1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_ring.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "trace.h" 44 45 #define INVALID_OP (~0U) 46 47 #define OP_LEN_MI 9 48 #define OP_LEN_2D 10 49 #define OP_LEN_3D_MEDIA 16 50 #define OP_LEN_MFX_VC 16 51 #define OP_LEN_VEBOX 16 52 53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 54 55 struct sub_op_bits { 56 int hi; 57 int low; 58 }; 59 struct decode_info { 60 const char *name; 61 int op_len; 62 int nr_sub_op; 63 const struct sub_op_bits *sub_op; 64 }; 65 66 #define MAX_CMD_BUDGET 0x7fffffff 67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 70 71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 74 75 /* Render Command Map */ 76 77 /* MI_* command Opcode (28:23) */ 78 #define OP_MI_NOOP 0x0 79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 80 #define OP_MI_USER_INTERRUPT 0x2 81 #define OP_MI_WAIT_FOR_EVENT 0x3 82 #define OP_MI_FLUSH 0x4 83 #define OP_MI_ARB_CHECK 0x5 84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 85 #define OP_MI_REPORT_HEAD 0x7 86 #define OP_MI_ARB_ON_OFF 0x8 87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 88 #define OP_MI_BATCH_BUFFER_END 0xA 89 #define OP_MI_SUSPEND_FLUSH 0xB 90 #define OP_MI_PREDICATE 0xC /* IVB+ */ 91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 92 #define OP_MI_SET_APPID 0xE /* IVB+ */ 93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 95 #define OP_MI_DISPLAY_FLIP 0x14 96 #define OP_MI_SEMAPHORE_MBOX 0x16 97 #define OP_MI_SET_CONTEXT 0x18 98 #define OP_MI_MATH 0x1A 99 #define OP_MI_URB_CLEAR 0x19 100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 102 103 #define OP_MI_STORE_DATA_IMM 0x20 104 #define OP_MI_STORE_DATA_INDEX 0x21 105 #define OP_MI_LOAD_REGISTER_IMM 0x22 106 #define OP_MI_UPDATE_GTT 0x23 107 #define OP_MI_STORE_REGISTER_MEM 0x24 108 #define OP_MI_FLUSH_DW 0x26 109 #define OP_MI_CLFLUSH 0x27 110 #define OP_MI_REPORT_PERF_COUNT 0x28 111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 116 #define OP_MI_2E 0x2E /* BDW+ */ 117 #define OP_MI_2F 0x2F /* BDW+ */ 118 #define OP_MI_BATCH_BUFFER_START 0x31 119 120 /* Bit definition for dword 0 */ 121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 122 123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 124 125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 129 130 /* 2D command: Opcode (28:22) */ 131 #define OP_2D(x) ((2<<7) | x) 132 133 #define OP_XY_SETUP_BLT OP_2D(0x1) 134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 136 #define OP_XY_PIXEL_BLT OP_2D(0x24) 137 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 138 #define OP_XY_TEXT_BLT OP_2D(0x26) 139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 140 #define OP_XY_COLOR_BLT OP_2D(0x50) 141 #define OP_XY_PAT_BLT OP_2D(0x51) 142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 145 #define OP_XY_FULL_BLT OP_2D(0x55) 146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 157 158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 161 162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 163 164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 167 168 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 169 170 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 171 172 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 173 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 175 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 176 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 177 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 178 179 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 180 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 181 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 182 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 183 184 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 185 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 186 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 187 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 188 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 189 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 190 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 191 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 192 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 193 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 195 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 196 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 197 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 198 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 199 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 200 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 201 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 202 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 203 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 204 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 205 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 206 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 207 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 208 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 209 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 210 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 211 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 214 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 226 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 227 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 228 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 229 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 250 251 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 252 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 253 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 254 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 255 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 256 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 257 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 258 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 259 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 260 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 261 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 262 263 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 265 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 266 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 269 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 270 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 271 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 273 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 274 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 276 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 277 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 283 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 284 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 286 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 288 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 289 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 290 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 291 292 /* VCCP Command Parser */ 293 294 /* 295 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 296 * git://anongit.freedesktop.org/vaapi/intel-driver 297 * src/i965_defines.h 298 * 299 */ 300 301 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 302 (3 << 13 | \ 303 (pipeline) << 11 | \ 304 (op) << 8 | \ 305 (sub_opa) << 5 | \ 306 (sub_opb)) 307 308 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 309 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 310 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 313 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 314 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 315 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 316 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 317 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 318 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 319 320 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 321 322 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 323 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 324 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 325 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 326 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 327 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 329 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 330 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 331 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 332 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 333 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 334 335 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 336 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 337 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 338 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 339 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 340 341 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 342 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 343 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 344 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 345 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 346 347 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 348 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 349 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 350 351 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 352 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 353 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 354 355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 356 (3 << 13 | \ 357 (pipeline) << 11 | \ 358 (op) << 8 | \ 359 (sub_opa) << 5 | \ 360 (sub_opb)) 361 362 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 363 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 364 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 365 366 struct parser_exec_state; 367 368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 369 370 #define GVT_CMD_HASH_BITS 7 371 372 /* which DWords need address fix */ 373 #define ADDR_FIX_1(x1) (1 << (x1)) 374 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 375 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 376 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 377 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 378 379 #define DWORD_FIELD(dword, end, start) \ 380 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 381 382 #define OP_LENGTH_BIAS 2 383 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 384 385 static int gvt_check_valid_cmd_length(int len, int valid_len) 386 { 387 if (valid_len != len) { 388 gvt_err("len is not valid: len=%u valid_len=%u\n", 389 len, valid_len); 390 return -EFAULT; 391 } 392 return 0; 393 } 394 395 struct cmd_info { 396 const char *name; 397 u32 opcode; 398 399 #define F_LEN_MASK 3U 400 #define F_LEN_CONST 1U 401 #define F_LEN_VAR 0U 402 /* value is const although LEN maybe variable */ 403 #define F_LEN_VAR_FIXED (1<<1) 404 405 /* 406 * command has its own ip advance logic 407 * e.g. MI_BATCH_START, MI_BATCH_END 408 */ 409 #define F_IP_ADVANCE_CUSTOM (1<<2) 410 u32 flag; 411 412 #define R_RCS BIT(RCS0) 413 #define R_VCS1 BIT(VCS0) 414 #define R_VCS2 BIT(VCS1) 415 #define R_VCS (R_VCS1 | R_VCS2) 416 #define R_BCS BIT(BCS0) 417 #define R_VECS BIT(VECS0) 418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 419 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 420 u16 rings; 421 422 /* devices that support this cmd: SNB/IVB/HSW/... */ 423 u16 devices; 424 425 /* which DWords are address that need fix up. 426 * bit 0 means a 32-bit non address operand in command 427 * bit 1 means address operand, which could be 32-bit 428 * or 64-bit depending on different architectures.( 429 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 430 * No matter the address length, each address only takes 431 * one bit in the bitmap. 432 */ 433 u16 addr_bitmap; 434 435 /* flag == F_LEN_CONST : command length 436 * flag == F_LEN_VAR : length bias bits 437 * Note: length is in DWord 438 */ 439 u32 len; 440 441 parser_cmd_handler handler; 442 443 /* valid length in DWord */ 444 u32 valid_len; 445 }; 446 447 struct cmd_entry { 448 struct hlist_node hlist; 449 const struct cmd_info *info; 450 }; 451 452 enum { 453 RING_BUFFER_INSTRUCTION, 454 BATCH_BUFFER_INSTRUCTION, 455 BATCH_BUFFER_2ND_LEVEL, 456 }; 457 458 enum { 459 GTT_BUFFER, 460 PPGTT_BUFFER 461 }; 462 463 struct parser_exec_state { 464 struct intel_vgpu *vgpu; 465 const struct intel_engine_cs *engine; 466 467 int buf_type; 468 469 /* batch buffer address type */ 470 int buf_addr_type; 471 472 /* graphics memory address of ring buffer start */ 473 unsigned long ring_start; 474 unsigned long ring_size; 475 unsigned long ring_head; 476 unsigned long ring_tail; 477 478 /* instruction graphics memory address */ 479 unsigned long ip_gma; 480 481 /* mapped va of the instr_gma */ 482 void *ip_va; 483 void *rb_va; 484 485 void *ret_bb_va; 486 /* next instruction when return from batch buffer to ring buffer */ 487 unsigned long ret_ip_gma_ring; 488 489 /* next instruction when return from 2nd batch buffer to batch buffer */ 490 unsigned long ret_ip_gma_bb; 491 492 /* batch buffer address type (GTT or PPGTT) 493 * used when ret from 2nd level batch buffer 494 */ 495 int saved_buf_addr_type; 496 bool is_ctx_wa; 497 498 const struct cmd_info *info; 499 500 struct intel_vgpu_workload *workload; 501 }; 502 503 #define gmadr_dw_number(s) \ 504 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 505 506 static unsigned long bypass_scan_mask = 0; 507 508 /* ring ALL, type = 0 */ 509 static const struct sub_op_bits sub_op_mi[] = { 510 {31, 29}, 511 {28, 23}, 512 }; 513 514 static const struct decode_info decode_info_mi = { 515 "MI", 516 OP_LEN_MI, 517 ARRAY_SIZE(sub_op_mi), 518 sub_op_mi, 519 }; 520 521 /* ring RCS, command type 2 */ 522 static const struct sub_op_bits sub_op_2d[] = { 523 {31, 29}, 524 {28, 22}, 525 }; 526 527 static const struct decode_info decode_info_2d = { 528 "2D", 529 OP_LEN_2D, 530 ARRAY_SIZE(sub_op_2d), 531 sub_op_2d, 532 }; 533 534 /* ring RCS, command type 3 */ 535 static const struct sub_op_bits sub_op_3d_media[] = { 536 {31, 29}, 537 {28, 27}, 538 {26, 24}, 539 {23, 16}, 540 }; 541 542 static const struct decode_info decode_info_3d_media = { 543 "3D_Media", 544 OP_LEN_3D_MEDIA, 545 ARRAY_SIZE(sub_op_3d_media), 546 sub_op_3d_media, 547 }; 548 549 /* ring VCS, command type 3 */ 550 static const struct sub_op_bits sub_op_mfx_vc[] = { 551 {31, 29}, 552 {28, 27}, 553 {26, 24}, 554 {23, 21}, 555 {20, 16}, 556 }; 557 558 static const struct decode_info decode_info_mfx_vc = { 559 "MFX_VC", 560 OP_LEN_MFX_VC, 561 ARRAY_SIZE(sub_op_mfx_vc), 562 sub_op_mfx_vc, 563 }; 564 565 /* ring VECS, command type 3 */ 566 static const struct sub_op_bits sub_op_vebox[] = { 567 {31, 29}, 568 {28, 27}, 569 {26, 24}, 570 {23, 21}, 571 {20, 16}, 572 }; 573 574 static const struct decode_info decode_info_vebox = { 575 "VEBOX", 576 OP_LEN_VEBOX, 577 ARRAY_SIZE(sub_op_vebox), 578 sub_op_vebox, 579 }; 580 581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 582 [RCS0] = { 583 &decode_info_mi, 584 NULL, 585 NULL, 586 &decode_info_3d_media, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VCS0] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_mfx_vc, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [BCS0] = { 605 &decode_info_mi, 606 NULL, 607 &decode_info_2d, 608 NULL, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 615 [VECS0] = { 616 &decode_info_mi, 617 NULL, 618 NULL, 619 &decode_info_vebox, 620 NULL, 621 NULL, 622 NULL, 623 NULL, 624 }, 625 626 [VCS1] = { 627 &decode_info_mi, 628 NULL, 629 NULL, 630 &decode_info_mfx_vc, 631 NULL, 632 NULL, 633 NULL, 634 NULL, 635 }, 636 }; 637 638 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 639 { 640 const struct decode_info *d_info; 641 642 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 643 if (d_info == NULL) 644 return INVALID_OP; 645 646 return cmd >> (32 - d_info->op_len); 647 } 648 649 static inline const struct cmd_info * 650 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 651 const struct intel_engine_cs *engine) 652 { 653 struct cmd_entry *e; 654 655 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 656 if (opcode == e->info->opcode && 657 e->info->rings & engine->mask) 658 return e->info; 659 } 660 return NULL; 661 } 662 663 static inline const struct cmd_info * 664 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 665 const struct intel_engine_cs *engine) 666 { 667 u32 opcode; 668 669 opcode = get_opcode(cmd, engine); 670 if (opcode == INVALID_OP) 671 return NULL; 672 673 return find_cmd_entry(gvt, opcode, engine); 674 } 675 676 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 677 { 678 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 679 } 680 681 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 682 { 683 const struct decode_info *d_info; 684 int i; 685 686 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 687 if (d_info == NULL) 688 return; 689 690 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 691 cmd >> (32 - d_info->op_len), d_info->name); 692 693 for (i = 0; i < d_info->nr_sub_op; i++) 694 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 695 d_info->sub_op[i].low)); 696 697 pr_err("\n"); 698 } 699 700 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 701 { 702 return s->ip_va + (index << 2); 703 } 704 705 static inline u32 cmd_val(struct parser_exec_state *s, int index) 706 { 707 return *cmd_ptr(s, index); 708 } 709 710 static void parser_exec_state_dump(struct parser_exec_state *s) 711 { 712 int cnt = 0; 713 int i; 714 715 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 716 " ring_head(%08lx) ring_tail(%08lx)\n", 717 s->vgpu->id, s->engine->name, 718 s->ring_start, s->ring_start + s->ring_size, 719 s->ring_head, s->ring_tail); 720 721 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 722 s->buf_type == RING_BUFFER_INSTRUCTION ? 723 "RING_BUFFER" : "BATCH_BUFFER", 724 s->buf_addr_type == GTT_BUFFER ? 725 "GTT" : "PPGTT", s->ip_gma); 726 727 if (s->ip_va == NULL) { 728 gvt_dbg_cmd(" ip_va(NULL)"); 729 return; 730 } 731 732 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 733 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 734 cmd_val(s, 2), cmd_val(s, 3)); 735 736 print_opcode(cmd_val(s, 0), s->engine); 737 738 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 739 740 while (cnt < 1024) { 741 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 742 for (i = 0; i < 8; i++) 743 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 744 gvt_dbg_cmd("\n"); 745 746 s->ip_va += 8 * sizeof(u32); 747 cnt += 8; 748 } 749 } 750 751 static inline void update_ip_va(struct parser_exec_state *s) 752 { 753 unsigned long len = 0; 754 755 if (WARN_ON(s->ring_head == s->ring_tail)) 756 return; 757 758 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 759 unsigned long ring_top = s->ring_start + s->ring_size; 760 761 if (s->ring_head > s->ring_tail) { 762 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 763 len = (s->ip_gma - s->ring_head); 764 else if (s->ip_gma >= s->ring_start && 765 s->ip_gma <= s->ring_tail) 766 len = (ring_top - s->ring_head) + 767 (s->ip_gma - s->ring_start); 768 } else 769 len = (s->ip_gma - s->ring_head); 770 771 s->ip_va = s->rb_va + len; 772 } else {/* shadow batch buffer */ 773 s->ip_va = s->ret_bb_va; 774 } 775 } 776 777 static inline int ip_gma_set(struct parser_exec_state *s, 778 unsigned long ip_gma) 779 { 780 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 781 782 s->ip_gma = ip_gma; 783 update_ip_va(s); 784 return 0; 785 } 786 787 static inline int ip_gma_advance(struct parser_exec_state *s, 788 unsigned int dw_len) 789 { 790 s->ip_gma += (dw_len << 2); 791 792 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 793 if (s->ip_gma >= s->ring_start + s->ring_size) 794 s->ip_gma -= s->ring_size; 795 update_ip_va(s); 796 } else { 797 s->ip_va += (dw_len << 2); 798 } 799 800 return 0; 801 } 802 803 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 804 { 805 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 806 return info->len; 807 else 808 return (cmd & ((1U << info->len) - 1)) + 2; 809 return 0; 810 } 811 812 static inline int cmd_length(struct parser_exec_state *s) 813 { 814 return get_cmd_length(s->info, cmd_val(s, 0)); 815 } 816 817 /* do not remove this, some platform may need clflush here */ 818 #define patch_value(s, addr, val) do { \ 819 *addr = val; \ 820 } while (0) 821 822 static bool is_shadowed_mmio(unsigned int offset) 823 { 824 bool ret = false; 825 826 if ((offset == 0x2168) || /*BB current head register UDW */ 827 (offset == 0x2140) || /*BB current header register */ 828 (offset == 0x211c) || /*second BB header register UDW */ 829 (offset == 0x2114)) { /*second BB header register UDW */ 830 ret = true; 831 } 832 return ret; 833 } 834 835 static inline bool is_force_nonpriv_mmio(unsigned int offset) 836 { 837 return (offset >= 0x24d0 && offset < 0x2500); 838 } 839 840 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 841 unsigned int offset, unsigned int index, char *cmd) 842 { 843 struct intel_gvt *gvt = s->vgpu->gvt; 844 unsigned int data; 845 u32 ring_base; 846 u32 nopid; 847 848 if (!strcmp(cmd, "lri")) 849 data = cmd_val(s, index + 1); 850 else { 851 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 852 offset, cmd); 853 return -EINVAL; 854 } 855 856 ring_base = s->engine->mmio_base; 857 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 858 859 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 860 data != nopid) { 861 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 862 offset, data); 863 patch_value(s, cmd_ptr(s, index), nopid); 864 return 0; 865 } 866 return 0; 867 } 868 869 static inline bool is_mocs_mmio(unsigned int offset) 870 { 871 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 872 ((offset >= 0xb020) && (offset <= 0xb0a0)); 873 } 874 875 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 876 unsigned int offset, unsigned int index) 877 { 878 if (!is_mocs_mmio(offset)) 879 return -EINVAL; 880 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 881 return 0; 882 } 883 884 static int cmd_reg_handler(struct parser_exec_state *s, 885 unsigned int offset, unsigned int index, char *cmd) 886 { 887 struct intel_vgpu *vgpu = s->vgpu; 888 struct intel_gvt *gvt = vgpu->gvt; 889 u32 ctx_sr_ctl; 890 891 if (offset + 4 > gvt->device_info.mmio_size) { 892 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 893 cmd, offset); 894 return -EFAULT; 895 } 896 897 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 898 gvt_vgpu_err("%s access to non-render register (%x)\n", 899 cmd, offset); 900 return -EBADRQC; 901 } 902 903 if (is_shadowed_mmio(offset)) { 904 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 905 return 0; 906 } 907 908 if (is_mocs_mmio(offset) && 909 mocs_cmd_reg_handler(s, offset, index)) 910 return -EINVAL; 911 912 if (is_force_nonpriv_mmio(offset) && 913 force_nonpriv_reg_handler(s, offset, index, cmd)) 914 return -EPERM; 915 916 if (offset == i915_mmio_reg_offset(DERRMR) || 917 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 918 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 919 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 920 } 921 922 /* TODO 923 * In order to let workload with inhibit context to generate 924 * correct image data into memory, vregs values will be loaded to 925 * hw via LRIs in the workload with inhibit context. But as 926 * indirect context is loaded prior to LRIs in workload, we don't 927 * want reg values specified in indirect context overwritten by 928 * LRIs in workloads. So, when scanning an indirect context, we 929 * update reg values in it into vregs, so LRIs in workload with 930 * inhibit context will restore with correct values 931 */ 932 if (IS_GEN(s->engine->i915, 9) && 933 intel_gvt_mmio_is_in_ctx(gvt, offset) && 934 !strncmp(cmd, "lri", 3)) { 935 intel_gvt_hypervisor_read_gpa(s->vgpu, 936 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 937 /* check inhibit context */ 938 if (ctx_sr_ctl & 1) { 939 u32 data = cmd_val(s, index + 1); 940 941 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 942 intel_vgpu_mask_mmio_write(vgpu, 943 offset, &data, 4); 944 else 945 vgpu_vreg(vgpu, offset) = data; 946 } 947 } 948 949 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 950 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 951 return 0; 952 } 953 954 #define cmd_reg(s, i) \ 955 (cmd_val(s, i) & GENMASK(22, 2)) 956 957 #define cmd_reg_inhibit(s, i) \ 958 (cmd_val(s, i) & GENMASK(22, 18)) 959 960 #define cmd_gma(s, i) \ 961 (cmd_val(s, i) & GENMASK(31, 2)) 962 963 #define cmd_gma_hi(s, i) \ 964 (cmd_val(s, i) & GENMASK(15, 0)) 965 966 static int cmd_handler_lri(struct parser_exec_state *s) 967 { 968 int i, ret = 0; 969 int cmd_len = cmd_length(s); 970 u32 valid_len = CMD_LEN(1); 971 972 /* 973 * Official intel docs are somewhat sloppy , check the definition of 974 * MI_LOAD_REGISTER_IMM. 975 */ 976 #define MAX_VALID_LEN 127 977 if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) { 978 gvt_err("len is not valid: len=%u valid_len=%u\n", 979 cmd_len, valid_len); 980 return -EFAULT; 981 } 982 983 for (i = 1; i < cmd_len; i += 2) { 984 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 985 if (s->engine->id == BCS0 && 986 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 987 ret |= 0; 988 else 989 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 990 } 991 if (ret) 992 break; 993 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 994 if (ret) 995 break; 996 } 997 return ret; 998 } 999 1000 static int cmd_handler_lrr(struct parser_exec_state *s) 1001 { 1002 int i, ret = 0; 1003 int cmd_len = cmd_length(s); 1004 1005 for (i = 1; i < cmd_len; i += 2) { 1006 if (IS_BROADWELL(s->engine->i915)) 1007 ret |= ((cmd_reg_inhibit(s, i) || 1008 (cmd_reg_inhibit(s, i + 1)))) ? 1009 -EBADRQC : 0; 1010 if (ret) 1011 break; 1012 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1013 if (ret) 1014 break; 1015 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1016 if (ret) 1017 break; 1018 } 1019 return ret; 1020 } 1021 1022 static inline int cmd_address_audit(struct parser_exec_state *s, 1023 unsigned long guest_gma, int op_size, bool index_mode); 1024 1025 static int cmd_handler_lrm(struct parser_exec_state *s) 1026 { 1027 struct intel_gvt *gvt = s->vgpu->gvt; 1028 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1029 unsigned long gma; 1030 int i, ret = 0; 1031 int cmd_len = cmd_length(s); 1032 1033 for (i = 1; i < cmd_len;) { 1034 if (IS_BROADWELL(s->engine->i915)) 1035 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1036 if (ret) 1037 break; 1038 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1039 if (ret) 1040 break; 1041 if (cmd_val(s, 0) & (1 << 22)) { 1042 gma = cmd_gma(s, i + 1); 1043 if (gmadr_bytes == 8) 1044 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1045 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1046 if (ret) 1047 break; 1048 } 1049 i += gmadr_dw_number(s) + 1; 1050 } 1051 return ret; 1052 } 1053 1054 static int cmd_handler_srm(struct parser_exec_state *s) 1055 { 1056 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1057 unsigned long gma; 1058 int i, ret = 0; 1059 int cmd_len = cmd_length(s); 1060 1061 for (i = 1; i < cmd_len;) { 1062 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1063 if (ret) 1064 break; 1065 if (cmd_val(s, 0) & (1 << 22)) { 1066 gma = cmd_gma(s, i + 1); 1067 if (gmadr_bytes == 8) 1068 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1069 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1070 if (ret) 1071 break; 1072 } 1073 i += gmadr_dw_number(s) + 1; 1074 } 1075 return ret; 1076 } 1077 1078 struct cmd_interrupt_event { 1079 int pipe_control_notify; 1080 int mi_flush_dw; 1081 int mi_user_interrupt; 1082 }; 1083 1084 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1085 [RCS0] = { 1086 .pipe_control_notify = RCS_PIPE_CONTROL, 1087 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1088 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1089 }, 1090 [BCS0] = { 1091 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1092 .mi_flush_dw = BCS_MI_FLUSH_DW, 1093 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1094 }, 1095 [VCS0] = { 1096 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1097 .mi_flush_dw = VCS_MI_FLUSH_DW, 1098 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1099 }, 1100 [VCS1] = { 1101 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1102 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1103 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1104 }, 1105 [VECS0] = { 1106 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1107 .mi_flush_dw = VECS_MI_FLUSH_DW, 1108 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1109 }, 1110 }; 1111 1112 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1113 { 1114 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1115 unsigned long gma; 1116 bool index_mode = false; 1117 unsigned int post_sync; 1118 int ret = 0; 1119 u32 hws_pga, val; 1120 1121 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1122 1123 /* LRI post sync */ 1124 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1125 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1126 /* post sync */ 1127 else if (post_sync) { 1128 if (post_sync == 2) 1129 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1130 else if (post_sync == 3) 1131 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1132 else if (post_sync == 1) { 1133 /* check ggtt*/ 1134 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1135 gma = cmd_val(s, 2) & GENMASK(31, 3); 1136 if (gmadr_bytes == 8) 1137 gma |= (cmd_gma_hi(s, 3)) << 32; 1138 /* Store Data Index */ 1139 if (cmd_val(s, 1) & (1 << 21)) 1140 index_mode = true; 1141 ret |= cmd_address_audit(s, gma, sizeof(u64), 1142 index_mode); 1143 if (ret) 1144 return ret; 1145 if (index_mode) { 1146 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1147 gma = hws_pga + gma; 1148 patch_value(s, cmd_ptr(s, 2), gma); 1149 val = cmd_val(s, 1) & (~(1 << 21)); 1150 patch_value(s, cmd_ptr(s, 1), val); 1151 } 1152 } 1153 } 1154 } 1155 1156 if (ret) 1157 return ret; 1158 1159 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1160 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1161 s->workload->pending_events); 1162 return 0; 1163 } 1164 1165 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1166 { 1167 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1168 s->workload->pending_events); 1169 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1170 return 0; 1171 } 1172 1173 static int cmd_advance_default(struct parser_exec_state *s) 1174 { 1175 return ip_gma_advance(s, cmd_length(s)); 1176 } 1177 1178 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1179 { 1180 int ret; 1181 1182 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1183 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1184 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1185 s->buf_addr_type = s->saved_buf_addr_type; 1186 } else { 1187 s->buf_type = RING_BUFFER_INSTRUCTION; 1188 s->buf_addr_type = GTT_BUFFER; 1189 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1190 s->ret_ip_gma_ring -= s->ring_size; 1191 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1192 } 1193 return ret; 1194 } 1195 1196 struct mi_display_flip_command_info { 1197 int pipe; 1198 int plane; 1199 int event; 1200 i915_reg_t stride_reg; 1201 i915_reg_t ctrl_reg; 1202 i915_reg_t surf_reg; 1203 u64 stride_val; 1204 u64 tile_val; 1205 u64 surf_val; 1206 bool async_flip; 1207 }; 1208 1209 struct plane_code_mapping { 1210 int pipe; 1211 int plane; 1212 int event; 1213 }; 1214 1215 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1216 struct mi_display_flip_command_info *info) 1217 { 1218 struct drm_i915_private *dev_priv = s->engine->i915; 1219 struct plane_code_mapping gen8_plane_code[] = { 1220 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1221 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1222 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1223 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1224 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1225 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1226 }; 1227 u32 dword0, dword1, dword2; 1228 u32 v; 1229 1230 dword0 = cmd_val(s, 0); 1231 dword1 = cmd_val(s, 1); 1232 dword2 = cmd_val(s, 2); 1233 1234 v = (dword0 & GENMASK(21, 19)) >> 19; 1235 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1236 return -EBADRQC; 1237 1238 info->pipe = gen8_plane_code[v].pipe; 1239 info->plane = gen8_plane_code[v].plane; 1240 info->event = gen8_plane_code[v].event; 1241 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1242 info->tile_val = (dword1 & 0x1); 1243 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1244 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1245 1246 if (info->plane == PLANE_A) { 1247 info->ctrl_reg = DSPCNTR(info->pipe); 1248 info->stride_reg = DSPSTRIDE(info->pipe); 1249 info->surf_reg = DSPSURF(info->pipe); 1250 } else if (info->plane == PLANE_B) { 1251 info->ctrl_reg = SPRCTL(info->pipe); 1252 info->stride_reg = SPRSTRIDE(info->pipe); 1253 info->surf_reg = SPRSURF(info->pipe); 1254 } else { 1255 drm_WARN_ON(&dev_priv->drm, 1); 1256 return -EBADRQC; 1257 } 1258 return 0; 1259 } 1260 1261 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1262 struct mi_display_flip_command_info *info) 1263 { 1264 struct drm_i915_private *dev_priv = s->engine->i915; 1265 struct intel_vgpu *vgpu = s->vgpu; 1266 u32 dword0 = cmd_val(s, 0); 1267 u32 dword1 = cmd_val(s, 1); 1268 u32 dword2 = cmd_val(s, 2); 1269 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1270 1271 info->plane = PRIMARY_PLANE; 1272 1273 switch (plane) { 1274 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1275 info->pipe = PIPE_A; 1276 info->event = PRIMARY_A_FLIP_DONE; 1277 break; 1278 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1279 info->pipe = PIPE_B; 1280 info->event = PRIMARY_B_FLIP_DONE; 1281 break; 1282 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1283 info->pipe = PIPE_C; 1284 info->event = PRIMARY_C_FLIP_DONE; 1285 break; 1286 1287 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1288 info->pipe = PIPE_A; 1289 info->event = SPRITE_A_FLIP_DONE; 1290 info->plane = SPRITE_PLANE; 1291 break; 1292 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1293 info->pipe = PIPE_B; 1294 info->event = SPRITE_B_FLIP_DONE; 1295 info->plane = SPRITE_PLANE; 1296 break; 1297 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1298 info->pipe = PIPE_C; 1299 info->event = SPRITE_C_FLIP_DONE; 1300 info->plane = SPRITE_PLANE; 1301 break; 1302 1303 default: 1304 gvt_vgpu_err("unknown plane code %d\n", plane); 1305 return -EBADRQC; 1306 } 1307 1308 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1309 info->tile_val = (dword1 & GENMASK(2, 0)); 1310 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1311 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1312 1313 info->ctrl_reg = DSPCNTR(info->pipe); 1314 info->stride_reg = DSPSTRIDE(info->pipe); 1315 info->surf_reg = DSPSURF(info->pipe); 1316 1317 return 0; 1318 } 1319 1320 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1321 struct mi_display_flip_command_info *info) 1322 { 1323 u32 stride, tile; 1324 1325 if (!info->async_flip) 1326 return 0; 1327 1328 if (INTEL_GEN(s->engine->i915) >= 9) { 1329 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1330 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1331 GENMASK(12, 10)) >> 10; 1332 } else { 1333 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1334 GENMASK(15, 6)) >> 6; 1335 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1336 } 1337 1338 if (stride != info->stride_val) 1339 gvt_dbg_cmd("cannot change stride during async flip\n"); 1340 1341 if (tile != info->tile_val) 1342 gvt_dbg_cmd("cannot change tile during async flip\n"); 1343 1344 return 0; 1345 } 1346 1347 static int gen8_update_plane_mmio_from_mi_display_flip( 1348 struct parser_exec_state *s, 1349 struct mi_display_flip_command_info *info) 1350 { 1351 struct drm_i915_private *dev_priv = s->engine->i915; 1352 struct intel_vgpu *vgpu = s->vgpu; 1353 1354 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1355 info->surf_val << 12); 1356 if (INTEL_GEN(dev_priv) >= 9) { 1357 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1358 info->stride_val); 1359 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1360 info->tile_val << 10); 1361 } else { 1362 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1363 info->stride_val << 6); 1364 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1365 info->tile_val << 10); 1366 } 1367 1368 if (info->plane == PLANE_PRIMARY) 1369 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1370 1371 if (info->async_flip) 1372 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1373 else 1374 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1375 1376 return 0; 1377 } 1378 1379 static int decode_mi_display_flip(struct parser_exec_state *s, 1380 struct mi_display_flip_command_info *info) 1381 { 1382 if (IS_BROADWELL(s->engine->i915)) 1383 return gen8_decode_mi_display_flip(s, info); 1384 if (INTEL_GEN(s->engine->i915) >= 9) 1385 return skl_decode_mi_display_flip(s, info); 1386 1387 return -ENODEV; 1388 } 1389 1390 static int check_mi_display_flip(struct parser_exec_state *s, 1391 struct mi_display_flip_command_info *info) 1392 { 1393 return gen8_check_mi_display_flip(s, info); 1394 } 1395 1396 static int update_plane_mmio_from_mi_display_flip( 1397 struct parser_exec_state *s, 1398 struct mi_display_flip_command_info *info) 1399 { 1400 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1401 } 1402 1403 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1404 { 1405 struct mi_display_flip_command_info info; 1406 struct intel_vgpu *vgpu = s->vgpu; 1407 int ret; 1408 int i; 1409 int len = cmd_length(s); 1410 u32 valid_len = CMD_LEN(1); 1411 1412 /* Flip Type == Stereo 3D Flip */ 1413 if (DWORD_FIELD(2, 1, 0) == 2) 1414 valid_len++; 1415 ret = gvt_check_valid_cmd_length(cmd_length(s), 1416 valid_len); 1417 if (ret) 1418 return ret; 1419 1420 ret = decode_mi_display_flip(s, &info); 1421 if (ret) { 1422 gvt_vgpu_err("fail to decode MI display flip command\n"); 1423 return ret; 1424 } 1425 1426 ret = check_mi_display_flip(s, &info); 1427 if (ret) { 1428 gvt_vgpu_err("invalid MI display flip command\n"); 1429 return ret; 1430 } 1431 1432 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1433 if (ret) { 1434 gvt_vgpu_err("fail to update plane mmio\n"); 1435 return ret; 1436 } 1437 1438 for (i = 0; i < len; i++) 1439 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1440 return 0; 1441 } 1442 1443 static bool is_wait_for_flip_pending(u32 cmd) 1444 { 1445 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1446 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1447 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1448 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1449 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1450 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1451 } 1452 1453 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1454 { 1455 u32 cmd = cmd_val(s, 0); 1456 1457 if (!is_wait_for_flip_pending(cmd)) 1458 return 0; 1459 1460 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1461 return 0; 1462 } 1463 1464 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1465 { 1466 unsigned long addr; 1467 unsigned long gma_high, gma_low; 1468 struct intel_vgpu *vgpu = s->vgpu; 1469 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1470 1471 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1472 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1473 return INTEL_GVT_INVALID_ADDR; 1474 } 1475 1476 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1477 if (gmadr_bytes == 4) { 1478 addr = gma_low; 1479 } else { 1480 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1481 addr = (((unsigned long)gma_high) << 32) | gma_low; 1482 } 1483 return addr; 1484 } 1485 1486 static inline int cmd_address_audit(struct parser_exec_state *s, 1487 unsigned long guest_gma, int op_size, bool index_mode) 1488 { 1489 struct intel_vgpu *vgpu = s->vgpu; 1490 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1491 int i; 1492 int ret; 1493 1494 if (op_size > max_surface_size) { 1495 gvt_vgpu_err("command address audit fail name %s\n", 1496 s->info->name); 1497 return -EFAULT; 1498 } 1499 1500 if (index_mode) { 1501 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1502 ret = -EFAULT; 1503 goto err; 1504 } 1505 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1506 ret = -EFAULT; 1507 goto err; 1508 } 1509 1510 return 0; 1511 1512 err: 1513 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1514 s->info->name, guest_gma, op_size); 1515 1516 pr_err("cmd dump: "); 1517 for (i = 0; i < cmd_length(s); i++) { 1518 if (!(i % 4)) 1519 pr_err("\n%08x ", cmd_val(s, i)); 1520 else 1521 pr_err("%08x ", cmd_val(s, i)); 1522 } 1523 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1524 vgpu->id, 1525 vgpu_aperture_gmadr_base(vgpu), 1526 vgpu_aperture_gmadr_end(vgpu), 1527 vgpu_hidden_gmadr_base(vgpu), 1528 vgpu_hidden_gmadr_end(vgpu)); 1529 return ret; 1530 } 1531 1532 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1533 { 1534 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1535 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1536 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1537 unsigned long gma, gma_low, gma_high; 1538 u32 valid_len = CMD_LEN(2); 1539 int ret = 0; 1540 1541 /* check ppggt */ 1542 if (!(cmd_val(s, 0) & (1 << 22))) 1543 return 0; 1544 1545 /* check if QWORD */ 1546 if (DWORD_FIELD(0, 21, 21)) 1547 valid_len++; 1548 ret = gvt_check_valid_cmd_length(cmd_length(s), 1549 valid_len); 1550 if (ret) 1551 return ret; 1552 1553 gma = cmd_val(s, 2) & GENMASK(31, 2); 1554 1555 if (gmadr_bytes == 8) { 1556 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1557 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1558 gma = (gma_high << 32) | gma_low; 1559 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1560 } 1561 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1562 return ret; 1563 } 1564 1565 static inline int unexpected_cmd(struct parser_exec_state *s) 1566 { 1567 struct intel_vgpu *vgpu = s->vgpu; 1568 1569 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1570 1571 return -EBADRQC; 1572 } 1573 1574 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1575 { 1576 return unexpected_cmd(s); 1577 } 1578 1579 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1580 { 1581 return unexpected_cmd(s); 1582 } 1583 1584 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1585 { 1586 return unexpected_cmd(s); 1587 } 1588 1589 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1590 { 1591 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1592 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1593 sizeof(u32); 1594 unsigned long gma, gma_high; 1595 u32 valid_len = CMD_LEN(1); 1596 int ret = 0; 1597 1598 if (!(cmd_val(s, 0) & (1 << 22))) 1599 return ret; 1600 1601 /* check inline data */ 1602 if (cmd_val(s, 0) & BIT(18)) 1603 valid_len = CMD_LEN(9); 1604 ret = gvt_check_valid_cmd_length(cmd_length(s), 1605 valid_len); 1606 if (ret) 1607 return ret; 1608 1609 gma = cmd_val(s, 1) & GENMASK(31, 2); 1610 if (gmadr_bytes == 8) { 1611 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1612 gma = (gma_high << 32) | gma; 1613 } 1614 ret = cmd_address_audit(s, gma, op_size, false); 1615 return ret; 1616 } 1617 1618 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1619 { 1620 return unexpected_cmd(s); 1621 } 1622 1623 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1624 { 1625 return unexpected_cmd(s); 1626 } 1627 1628 static int cmd_handler_mi_conditional_batch_buffer_end( 1629 struct parser_exec_state *s) 1630 { 1631 return unexpected_cmd(s); 1632 } 1633 1634 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1635 { 1636 return unexpected_cmd(s); 1637 } 1638 1639 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1640 { 1641 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1642 unsigned long gma; 1643 bool index_mode = false; 1644 int ret = 0; 1645 u32 hws_pga, val; 1646 u32 valid_len = CMD_LEN(2); 1647 1648 ret = gvt_check_valid_cmd_length(cmd_length(s), 1649 valid_len); 1650 if (ret) { 1651 /* Check again for Qword */ 1652 ret = gvt_check_valid_cmd_length(cmd_length(s), 1653 ++valid_len); 1654 return ret; 1655 } 1656 1657 /* Check post-sync and ppgtt bit */ 1658 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1659 gma = cmd_val(s, 1) & GENMASK(31, 3); 1660 if (gmadr_bytes == 8) 1661 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1662 /* Store Data Index */ 1663 if (cmd_val(s, 0) & (1 << 21)) 1664 index_mode = true; 1665 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1666 if (ret) 1667 return ret; 1668 if (index_mode) { 1669 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1670 gma = hws_pga + gma; 1671 patch_value(s, cmd_ptr(s, 1), gma); 1672 val = cmd_val(s, 0) & (~(1 << 21)); 1673 patch_value(s, cmd_ptr(s, 0), val); 1674 } 1675 } 1676 /* Check notify bit */ 1677 if ((cmd_val(s, 0) & (1 << 8))) 1678 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1679 s->workload->pending_events); 1680 return ret; 1681 } 1682 1683 static void addr_type_update_snb(struct parser_exec_state *s) 1684 { 1685 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1686 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1687 s->buf_addr_type = PPGTT_BUFFER; 1688 } 1689 } 1690 1691 1692 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1693 unsigned long gma, unsigned long end_gma, void *va) 1694 { 1695 unsigned long copy_len, offset; 1696 unsigned long len = 0; 1697 unsigned long gpa; 1698 1699 while (gma != end_gma) { 1700 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1701 if (gpa == INTEL_GVT_INVALID_ADDR) { 1702 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1703 return -EFAULT; 1704 } 1705 1706 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1707 1708 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1709 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1710 1711 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1712 1713 len += copy_len; 1714 gma += copy_len; 1715 } 1716 return len; 1717 } 1718 1719 1720 /* 1721 * Check whether a batch buffer needs to be scanned. Currently 1722 * the only criteria is based on privilege. 1723 */ 1724 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1725 { 1726 /* Decide privilege based on address space */ 1727 if (cmd_val(s, 0) & BIT(8) && 1728 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1729 return 0; 1730 1731 return 1; 1732 } 1733 1734 static const char *repr_addr_type(unsigned int type) 1735 { 1736 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1737 } 1738 1739 static int find_bb_size(struct parser_exec_state *s, 1740 unsigned long *bb_size, 1741 unsigned long *bb_end_cmd_offset) 1742 { 1743 unsigned long gma = 0; 1744 const struct cmd_info *info; 1745 u32 cmd_len = 0; 1746 bool bb_end = false; 1747 struct intel_vgpu *vgpu = s->vgpu; 1748 u32 cmd; 1749 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1750 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1751 1752 *bb_size = 0; 1753 *bb_end_cmd_offset = 0; 1754 1755 /* get the start gm address of the batch buffer */ 1756 gma = get_gma_bb_from_cmd(s, 1); 1757 if (gma == INTEL_GVT_INVALID_ADDR) 1758 return -EFAULT; 1759 1760 cmd = cmd_val(s, 0); 1761 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1762 if (info == NULL) { 1763 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1764 cmd, get_opcode(cmd, s->engine), 1765 repr_addr_type(s->buf_addr_type), 1766 s->engine->name, s->workload); 1767 return -EBADRQC; 1768 } 1769 do { 1770 if (copy_gma_to_hva(s->vgpu, mm, 1771 gma, gma + 4, &cmd) < 0) 1772 return -EFAULT; 1773 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1774 if (info == NULL) { 1775 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1776 cmd, get_opcode(cmd, s->engine), 1777 repr_addr_type(s->buf_addr_type), 1778 s->engine->name, s->workload); 1779 return -EBADRQC; 1780 } 1781 1782 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1783 bb_end = true; 1784 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1785 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1786 /* chained batch buffer */ 1787 bb_end = true; 1788 } 1789 1790 if (bb_end) 1791 *bb_end_cmd_offset = *bb_size; 1792 1793 cmd_len = get_cmd_length(info, cmd) << 2; 1794 *bb_size += cmd_len; 1795 gma += cmd_len; 1796 } while (!bb_end); 1797 1798 return 0; 1799 } 1800 1801 static int audit_bb_end(struct parser_exec_state *s, void *va) 1802 { 1803 struct intel_vgpu *vgpu = s->vgpu; 1804 u32 cmd = *(u32 *)va; 1805 const struct cmd_info *info; 1806 1807 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1808 if (info == NULL) { 1809 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1810 cmd, get_opcode(cmd, s->engine), 1811 repr_addr_type(s->buf_addr_type), 1812 s->engine->name, s->workload); 1813 return -EBADRQC; 1814 } 1815 1816 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1817 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1818 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1819 return 0; 1820 1821 return -EBADRQC; 1822 } 1823 1824 static int perform_bb_shadow(struct parser_exec_state *s) 1825 { 1826 struct intel_vgpu *vgpu = s->vgpu; 1827 struct intel_vgpu_shadow_bb *bb; 1828 unsigned long gma = 0; 1829 unsigned long bb_size; 1830 unsigned long bb_end_cmd_offset; 1831 int ret = 0; 1832 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1833 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1834 unsigned long start_offset = 0; 1835 1836 /* get the start gm address of the batch buffer */ 1837 gma = get_gma_bb_from_cmd(s, 1); 1838 if (gma == INTEL_GVT_INVALID_ADDR) 1839 return -EFAULT; 1840 1841 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1842 if (ret) 1843 return ret; 1844 1845 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1846 if (!bb) 1847 return -ENOMEM; 1848 1849 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1850 1851 /* the start_offset stores the batch buffer's start gma's 1852 * offset relative to page boundary. so for non-privileged batch 1853 * buffer, the shadowed gem object holds exactly the same page 1854 * layout as original gem object. This is for the convience of 1855 * replacing the whole non-privilged batch buffer page to this 1856 * shadowed one in PPGTT at the same gma address. (this replacing 1857 * action is not implemented yet now, but may be necessary in 1858 * future). 1859 * for prileged batch buffer, we just change start gma address to 1860 * that of shadowed page. 1861 */ 1862 if (bb->ppgtt) 1863 start_offset = gma & ~I915_GTT_PAGE_MASK; 1864 1865 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1866 round_up(bb_size + start_offset, 1867 PAGE_SIZE)); 1868 if (IS_ERR(bb->obj)) { 1869 ret = PTR_ERR(bb->obj); 1870 goto err_free_bb; 1871 } 1872 1873 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush); 1874 if (ret) 1875 goto err_free_obj; 1876 1877 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1878 if (IS_ERR(bb->va)) { 1879 ret = PTR_ERR(bb->va); 1880 goto err_finish_shmem_access; 1881 } 1882 1883 if (bb->clflush & CLFLUSH_BEFORE) { 1884 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1885 bb->clflush &= ~CLFLUSH_BEFORE; 1886 } 1887 1888 ret = copy_gma_to_hva(s->vgpu, mm, 1889 gma, gma + bb_size, 1890 bb->va + start_offset); 1891 if (ret < 0) { 1892 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1893 ret = -EFAULT; 1894 goto err_unmap; 1895 } 1896 1897 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1898 if (ret) 1899 goto err_unmap; 1900 1901 INIT_LIST_HEAD(&bb->list); 1902 list_add(&bb->list, &s->workload->shadow_bb); 1903 1904 bb->accessing = true; 1905 bb->bb_start_cmd_va = s->ip_va; 1906 1907 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1908 bb->bb_offset = s->ip_va - s->rb_va; 1909 else 1910 bb->bb_offset = 0; 1911 1912 /* 1913 * ip_va saves the virtual address of the shadow batch buffer, while 1914 * ip_gma saves the graphics address of the original batch buffer. 1915 * As the shadow batch buffer is just a copy from the originial one, 1916 * it should be right to use shadow batch buffer'va and original batch 1917 * buffer's gma in pair. After all, we don't want to pin the shadow 1918 * buffer here (too early). 1919 */ 1920 s->ip_va = bb->va + start_offset; 1921 s->ip_gma = gma; 1922 return 0; 1923 err_unmap: 1924 i915_gem_object_unpin_map(bb->obj); 1925 err_finish_shmem_access: 1926 i915_gem_object_finish_access(bb->obj); 1927 err_free_obj: 1928 i915_gem_object_put(bb->obj); 1929 err_free_bb: 1930 kfree(bb); 1931 return ret; 1932 } 1933 1934 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1935 { 1936 bool second_level; 1937 int ret = 0; 1938 struct intel_vgpu *vgpu = s->vgpu; 1939 1940 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1941 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1942 return -EFAULT; 1943 } 1944 1945 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1946 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1947 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1948 return -EFAULT; 1949 } 1950 1951 s->saved_buf_addr_type = s->buf_addr_type; 1952 addr_type_update_snb(s); 1953 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1954 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1955 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1956 } else if (second_level) { 1957 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1958 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1959 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1960 } 1961 1962 if (batch_buffer_needs_scan(s)) { 1963 ret = perform_bb_shadow(s); 1964 if (ret < 0) 1965 gvt_vgpu_err("invalid shadow batch buffer\n"); 1966 } else { 1967 /* emulate a batch buffer end to do return right */ 1968 ret = cmd_handler_mi_batch_buffer_end(s); 1969 if (ret < 0) 1970 return ret; 1971 } 1972 return ret; 1973 } 1974 1975 static int mi_noop_index; 1976 1977 static const struct cmd_info cmd_info[] = { 1978 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1979 1980 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1981 0, 1, NULL}, 1982 1983 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1984 0, 1, cmd_handler_mi_user_interrupt}, 1985 1986 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1987 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1988 1989 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1990 1991 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1992 NULL}, 1993 1994 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1995 NULL}, 1996 1997 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1998 NULL}, 1999 2000 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2001 NULL}, 2002 2003 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2004 D_ALL, 0, 1, NULL}, 2005 2006 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2007 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2008 cmd_handler_mi_batch_buffer_end}, 2009 2010 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2011 0, 1, NULL}, 2012 2013 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2014 NULL}, 2015 2016 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2017 D_ALL, 0, 1, NULL}, 2018 2019 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2020 NULL}, 2021 2022 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2023 NULL}, 2024 2025 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2026 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2027 2028 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2029 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2030 2031 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2032 2033 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2034 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2035 2036 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2037 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2038 NULL, CMD_LEN(0)}, 2039 2040 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2041 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2042 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2043 2044 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2045 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2046 2047 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2048 0, 8, cmd_handler_mi_store_data_index}, 2049 2050 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2051 D_ALL, 0, 8, cmd_handler_lri}, 2052 2053 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2054 cmd_handler_mi_update_gtt}, 2055 2056 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2057 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2058 cmd_handler_srm, CMD_LEN(2)}, 2059 2060 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2061 cmd_handler_mi_flush_dw}, 2062 2063 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2064 10, cmd_handler_mi_clflush}, 2065 2066 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2067 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2068 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2069 2070 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2071 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2072 cmd_handler_lrm, CMD_LEN(2)}, 2073 2074 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2075 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2076 cmd_handler_lrr, CMD_LEN(1)}, 2077 2078 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2079 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2080 8, NULL, CMD_LEN(2)}, 2081 2082 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2083 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2084 2085 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2086 ADDR_FIX_1(2), 8, NULL}, 2087 2088 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2089 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2090 2091 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2092 8, cmd_handler_mi_op_2f}, 2093 2094 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2095 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2096 cmd_handler_mi_batch_buffer_start}, 2097 2098 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2099 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2100 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2101 2102 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2103 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2104 2105 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2106 ADDR_FIX_2(4, 7), 8, NULL}, 2107 2108 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2109 0, 8, NULL}, 2110 2111 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2112 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2113 2114 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2115 2116 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2117 0, 8, NULL}, 2118 2119 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2120 ADDR_FIX_1(3), 8, NULL}, 2121 2122 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2123 D_ALL, 0, 8, NULL}, 2124 2125 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2126 ADDR_FIX_1(4), 8, NULL}, 2127 2128 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2129 ADDR_FIX_2(4, 5), 8, NULL}, 2130 2131 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2132 ADDR_FIX_1(4), 8, NULL}, 2133 2134 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2135 ADDR_FIX_2(4, 7), 8, NULL}, 2136 2137 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2138 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2139 2140 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2141 2142 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2143 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2144 2145 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2146 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2147 2148 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2149 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2150 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2151 2152 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2153 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2154 2155 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2156 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2157 2158 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2159 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2160 2161 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2162 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2163 2164 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2165 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2166 2167 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2168 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2169 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2170 2171 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2172 ADDR_FIX_2(4, 5), 8, NULL}, 2173 2174 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2175 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2176 2177 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2178 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2179 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2180 2181 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2182 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2183 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2184 2185 {"3DSTATE_BLEND_STATE_POINTERS", 2186 OP_3DSTATE_BLEND_STATE_POINTERS, 2187 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2188 2189 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2190 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2191 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2192 2193 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2194 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2195 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2196 2197 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2198 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2199 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2200 2201 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2202 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2203 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2204 2205 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2206 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2207 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2208 2209 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2210 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2211 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2212 2213 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2214 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2215 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2216 2217 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2218 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2219 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2220 2221 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2222 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2223 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2224 2225 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2226 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2227 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2228 2229 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2230 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2231 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2232 2233 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2234 0, 8, NULL}, 2235 2236 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2237 0, 8, NULL}, 2238 2239 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2240 0, 8, NULL}, 2241 2242 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2243 0, 8, NULL}, 2244 2245 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2246 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2253 2254 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2255 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2256 2257 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2258 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2261 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2262 2263 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2264 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2265 2266 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2282 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2286 2287 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2289 2290 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2291 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2292 2293 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2294 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2295 2296 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2297 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2298 2299 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2300 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2301 2302 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2304 2305 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2306 D_BDW_PLUS, 0, 8, NULL}, 2307 2308 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2309 NULL}, 2310 2311 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2312 D_BDW_PLUS, 0, 8, NULL}, 2313 2314 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2315 D_BDW_PLUS, 0, 8, NULL}, 2316 2317 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2318 8, NULL}, 2319 2320 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2321 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2322 2323 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2324 8, NULL}, 2325 2326 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2327 NULL}, 2328 2329 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2330 NULL}, 2331 2332 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2333 NULL}, 2334 2335 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2336 D_BDW_PLUS, 0, 8, NULL}, 2337 2338 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2339 R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2342 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2343 2344 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2345 R_RCS, D_ALL, 0, 1, NULL}, 2346 2347 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2348 2349 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2350 R_RCS, D_ALL, 0, 8, NULL}, 2351 2352 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2353 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2354 2355 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2356 2357 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2358 2359 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2360 2361 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2362 D_BDW_PLUS, 0, 8, NULL}, 2363 2364 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2365 D_BDW_PLUS, 0, 8, NULL}, 2366 2367 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2368 D_ALL, 0, 8, NULL}, 2369 2370 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2371 D_BDW_PLUS, 0, 8, NULL}, 2372 2373 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2374 D_BDW_PLUS, 0, 8, NULL}, 2375 2376 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2377 2378 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2379 2380 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2381 2382 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2383 D_ALL, 0, 8, NULL}, 2384 2385 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2386 2387 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2388 2389 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2390 R_RCS, D_ALL, 0, 8, NULL}, 2391 2392 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2393 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2394 2395 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2396 0, 8, NULL}, 2397 2398 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2399 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2400 2401 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2402 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2403 2404 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2405 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2406 2407 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2408 D_ALL, 0, 8, NULL}, 2409 2410 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2411 D_ALL, 0, 8, NULL}, 2412 2413 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2414 D_ALL, 0, 8, NULL}, 2415 2416 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2417 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2418 2419 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2420 D_BDW_PLUS, 0, 8, NULL}, 2421 2422 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2423 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2424 2425 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2426 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2427 2428 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2429 R_RCS, D_ALL, 0, 8, NULL}, 2430 2431 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2432 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2433 2434 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2435 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2436 2437 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2438 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2439 2440 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2441 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2444 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2445 2446 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2447 R_RCS, D_ALL, 0, 8, NULL}, 2448 2449 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2450 D_ALL, 0, 9, NULL}, 2451 2452 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2453 ADDR_FIX_2(2, 4), 8, NULL}, 2454 2455 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2456 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2457 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2458 2459 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2460 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2461 2462 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2463 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2464 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2465 2466 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2467 D_BDW_PLUS, 0, 8, NULL}, 2468 2469 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2470 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2471 2472 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2473 2474 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2475 1, NULL}, 2476 2477 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2478 ADDR_FIX_1(1), 8, NULL}, 2479 2480 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2481 2482 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2483 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2484 2485 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2486 ADDR_FIX_1(1), 8, NULL}, 2487 2488 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2489 2490 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2491 2492 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2493 0, 8, NULL}, 2494 2495 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2496 D_SKL_PLUS, 0, 8, NULL}, 2497 2498 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2499 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2500 2501 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2502 0, 16, NULL}, 2503 2504 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2505 0, 16, NULL}, 2506 2507 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2508 0, 16, NULL}, 2509 2510 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2511 2512 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2513 0, 16, NULL}, 2514 2515 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2516 0, 16, NULL}, 2517 2518 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2519 0, 16, NULL}, 2520 2521 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2522 0, 8, NULL}, 2523 2524 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2525 NULL}, 2526 2527 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2528 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2529 2530 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2531 R_VCS, D_ALL, 0, 12, NULL}, 2532 2533 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2534 R_VCS, D_ALL, 0, 12, NULL}, 2535 2536 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2537 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2538 2539 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2540 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2541 2542 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2543 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2544 2545 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2546 2547 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2548 R_VCS, D_ALL, 0, 12, NULL}, 2549 2550 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2551 R_VCS, D_ALL, 0, 12, NULL}, 2552 2553 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2554 R_VCS, D_ALL, 0, 12, NULL}, 2555 2556 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2557 R_VCS, D_ALL, 0, 12, NULL}, 2558 2559 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2560 R_VCS, D_ALL, 0, 12, NULL}, 2561 2562 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2563 R_VCS, D_ALL, 0, 12, NULL}, 2564 2565 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2566 R_VCS, D_ALL, 0, 6, NULL}, 2567 2568 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2569 R_VCS, D_ALL, 0, 12, NULL}, 2570 2571 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2572 R_VCS, D_ALL, 0, 12, NULL}, 2573 2574 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2575 R_VCS, D_ALL, 0, 12, NULL}, 2576 2577 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2578 R_VCS, D_ALL, 0, 12, NULL}, 2579 2580 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2581 R_VCS, D_ALL, 0, 12, NULL}, 2582 2583 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2584 R_VCS, D_ALL, 0, 12, NULL}, 2585 2586 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2587 R_VCS, D_ALL, 0, 12, NULL}, 2588 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2589 R_VCS, D_ALL, 0, 12, NULL}, 2590 2591 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2592 R_VCS, D_ALL, 0, 12, NULL}, 2593 2594 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2595 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2596 2597 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2598 R_VCS, D_ALL, 0, 12, NULL}, 2599 2600 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2601 R_VCS, D_ALL, 0, 12, NULL}, 2602 2603 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2604 R_VCS, D_ALL, 0, 12, NULL}, 2605 2606 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2607 R_VCS, D_ALL, 0, 12, NULL}, 2608 2609 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2610 R_VCS, D_ALL, 0, 12, NULL}, 2611 2612 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2613 R_VCS, D_ALL, 0, 12, NULL}, 2614 2615 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2616 R_VCS, D_ALL, 0, 12, NULL}, 2617 2618 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2619 R_VCS, D_ALL, 0, 12, NULL}, 2620 2621 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2622 R_VCS, D_ALL, 0, 12, NULL}, 2623 2624 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2625 R_VCS, D_ALL, 0, 12, NULL}, 2626 2627 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2628 R_VCS, D_ALL, 0, 12, NULL}, 2629 2630 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2631 0, 16, NULL}, 2632 2633 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2634 2635 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2636 2637 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 2646 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2647 2648 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2649 0, 12, NULL}, 2650 2651 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2652 0, 12, NULL}, 2653 }; 2654 2655 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2656 { 2657 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2658 } 2659 2660 /* call the cmd handler, and advance ip */ 2661 static int cmd_parser_exec(struct parser_exec_state *s) 2662 { 2663 struct intel_vgpu *vgpu = s->vgpu; 2664 const struct cmd_info *info; 2665 u32 cmd; 2666 int ret = 0; 2667 2668 cmd = cmd_val(s, 0); 2669 2670 /* fastpath for MI_NOOP */ 2671 if (cmd == MI_NOOP) 2672 info = &cmd_info[mi_noop_index]; 2673 else 2674 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2675 2676 if (info == NULL) { 2677 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2678 cmd, get_opcode(cmd, s->engine), 2679 repr_addr_type(s->buf_addr_type), 2680 s->engine->name, s->workload); 2681 return -EBADRQC; 2682 } 2683 2684 s->info = info; 2685 2686 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2687 cmd_length(s), s->buf_type, s->buf_addr_type, 2688 s->workload, info->name); 2689 2690 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2691 ret = gvt_check_valid_cmd_length(cmd_length(s), 2692 info->valid_len); 2693 if (ret) 2694 return ret; 2695 } 2696 2697 if (info->handler) { 2698 ret = info->handler(s); 2699 if (ret < 0) { 2700 gvt_vgpu_err("%s handler error\n", info->name); 2701 return ret; 2702 } 2703 } 2704 2705 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2706 ret = cmd_advance_default(s); 2707 if (ret) { 2708 gvt_vgpu_err("%s IP advance error\n", info->name); 2709 return ret; 2710 } 2711 } 2712 return 0; 2713 } 2714 2715 static inline bool gma_out_of_range(unsigned long gma, 2716 unsigned long gma_head, unsigned int gma_tail) 2717 { 2718 if (gma_tail >= gma_head) 2719 return (gma < gma_head) || (gma > gma_tail); 2720 else 2721 return (gma > gma_tail) && (gma < gma_head); 2722 } 2723 2724 /* Keep the consistent return type, e.g EBADRQC for unknown 2725 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2726 * works as the input of VM healthy status. 2727 */ 2728 static int command_scan(struct parser_exec_state *s, 2729 unsigned long rb_head, unsigned long rb_tail, 2730 unsigned long rb_start, unsigned long rb_len) 2731 { 2732 2733 unsigned long gma_head, gma_tail, gma_bottom; 2734 int ret = 0; 2735 struct intel_vgpu *vgpu = s->vgpu; 2736 2737 gma_head = rb_start + rb_head; 2738 gma_tail = rb_start + rb_tail; 2739 gma_bottom = rb_start + rb_len; 2740 2741 while (s->ip_gma != gma_tail) { 2742 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2743 if (!(s->ip_gma >= rb_start) || 2744 !(s->ip_gma < gma_bottom)) { 2745 gvt_vgpu_err("ip_gma %lx out of ring scope." 2746 "(base:0x%lx, bottom: 0x%lx)\n", 2747 s->ip_gma, rb_start, 2748 gma_bottom); 2749 parser_exec_state_dump(s); 2750 return -EFAULT; 2751 } 2752 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2753 gvt_vgpu_err("ip_gma %lx out of range." 2754 "base 0x%lx head 0x%lx tail 0x%lx\n", 2755 s->ip_gma, rb_start, 2756 rb_head, rb_tail); 2757 parser_exec_state_dump(s); 2758 break; 2759 } 2760 } 2761 ret = cmd_parser_exec(s); 2762 if (ret) { 2763 gvt_vgpu_err("cmd parser error\n"); 2764 parser_exec_state_dump(s); 2765 break; 2766 } 2767 } 2768 2769 return ret; 2770 } 2771 2772 static int scan_workload(struct intel_vgpu_workload *workload) 2773 { 2774 unsigned long gma_head, gma_tail, gma_bottom; 2775 struct parser_exec_state s; 2776 int ret = 0; 2777 2778 /* ring base is page aligned */ 2779 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2780 return -EINVAL; 2781 2782 gma_head = workload->rb_start + workload->rb_head; 2783 gma_tail = workload->rb_start + workload->rb_tail; 2784 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2785 2786 s.buf_type = RING_BUFFER_INSTRUCTION; 2787 s.buf_addr_type = GTT_BUFFER; 2788 s.vgpu = workload->vgpu; 2789 s.engine = workload->engine; 2790 s.ring_start = workload->rb_start; 2791 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2792 s.ring_head = gma_head; 2793 s.ring_tail = gma_tail; 2794 s.rb_va = workload->shadow_ring_buffer_va; 2795 s.workload = workload; 2796 s.is_ctx_wa = false; 2797 2798 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2799 return 0; 2800 2801 ret = ip_gma_set(&s, gma_head); 2802 if (ret) 2803 goto out; 2804 2805 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2806 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2807 2808 out: 2809 return ret; 2810 } 2811 2812 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2813 { 2814 2815 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2816 struct parser_exec_state s; 2817 int ret = 0; 2818 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2819 struct intel_vgpu_workload, 2820 wa_ctx); 2821 2822 /* ring base is page aligned */ 2823 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2824 I915_GTT_PAGE_SIZE))) 2825 return -EINVAL; 2826 2827 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2828 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2829 PAGE_SIZE); 2830 gma_head = wa_ctx->indirect_ctx.guest_gma; 2831 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2832 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2833 2834 s.buf_type = RING_BUFFER_INSTRUCTION; 2835 s.buf_addr_type = GTT_BUFFER; 2836 s.vgpu = workload->vgpu; 2837 s.engine = workload->engine; 2838 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2839 s.ring_size = ring_size; 2840 s.ring_head = gma_head; 2841 s.ring_tail = gma_tail; 2842 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2843 s.workload = workload; 2844 s.is_ctx_wa = true; 2845 2846 ret = ip_gma_set(&s, gma_head); 2847 if (ret) 2848 goto out; 2849 2850 ret = command_scan(&s, 0, ring_tail, 2851 wa_ctx->indirect_ctx.guest_gma, ring_size); 2852 out: 2853 return ret; 2854 } 2855 2856 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2857 { 2858 struct intel_vgpu *vgpu = workload->vgpu; 2859 struct intel_vgpu_submission *s = &vgpu->submission; 2860 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2861 void *shadow_ring_buffer_va; 2862 int ret; 2863 2864 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2865 2866 /* calculate workload ring buffer size */ 2867 workload->rb_len = (workload->rb_tail + guest_rb_size - 2868 workload->rb_head) % guest_rb_size; 2869 2870 gma_head = workload->rb_start + workload->rb_head; 2871 gma_tail = workload->rb_start + workload->rb_tail; 2872 gma_top = workload->rb_start + guest_rb_size; 2873 2874 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2875 void *p; 2876 2877 /* realloc the new ring buffer if needed */ 2878 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2879 workload->rb_len, GFP_KERNEL); 2880 if (!p) { 2881 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2882 return -ENOMEM; 2883 } 2884 s->ring_scan_buffer[workload->engine->id] = p; 2885 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2886 } 2887 2888 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2889 2890 /* get shadow ring buffer va */ 2891 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2892 2893 /* head > tail --> copy head <-> top */ 2894 if (gma_head > gma_tail) { 2895 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2896 gma_head, gma_top, shadow_ring_buffer_va); 2897 if (ret < 0) { 2898 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2899 return ret; 2900 } 2901 shadow_ring_buffer_va += ret; 2902 gma_head = workload->rb_start; 2903 } 2904 2905 /* copy head or start <-> tail */ 2906 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2907 shadow_ring_buffer_va); 2908 if (ret < 0) { 2909 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2910 return ret; 2911 } 2912 return 0; 2913 } 2914 2915 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2916 { 2917 int ret; 2918 struct intel_vgpu *vgpu = workload->vgpu; 2919 2920 ret = shadow_workload_ring_buffer(workload); 2921 if (ret) { 2922 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2923 return ret; 2924 } 2925 2926 ret = scan_workload(workload); 2927 if (ret) { 2928 gvt_vgpu_err("scan workload error\n"); 2929 return ret; 2930 } 2931 return 0; 2932 } 2933 2934 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2935 { 2936 int ctx_size = wa_ctx->indirect_ctx.size; 2937 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2938 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2939 struct intel_vgpu_workload, 2940 wa_ctx); 2941 struct intel_vgpu *vgpu = workload->vgpu; 2942 struct drm_i915_gem_object *obj; 2943 int ret = 0; 2944 void *map; 2945 2946 obj = i915_gem_object_create_shmem(workload->engine->i915, 2947 roundup(ctx_size + CACHELINE_BYTES, 2948 PAGE_SIZE)); 2949 if (IS_ERR(obj)) 2950 return PTR_ERR(obj); 2951 2952 /* get the va of the shadow batch buffer */ 2953 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2954 if (IS_ERR(map)) { 2955 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2956 ret = PTR_ERR(map); 2957 goto put_obj; 2958 } 2959 2960 i915_gem_object_lock(obj); 2961 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2962 i915_gem_object_unlock(obj); 2963 if (ret) { 2964 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2965 goto unmap_src; 2966 } 2967 2968 ret = copy_gma_to_hva(workload->vgpu, 2969 workload->vgpu->gtt.ggtt_mm, 2970 guest_gma, guest_gma + ctx_size, 2971 map); 2972 if (ret < 0) { 2973 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2974 goto unmap_src; 2975 } 2976 2977 wa_ctx->indirect_ctx.obj = obj; 2978 wa_ctx->indirect_ctx.shadow_va = map; 2979 return 0; 2980 2981 unmap_src: 2982 i915_gem_object_unpin_map(obj); 2983 put_obj: 2984 i915_gem_object_put(obj); 2985 return ret; 2986 } 2987 2988 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2989 { 2990 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 2991 unsigned char *bb_start_sva; 2992 2993 if (!wa_ctx->per_ctx.valid) 2994 return 0; 2995 2996 per_ctx_start[0] = 0x18800001; 2997 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2998 2999 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3000 wa_ctx->indirect_ctx.size; 3001 3002 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3003 3004 return 0; 3005 } 3006 3007 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3008 { 3009 int ret; 3010 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3011 struct intel_vgpu_workload, 3012 wa_ctx); 3013 struct intel_vgpu *vgpu = workload->vgpu; 3014 3015 if (wa_ctx->indirect_ctx.size == 0) 3016 return 0; 3017 3018 ret = shadow_indirect_ctx(wa_ctx); 3019 if (ret) { 3020 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3021 return ret; 3022 } 3023 3024 combine_wa_ctx(wa_ctx); 3025 3026 ret = scan_wa_ctx(wa_ctx); 3027 if (ret) { 3028 gvt_vgpu_err("scan wa ctx error\n"); 3029 return ret; 3030 } 3031 3032 return 0; 3033 } 3034 3035 static int init_cmd_table(struct intel_gvt *gvt) 3036 { 3037 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3038 int i; 3039 3040 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3041 struct cmd_entry *e; 3042 3043 if (!(cmd_info[i].devices & gen_type)) 3044 continue; 3045 3046 e = kzalloc(sizeof(*e), GFP_KERNEL); 3047 if (!e) 3048 return -ENOMEM; 3049 3050 e->info = &cmd_info[i]; 3051 if (cmd_info[i].opcode == OP_MI_NOOP) 3052 mi_noop_index = i; 3053 3054 INIT_HLIST_NODE(&e->hlist); 3055 add_cmd_entry(gvt, e); 3056 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3057 e->info->name, e->info->opcode, e->info->flag, 3058 e->info->devices, e->info->rings); 3059 } 3060 3061 return 0; 3062 } 3063 3064 static void clean_cmd_table(struct intel_gvt *gvt) 3065 { 3066 struct hlist_node *tmp; 3067 struct cmd_entry *e; 3068 int i; 3069 3070 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3071 kfree(e); 3072 3073 hash_init(gvt->cmd_table); 3074 } 3075 3076 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3077 { 3078 clean_cmd_table(gvt); 3079 } 3080 3081 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3082 { 3083 int ret; 3084 3085 ret = init_cmd_table(gvt); 3086 if (ret) { 3087 intel_gvt_clean_cmd_parser(gvt); 3088 return ret; 3089 } 3090 return 0; 3091 } 3092