xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision fba4168edecdd2781bcd83cb131977ec1157f87c)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44 
45 #define INVALID_OP    (~0U)
46 
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX	    16
52 
53 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
54 
55 struct sub_op_bits {
56 	int hi;
57 	int low;
58 };
59 struct decode_info {
60 	const char *name;
61 	int op_len;
62 	int nr_sub_op;
63 	const struct sub_op_bits *sub_op;
64 };
65 
66 #define   MAX_CMD_BUDGET			0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70 
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74 
75 /* Render Command Map */
76 
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
102 
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E			    0x2E  /* BDW+ */
117 #define OP_MI_2F			    0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119 
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
122 
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124 
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129 
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132 
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157 
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161 
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163 
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
167 
168 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
169 
170 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
171 
172 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
173 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
175 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
176 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
177 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
178 
179 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
180 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
181 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
182 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
183 
184 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
185 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
186 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
187 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
188 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
189 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
190 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
191 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
192 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
193 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
195 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
196 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
197 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
198 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
199 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
200 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
201 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
202 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
203 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
204 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
205 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
206 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
207 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
208 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
209 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
210 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
211 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
214 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
226 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
227 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
228 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
229 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
250 
251 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
252 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
253 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
254 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
255 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
256 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
257 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
258 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
259 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
260 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
261 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
262 
263 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
265 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
266 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
269 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
270 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
271 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
273 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
274 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
276 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
277 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
283 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
284 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
286 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
288 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
289 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
290 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
291 
292 /* VCCP Command Parser */
293 
294 /*
295  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
296  * git://anongit.freedesktop.org/vaapi/intel-driver
297  * src/i965_defines.h
298  *
299  */
300 
301 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
302 	(3 << 13 | \
303 	 (pipeline) << 11 | \
304 	 (op) << 8 | \
305 	 (sub_opa) << 5 | \
306 	 (sub_opb))
307 
308 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
309 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
310 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
313 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
314 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
315 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
316 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
317 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
318 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
319 
320 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
321 
322 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
323 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
324 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
325 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
326 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
327 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
329 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
330 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
331 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
332 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
333 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
334 
335 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
336 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
337 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
338 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
339 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
340 
341 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
342 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
343 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
344 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
345 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
346 
347 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
348 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
349 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
350 
351 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
352 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
353 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
354 
355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
356 	(3 << 13 | \
357 	 (pipeline) << 11 | \
358 	 (op) << 8 | \
359 	 (sub_opa) << 5 | \
360 	 (sub_opb))
361 
362 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
363 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
364 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
365 
366 struct parser_exec_state;
367 
368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
369 
370 #define GVT_CMD_HASH_BITS   7
371 
372 /* which DWords need address fix */
373 #define ADDR_FIX_1(x1)			(1 << (x1))
374 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
375 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
376 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
377 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
378 
379 #define DWORD_FIELD(dword, end, start) \
380 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
381 
382 #define OP_LENGTH_BIAS 2
383 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
384 
385 static int gvt_check_valid_cmd_length(int len, int valid_len)
386 {
387 	if (valid_len != len) {
388 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
389 			len, valid_len);
390 		return -EFAULT;
391 	}
392 	return 0;
393 }
394 
395 struct cmd_info {
396 	const char *name;
397 	u32 opcode;
398 
399 #define F_LEN_MASK	3U
400 #define F_LEN_CONST  1U
401 #define F_LEN_VAR    0U
402 /* value is const although LEN maybe variable */
403 #define F_LEN_VAR_FIXED    (1<<1)
404 
405 /*
406  * command has its own ip advance logic
407  * e.g. MI_BATCH_START, MI_BATCH_END
408  */
409 #define F_IP_ADVANCE_CUSTOM (1<<2)
410 	u32 flag;
411 
412 #define R_RCS	BIT(RCS0)
413 #define R_VCS1  BIT(VCS0)
414 #define R_VCS2  BIT(VCS1)
415 #define R_VCS	(R_VCS1 | R_VCS2)
416 #define R_BCS	BIT(BCS0)
417 #define R_VECS	BIT(VECS0)
418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
419 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
420 	u16 rings;
421 
422 	/* devices that support this cmd: SNB/IVB/HSW/... */
423 	u16 devices;
424 
425 	/* which DWords are address that need fix up.
426 	 * bit 0 means a 32-bit non address operand in command
427 	 * bit 1 means address operand, which could be 32-bit
428 	 * or 64-bit depending on different architectures.(
429 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
430 	 * No matter the address length, each address only takes
431 	 * one bit in the bitmap.
432 	 */
433 	u16 addr_bitmap;
434 
435 	/* flag == F_LEN_CONST : command length
436 	 * flag == F_LEN_VAR : length bias bits
437 	 * Note: length is in DWord
438 	 */
439 	u32 len;
440 
441 	parser_cmd_handler handler;
442 
443 	/* valid length in DWord */
444 	u32 valid_len;
445 };
446 
447 struct cmd_entry {
448 	struct hlist_node hlist;
449 	const struct cmd_info *info;
450 };
451 
452 enum {
453 	RING_BUFFER_INSTRUCTION,
454 	BATCH_BUFFER_INSTRUCTION,
455 	BATCH_BUFFER_2ND_LEVEL,
456 };
457 
458 enum {
459 	GTT_BUFFER,
460 	PPGTT_BUFFER
461 };
462 
463 struct parser_exec_state {
464 	struct intel_vgpu *vgpu;
465 	const struct intel_engine_cs *engine;
466 
467 	int buf_type;
468 
469 	/* batch buffer address type */
470 	int buf_addr_type;
471 
472 	/* graphics memory address of ring buffer start */
473 	unsigned long ring_start;
474 	unsigned long ring_size;
475 	unsigned long ring_head;
476 	unsigned long ring_tail;
477 
478 	/* instruction graphics memory address */
479 	unsigned long ip_gma;
480 
481 	/* mapped va of the instr_gma */
482 	void *ip_va;
483 	void *rb_va;
484 
485 	void *ret_bb_va;
486 	/* next instruction when return from  batch buffer to ring buffer */
487 	unsigned long ret_ip_gma_ring;
488 
489 	/* next instruction when return from 2nd batch buffer to batch buffer */
490 	unsigned long ret_ip_gma_bb;
491 
492 	/* batch buffer address type (GTT or PPGTT)
493 	 * used when ret from 2nd level batch buffer
494 	 */
495 	int saved_buf_addr_type;
496 	bool is_ctx_wa;
497 
498 	const struct cmd_info *info;
499 
500 	struct intel_vgpu_workload *workload;
501 };
502 
503 #define gmadr_dw_number(s)	\
504 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
505 
506 static unsigned long bypass_scan_mask = 0;
507 
508 /* ring ALL, type = 0 */
509 static const struct sub_op_bits sub_op_mi[] = {
510 	{31, 29},
511 	{28, 23},
512 };
513 
514 static const struct decode_info decode_info_mi = {
515 	"MI",
516 	OP_LEN_MI,
517 	ARRAY_SIZE(sub_op_mi),
518 	sub_op_mi,
519 };
520 
521 /* ring RCS, command type 2 */
522 static const struct sub_op_bits sub_op_2d[] = {
523 	{31, 29},
524 	{28, 22},
525 };
526 
527 static const struct decode_info decode_info_2d = {
528 	"2D",
529 	OP_LEN_2D,
530 	ARRAY_SIZE(sub_op_2d),
531 	sub_op_2d,
532 };
533 
534 /* ring RCS, command type 3 */
535 static const struct sub_op_bits sub_op_3d_media[] = {
536 	{31, 29},
537 	{28, 27},
538 	{26, 24},
539 	{23, 16},
540 };
541 
542 static const struct decode_info decode_info_3d_media = {
543 	"3D_Media",
544 	OP_LEN_3D_MEDIA,
545 	ARRAY_SIZE(sub_op_3d_media),
546 	sub_op_3d_media,
547 };
548 
549 /* ring VCS, command type 3 */
550 static const struct sub_op_bits sub_op_mfx_vc[] = {
551 	{31, 29},
552 	{28, 27},
553 	{26, 24},
554 	{23, 21},
555 	{20, 16},
556 };
557 
558 static const struct decode_info decode_info_mfx_vc = {
559 	"MFX_VC",
560 	OP_LEN_MFX_VC,
561 	ARRAY_SIZE(sub_op_mfx_vc),
562 	sub_op_mfx_vc,
563 };
564 
565 /* ring VECS, command type 3 */
566 static const struct sub_op_bits sub_op_vebox[] = {
567 	{31, 29},
568 	{28, 27},
569 	{26, 24},
570 	{23, 21},
571 	{20, 16},
572 };
573 
574 static const struct decode_info decode_info_vebox = {
575 	"VEBOX",
576 	OP_LEN_VEBOX,
577 	ARRAY_SIZE(sub_op_vebox),
578 	sub_op_vebox,
579 };
580 
581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
582 	[RCS0] = {
583 		&decode_info_mi,
584 		NULL,
585 		NULL,
586 		&decode_info_3d_media,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 	},
592 
593 	[VCS0] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_mfx_vc,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[BCS0] = {
605 		&decode_info_mi,
606 		NULL,
607 		&decode_info_2d,
608 		NULL,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 
615 	[VECS0] = {
616 		&decode_info_mi,
617 		NULL,
618 		NULL,
619 		&decode_info_vebox,
620 		NULL,
621 		NULL,
622 		NULL,
623 		NULL,
624 	},
625 
626 	[VCS1] = {
627 		&decode_info_mi,
628 		NULL,
629 		NULL,
630 		&decode_info_mfx_vc,
631 		NULL,
632 		NULL,
633 		NULL,
634 		NULL,
635 	},
636 };
637 
638 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
639 {
640 	const struct decode_info *d_info;
641 
642 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
643 	if (d_info == NULL)
644 		return INVALID_OP;
645 
646 	return cmd >> (32 - d_info->op_len);
647 }
648 
649 static inline const struct cmd_info *
650 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
651 	       const struct intel_engine_cs *engine)
652 {
653 	struct cmd_entry *e;
654 
655 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
656 		if (opcode == e->info->opcode &&
657 		    e->info->rings & engine->mask)
658 			return e->info;
659 	}
660 	return NULL;
661 }
662 
663 static inline const struct cmd_info *
664 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
665 	     const struct intel_engine_cs *engine)
666 {
667 	u32 opcode;
668 
669 	opcode = get_opcode(cmd, engine);
670 	if (opcode == INVALID_OP)
671 		return NULL;
672 
673 	return find_cmd_entry(gvt, opcode, engine);
674 }
675 
676 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
677 {
678 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
679 }
680 
681 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
682 {
683 	const struct decode_info *d_info;
684 	int i;
685 
686 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
687 	if (d_info == NULL)
688 		return;
689 
690 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
691 			cmd >> (32 - d_info->op_len), d_info->name);
692 
693 	for (i = 0; i < d_info->nr_sub_op; i++)
694 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
695 					d_info->sub_op[i].low));
696 
697 	pr_err("\n");
698 }
699 
700 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
701 {
702 	return s->ip_va + (index << 2);
703 }
704 
705 static inline u32 cmd_val(struct parser_exec_state *s, int index)
706 {
707 	return *cmd_ptr(s, index);
708 }
709 
710 static void parser_exec_state_dump(struct parser_exec_state *s)
711 {
712 	int cnt = 0;
713 	int i;
714 
715 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
716 		    " ring_head(%08lx) ring_tail(%08lx)\n",
717 		    s->vgpu->id, s->engine->name,
718 		    s->ring_start, s->ring_start + s->ring_size,
719 		    s->ring_head, s->ring_tail);
720 
721 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
722 			s->buf_type == RING_BUFFER_INSTRUCTION ?
723 			"RING_BUFFER" : "BATCH_BUFFER",
724 			s->buf_addr_type == GTT_BUFFER ?
725 			"GTT" : "PPGTT", s->ip_gma);
726 
727 	if (s->ip_va == NULL) {
728 		gvt_dbg_cmd(" ip_va(NULL)");
729 		return;
730 	}
731 
732 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
733 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
734 			cmd_val(s, 2), cmd_val(s, 3));
735 
736 	print_opcode(cmd_val(s, 0), s->engine);
737 
738 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
739 
740 	while (cnt < 1024) {
741 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
742 		for (i = 0; i < 8; i++)
743 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
744 		gvt_dbg_cmd("\n");
745 
746 		s->ip_va += 8 * sizeof(u32);
747 		cnt += 8;
748 	}
749 }
750 
751 static inline void update_ip_va(struct parser_exec_state *s)
752 {
753 	unsigned long len = 0;
754 
755 	if (WARN_ON(s->ring_head == s->ring_tail))
756 		return;
757 
758 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
759 		unsigned long ring_top = s->ring_start + s->ring_size;
760 
761 		if (s->ring_head > s->ring_tail) {
762 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
763 				len = (s->ip_gma - s->ring_head);
764 			else if (s->ip_gma >= s->ring_start &&
765 					s->ip_gma <= s->ring_tail)
766 				len = (ring_top - s->ring_head) +
767 					(s->ip_gma - s->ring_start);
768 		} else
769 			len = (s->ip_gma - s->ring_head);
770 
771 		s->ip_va = s->rb_va + len;
772 	} else {/* shadow batch buffer */
773 		s->ip_va = s->ret_bb_va;
774 	}
775 }
776 
777 static inline int ip_gma_set(struct parser_exec_state *s,
778 		unsigned long ip_gma)
779 {
780 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
781 
782 	s->ip_gma = ip_gma;
783 	update_ip_va(s);
784 	return 0;
785 }
786 
787 static inline int ip_gma_advance(struct parser_exec_state *s,
788 		unsigned int dw_len)
789 {
790 	s->ip_gma += (dw_len << 2);
791 
792 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
793 		if (s->ip_gma >= s->ring_start + s->ring_size)
794 			s->ip_gma -= s->ring_size;
795 		update_ip_va(s);
796 	} else {
797 		s->ip_va += (dw_len << 2);
798 	}
799 
800 	return 0;
801 }
802 
803 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
804 {
805 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
806 		return info->len;
807 	else
808 		return (cmd & ((1U << info->len) - 1)) + 2;
809 	return 0;
810 }
811 
812 static inline int cmd_length(struct parser_exec_state *s)
813 {
814 	return get_cmd_length(s->info, cmd_val(s, 0));
815 }
816 
817 /* do not remove this, some platform may need clflush here */
818 #define patch_value(s, addr, val) do { \
819 	*addr = val; \
820 } while (0)
821 
822 static bool is_shadowed_mmio(unsigned int offset)
823 {
824 	bool ret = false;
825 
826 	if ((offset == 0x2168) || /*BB current head register UDW */
827 	    (offset == 0x2140) || /*BB current header register */
828 	    (offset == 0x211c) || /*second BB header register UDW */
829 	    (offset == 0x2114)) { /*second BB header register UDW */
830 		ret = true;
831 	}
832 	return ret;
833 }
834 
835 static inline bool is_force_nonpriv_mmio(unsigned int offset)
836 {
837 	return (offset >= 0x24d0 && offset < 0x2500);
838 }
839 
840 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
841 		unsigned int offset, unsigned int index, char *cmd)
842 {
843 	struct intel_gvt *gvt = s->vgpu->gvt;
844 	unsigned int data;
845 	u32 ring_base;
846 	u32 nopid;
847 
848 	if (!strcmp(cmd, "lri"))
849 		data = cmd_val(s, index + 1);
850 	else {
851 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
852 			offset, cmd);
853 		return -EINVAL;
854 	}
855 
856 	ring_base = s->engine->mmio_base;
857 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
858 
859 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
860 			data != nopid) {
861 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
862 			offset, data);
863 		patch_value(s, cmd_ptr(s, index), nopid);
864 		return 0;
865 	}
866 	return 0;
867 }
868 
869 static inline bool is_mocs_mmio(unsigned int offset)
870 {
871 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
872 		((offset >= 0xb020) && (offset <= 0xb0a0));
873 }
874 
875 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
876 				unsigned int offset, unsigned int index)
877 {
878 	if (!is_mocs_mmio(offset))
879 		return -EINVAL;
880 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
881 	return 0;
882 }
883 
884 static int cmd_reg_handler(struct parser_exec_state *s,
885 	unsigned int offset, unsigned int index, char *cmd)
886 {
887 	struct intel_vgpu *vgpu = s->vgpu;
888 	struct intel_gvt *gvt = vgpu->gvt;
889 	u32 ctx_sr_ctl;
890 
891 	if (offset + 4 > gvt->device_info.mmio_size) {
892 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
893 				cmd, offset);
894 		return -EFAULT;
895 	}
896 
897 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
898 		gvt_vgpu_err("%s access to non-render register (%x)\n",
899 				cmd, offset);
900 		return -EBADRQC;
901 	}
902 
903 	if (is_shadowed_mmio(offset)) {
904 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
905 		return 0;
906 	}
907 
908 	if (is_mocs_mmio(offset) &&
909 	    mocs_cmd_reg_handler(s, offset, index))
910 		return -EINVAL;
911 
912 	if (is_force_nonpriv_mmio(offset) &&
913 		force_nonpriv_reg_handler(s, offset, index, cmd))
914 		return -EPERM;
915 
916 	if (offset == i915_mmio_reg_offset(DERRMR) ||
917 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
918 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
919 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
920 	}
921 
922 	/* TODO
923 	 * In order to let workload with inhibit context to generate
924 	 * correct image data into memory, vregs values will be loaded to
925 	 * hw via LRIs in the workload with inhibit context. But as
926 	 * indirect context is loaded prior to LRIs in workload, we don't
927 	 * want reg values specified in indirect context overwritten by
928 	 * LRIs in workloads. So, when scanning an indirect context, we
929 	 * update reg values in it into vregs, so LRIs in workload with
930 	 * inhibit context will restore with correct values
931 	 */
932 	if (IS_GEN(s->engine->i915, 9) &&
933 	    intel_gvt_mmio_is_in_ctx(gvt, offset) &&
934 	    !strncmp(cmd, "lri", 3)) {
935 		intel_gvt_hypervisor_read_gpa(s->vgpu,
936 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
937 		/* check inhibit context */
938 		if (ctx_sr_ctl & 1) {
939 			u32 data = cmd_val(s, index + 1);
940 
941 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
942 				intel_vgpu_mask_mmio_write(vgpu,
943 							offset, &data, 4);
944 			else
945 				vgpu_vreg(vgpu, offset) = data;
946 		}
947 	}
948 
949 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
950 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
951 	return 0;
952 }
953 
954 #define cmd_reg(s, i) \
955 	(cmd_val(s, i) & GENMASK(22, 2))
956 
957 #define cmd_reg_inhibit(s, i) \
958 	(cmd_val(s, i) & GENMASK(22, 18))
959 
960 #define cmd_gma(s, i) \
961 	(cmd_val(s, i) & GENMASK(31, 2))
962 
963 #define cmd_gma_hi(s, i) \
964 	(cmd_val(s, i) & GENMASK(15, 0))
965 
966 static int cmd_handler_lri(struct parser_exec_state *s)
967 {
968 	int i, ret = 0;
969 	int cmd_len = cmd_length(s);
970 	u32 valid_len = CMD_LEN(1);
971 
972 	/*
973 	 * Official intel docs are somewhat sloppy , check the definition of
974 	 * MI_LOAD_REGISTER_IMM.
975 	 */
976 	#define MAX_VALID_LEN 127
977 	if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) {
978 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
979 			cmd_len, valid_len);
980 		return -EFAULT;
981 	}
982 
983 	for (i = 1; i < cmd_len; i += 2) {
984 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
985 			if (s->engine->id == BCS0 &&
986 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
987 				ret |= 0;
988 			else
989 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
990 		}
991 		if (ret)
992 			break;
993 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
994 		if (ret)
995 			break;
996 	}
997 	return ret;
998 }
999 
1000 static int cmd_handler_lrr(struct parser_exec_state *s)
1001 {
1002 	int i, ret = 0;
1003 	int cmd_len = cmd_length(s);
1004 
1005 	for (i = 1; i < cmd_len; i += 2) {
1006 		if (IS_BROADWELL(s->engine->i915))
1007 			ret |= ((cmd_reg_inhibit(s, i) ||
1008 				 (cmd_reg_inhibit(s, i + 1)))) ?
1009 				-EBADRQC : 0;
1010 		if (ret)
1011 			break;
1012 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1013 		if (ret)
1014 			break;
1015 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1016 		if (ret)
1017 			break;
1018 	}
1019 	return ret;
1020 }
1021 
1022 static inline int cmd_address_audit(struct parser_exec_state *s,
1023 		unsigned long guest_gma, int op_size, bool index_mode);
1024 
1025 static int cmd_handler_lrm(struct parser_exec_state *s)
1026 {
1027 	struct intel_gvt *gvt = s->vgpu->gvt;
1028 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1029 	unsigned long gma;
1030 	int i, ret = 0;
1031 	int cmd_len = cmd_length(s);
1032 
1033 	for (i = 1; i < cmd_len;) {
1034 		if (IS_BROADWELL(s->engine->i915))
1035 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1036 		if (ret)
1037 			break;
1038 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1039 		if (ret)
1040 			break;
1041 		if (cmd_val(s, 0) & (1 << 22)) {
1042 			gma = cmd_gma(s, i + 1);
1043 			if (gmadr_bytes == 8)
1044 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1045 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1046 			if (ret)
1047 				break;
1048 		}
1049 		i += gmadr_dw_number(s) + 1;
1050 	}
1051 	return ret;
1052 }
1053 
1054 static int cmd_handler_srm(struct parser_exec_state *s)
1055 {
1056 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1057 	unsigned long gma;
1058 	int i, ret = 0;
1059 	int cmd_len = cmd_length(s);
1060 
1061 	for (i = 1; i < cmd_len;) {
1062 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1063 		if (ret)
1064 			break;
1065 		if (cmd_val(s, 0) & (1 << 22)) {
1066 			gma = cmd_gma(s, i + 1);
1067 			if (gmadr_bytes == 8)
1068 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1069 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1070 			if (ret)
1071 				break;
1072 		}
1073 		i += gmadr_dw_number(s) + 1;
1074 	}
1075 	return ret;
1076 }
1077 
1078 struct cmd_interrupt_event {
1079 	int pipe_control_notify;
1080 	int mi_flush_dw;
1081 	int mi_user_interrupt;
1082 };
1083 
1084 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1085 	[RCS0] = {
1086 		.pipe_control_notify = RCS_PIPE_CONTROL,
1087 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1088 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1089 	},
1090 	[BCS0] = {
1091 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1092 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1093 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1094 	},
1095 	[VCS0] = {
1096 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1097 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1098 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1099 	},
1100 	[VCS1] = {
1101 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1102 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1103 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1104 	},
1105 	[VECS0] = {
1106 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1107 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1108 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1109 	},
1110 };
1111 
1112 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1113 {
1114 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1115 	unsigned long gma;
1116 	bool index_mode = false;
1117 	unsigned int post_sync;
1118 	int ret = 0;
1119 	u32 hws_pga, val;
1120 
1121 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1122 
1123 	/* LRI post sync */
1124 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1125 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1126 	/* post sync */
1127 	else if (post_sync) {
1128 		if (post_sync == 2)
1129 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1130 		else if (post_sync == 3)
1131 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1132 		else if (post_sync == 1) {
1133 			/* check ggtt*/
1134 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1135 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1136 				if (gmadr_bytes == 8)
1137 					gma |= (cmd_gma_hi(s, 3)) << 32;
1138 				/* Store Data Index */
1139 				if (cmd_val(s, 1) & (1 << 21))
1140 					index_mode = true;
1141 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1142 						index_mode);
1143 				if (ret)
1144 					return ret;
1145 				if (index_mode) {
1146 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1147 					gma = hws_pga + gma;
1148 					patch_value(s, cmd_ptr(s, 2), gma);
1149 					val = cmd_val(s, 1) & (~(1 << 21));
1150 					patch_value(s, cmd_ptr(s, 1), val);
1151 				}
1152 			}
1153 		}
1154 	}
1155 
1156 	if (ret)
1157 		return ret;
1158 
1159 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1160 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1161 			s->workload->pending_events);
1162 	return 0;
1163 }
1164 
1165 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1166 {
1167 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1168 		s->workload->pending_events);
1169 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1170 	return 0;
1171 }
1172 
1173 static int cmd_advance_default(struct parser_exec_state *s)
1174 {
1175 	return ip_gma_advance(s, cmd_length(s));
1176 }
1177 
1178 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1179 {
1180 	int ret;
1181 
1182 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1183 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1184 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1185 		s->buf_addr_type = s->saved_buf_addr_type;
1186 	} else {
1187 		s->buf_type = RING_BUFFER_INSTRUCTION;
1188 		s->buf_addr_type = GTT_BUFFER;
1189 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1190 			s->ret_ip_gma_ring -= s->ring_size;
1191 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1192 	}
1193 	return ret;
1194 }
1195 
1196 struct mi_display_flip_command_info {
1197 	int pipe;
1198 	int plane;
1199 	int event;
1200 	i915_reg_t stride_reg;
1201 	i915_reg_t ctrl_reg;
1202 	i915_reg_t surf_reg;
1203 	u64 stride_val;
1204 	u64 tile_val;
1205 	u64 surf_val;
1206 	bool async_flip;
1207 };
1208 
1209 struct plane_code_mapping {
1210 	int pipe;
1211 	int plane;
1212 	int event;
1213 };
1214 
1215 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1216 		struct mi_display_flip_command_info *info)
1217 {
1218 	struct drm_i915_private *dev_priv = s->engine->i915;
1219 	struct plane_code_mapping gen8_plane_code[] = {
1220 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1221 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1222 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1223 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1224 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1225 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1226 	};
1227 	u32 dword0, dword1, dword2;
1228 	u32 v;
1229 
1230 	dword0 = cmd_val(s, 0);
1231 	dword1 = cmd_val(s, 1);
1232 	dword2 = cmd_val(s, 2);
1233 
1234 	v = (dword0 & GENMASK(21, 19)) >> 19;
1235 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1236 		return -EBADRQC;
1237 
1238 	info->pipe = gen8_plane_code[v].pipe;
1239 	info->plane = gen8_plane_code[v].plane;
1240 	info->event = gen8_plane_code[v].event;
1241 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1242 	info->tile_val = (dword1 & 0x1);
1243 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1244 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1245 
1246 	if (info->plane == PLANE_A) {
1247 		info->ctrl_reg = DSPCNTR(info->pipe);
1248 		info->stride_reg = DSPSTRIDE(info->pipe);
1249 		info->surf_reg = DSPSURF(info->pipe);
1250 	} else if (info->plane == PLANE_B) {
1251 		info->ctrl_reg = SPRCTL(info->pipe);
1252 		info->stride_reg = SPRSTRIDE(info->pipe);
1253 		info->surf_reg = SPRSURF(info->pipe);
1254 	} else {
1255 		drm_WARN_ON(&dev_priv->drm, 1);
1256 		return -EBADRQC;
1257 	}
1258 	return 0;
1259 }
1260 
1261 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1262 		struct mi_display_flip_command_info *info)
1263 {
1264 	struct drm_i915_private *dev_priv = s->engine->i915;
1265 	struct intel_vgpu *vgpu = s->vgpu;
1266 	u32 dword0 = cmd_val(s, 0);
1267 	u32 dword1 = cmd_val(s, 1);
1268 	u32 dword2 = cmd_val(s, 2);
1269 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1270 
1271 	info->plane = PRIMARY_PLANE;
1272 
1273 	switch (plane) {
1274 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1275 		info->pipe = PIPE_A;
1276 		info->event = PRIMARY_A_FLIP_DONE;
1277 		break;
1278 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1279 		info->pipe = PIPE_B;
1280 		info->event = PRIMARY_B_FLIP_DONE;
1281 		break;
1282 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1283 		info->pipe = PIPE_C;
1284 		info->event = PRIMARY_C_FLIP_DONE;
1285 		break;
1286 
1287 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1288 		info->pipe = PIPE_A;
1289 		info->event = SPRITE_A_FLIP_DONE;
1290 		info->plane = SPRITE_PLANE;
1291 		break;
1292 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1293 		info->pipe = PIPE_B;
1294 		info->event = SPRITE_B_FLIP_DONE;
1295 		info->plane = SPRITE_PLANE;
1296 		break;
1297 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1298 		info->pipe = PIPE_C;
1299 		info->event = SPRITE_C_FLIP_DONE;
1300 		info->plane = SPRITE_PLANE;
1301 		break;
1302 
1303 	default:
1304 		gvt_vgpu_err("unknown plane code %d\n", plane);
1305 		return -EBADRQC;
1306 	}
1307 
1308 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1309 	info->tile_val = (dword1 & GENMASK(2, 0));
1310 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1311 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1312 
1313 	info->ctrl_reg = DSPCNTR(info->pipe);
1314 	info->stride_reg = DSPSTRIDE(info->pipe);
1315 	info->surf_reg = DSPSURF(info->pipe);
1316 
1317 	return 0;
1318 }
1319 
1320 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1321 		struct mi_display_flip_command_info *info)
1322 {
1323 	u32 stride, tile;
1324 
1325 	if (!info->async_flip)
1326 		return 0;
1327 
1328 	if (INTEL_GEN(s->engine->i915) >= 9) {
1329 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1330 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1331 				GENMASK(12, 10)) >> 10;
1332 	} else {
1333 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1334 				GENMASK(15, 6)) >> 6;
1335 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1336 	}
1337 
1338 	if (stride != info->stride_val)
1339 		gvt_dbg_cmd("cannot change stride during async flip\n");
1340 
1341 	if (tile != info->tile_val)
1342 		gvt_dbg_cmd("cannot change tile during async flip\n");
1343 
1344 	return 0;
1345 }
1346 
1347 static int gen8_update_plane_mmio_from_mi_display_flip(
1348 		struct parser_exec_state *s,
1349 		struct mi_display_flip_command_info *info)
1350 {
1351 	struct drm_i915_private *dev_priv = s->engine->i915;
1352 	struct intel_vgpu *vgpu = s->vgpu;
1353 
1354 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1355 		      info->surf_val << 12);
1356 	if (INTEL_GEN(dev_priv) >= 9) {
1357 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1358 			      info->stride_val);
1359 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1360 			      info->tile_val << 10);
1361 	} else {
1362 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1363 			      info->stride_val << 6);
1364 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1365 			      info->tile_val << 10);
1366 	}
1367 
1368 	if (info->plane == PLANE_PRIMARY)
1369 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1370 
1371 	if (info->async_flip)
1372 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1373 	else
1374 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1375 
1376 	return 0;
1377 }
1378 
1379 static int decode_mi_display_flip(struct parser_exec_state *s,
1380 		struct mi_display_flip_command_info *info)
1381 {
1382 	if (IS_BROADWELL(s->engine->i915))
1383 		return gen8_decode_mi_display_flip(s, info);
1384 	if (INTEL_GEN(s->engine->i915) >= 9)
1385 		return skl_decode_mi_display_flip(s, info);
1386 
1387 	return -ENODEV;
1388 }
1389 
1390 static int check_mi_display_flip(struct parser_exec_state *s,
1391 		struct mi_display_flip_command_info *info)
1392 {
1393 	return gen8_check_mi_display_flip(s, info);
1394 }
1395 
1396 static int update_plane_mmio_from_mi_display_flip(
1397 		struct parser_exec_state *s,
1398 		struct mi_display_flip_command_info *info)
1399 {
1400 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1401 }
1402 
1403 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1404 {
1405 	struct mi_display_flip_command_info info;
1406 	struct intel_vgpu *vgpu = s->vgpu;
1407 	int ret;
1408 	int i;
1409 	int len = cmd_length(s);
1410 	u32 valid_len = CMD_LEN(1);
1411 
1412 	/* Flip Type == Stereo 3D Flip */
1413 	if (DWORD_FIELD(2, 1, 0) == 2)
1414 		valid_len++;
1415 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1416 			valid_len);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = decode_mi_display_flip(s, &info);
1421 	if (ret) {
1422 		gvt_vgpu_err("fail to decode MI display flip command\n");
1423 		return ret;
1424 	}
1425 
1426 	ret = check_mi_display_flip(s, &info);
1427 	if (ret) {
1428 		gvt_vgpu_err("invalid MI display flip command\n");
1429 		return ret;
1430 	}
1431 
1432 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1433 	if (ret) {
1434 		gvt_vgpu_err("fail to update plane mmio\n");
1435 		return ret;
1436 	}
1437 
1438 	for (i = 0; i < len; i++)
1439 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1440 	return 0;
1441 }
1442 
1443 static bool is_wait_for_flip_pending(u32 cmd)
1444 {
1445 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1446 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1447 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1448 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1449 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1450 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1451 }
1452 
1453 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1454 {
1455 	u32 cmd = cmd_val(s, 0);
1456 
1457 	if (!is_wait_for_flip_pending(cmd))
1458 		return 0;
1459 
1460 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1461 	return 0;
1462 }
1463 
1464 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1465 {
1466 	unsigned long addr;
1467 	unsigned long gma_high, gma_low;
1468 	struct intel_vgpu *vgpu = s->vgpu;
1469 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1470 
1471 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1472 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1473 		return INTEL_GVT_INVALID_ADDR;
1474 	}
1475 
1476 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1477 	if (gmadr_bytes == 4) {
1478 		addr = gma_low;
1479 	} else {
1480 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1481 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1482 	}
1483 	return addr;
1484 }
1485 
1486 static inline int cmd_address_audit(struct parser_exec_state *s,
1487 		unsigned long guest_gma, int op_size, bool index_mode)
1488 {
1489 	struct intel_vgpu *vgpu = s->vgpu;
1490 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1491 	int i;
1492 	int ret;
1493 
1494 	if (op_size > max_surface_size) {
1495 		gvt_vgpu_err("command address audit fail name %s\n",
1496 			s->info->name);
1497 		return -EFAULT;
1498 	}
1499 
1500 	if (index_mode)	{
1501 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1502 			ret = -EFAULT;
1503 			goto err;
1504 		}
1505 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1506 		ret = -EFAULT;
1507 		goto err;
1508 	}
1509 
1510 	return 0;
1511 
1512 err:
1513 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1514 			s->info->name, guest_gma, op_size);
1515 
1516 	pr_err("cmd dump: ");
1517 	for (i = 0; i < cmd_length(s); i++) {
1518 		if (!(i % 4))
1519 			pr_err("\n%08x ", cmd_val(s, i));
1520 		else
1521 			pr_err("%08x ", cmd_val(s, i));
1522 	}
1523 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1524 			vgpu->id,
1525 			vgpu_aperture_gmadr_base(vgpu),
1526 			vgpu_aperture_gmadr_end(vgpu),
1527 			vgpu_hidden_gmadr_base(vgpu),
1528 			vgpu_hidden_gmadr_end(vgpu));
1529 	return ret;
1530 }
1531 
1532 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1533 {
1534 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1535 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1536 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1537 	unsigned long gma, gma_low, gma_high;
1538 	u32 valid_len = CMD_LEN(2);
1539 	int ret = 0;
1540 
1541 	/* check ppggt */
1542 	if (!(cmd_val(s, 0) & (1 << 22)))
1543 		return 0;
1544 
1545 	/* check if QWORD */
1546 	if (DWORD_FIELD(0, 21, 21))
1547 		valid_len++;
1548 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1549 			valid_len);
1550 	if (ret)
1551 		return ret;
1552 
1553 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1554 
1555 	if (gmadr_bytes == 8) {
1556 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1557 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1558 		gma = (gma_high << 32) | gma_low;
1559 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1560 	}
1561 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1562 	return ret;
1563 }
1564 
1565 static inline int unexpected_cmd(struct parser_exec_state *s)
1566 {
1567 	struct intel_vgpu *vgpu = s->vgpu;
1568 
1569 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1570 
1571 	return -EBADRQC;
1572 }
1573 
1574 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1575 {
1576 	return unexpected_cmd(s);
1577 }
1578 
1579 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1580 {
1581 	return unexpected_cmd(s);
1582 }
1583 
1584 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1585 {
1586 	return unexpected_cmd(s);
1587 }
1588 
1589 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1590 {
1591 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1592 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1593 			sizeof(u32);
1594 	unsigned long gma, gma_high;
1595 	u32 valid_len = CMD_LEN(1);
1596 	int ret = 0;
1597 
1598 	if (!(cmd_val(s, 0) & (1 << 22)))
1599 		return ret;
1600 
1601 	/* check inline data */
1602 	if (cmd_val(s, 0) & BIT(18))
1603 		valid_len = CMD_LEN(9);
1604 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1605 			valid_len);
1606 	if (ret)
1607 		return ret;
1608 
1609 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1610 	if (gmadr_bytes == 8) {
1611 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1612 		gma = (gma_high << 32) | gma;
1613 	}
1614 	ret = cmd_address_audit(s, gma, op_size, false);
1615 	return ret;
1616 }
1617 
1618 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1619 {
1620 	return unexpected_cmd(s);
1621 }
1622 
1623 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1624 {
1625 	return unexpected_cmd(s);
1626 }
1627 
1628 static int cmd_handler_mi_conditional_batch_buffer_end(
1629 		struct parser_exec_state *s)
1630 {
1631 	return unexpected_cmd(s);
1632 }
1633 
1634 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1635 {
1636 	return unexpected_cmd(s);
1637 }
1638 
1639 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1640 {
1641 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1642 	unsigned long gma;
1643 	bool index_mode = false;
1644 	int ret = 0;
1645 	u32 hws_pga, val;
1646 	u32 valid_len = CMD_LEN(2);
1647 
1648 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1649 			valid_len);
1650 	if (ret) {
1651 		/* Check again for Qword */
1652 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1653 			++valid_len);
1654 		return ret;
1655 	}
1656 
1657 	/* Check post-sync and ppgtt bit */
1658 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1659 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1660 		if (gmadr_bytes == 8)
1661 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1662 		/* Store Data Index */
1663 		if (cmd_val(s, 0) & (1 << 21))
1664 			index_mode = true;
1665 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1666 		if (ret)
1667 			return ret;
1668 		if (index_mode) {
1669 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1670 			gma = hws_pga + gma;
1671 			patch_value(s, cmd_ptr(s, 1), gma);
1672 			val = cmd_val(s, 0) & (~(1 << 21));
1673 			patch_value(s, cmd_ptr(s, 0), val);
1674 		}
1675 	}
1676 	/* Check notify bit */
1677 	if ((cmd_val(s, 0) & (1 << 8)))
1678 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1679 			s->workload->pending_events);
1680 	return ret;
1681 }
1682 
1683 static void addr_type_update_snb(struct parser_exec_state *s)
1684 {
1685 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1686 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1687 		s->buf_addr_type = PPGTT_BUFFER;
1688 	}
1689 }
1690 
1691 
1692 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1693 		unsigned long gma, unsigned long end_gma, void *va)
1694 {
1695 	unsigned long copy_len, offset;
1696 	unsigned long len = 0;
1697 	unsigned long gpa;
1698 
1699 	while (gma != end_gma) {
1700 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1701 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1702 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1703 			return -EFAULT;
1704 		}
1705 
1706 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1707 
1708 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1709 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1710 
1711 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1712 
1713 		len += copy_len;
1714 		gma += copy_len;
1715 	}
1716 	return len;
1717 }
1718 
1719 
1720 /*
1721  * Check whether a batch buffer needs to be scanned. Currently
1722  * the only criteria is based on privilege.
1723  */
1724 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1725 {
1726 	/* Decide privilege based on address space */
1727 	if (cmd_val(s, 0) & BIT(8) &&
1728 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1729 		return 0;
1730 
1731 	return 1;
1732 }
1733 
1734 static const char *repr_addr_type(unsigned int type)
1735 {
1736 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1737 }
1738 
1739 static int find_bb_size(struct parser_exec_state *s,
1740 			unsigned long *bb_size,
1741 			unsigned long *bb_end_cmd_offset)
1742 {
1743 	unsigned long gma = 0;
1744 	const struct cmd_info *info;
1745 	u32 cmd_len = 0;
1746 	bool bb_end = false;
1747 	struct intel_vgpu *vgpu = s->vgpu;
1748 	u32 cmd;
1749 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1750 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1751 
1752 	*bb_size = 0;
1753 	*bb_end_cmd_offset = 0;
1754 
1755 	/* get the start gm address of the batch buffer */
1756 	gma = get_gma_bb_from_cmd(s, 1);
1757 	if (gma == INTEL_GVT_INVALID_ADDR)
1758 		return -EFAULT;
1759 
1760 	cmd = cmd_val(s, 0);
1761 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1762 	if (info == NULL) {
1763 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1764 			     cmd, get_opcode(cmd, s->engine),
1765 			     repr_addr_type(s->buf_addr_type),
1766 			     s->engine->name, s->workload);
1767 		return -EBADRQC;
1768 	}
1769 	do {
1770 		if (copy_gma_to_hva(s->vgpu, mm,
1771 				    gma, gma + 4, &cmd) < 0)
1772 			return -EFAULT;
1773 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1774 		if (info == NULL) {
1775 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1776 				     cmd, get_opcode(cmd, s->engine),
1777 				     repr_addr_type(s->buf_addr_type),
1778 				     s->engine->name, s->workload);
1779 			return -EBADRQC;
1780 		}
1781 
1782 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1783 			bb_end = true;
1784 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1785 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1786 				/* chained batch buffer */
1787 				bb_end = true;
1788 		}
1789 
1790 		if (bb_end)
1791 			*bb_end_cmd_offset = *bb_size;
1792 
1793 		cmd_len = get_cmd_length(info, cmd) << 2;
1794 		*bb_size += cmd_len;
1795 		gma += cmd_len;
1796 	} while (!bb_end);
1797 
1798 	return 0;
1799 }
1800 
1801 static int audit_bb_end(struct parser_exec_state *s, void *va)
1802 {
1803 	struct intel_vgpu *vgpu = s->vgpu;
1804 	u32 cmd = *(u32 *)va;
1805 	const struct cmd_info *info;
1806 
1807 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1808 	if (info == NULL) {
1809 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1810 			     cmd, get_opcode(cmd, s->engine),
1811 			     repr_addr_type(s->buf_addr_type),
1812 			     s->engine->name, s->workload);
1813 		return -EBADRQC;
1814 	}
1815 
1816 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1817 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1818 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1819 		return 0;
1820 
1821 	return -EBADRQC;
1822 }
1823 
1824 static int perform_bb_shadow(struct parser_exec_state *s)
1825 {
1826 	struct intel_vgpu *vgpu = s->vgpu;
1827 	struct intel_vgpu_shadow_bb *bb;
1828 	unsigned long gma = 0;
1829 	unsigned long bb_size;
1830 	unsigned long bb_end_cmd_offset;
1831 	int ret = 0;
1832 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1833 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1834 	unsigned long start_offset = 0;
1835 
1836 	/* get the start gm address of the batch buffer */
1837 	gma = get_gma_bb_from_cmd(s, 1);
1838 	if (gma == INTEL_GVT_INVALID_ADDR)
1839 		return -EFAULT;
1840 
1841 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1842 	if (ret)
1843 		return ret;
1844 
1845 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1846 	if (!bb)
1847 		return -ENOMEM;
1848 
1849 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1850 
1851 	/* the start_offset stores the batch buffer's start gma's
1852 	 * offset relative to page boundary. so for non-privileged batch
1853 	 * buffer, the shadowed gem object holds exactly the same page
1854 	 * layout as original gem object. This is for the convience of
1855 	 * replacing the whole non-privilged batch buffer page to this
1856 	 * shadowed one in PPGTT at the same gma address. (this replacing
1857 	 * action is not implemented yet now, but may be necessary in
1858 	 * future).
1859 	 * for prileged batch buffer, we just change start gma address to
1860 	 * that of shadowed page.
1861 	 */
1862 	if (bb->ppgtt)
1863 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1864 
1865 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1866 					       round_up(bb_size + start_offset,
1867 							PAGE_SIZE));
1868 	if (IS_ERR(bb->obj)) {
1869 		ret = PTR_ERR(bb->obj);
1870 		goto err_free_bb;
1871 	}
1872 
1873 	ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1874 	if (ret)
1875 		goto err_free_obj;
1876 
1877 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1878 	if (IS_ERR(bb->va)) {
1879 		ret = PTR_ERR(bb->va);
1880 		goto err_finish_shmem_access;
1881 	}
1882 
1883 	if (bb->clflush & CLFLUSH_BEFORE) {
1884 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1885 		bb->clflush &= ~CLFLUSH_BEFORE;
1886 	}
1887 
1888 	ret = copy_gma_to_hva(s->vgpu, mm,
1889 			      gma, gma + bb_size,
1890 			      bb->va + start_offset);
1891 	if (ret < 0) {
1892 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1893 		ret = -EFAULT;
1894 		goto err_unmap;
1895 	}
1896 
1897 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1898 	if (ret)
1899 		goto err_unmap;
1900 
1901 	INIT_LIST_HEAD(&bb->list);
1902 	list_add(&bb->list, &s->workload->shadow_bb);
1903 
1904 	bb->accessing = true;
1905 	bb->bb_start_cmd_va = s->ip_va;
1906 
1907 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1908 		bb->bb_offset = s->ip_va - s->rb_va;
1909 	else
1910 		bb->bb_offset = 0;
1911 
1912 	/*
1913 	 * ip_va saves the virtual address of the shadow batch buffer, while
1914 	 * ip_gma saves the graphics address of the original batch buffer.
1915 	 * As the shadow batch buffer is just a copy from the originial one,
1916 	 * it should be right to use shadow batch buffer'va and original batch
1917 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1918 	 * buffer here (too early).
1919 	 */
1920 	s->ip_va = bb->va + start_offset;
1921 	s->ip_gma = gma;
1922 	return 0;
1923 err_unmap:
1924 	i915_gem_object_unpin_map(bb->obj);
1925 err_finish_shmem_access:
1926 	i915_gem_object_finish_access(bb->obj);
1927 err_free_obj:
1928 	i915_gem_object_put(bb->obj);
1929 err_free_bb:
1930 	kfree(bb);
1931 	return ret;
1932 }
1933 
1934 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1935 {
1936 	bool second_level;
1937 	int ret = 0;
1938 	struct intel_vgpu *vgpu = s->vgpu;
1939 
1940 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1941 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1942 		return -EFAULT;
1943 	}
1944 
1945 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1946 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1947 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1948 		return -EFAULT;
1949 	}
1950 
1951 	s->saved_buf_addr_type = s->buf_addr_type;
1952 	addr_type_update_snb(s);
1953 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1954 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1955 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1956 	} else if (second_level) {
1957 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1958 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1959 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1960 	}
1961 
1962 	if (batch_buffer_needs_scan(s)) {
1963 		ret = perform_bb_shadow(s);
1964 		if (ret < 0)
1965 			gvt_vgpu_err("invalid shadow batch buffer\n");
1966 	} else {
1967 		/* emulate a batch buffer end to do return right */
1968 		ret = cmd_handler_mi_batch_buffer_end(s);
1969 		if (ret < 0)
1970 			return ret;
1971 	}
1972 	return ret;
1973 }
1974 
1975 static int mi_noop_index;
1976 
1977 static const struct cmd_info cmd_info[] = {
1978 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1979 
1980 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1981 		0, 1, NULL},
1982 
1983 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1984 		0, 1, cmd_handler_mi_user_interrupt},
1985 
1986 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1987 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1988 
1989 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1990 
1991 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1992 		NULL},
1993 
1994 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1995 		NULL},
1996 
1997 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1998 		NULL},
1999 
2000 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2001 		NULL},
2002 
2003 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2004 		D_ALL, 0, 1, NULL},
2005 
2006 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2007 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2008 		cmd_handler_mi_batch_buffer_end},
2009 
2010 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2011 		0, 1, NULL},
2012 
2013 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2014 		NULL},
2015 
2016 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2017 		D_ALL, 0, 1, NULL},
2018 
2019 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2020 		NULL},
2021 
2022 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2023 		NULL},
2024 
2025 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2026 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2027 
2028 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2029 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2030 
2031 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2032 
2033 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2034 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2035 
2036 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2037 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2038 		NULL, CMD_LEN(0)},
2039 
2040 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2041 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2042 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2043 
2044 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2045 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2046 
2047 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2048 		0, 8, cmd_handler_mi_store_data_index},
2049 
2050 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2051 		D_ALL, 0, 8, cmd_handler_lri},
2052 
2053 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2054 		cmd_handler_mi_update_gtt},
2055 
2056 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2057 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2058 		cmd_handler_srm, CMD_LEN(2)},
2059 
2060 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2061 		cmd_handler_mi_flush_dw},
2062 
2063 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2064 		10, cmd_handler_mi_clflush},
2065 
2066 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2067 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2068 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2069 
2070 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2071 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2072 		cmd_handler_lrm, CMD_LEN(2)},
2073 
2074 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2075 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2076 		cmd_handler_lrr, CMD_LEN(1)},
2077 
2078 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2079 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2080 		8, NULL, CMD_LEN(2)},
2081 
2082 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2083 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2084 
2085 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2086 		ADDR_FIX_1(2), 8, NULL},
2087 
2088 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2089 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2090 
2091 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2092 		8, cmd_handler_mi_op_2f},
2093 
2094 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2095 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2096 		cmd_handler_mi_batch_buffer_start},
2097 
2098 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2099 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2100 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2101 
2102 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2103 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2104 
2105 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2106 		ADDR_FIX_2(4, 7), 8, NULL},
2107 
2108 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2109 		0, 8, NULL},
2110 
2111 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2112 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2113 
2114 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2115 
2116 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2117 		0, 8, NULL},
2118 
2119 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2120 		ADDR_FIX_1(3), 8, NULL},
2121 
2122 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2123 		D_ALL, 0, 8, NULL},
2124 
2125 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2126 		ADDR_FIX_1(4), 8, NULL},
2127 
2128 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2129 		ADDR_FIX_2(4, 5), 8, NULL},
2130 
2131 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2132 		ADDR_FIX_1(4), 8, NULL},
2133 
2134 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2135 		ADDR_FIX_2(4, 7), 8, NULL},
2136 
2137 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2138 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2139 
2140 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2141 
2142 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2143 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2144 
2145 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2146 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2147 
2148 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2149 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2150 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2151 
2152 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2153 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2154 
2155 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2156 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2157 
2158 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2159 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2160 
2161 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2162 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2163 
2164 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2165 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2166 
2167 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2168 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2169 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2170 
2171 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172 		ADDR_FIX_2(4, 5), 8, NULL},
2173 
2174 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2175 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2176 
2177 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2178 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2179 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2180 
2181 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2182 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2183 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2184 
2185 	{"3DSTATE_BLEND_STATE_POINTERS",
2186 		OP_3DSTATE_BLEND_STATE_POINTERS,
2187 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2188 
2189 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2190 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2191 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2192 
2193 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2194 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2195 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2196 
2197 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2198 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2199 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2200 
2201 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2202 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2203 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2204 
2205 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2206 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2207 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2208 
2209 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2210 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2211 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2212 
2213 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2214 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2215 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216 
2217 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2218 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2219 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2220 
2221 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2222 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2223 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224 
2225 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2226 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2227 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2228 
2229 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2230 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2231 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232 
2233 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2234 		0, 8, NULL},
2235 
2236 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2237 		0, 8, NULL},
2238 
2239 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2240 		0, 8, NULL},
2241 
2242 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2243 		0, 8, NULL},
2244 
2245 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2246 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247 
2248 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2249 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2255 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256 
2257 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2258 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259 
2260 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2261 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2262 
2263 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2264 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2265 
2266 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2267 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268 
2269 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2273 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274 
2275 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2279 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280 
2281 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2282 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283 
2284 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2285 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286 
2287 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2291 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2292 
2293 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2294 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2295 
2296 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2297 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2298 
2299 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2300 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2301 
2302 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2303 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2304 
2305 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2306 		D_BDW_PLUS, 0, 8, NULL},
2307 
2308 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2309 		NULL},
2310 
2311 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2312 		D_BDW_PLUS, 0, 8, NULL},
2313 
2314 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2315 		D_BDW_PLUS, 0, 8, NULL},
2316 
2317 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2318 		8, NULL},
2319 
2320 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2321 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2322 
2323 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2324 		8, NULL},
2325 
2326 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2327 		NULL},
2328 
2329 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2330 		NULL},
2331 
2332 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2333 		NULL},
2334 
2335 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2336 		D_BDW_PLUS, 0, 8, NULL},
2337 
2338 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2339 		R_RCS, D_ALL, 0, 8, NULL},
2340 
2341 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2342 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2343 
2344 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2345 		R_RCS, D_ALL, 0, 1, NULL},
2346 
2347 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2348 
2349 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2350 		R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2353 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2354 
2355 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2356 
2357 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2358 
2359 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2360 
2361 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2362 		D_BDW_PLUS, 0, 8, NULL},
2363 
2364 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2365 		D_BDW_PLUS, 0, 8, NULL},
2366 
2367 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2368 		D_ALL, 0, 8, NULL},
2369 
2370 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2371 		D_BDW_PLUS, 0, 8, NULL},
2372 
2373 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2374 		D_BDW_PLUS, 0, 8, NULL},
2375 
2376 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377 
2378 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2379 
2380 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381 
2382 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2383 		D_ALL, 0, 8, NULL},
2384 
2385 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2386 
2387 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2388 
2389 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2390 		R_RCS, D_ALL, 0, 8, NULL},
2391 
2392 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2393 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2394 
2395 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2396 		0, 8, NULL},
2397 
2398 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2399 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2400 
2401 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2402 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2403 
2404 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2405 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406 
2407 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2408 		D_ALL, 0, 8, NULL},
2409 
2410 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2411 		D_ALL, 0, 8, NULL},
2412 
2413 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2414 		D_ALL, 0, 8, NULL},
2415 
2416 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2417 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418 
2419 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2420 		D_BDW_PLUS, 0, 8, NULL},
2421 
2422 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2423 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2424 
2425 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2426 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2427 
2428 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2429 		R_RCS, D_ALL, 0, 8, NULL},
2430 
2431 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2432 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433 
2434 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2435 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2438 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 
2440 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2441 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442 
2443 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2444 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2445 
2446 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2447 		R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2450 		D_ALL, 0, 9, NULL},
2451 
2452 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2453 		ADDR_FIX_2(2, 4), 8, NULL},
2454 
2455 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2456 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2457 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2458 
2459 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2460 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2461 
2462 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2463 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2464 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2465 
2466 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2467 		D_BDW_PLUS, 0, 8, NULL},
2468 
2469 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2470 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2471 
2472 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2473 
2474 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2475 		1, NULL},
2476 
2477 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2478 		ADDR_FIX_1(1), 8, NULL},
2479 
2480 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2481 
2482 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2483 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2484 
2485 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2486 		ADDR_FIX_1(1), 8, NULL},
2487 
2488 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489 
2490 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491 
2492 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2493 		0, 8, NULL},
2494 
2495 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2496 		D_SKL_PLUS, 0, 8, NULL},
2497 
2498 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2499 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2500 
2501 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2502 		0, 16, NULL},
2503 
2504 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2505 		0, 16, NULL},
2506 
2507 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2508 		0, 16, NULL},
2509 
2510 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2511 
2512 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2513 		0, 16, NULL},
2514 
2515 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2516 		0, 16, NULL},
2517 
2518 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2519 		0, 16, NULL},
2520 
2521 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2522 		0, 8, NULL},
2523 
2524 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2525 		NULL},
2526 
2527 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2528 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2529 
2530 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2531 		R_VCS, D_ALL, 0, 12, NULL},
2532 
2533 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2534 		R_VCS, D_ALL, 0, 12, NULL},
2535 
2536 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2537 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2538 
2539 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2540 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2541 
2542 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2543 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2544 
2545 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2546 
2547 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2548 		R_VCS, D_ALL, 0, 12, NULL},
2549 
2550 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2551 		R_VCS, D_ALL, 0, 12, NULL},
2552 
2553 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2554 		R_VCS, D_ALL, 0, 12, NULL},
2555 
2556 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2557 		R_VCS, D_ALL, 0, 12, NULL},
2558 
2559 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2560 		R_VCS, D_ALL, 0, 12, NULL},
2561 
2562 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2563 		R_VCS, D_ALL, 0, 12, NULL},
2564 
2565 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2566 		R_VCS, D_ALL, 0, 6, NULL},
2567 
2568 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2569 		R_VCS, D_ALL, 0, 12, NULL},
2570 
2571 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2572 		R_VCS, D_ALL, 0, 12, NULL},
2573 
2574 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2575 		R_VCS, D_ALL, 0, 12, NULL},
2576 
2577 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2578 		R_VCS, D_ALL, 0, 12, NULL},
2579 
2580 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2581 		R_VCS, D_ALL, 0, 12, NULL},
2582 
2583 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2584 		R_VCS, D_ALL, 0, 12, NULL},
2585 
2586 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2587 		R_VCS, D_ALL, 0, 12, NULL},
2588 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2589 		R_VCS, D_ALL, 0, 12, NULL},
2590 
2591 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2592 		R_VCS, D_ALL, 0, 12, NULL},
2593 
2594 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2595 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2596 
2597 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2598 		R_VCS, D_ALL, 0, 12, NULL},
2599 
2600 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2601 		R_VCS, D_ALL, 0, 12, NULL},
2602 
2603 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2604 		R_VCS, D_ALL, 0, 12, NULL},
2605 
2606 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2607 		R_VCS, D_ALL, 0, 12, NULL},
2608 
2609 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2610 		R_VCS, D_ALL, 0, 12, NULL},
2611 
2612 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2613 		R_VCS, D_ALL, 0, 12, NULL},
2614 
2615 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2616 		R_VCS, D_ALL, 0, 12, NULL},
2617 
2618 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2619 		R_VCS, D_ALL, 0, 12, NULL},
2620 
2621 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2622 		R_VCS, D_ALL, 0, 12, NULL},
2623 
2624 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2625 		R_VCS, D_ALL, 0, 12, NULL},
2626 
2627 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2628 		R_VCS, D_ALL, 0, 12, NULL},
2629 
2630 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2631 		0, 16, NULL},
2632 
2633 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2634 
2635 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2636 
2637 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 12, NULL},
2639 
2640 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 
2643 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2647 
2648 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2649 		0, 12, NULL},
2650 
2651 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2652 		0, 12, NULL},
2653 };
2654 
2655 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2656 {
2657 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2658 }
2659 
2660 /* call the cmd handler, and advance ip */
2661 static int cmd_parser_exec(struct parser_exec_state *s)
2662 {
2663 	struct intel_vgpu *vgpu = s->vgpu;
2664 	const struct cmd_info *info;
2665 	u32 cmd;
2666 	int ret = 0;
2667 
2668 	cmd = cmd_val(s, 0);
2669 
2670 	/* fastpath for MI_NOOP */
2671 	if (cmd == MI_NOOP)
2672 		info = &cmd_info[mi_noop_index];
2673 	else
2674 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2675 
2676 	if (info == NULL) {
2677 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2678 			     cmd, get_opcode(cmd, s->engine),
2679 			     repr_addr_type(s->buf_addr_type),
2680 			     s->engine->name, s->workload);
2681 		return -EBADRQC;
2682 	}
2683 
2684 	s->info = info;
2685 
2686 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2687 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2688 			  s->workload, info->name);
2689 
2690 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2691 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2692 						 info->valid_len);
2693 		if (ret)
2694 			return ret;
2695 	}
2696 
2697 	if (info->handler) {
2698 		ret = info->handler(s);
2699 		if (ret < 0) {
2700 			gvt_vgpu_err("%s handler error\n", info->name);
2701 			return ret;
2702 		}
2703 	}
2704 
2705 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2706 		ret = cmd_advance_default(s);
2707 		if (ret) {
2708 			gvt_vgpu_err("%s IP advance error\n", info->name);
2709 			return ret;
2710 		}
2711 	}
2712 	return 0;
2713 }
2714 
2715 static inline bool gma_out_of_range(unsigned long gma,
2716 		unsigned long gma_head, unsigned int gma_tail)
2717 {
2718 	if (gma_tail >= gma_head)
2719 		return (gma < gma_head) || (gma > gma_tail);
2720 	else
2721 		return (gma > gma_tail) && (gma < gma_head);
2722 }
2723 
2724 /* Keep the consistent return type, e.g EBADRQC for unknown
2725  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2726  * works as the input of VM healthy status.
2727  */
2728 static int command_scan(struct parser_exec_state *s,
2729 		unsigned long rb_head, unsigned long rb_tail,
2730 		unsigned long rb_start, unsigned long rb_len)
2731 {
2732 
2733 	unsigned long gma_head, gma_tail, gma_bottom;
2734 	int ret = 0;
2735 	struct intel_vgpu *vgpu = s->vgpu;
2736 
2737 	gma_head = rb_start + rb_head;
2738 	gma_tail = rb_start + rb_tail;
2739 	gma_bottom = rb_start +  rb_len;
2740 
2741 	while (s->ip_gma != gma_tail) {
2742 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2743 			if (!(s->ip_gma >= rb_start) ||
2744 				!(s->ip_gma < gma_bottom)) {
2745 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2746 					"(base:0x%lx, bottom: 0x%lx)\n",
2747 					s->ip_gma, rb_start,
2748 					gma_bottom);
2749 				parser_exec_state_dump(s);
2750 				return -EFAULT;
2751 			}
2752 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2753 				gvt_vgpu_err("ip_gma %lx out of range."
2754 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2755 					s->ip_gma, rb_start,
2756 					rb_head, rb_tail);
2757 				parser_exec_state_dump(s);
2758 				break;
2759 			}
2760 		}
2761 		ret = cmd_parser_exec(s);
2762 		if (ret) {
2763 			gvt_vgpu_err("cmd parser error\n");
2764 			parser_exec_state_dump(s);
2765 			break;
2766 		}
2767 	}
2768 
2769 	return ret;
2770 }
2771 
2772 static int scan_workload(struct intel_vgpu_workload *workload)
2773 {
2774 	unsigned long gma_head, gma_tail, gma_bottom;
2775 	struct parser_exec_state s;
2776 	int ret = 0;
2777 
2778 	/* ring base is page aligned */
2779 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2780 		return -EINVAL;
2781 
2782 	gma_head = workload->rb_start + workload->rb_head;
2783 	gma_tail = workload->rb_start + workload->rb_tail;
2784 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2785 
2786 	s.buf_type = RING_BUFFER_INSTRUCTION;
2787 	s.buf_addr_type = GTT_BUFFER;
2788 	s.vgpu = workload->vgpu;
2789 	s.engine = workload->engine;
2790 	s.ring_start = workload->rb_start;
2791 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2792 	s.ring_head = gma_head;
2793 	s.ring_tail = gma_tail;
2794 	s.rb_va = workload->shadow_ring_buffer_va;
2795 	s.workload = workload;
2796 	s.is_ctx_wa = false;
2797 
2798 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2799 		return 0;
2800 
2801 	ret = ip_gma_set(&s, gma_head);
2802 	if (ret)
2803 		goto out;
2804 
2805 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2806 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2807 
2808 out:
2809 	return ret;
2810 }
2811 
2812 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2813 {
2814 
2815 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2816 	struct parser_exec_state s;
2817 	int ret = 0;
2818 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2819 				struct intel_vgpu_workload,
2820 				wa_ctx);
2821 
2822 	/* ring base is page aligned */
2823 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2824 					I915_GTT_PAGE_SIZE)))
2825 		return -EINVAL;
2826 
2827 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2828 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2829 			PAGE_SIZE);
2830 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2831 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2832 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2833 
2834 	s.buf_type = RING_BUFFER_INSTRUCTION;
2835 	s.buf_addr_type = GTT_BUFFER;
2836 	s.vgpu = workload->vgpu;
2837 	s.engine = workload->engine;
2838 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2839 	s.ring_size = ring_size;
2840 	s.ring_head = gma_head;
2841 	s.ring_tail = gma_tail;
2842 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2843 	s.workload = workload;
2844 	s.is_ctx_wa = true;
2845 
2846 	ret = ip_gma_set(&s, gma_head);
2847 	if (ret)
2848 		goto out;
2849 
2850 	ret = command_scan(&s, 0, ring_tail,
2851 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2852 out:
2853 	return ret;
2854 }
2855 
2856 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2857 {
2858 	struct intel_vgpu *vgpu = workload->vgpu;
2859 	struct intel_vgpu_submission *s = &vgpu->submission;
2860 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2861 	void *shadow_ring_buffer_va;
2862 	int ret;
2863 
2864 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2865 
2866 	/* calculate workload ring buffer size */
2867 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2868 			workload->rb_head) % guest_rb_size;
2869 
2870 	gma_head = workload->rb_start + workload->rb_head;
2871 	gma_tail = workload->rb_start + workload->rb_tail;
2872 	gma_top = workload->rb_start + guest_rb_size;
2873 
2874 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2875 		void *p;
2876 
2877 		/* realloc the new ring buffer if needed */
2878 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2879 			     workload->rb_len, GFP_KERNEL);
2880 		if (!p) {
2881 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2882 			return -ENOMEM;
2883 		}
2884 		s->ring_scan_buffer[workload->engine->id] = p;
2885 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2886 	}
2887 
2888 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2889 
2890 	/* get shadow ring buffer va */
2891 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2892 
2893 	/* head > tail --> copy head <-> top */
2894 	if (gma_head > gma_tail) {
2895 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2896 				      gma_head, gma_top, shadow_ring_buffer_va);
2897 		if (ret < 0) {
2898 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2899 			return ret;
2900 		}
2901 		shadow_ring_buffer_va += ret;
2902 		gma_head = workload->rb_start;
2903 	}
2904 
2905 	/* copy head or start <-> tail */
2906 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2907 				shadow_ring_buffer_va);
2908 	if (ret < 0) {
2909 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2910 		return ret;
2911 	}
2912 	return 0;
2913 }
2914 
2915 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2916 {
2917 	int ret;
2918 	struct intel_vgpu *vgpu = workload->vgpu;
2919 
2920 	ret = shadow_workload_ring_buffer(workload);
2921 	if (ret) {
2922 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2923 		return ret;
2924 	}
2925 
2926 	ret = scan_workload(workload);
2927 	if (ret) {
2928 		gvt_vgpu_err("scan workload error\n");
2929 		return ret;
2930 	}
2931 	return 0;
2932 }
2933 
2934 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2935 {
2936 	int ctx_size = wa_ctx->indirect_ctx.size;
2937 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2938 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2939 					struct intel_vgpu_workload,
2940 					wa_ctx);
2941 	struct intel_vgpu *vgpu = workload->vgpu;
2942 	struct drm_i915_gem_object *obj;
2943 	int ret = 0;
2944 	void *map;
2945 
2946 	obj = i915_gem_object_create_shmem(workload->engine->i915,
2947 					   roundup(ctx_size + CACHELINE_BYTES,
2948 						   PAGE_SIZE));
2949 	if (IS_ERR(obj))
2950 		return PTR_ERR(obj);
2951 
2952 	/* get the va of the shadow batch buffer */
2953 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2954 	if (IS_ERR(map)) {
2955 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2956 		ret = PTR_ERR(map);
2957 		goto put_obj;
2958 	}
2959 
2960 	i915_gem_object_lock(obj);
2961 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2962 	i915_gem_object_unlock(obj);
2963 	if (ret) {
2964 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2965 		goto unmap_src;
2966 	}
2967 
2968 	ret = copy_gma_to_hva(workload->vgpu,
2969 				workload->vgpu->gtt.ggtt_mm,
2970 				guest_gma, guest_gma + ctx_size,
2971 				map);
2972 	if (ret < 0) {
2973 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2974 		goto unmap_src;
2975 	}
2976 
2977 	wa_ctx->indirect_ctx.obj = obj;
2978 	wa_ctx->indirect_ctx.shadow_va = map;
2979 	return 0;
2980 
2981 unmap_src:
2982 	i915_gem_object_unpin_map(obj);
2983 put_obj:
2984 	i915_gem_object_put(obj);
2985 	return ret;
2986 }
2987 
2988 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2989 {
2990 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2991 	unsigned char *bb_start_sva;
2992 
2993 	if (!wa_ctx->per_ctx.valid)
2994 		return 0;
2995 
2996 	per_ctx_start[0] = 0x18800001;
2997 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2998 
2999 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3000 				wa_ctx->indirect_ctx.size;
3001 
3002 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3003 
3004 	return 0;
3005 }
3006 
3007 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3008 {
3009 	int ret;
3010 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3011 					struct intel_vgpu_workload,
3012 					wa_ctx);
3013 	struct intel_vgpu *vgpu = workload->vgpu;
3014 
3015 	if (wa_ctx->indirect_ctx.size == 0)
3016 		return 0;
3017 
3018 	ret = shadow_indirect_ctx(wa_ctx);
3019 	if (ret) {
3020 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3021 		return ret;
3022 	}
3023 
3024 	combine_wa_ctx(wa_ctx);
3025 
3026 	ret = scan_wa_ctx(wa_ctx);
3027 	if (ret) {
3028 		gvt_vgpu_err("scan wa ctx error\n");
3029 		return ret;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 static int init_cmd_table(struct intel_gvt *gvt)
3036 {
3037 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3038 	int i;
3039 
3040 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3041 		struct cmd_entry *e;
3042 
3043 		if (!(cmd_info[i].devices & gen_type))
3044 			continue;
3045 
3046 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3047 		if (!e)
3048 			return -ENOMEM;
3049 
3050 		e->info = &cmd_info[i];
3051 		if (cmd_info[i].opcode == OP_MI_NOOP)
3052 			mi_noop_index = i;
3053 
3054 		INIT_HLIST_NODE(&e->hlist);
3055 		add_cmd_entry(gvt, e);
3056 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3057 			    e->info->name, e->info->opcode, e->info->flag,
3058 			    e->info->devices, e->info->rings);
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 static void clean_cmd_table(struct intel_gvt *gvt)
3065 {
3066 	struct hlist_node *tmp;
3067 	struct cmd_entry *e;
3068 	int i;
3069 
3070 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3071 		kfree(e);
3072 
3073 	hash_init(gvt->cmd_table);
3074 }
3075 
3076 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3077 {
3078 	clean_cmd_table(gvt);
3079 }
3080 
3081 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3082 {
3083 	int ret;
3084 
3085 	ret = init_cmd_table(gvt);
3086 	if (ret) {
3087 		intel_gvt_clean_cmd_parser(gvt);
3088 		return ret;
3089 	}
3090 	return 0;
3091 }
3092