1001 fail: 1002 gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n", 1003 vgpu->id, spt, e.val64, e.type); 1004 return ret; 1005 } 1006 1007 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt, 1008 struct intel_gvt_gtt_entry *we, unsigned long index) 1009 { 1010 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1011 struct intel_vgpu_shadow_page *sp = &spt->shadow_page; 1012 struct intel_vgpu *vgpu = spt->vgpu; 1013 struct intel_gvt_gtt_entry m; 1014 struct intel_vgpu_ppgtt_spt *s; 1015 int ret; 1016 1017 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type, 1018 we->val64, index); 1019 1020 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1021 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we); 1022 if (IS_ERR(s)) { 1023 ret = PTR_ERR(s); 1024 goto fail; 1025 } 1026 ppgtt_get_shadow_entry(spt, &m, index); 1027 ppgtt_generate_shadow_entry(&m, s, we); 1028 ppgtt_set_shadow_entry(spt, &m, index); 1029 } else { 1030 ret = gtt_entry_p2m(vgpu, we, &m); 1031 if (ret) 1032 goto fail; 1033 ppgtt_set_shadow_entry(spt, &m, index); 1034 } 1035 return 0; 1036 fail: 1037 gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id, 1038 spt, we->val64, we->type); 1039 return ret; 1040 } 1041 1042 static int sync_oos_page(struct intel_vgpu *vgpu, 1043 struct intel_vgpu_oos_page *oos_page) 1044 { 1045 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1046 struct intel_gvt *gvt = vgpu->gvt; 1047 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1048 struct intel_vgpu_ppgtt_spt *spt = 1049 guest_page_to_ppgtt_spt(oos_page->guest_page); 1050 struct intel_gvt_gtt_entry old, new, m; 1051 int index; 1052 int ret; 1053 1054 trace_oos_change(vgpu->id, "sync", oos_page->id, 1055 oos_page->guest_page, spt->guest_page_type); 1056 1057 old.type = new.type = get_entry_type(spt->guest_page_type); 1058 old.val64 = new.val64 = 0; 1059 1060 for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift); 1061 index++) { 1062 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1063 ops->get_entry(NULL, &new, index, true, 1064 oos_page->guest_page->gfn << PAGE_SHIFT, vgpu); 1065 1066 if (old.val64 == new.val64 1067 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1068 continue; 1069 1070 trace_oos_sync(vgpu->id, oos_page->id, 1071 oos_page->guest_page, spt->guest_page_type, 1072 new.val64, index); 1073 1074 ret = gtt_entry_p2m(vgpu, &new, &m); 1075 if (ret) 1076 return ret; 1077 1078 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1079 ppgtt_set_shadow_entry(spt, &m, index); 1080 } 1081 1082 oos_page->guest_page->write_cnt = 0; 1083 list_del_init(&spt->post_shadow_list); 1084 return 0; 1085 } 1086 1087 static int detach_oos_page(struct intel_vgpu *vgpu, 1088 struct intel_vgpu_oos_page *oos_page) 1089 { 1090 struct intel_gvt *gvt = vgpu->gvt; 1091 struct intel_vgpu_ppgtt_spt *spt = 1092 guest_page_to_ppgtt_spt(oos_page->guest_page); 1093 1094 trace_oos_change(vgpu->id, "detach", oos_page->id, 1095 oos_page->guest_page, spt->guest_page_type); 1096 1097 oos_page->guest_page->write_cnt = 0; 1098 oos_page->guest_page->oos_page = NULL; 1099 oos_page->guest_page = NULL; 1100 1101 list_del_init(&oos_page->vm_list); 1102 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1103 1104 return 0; 1105 } 1106 1107 static int attach_oos_page(struct intel_vgpu *vgpu, 1108 struct intel_vgpu_oos_page *oos_page, 1109 struct intel_vgpu_guest_page *gpt) 1110 { 1111 struct intel_gvt *gvt = vgpu->gvt; 1112 int ret; 1113 1114 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT, 1115 oos_page->mem, GTT_PAGE_SIZE); 1116 if (ret) 1117 return ret; 1118 1119 oos_page->guest_page = gpt; 1120 gpt->oos_page = oos_page; 1121 1122 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1123 1124 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id, 1125 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1126 return 0; 1127 } 1128 1129 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu, 1130 struct intel_vgpu_guest_page *gpt) 1131 { 1132 int ret; 1133 1134 ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt); 1135 if (ret) 1136 return ret; 1137 1138 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id, 1139 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1140 1141 list_del_init(&gpt->oos_page->vm_list); 1142 return sync_oos_page(vgpu, gpt->oos_page); 1143 } 1144 1145 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu, 1146 struct intel_vgpu_guest_page *gpt) 1147 { 1148 struct intel_gvt *gvt = vgpu->gvt; 1149 struct intel_gvt_gtt *gtt = &gvt->gtt; 1150 struct intel_vgpu_oos_page *oos_page = gpt->oos_page; 1151 int ret; 1152 1153 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1154 1155 if (list_empty(>t->oos_page_free_list_head)) { 1156 oos_page = container_of(gtt->oos_page_use_list_head.next, 1157 struct intel_vgpu_oos_page, list); 1158 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); 1159 if (ret) 1160 return ret; 1161 ret = detach_oos_page(vgpu, oos_page); 1162 if (ret) 1163 return ret; 1164 } else 1165 oos_page = container_of(gtt->oos_page_free_list_head.next, 1166 struct intel_vgpu_oos_page, list); 1167 return attach_oos_page(vgpu, oos_page, gpt); 1168 } 1169 1170 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu, 1171 struct intel_vgpu_guest_page *gpt) 1172 { 1173 struct intel_vgpu_oos_page *oos_page = gpt->oos_page; 1174 1175 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1176 return -EINVAL; 1177 1178 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id, 1179 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1180 1181 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head); 1182 return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt); 1183 } 1184 1185 /** 1186 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1187 * @vgpu: a vGPU 1188 * 1189 * This function is called before submitting a guest workload to host, 1190 * to sync all the out-of-synced shadow for vGPU 1191 * 1192 * Returns: 1193 * Zero on success, negative error code if failed. 1194 */ 1195 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1196 { 1197 struct list_head *pos, *n; 1198 struct intel_vgpu_oos_page *oos_page; 1199 int ret; 1200 1201 if (!enable_out_of_sync) 1202 return 0; 1203 1204 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1205 oos_page = container_of(pos, 1206 struct intel_vgpu_oos_page, vm_list); 1207 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); 1208 if (ret) 1209 return ret; 1210 } 1211 return 0; 1212 } 1213 1214 /* 1215 * The heart of PPGTT shadow page table. 1216 */ 1217 static int ppgtt_handle_guest_write_page_table( 1218 struct intel_vgpu_guest_page *gpt, 1219 struct intel_gvt_gtt_entry *we, unsigned long index) 1220 { 1221 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1222 struct intel_vgpu *vgpu = spt->vgpu; 1223 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1224 1225 int ret; 1226 int new_present; 1227 1228 new_present = ops->test_present(we); 1229 1230 ret = ppgtt_handle_guest_entry_removal(gpt, index); 1231 if (ret) 1232 goto fail; 1233 1234 if (new_present) { 1235 ret = ppgtt_handle_guest_entry_add(gpt, we, index); 1236 if (ret) 1237 goto fail; 1238 } 1239 return 0; 1240 fail: 1241 gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n", 1242 vgpu->id, spt, we->val64, we->type); 1243 return ret; 1244 } 1245 1246 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt) 1247 { 1248 return enable_out_of_sync 1249 && gtt_type_is_pte_pt( 1250 guest_page_to_ppgtt_spt(gpt)->guest_page_type) 1251 && gpt->write_cnt >= 2; 1252 } 1253 1254 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1255 unsigned long index) 1256 { 1257 set_bit(index, spt->post_shadow_bitmap); 1258 if (!list_empty(&spt->post_shadow_list)) 1259 return; 1260 1261 list_add_tail(&spt->post_shadow_list, 1262 &spt->vgpu->gtt.post_shadow_list_head); 1263 } 1264 1265 /** 1266 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1267 * @vgpu: a vGPU 1268 * 1269 * This function is called before submitting a guest workload to host, 1270 * to flush all the post shadows for a vGPU. 1271 * 1272 * Returns: 1273 * Zero on success, negative error code if failed. 1274 */ 1275 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1276 { 1277 struct list_head *pos, *n; 1278 struct intel_vgpu_ppgtt_spt *spt; 1279 struct intel_gvt_gtt_entry ge; 1280 unsigned long index; 1281 int ret; 1282 1283 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1284 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1285 post_shadow_list); 1286 1287 for_each_set_bit(index, spt->post_shadow_bitmap, 1288 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1289 ppgtt_get_guest_entry(spt, &ge, index); 1290 1291 ret = ppgtt_handle_guest_write_page_table( 1292 &spt->guest_page, &ge, index); 1293 if (ret) 1294 return ret; 1295 clear_bit(index, spt->post_shadow_bitmap); 1296 } 1297 list_del_init(&spt->post_shadow_list); 1298 } 1299 return 0; 1300 } 1301 1302 static int ppgtt_handle_guest_write_page_table_bytes(void *gp, 1303 u64 pa, void *p_data, int bytes) 1304 { 1305 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; 1306 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1307 struct intel_vgpu *vgpu = spt->vgpu; 1308 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1309 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1310 struct intel_gvt_gtt_entry we; 1311 unsigned long index; 1312 int ret; 1313 1314 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1315 1316 ppgtt_get_guest_entry(spt, &we, index); 1317 1318 ops->test_pse(&we); 1319 1320 if (bytes == info->gtt_entry_size) { 1321 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index); 1322 if (ret) 1323 return ret; 1324 } else { 1325 if (!test_bit(index, spt->post_shadow_bitmap)) { 1326 ret = ppgtt_handle_guest_entry_removal(gpt, index); 1327 if (ret) 1328 return ret; 1329 } 1330 1331 ppgtt_set_post_shadow(spt, index); 1332 } 1333 1334 if (!enable_out_of_sync) 1335 return 0; 1336 1337 gpt->write_cnt++; 1338 1339 if (gpt->oos_page) 1340 ops->set_entry(gpt->oos_page->mem, &we, index, 1341 false, 0, vgpu); 1342 1343 if (can_do_out_of_sync(gpt)) { 1344 if (!gpt->oos_page) 1345 ppgtt_allocate_oos_page(vgpu, gpt); 1346 1347 ret = ppgtt_set_guest_page_oos(vgpu, gpt); 1348 if (ret < 0) 1349 return ret; 1350 } 1351 return 0; 1352 } 1353 1354 /* 1355 * mm page table allocation policy for bdw+ 1356 * - for ggtt, only virtual page table will be allocated. 1357 * - for ppgtt, dedicated virtual/shadow page table will be allocated. 1358 */ 1359 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm) 1360 { 1361 struct intel_vgpu *vgpu = mm->vgpu; 1362 struct intel_gvt *gvt = vgpu->gvt; 1363 const struct intel_gvt_device_info *info = &gvt->device_info; 1364 void *mem; 1365 1366 if (mm->type == INTEL_GVT_MM_PPGTT) { 1367 mm->page_table_entry_cnt = 4; 1368 mm->page_table_entry_size = mm->page_table_entry_cnt * 1369 info->gtt_entry_size; 1370 mem = kzalloc(mm->has_shadow_page_table ? 1371 mm->page_table_entry_size * 2 1372 : mm->page_table_entry_size, GFP_KERNEL); 1373 if (!mem) 1374 return -ENOMEM; 1375 mm->virtual_page_table = mem; 1376 if (!mm->has_shadow_page_table) 1377 return 0; 1378 mm->shadow_page_table = mem + mm->page_table_entry_size; 1379 } else if (mm->type == INTEL_GVT_MM_GGTT) { 1380 mm->page_table_entry_cnt = 1381 (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT); 1382 mm->page_table_entry_size = mm->page_table_entry_cnt * 1383 info->gtt_entry_size; 1384 mem = vzalloc(mm->page_table_entry_size); 1385 if (!mem) 1386 return -ENOMEM; 1387 mm->virtual_page_table = mem; 1388 } 1389 return 0; 1390 } 1391 1392 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm) 1393 { 1394 if (mm->type == INTEL_GVT_MM_PPGTT) { 1395 kfree(mm->virtual_page_table); 1396 } else if (mm->type == INTEL_GVT_MM_GGTT) { 1397 if (mm->virtual_page_table) 1398 vfree(mm->virtual_page_table); 1399 } 1400 mm->virtual_page_table = mm->shadow_page_table = NULL; 1401 } 1402 1403 static void invalidate_mm(struct intel_vgpu_mm *mm) 1404 { 1405 struct intel_vgpu *vgpu = mm->vgpu; 1406 struct intel_gvt *gvt = vgpu->gvt; 1407 struct intel_gvt_gtt *gtt = &gvt->gtt; 1408 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1409 struct intel_gvt_gtt_entry se; 1410 int i; 1411 1412 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed)) 1413 return; 1414 1415 for (i = 0; i < mm->page_table_entry_cnt; i++) { 1416 ppgtt_get_shadow_root_entry(mm, &se, i); 1417 if (!ops->test_present(&se)) 1418 continue; 1419 ppgtt_invalidate_shadow_page_by_shadow_entry( 1420 vgpu, &se); 1421 se.val64 = 0; 1422 ppgtt_set_shadow_root_entry(mm, &se, i); 1423 1424 trace_gpt_change(vgpu->id, "destroy root pointer", 1425 NULL, se.type, se.val64, i); 1426 } 1427 mm->shadowed = false; 1428 } 1429 1430 /** 1431 * intel_vgpu_destroy_mm - destroy a mm object 1432 * @mm: a kref object 1433 * 1434 * This function is used to destroy a mm object for vGPU 1435 * 1436 */ 1437 void intel_vgpu_destroy_mm(struct kref *mm_ref) 1438 { 1439 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1440 struct intel_vgpu *vgpu = mm->vgpu; 1441 struct intel_gvt *gvt = vgpu->gvt; 1442 struct intel_gvt_gtt *gtt = &gvt->gtt; 1443 1444 if (!mm->initialized) 1445 goto out; 1446 1447 list_del(&mm->list); 1448 list_del(&mm->lru_list); 1449 1450 if (mm->has_shadow_page_table) 1451 invalidate_mm(mm); 1452 1453 gtt->mm_free_page_table(mm); 1454 out: 1455 kfree(mm); 1456 } 1457 1458 static int shadow_mm(struct intel_vgpu_mm *mm) 1459 { 1460 struct intel_vgpu *vgpu = mm->vgpu; 1461 struct intel_gvt *gvt = vgpu->gvt; 1462 struct intel_gvt_gtt *gtt = &gvt->gtt; 1463 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1464 struct intel_vgpu_ppgtt_spt *spt; 1465 struct intel_gvt_gtt_entry ge, se; 1466 int i; 1467 int ret; 1468 1469 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed)) 1470 return 0; 1471 1472 mm->shadowed = true; 1473 1474 for (i = 0; i < mm->page_table_entry_cnt; i++) { 1475 ppgtt_get_guest_root_entry(mm, &ge, i); 1476 if (!ops->test_present(&ge)) 1477 continue; 1478 1479 trace_gpt_change(vgpu->id, __func__, NULL, 1480 ge.type, ge.val64, i); 1481 1482 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); 1483 if (IS_ERR(spt)) { 1484 gvt_err("fail to populate guest root pointer\n"); 1485 ret = PTR_ERR(spt); 1486 goto fail; 1487 } 1488 ppgtt_generate_shadow_entry(&se, spt, &ge); 1489 ppgtt_set_shadow_root_entry(mm, &se, i); 1490 1491 trace_gpt_change(vgpu->id, "populate root pointer", 1492 NULL, se.type, se.val64, i); 1493 } 1494 return 0; 1495 fail: 1496 invalidate_mm(mm); 1497 return ret; 1498 } 1499 1500 /** 1501 * intel_vgpu_create_mm - create a mm object for a vGPU 1502 * @vgpu: a vGPU 1503 * @mm_type: mm object type, should be PPGTT or GGTT 1504 * @virtual_page_table: page table root pointers. Could be NULL if user wants 1505 * to populate shadow later. 1506 * @page_table_level: describe the page table level of the mm object 1507 * @pde_base_index: pde root pointer base in GGTT MMIO. 1508 * 1509 * This function is used to create a mm object for a vGPU. 1510 * 1511 * Returns: 1512 * Zero on success, negative error code in pointer if failed. 1513 */ 1514 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu, 1515 int mm_type, void *virtual_page_table, int page_table_level, 1516 u32 pde_base_index) 1517 { 1518 struct intel_gvt *gvt = vgpu->gvt; 1519 struct intel_gvt_gtt *gtt = &gvt->gtt; 1520 struct intel_vgpu_mm *mm; 1521 int ret; 1522 1523 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1524 if (!mm) { 1525 ret = -ENOMEM; 1526 goto fail; 1527 } 1528 1529 mm->type = mm_type; 1530 1531 if (page_table_level == 1) 1532 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE; 1533 else if (page_table_level == 3) 1534 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1535 else if (page_table_level == 4) 1536 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1537 else { 1538 WARN_ON(1); 1539 ret = -EINVAL; 1540 goto fail; 1541 } 1542 1543 mm->page_table_level = page_table_level; 1544 mm->pde_base_index = pde_base_index; 1545 1546 mm->vgpu = vgpu; 1547 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT); 1548 1549 kref_init(&mm->ref); 1550 atomic_set(&mm->pincount, 0); 1551 INIT_LIST_HEAD(&mm->list); 1552 INIT_LIST_HEAD(&mm->lru_list); 1553 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head); 1554 1555 ret = gtt->mm_alloc_page_table(mm); 1556 if (ret) { 1557 gvt_err("fail to allocate page table for mm\n"); 1558 goto fail; 1559 } 1560 1561 mm->initialized = true; 1562 1563 if (virtual_page_table) 1564 memcpy(mm->virtual_page_table, virtual_page_table, 1565 mm->page_table_entry_size); 1566 1567 if (mm->has_shadow_page_table) { 1568 ret = shadow_mm(mm); 1569 if (ret) 1570 goto fail; 1571 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head); 1572 } 1573 return mm; 1574 fail: 1575 gvt_err("fail to create mm\n"); 1576 if (mm) 1577 intel_gvt_mm_unreference(mm); 1578 return ERR_PTR(ret); 1579 } 1580 1581 /** 1582 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1583 * @mm: a vGPU mm object 1584 * 1585 * This function is called when user doesn't want to use a vGPU mm object 1586 */ 1587 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1588 { 1589 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) 1590 return; 1591 1592 atomic_dec(&mm->pincount); 1593 } 1594 1595 /** 1596 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1597 * @vgpu: a vGPU 1598 * 1599 * This function is called when user wants to use a vGPU mm object. If this 1600 * mm object hasn't been shadowed yet, the shadow will be populated at this 1601 * time. 1602 * 1603 * Returns: 1604 * Zero on success, negative error code if failed. 1605 */ 1606 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1607 { 1608 int ret; 1609 1610 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) 1611 return 0; 1612 1613 atomic_inc(&mm->pincount); 1614 1615 if (!mm->shadowed) { 1616 ret = shadow_mm(mm); 1617 if (ret) 1618 return ret; 1619 } 1620 1621 list_del_init(&mm->lru_list); 1622 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head); 1623 return 0; 1624 } 1625 1626 static int reclaim_one_mm(struct intel_gvt *gvt) 1627 { 1628 struct intel_vgpu_mm *mm; 1629 struct list_head *pos, *n; 1630 1631 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) { 1632 mm = container_of(pos, struct intel_vgpu_mm, lru_list); 1633 1634 if (mm->type != INTEL_GVT_MM_PPGTT) 1635 continue; 1636 if (atomic_read(&mm->pincount)) 1637 continue; 1638 1639 list_del_init(&mm->lru_list); 1640 invalidate_mm(mm); 1641 return 1; 1642 } 1643 return 0; 1644 } 1645 1646 /* 1647 * GMA translation APIs. 1648 */ 1649 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 1650 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 1651 { 1652 struct intel_vgpu *vgpu = mm->vgpu; 1653 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1654 struct intel_vgpu_ppgtt_spt *s; 1655 1656 if (WARN_ON(!mm->has_shadow_page_table)) 1657 return -EINVAL; 1658 1659 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); 1660 if (!s) 1661 return -ENXIO; 1662 1663 if (!guest) 1664 ppgtt_get_shadow_entry(s, e, index); 1665 else 1666 ppgtt_get_guest_entry(s, e, index); 1667 return 0; 1668 } 1669 1670 /** 1671 * intel_vgpu_gma_to_gpa - translate a gma to GPA 1672 * @mm: mm object. could be a PPGTT or GGTT mm object 1673 * @gma: graphics memory address in this mm object 1674 * 1675 * This function is used to translate a graphics memory address in specific 1676 * graphics memory space to guest physical address. 1677 * 1678 * Returns: 1679 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 1680 */ 1681 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 1682 { 1683 struct intel_vgpu *vgpu = mm->vgpu; 1684 struct intel_gvt *gvt = vgpu->gvt; 1685 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 1686 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 1687 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 1688 unsigned long gma_index[4]; 1689 struct intel_gvt_gtt_entry e; 1690 int i, index; 1691 int ret; 1692 1693 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT) 1694 return INTEL_GVT_INVALID_ADDR; 1695 1696 if (mm->type == INTEL_GVT_MM_GGTT) { 1697 if (!vgpu_gmadr_is_valid(vgpu, gma)) 1698 goto err; 1699 1700 ggtt_get_guest_entry(mm, &e, 1701 gma_ops->gma_to_ggtt_pte_index(gma)); 1702 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) 1703 + (gma & ~GTT_PAGE_MASK); 1704 1705 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 1706 return gpa; 1707 } 1708 1709 switch (mm->page_table_level) { 1710 case 4: 1711 ppgtt_get_shadow_root_entry(mm, &e, 0); 1712 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 1713 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 1714 gma_index[2] = gma_ops->gma_to_pde_index(gma); 1715 gma_index[3] = gma_ops->gma_to_pte_index(gma); 1716 index = 4; 1717 break; 1718 case 3: 1719 ppgtt_get_shadow_root_entry(mm, &e, 1720 gma_ops->gma_to_l3_pdp_index(gma)); 1721 gma_index[0] = gma_ops->gma_to_pde_index(gma); 1722 gma_index[1] = gma_ops->gma_to_pte_index(gma); 1723 index = 2; 1724 break; 1725 case 2: 1726 ppgtt_get_shadow_root_entry(mm, &e, 1727 gma_ops->gma_to_pde_index(gma)); 1728 gma_index[0] = gma_ops->gma_to_pte_index(gma); 1729 index = 1; 1730 break; 1731 default: 1732 WARN_ON(1); 1733 goto err; 1734 } 1735 1736 /* walk into the shadow page table and get gpa from guest entry */ 1737 for (i = 0; i < index; i++) { 1738 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 1739 (i == index - 1)); 1740 if (ret) 1741 goto err; 1742 } 1743 1744 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) 1745 + (gma & ~GTT_PAGE_MASK); 1746 1747 trace_gma_translate(vgpu->id, "ppgtt", 0, 1748 mm->page_table_level, gma, gpa); 1749 return gpa; 1750 err: 1751 gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma); 1752 return INTEL_GVT_INVALID_ADDR; 1753 } 1754 1755 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu, 1756 unsigned int off, void *p_data, unsigned int bytes) 1757 { 1758 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 1759 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1760 unsigned long index = off >> info->gtt_entry_size_shift; 1761 struct intel_gvt_gtt_entry e; 1762 1763 if (bytes != 4 && bytes != 8) 1764 return -EINVAL; 1765 1766 ggtt_get_guest_entry(ggtt_mm, &e, index); 1767 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 1768 bytes); 1769 return 0; 1770 } 1771 1772 /** 1773 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 1774 * @vgpu: a vGPU 1775 * @off: register offset 1776 * @p_data: data will be returned to guest 1777 * @bytes: data length 1778 * 1779 * This function is used to emulate the GTT MMIO register read 1780 * 1781 * Returns: 1782 * Zero on success, error code if failed. 1783 */ 1784 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 1785 void *p_data, unsigned int bytes) 1786 { 1787 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1788 int ret; 1789 1790 if (bytes != 4 && bytes != 8) 1791 return -EINVAL; 1792 1793 off -= info->gtt_start_offset; 1794 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes); 1795 return ret; 1796 } 1797 1798 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 1799 void *p_data, unsigned int bytes) 1800 { 1801 struct intel_gvt *gvt = vgpu->gvt; 1802 const struct intel_gvt_device_info *info = &gvt->device_info; 1803 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 1804 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1805 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 1806 unsigned long gma; 1807 struct intel_gvt_gtt_entry e, m; 1808 int ret; 1809 1810 if (bytes != 4 && bytes != 8) 1811 return -EINVAL; 1812 1813 gma = g_gtt_index << GTT_PAGE_SHIFT; 1814 1815 /* the VM may configure the whole GM space when ballooning is used */ 1816 if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma), 1817 "vgpu%d: found oob ggtt write, offset %x\n", 1818 vgpu->id, off)) { 1819 return 0; 1820 } 1821 1822 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index); 1823 1824 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 1825 bytes); 1826 1827 if (ops->test_present(&e)) { 1828 ret = gtt_entry_p2m(vgpu, &e, &m); 1829 if (ret) { 1830 gvt_err("vgpu%d: fail to translate guest gtt entry\n", 1831 vgpu->id); 1832 return ret; 1833 } 1834 } else { 1835 m = e; 1836 m.val64 = 0; 1837 } 1838 1839 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index); 1840 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 1841 return 0; 1842 } 1843 1844 /* 1845 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write 1846 * @vgpu: a vGPU 1847 * @off: register offset 1848 * @p_data: data from guest write 1849 * @bytes: data length 1850 * 1851 * This function is used to emulate the GTT MMIO register write 1852 * 1853 * Returns: 1854 * Zero on success, error code if failed. 1855 */ 1856 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 1857 void *p_data, unsigned int bytes) 1858 { 1859 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1860 int ret; 1861 1862 if (bytes != 4 && bytes != 8) 1863 return -EINVAL; 1864 1865 off -= info->gtt_start_offset; 1866 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes); 1867 return ret; 1868 } 1869 1870 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 1871 intel_gvt_gtt_type_t type) 1872 { 1873 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 1874 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1875 int page_entry_num = GTT_PAGE_SIZE >> 1876 vgpu->gvt->device_info.gtt_entry_size_shift; 1877 void *scratch_pt; 1878 unsigned long mfn; 1879 int i; 1880 1881 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 1882 return -EINVAL; 1883 1884 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 1885 if (!scratch_pt) { 1886 gvt_err("fail to allocate scratch page\n"); 1887 return -ENOMEM; 1888 } 1889 1890 mfn = intel_gvt_hypervisor_virt_to_mfn(scratch_pt); 1891 if (mfn == INTEL_GVT_INVALID_ADDR) { 1892 gvt_err("fail to translate vaddr:0x%lx\n", (unsigned long)scratch_pt); 1893 free_page((unsigned long)scratch_pt); 1894 return -EFAULT; 1895 } 1896 gtt->scratch_pt[type].page_mfn = mfn; 1897 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 1898 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 1899 vgpu->id, type, mfn); 1900 1901 /* Build the tree by full filled the scratch pt with the entries which 1902 * point to the next level scratch pt or scratch page. The 1903 * scratch_pt[type] indicate the scratch pt/scratch page used by the 1904 * 'type' pt. 1905 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 1906 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 1907 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 1908 */ 1909 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) { 1910 struct intel_gvt_gtt_entry se; 1911 1912 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 1913 se.type = get_entry_type(type - 1); 1914 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 1915 1916 /* The entry parameters like present/writeable/cache type 1917 * set to the same as i915's scratch page tree. 1918 */ 1919 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 1920 if (type == GTT_TYPE_PPGTT_PDE_PT) 1921 se.val64 |= PPAT_CACHED_INDEX; 1922 1923 for (i = 0; i < page_entry_num; i++) 1924 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 1925 } 1926 1927 return 0; 1928 } 1929 1930 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 1931 { 1932 int i; 1933 1934 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 1935 if (vgpu->gtt.scratch_pt[i].page != NULL) { 1936 __free_page(vgpu->gtt.scratch_pt[i].page); 1937 vgpu->gtt.scratch_pt[i].page = NULL; 1938 vgpu->gtt.scratch_pt[i].page_mfn = 0; 1939 } 1940 } 1941 1942 return 0; 1943 } 1944 1945 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 1946 { 1947 int i, ret; 1948 1949 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 1950 ret = alloc_scratch_pages(vgpu, i); 1951 if (ret) 1952 goto err; 1953 } 1954 1955 return 0; 1956 1957 err: 1958 release_scratch_page_tree(vgpu); 1959 return ret; 1960 } 1961 1962 /** 1963 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 1964 * @vgpu: a vGPU 1965 * 1966 * This function is used to initialize per-vGPU graphics memory virtualization 1967 * components. 1968 * 1969 * Returns: 1970 * Zero on success, error code if failed. 1971 */ 1972 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 1973 { 1974 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 1975 struct intel_vgpu_mm *ggtt_mm; 1976 1977 hash_init(gtt->guest_page_hash_table); 1978 hash_init(gtt->shadow_page_hash_table); 1979 1980 INIT_LIST_HEAD(>t->mm_list_head); 1981 INIT_LIST_HEAD(>t->oos_page_list_head); 1982 INIT_LIST_HEAD(>t->post_shadow_list_head); 1983 1984 intel_vgpu_reset_ggtt(vgpu); 1985 1986 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT, 1987 NULL, 1, 0); 1988 if (IS_ERR(ggtt_mm)) { 1989 gvt_err("fail to create mm for ggtt.\n"); 1990 return PTR_ERR(ggtt_mm); 1991 } 1992 1993 gtt->ggtt_mm = ggtt_mm; 1994 1995 return create_scratch_page_tree(vgpu); 1996 } 1997 1998 /** 1999 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2000 * @vgpu: a vGPU 2001 * 2002 * This function is used to clean up per-vGPU graphics memory virtualization 2003 * components. 2004 * 2005 * Returns: 2006 * Zero on success, error code if failed. 2007 */ 2008 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2009 { 2010 struct list_head *pos, *n; 2011 struct intel_vgpu_mm *mm; 2012 2013 ppgtt_free_all_shadow_page(vgpu); 2014 release_scratch_page_tree(vgpu); 2015 2016 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) { 2017 mm = container_of(pos, struct intel_vgpu_mm, list); 2018 vgpu->gvt->gtt.mm_free_page_table(mm); 2019 list_del(&mm->list); 2020 list_del(&mm->lru_list); 2021 kfree(mm); 2022 } 2023 } 2024 2025 static void clean_spt_oos(struct intel_gvt *gvt) 2026 { 2027 struct intel_gvt_gtt *gtt = &gvt->gtt; 2028 struct list_head *pos, *n; 2029 struct intel_vgpu_oos_page *oos_page; 2030 2031 WARN(!list_empty(>t->oos_page_use_list_head), 2032 "someone is still using oos page\n"); 2033 2034 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2035 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2036 list_del(&oos_page->list); 2037 kfree(oos_page); 2038 } 2039 } 2040 2041 static int setup_spt_oos(struct intel_gvt *gvt) 2042 { 2043 struct intel_gvt_gtt *gtt = &gvt->gtt; 2044 struct intel_vgpu_oos_page *oos_page; 2045 int i; 2046 int ret; 2047 2048 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2049 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2050 2051 for (i = 0; i < preallocated_oos_pages; i++) { 2052 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2053 if (!oos_page) { 2054 gvt_err("fail to pre-allocate oos page\n"); 2055 ret = -ENOMEM; 2056 goto fail; 2057 } 2058 2059 INIT_LIST_HEAD(&oos_page->list); 2060 INIT_LIST_HEAD(&oos_page->vm_list); 2061 oos_page->id = i; 2062 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2063 } 2064 2065 gvt_dbg_mm("%d oos pages preallocated\n", i); 2066 2067 return 0; 2068 fail: 2069 clean_spt_oos(gvt); 2070 return ret; 2071 } 2072 2073 /** 2074 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2075 * @vgpu: a vGPU 2076 * @page_table_level: PPGTT page table level 2077 * @root_entry: PPGTT page table root pointers 2078 * 2079 * This function is used to find a PPGTT mm object from mm object pool 2080 * 2081 * Returns: 2082 * pointer to mm object on success, NULL if failed. 2083 */ 2084 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2085 int page_table_level, void *root_entry) 2086 { 2087 struct list_head *pos; 2088 struct intel_vgpu_mm *mm; 2089 u64 *src, *dst; 2090 2091 list_for_each(pos, &vgpu->gtt.mm_list_head) { 2092 mm = container_of(pos, struct intel_vgpu_mm, list); 2093 if (mm->type != INTEL_GVT_MM_PPGTT) 2094 continue; 2095 2096 if (mm->page_table_level != page_table_level) 2097 continue; 2098 2099 src = root_entry; 2100 dst = mm->virtual_page_table; 2101 2102 if (page_table_level == 3) { 2103 if (src[0] == dst[0] 2104 && src[1] == dst[1] 2105 && src[2] == dst[2] 2106 && src[3] == dst[3]) 2107 return mm; 2108 } else { 2109 if (src[0] == dst[0]) 2110 return mm; 2111 } 2112 } 2113 return NULL; 2114 } 2115 2116 /** 2117 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from 2118 * g2v notification 2119 * @vgpu: a vGPU 2120 * @page_table_level: PPGTT page table level 2121 * 2122 * This function is used to create a PPGTT mm object from a guest to GVT-g 2123 * notification. 2124 * 2125 * Returns: 2126 * Zero on success, negative error code if failed. 2127 */ 2128 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu, 2129 int page_table_level) 2130 { 2131 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); 2132 struct intel_vgpu_mm *mm; 2133 2134 if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) 2135 return -EINVAL; 2136 2137 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); 2138 if (mm) { 2139 intel_gvt_mm_reference(mm); 2140 } else { 2141 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT, 2142 pdp, page_table_level, 0); 2143 if (IS_ERR(mm)) { 2144 gvt_err("fail to create mm\n"); 2145 return PTR_ERR(mm); 2146 } 2147 } 2148 return 0; 2149 } 2150 2151 /** 2152 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from 2153 * g2v notification 2154 * @vgpu: a vGPU 2155 * @page_table_level: PPGTT page table level 2156 * 2157 * This function is used to create a PPGTT mm object from a guest to GVT-g 2158 * notification. 2159 * 2160 * Returns: 2161 * Zero on success, negative error code if failed. 2162 */ 2163 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu, 2164 int page_table_level) 2165 { 2166 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); 2167 struct intel_vgpu_mm *mm; 2168 2169 if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) 2170 return -EINVAL; 2171 2172 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); 2173 if (!mm) { 2174 gvt_err("fail to find ppgtt instance.\n"); 2175 return -EINVAL; 2176 } 2177 intel_gvt_mm_unreference(mm); 2178 return 0; 2179 } 2180 2181 /** 2182 * intel_gvt_init_gtt - initialize mm components of a GVT device 2183 * @gvt: GVT device 2184 * 2185 * This function is called at the initialization stage, to initialize 2186 * the mm components of a GVT device. 2187 * 2188 * Returns: 2189 * zero on success, negative error code if failed. 2190 */ 2191 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2192 { 2193 int ret; 2194 void *page; 2195 2196 gvt_dbg_core("init gtt\n"); 2197 2198 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) { 2199 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2200 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2201 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table; 2202 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table; 2203 } else { 2204 return -ENODEV; 2205 } 2206 2207 page = (void *)get_zeroed_page(GFP_KERNEL); 2208 if (!page) { 2209 gvt_err("fail to allocate scratch ggtt page\n"); 2210 return -ENOMEM; 2211 } 2212 gvt->gtt.scratch_ggtt_page = virt_to_page(page); 2213 2214 gvt->gtt.scratch_ggtt_mfn = intel_gvt_hypervisor_virt_to_mfn(page); 2215 if (gvt->gtt.scratch_ggtt_mfn == INTEL_GVT_INVALID_ADDR) { 2216 gvt_err("fail to translate scratch ggtt page\n"); 2217 __free_page(gvt->gtt.scratch_ggtt_page); 2218 return -EFAULT; 2219 } 2220 2221 if (enable_out_of_sync) { 2222 ret = setup_spt_oos(gvt); 2223 if (ret) { 2224 gvt_err("fail to initialize SPT oos\n"); 2225 return ret; 2226 } 2227 } 2228 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head); 2229 return 0; 2230 } 2231 2232 /** 2233 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2234 * @gvt: GVT device 2235 * 2236 * This function is called at the driver unloading stage, to clean up the 2237 * the mm components of a GVT device. 2238 * 2239 */ 2240 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2241 { 2242 __free_page(gvt->gtt.scratch_ggtt_page); 2243 2244 if (enable_out_of_sync) 2245 clean_spt_oos(gvt); 2246 } 2247 2248 /** 2249 * intel_vgpu_reset_ggtt - reset the GGTT entry 2250 * @vgpu: a vGPU 2251 * 2252 * This function is called at the vGPU create stage 2253 * to reset all the GGTT entries. 2254 * 2255 */ 2256 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu) 2257 { 2258 struct intel_gvt *gvt = vgpu->gvt; 2259 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2260 u32 index; 2261 u32 offset; 2262 u32 num_entries; 2263 struct intel_gvt_gtt_entry e; 2264 2265 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry)); 2266 e.type = GTT_TYPE_GGTT_PTE; 2267 ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn); 2268 e.val64 |= _PAGE_PRESENT; 2269 2270 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2271 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2272 for (offset = 0; offset < num_entries; offset++) 2273 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); 2274 2275 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2276 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2277 for (offset = 0; offset < num_entries; offset++) 2278 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); 2279 } 2280 2281 /** 2282 * intel_vgpu_reset_gtt - reset the all GTT related status 2283 * @vgpu: a vGPU 2284 * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset 2285 * 2286 * This function is called from vfio core to reset reset all 2287 * GTT related status, including GGTT, PPGTT, scratch page. 2288 * 2289 */ 2290 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr) 2291 { 2292 int i; 2293 2294 ppgtt_free_all_shadow_page(vgpu); 2295 if (!dmlr) 2296 return; 2297 2298 intel_vgpu_reset_ggtt(vgpu); 2299 2300 /* clear scratch page for security */ 2301 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2302 if (vgpu->gtt.scratch_pt[i].page != NULL) 2303 memset(page_address(vgpu->gtt.scratch_pt[i].page), 2304 0, PAGE_SIZE); 2305 } 2306 } 2307