xref: /linux/drivers/gpu/drm/i915/display/intel_vblank.c (revision 74ba587f402d5501af2c85e50cf1e4044263b6ca)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5 
6 #include <linux/iopoll.h>
7 
8 #include <drm/drm_print.h>
9 #include <drm/drm_vblank.h>
10 
11 #include "i915_drv.h"
12 #include "i915_utils.h"
13 #include "intel_color.h"
14 #include "intel_crtc.h"
15 #include "intel_de.h"
16 #include "intel_display_regs.h"
17 #include "intel_display_types.h"
18 #include "intel_vblank.h"
19 #include "intel_vrr.h"
20 
21 /*
22  * This timing diagram depicts the video signal in and
23  * around the vertical blanking period.
24  *
25  * Assumptions about the fictitious mode used in this example:
26  *  vblank_start >= 3
27  *  vsync_start = vblank_start + 1
28  *  vsync_end = vblank_start + 2
29  *  vtotal = vblank_start + 3
30  *
31  *           start of vblank:
32  *           latch double buffered registers
33  *           increment frame counter (ctg+)
34  *           generate start of vblank interrupt (gen4+)
35  *           |
36  *           |          frame start:
37  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
38  *           |          may be shifted forward 1-3 extra lines via TRANSCONF
39  *           |          |
40  *           |          |  start of vsync:
41  *           |          |  generate vsync interrupt
42  *           |          |  |
43  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
44  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
45  * ----va---> <-----------------vb--------------------> <--------va-------------
46  *       |          |       <----vs----->                     |
47  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
48  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
49  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
50  *       |          |                                         |
51  *       last visible pixel                                   first visible pixel
52  *                  |                                         increment frame counter (gen3/4)
53  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
54  *
55  * x  = horizontal active
56  * _  = horizontal blanking
57  * hs = horizontal sync
58  * va = vertical active
59  * vb = vertical blanking
60  * vs = vertical sync
61  * vbs = vblank_start (number)
62  *
63  * Summary:
64  * - most events happen at the start of horizontal sync
65  * - frame start happens at the start of horizontal blank, 1-4 lines
66  *   (depending on TRANSCONF settings) after the start of vblank
67  * - gen3/4 pixel and frame counter are synchronized with the start
68  *   of horizontal active on the first line of vertical active
69  */
70 
71 /*
72  * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
73  */
74 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
75 {
76 	struct intel_display *display = to_intel_display(crtc->dev);
77 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
78 	const struct drm_display_mode *mode = &vblank->hwmode;
79 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
80 	u32 pixel, vbl_start, hsync_start, htotal;
81 	u64 frame;
82 
83 	/*
84 	 * On i965gm TV output the frame counter only works up to
85 	 * the point when we enable the TV encoder. After that the
86 	 * frame counter ceases to work and reads zero. We need a
87 	 * vblank wait before enabling the TV encoder and so we
88 	 * have to enable vblank interrupts while the frame counter
89 	 * is still in a working state. However the core vblank code
90 	 * does not like us returning non-zero frame counter values
91 	 * when we've told it that we don't have a working frame
92 	 * counter. Thus we must stop non-zero values leaking out.
93 	 */
94 	if (!vblank->max_vblank_count)
95 		return 0;
96 
97 	htotal = mode->crtc_htotal;
98 	hsync_start = mode->crtc_hsync_start;
99 	vbl_start = intel_mode_vblank_start(mode);
100 
101 	/* Convert to pixel count */
102 	vbl_start *= htotal;
103 
104 	/* Start of vblank event occurs at start of hsync */
105 	vbl_start -= htotal - hsync_start;
106 
107 	/*
108 	 * High & low register fields aren't synchronized, so make sure
109 	 * we get a low value that's stable across two reads of the high
110 	 * register.
111 	 */
112 	frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe),
113 				     PIPEFRAME(display, pipe));
114 
115 	pixel = frame & PIPE_PIXEL_MASK;
116 	frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
117 
118 	/*
119 	 * The frame counter increments at beginning of active.
120 	 * Cook up a vblank counter by also checking the pixel
121 	 * counter against vblank start.
122 	 */
123 	return (frame + (pixel >= vbl_start)) & 0xffffff;
124 }
125 
126 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
127 {
128 	struct intel_display *display = to_intel_display(crtc->dev);
129 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
130 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
131 
132 	if (!vblank->max_vblank_count)
133 		return 0;
134 
135 	return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe));
136 }
137 
138 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
139 {
140 	struct intel_display *display = to_intel_display(crtc);
141 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
142 	const struct drm_display_mode *mode = &vblank->hwmode;
143 	u32 htotal = mode->crtc_htotal;
144 	u32 clock = mode->crtc_clock;
145 	u32 scan_prev_time, scan_curr_time, scan_post_time;
146 
147 	/*
148 	 * To avoid the race condition where we might cross into the
149 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
150 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
151 	 * during the same frame.
152 	 */
153 	do {
154 		/*
155 		 * This field provides read back of the display
156 		 * pipe frame time stamp. The time stamp value
157 		 * is sampled at every start of vertical blank.
158 		 */
159 		scan_prev_time = intel_de_read_fw(display,
160 						  PIPE_FRMTMSTMP(crtc->pipe));
161 
162 		/*
163 		 * The TIMESTAMP_CTR register has the current
164 		 * time stamp value.
165 		 */
166 		scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR);
167 
168 		scan_post_time = intel_de_read_fw(display,
169 						  PIPE_FRMTMSTMP(crtc->pipe));
170 	} while (scan_post_time != scan_prev_time);
171 
172 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
173 				   clock), 1000 * htotal);
174 }
175 
176 /*
177  * On certain encoders on certain platforms, pipe
178  * scanline register will not work to get the scanline,
179  * since the timings are driven from the PORT or issues
180  * with scanline register updates.
181  * This function will use Framestamp and current
182  * timestamp registers to calculate the scanline.
183  */
184 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
185 {
186 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
187 	const struct drm_display_mode *mode = &vblank->hwmode;
188 	u32 vblank_start = mode->crtc_vblank_start;
189 	u32 vtotal = mode->crtc_vtotal;
190 	u32 scanline;
191 
192 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
193 	scanline = min(scanline, vtotal - 1);
194 	scanline = (scanline + vblank_start) % vtotal;
195 
196 	return scanline;
197 }
198 
199 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
200 {
201 	struct intel_display *display = to_intel_display(crtc_state);
202 
203 	/*
204 	 * The scanline counter increments at the leading edge of hsync.
205 	 *
206 	 * On most platforms it starts counting from vtotal-1 on the
207 	 * first active line. That means the scanline counter value is
208 	 * always one less than what we would expect. Ie. just after
209 	 * start of vblank, which also occurs at start of hsync (on the
210 	 * last active line), the scanline counter will read vblank_start-1.
211 	 *
212 	 * On gen2 the scanline counter starts counting from 1 instead
213 	 * of vtotal-1, so we have to subtract one.
214 	 *
215 	 * On HSW+ the behaviour of the scanline counter depends on the output
216 	 * type. For DP ports it behaves like most other platforms, but on HDMI
217 	 * there's an extra 1 line difference. So we need to add two instead of
218 	 * one to the value.
219 	 *
220 	 * On VLV/CHV DSI the scanline counter would appear to increment
221 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
222 	 * that means we can't tell whether we're in vblank or not while
223 	 * we're on that particular line. We must still set scanline_offset
224 	 * to 1 so that the vblank timestamps come out correct when we query
225 	 * the scanline counter from within the vblank interrupt handler.
226 	 * However if queried just before the start of vblank we'll get an
227 	 * answer that's slightly in the future.
228 	 */
229 	if (DISPLAY_VER(display) >= 20 || display->platform.battlemage)
230 		return 1;
231 	else if (DISPLAY_VER(display) >= 9 ||
232 		 display->platform.broadwell || display->platform.haswell)
233 		return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ? 2 : 1;
234 	else if (DISPLAY_VER(display) >= 3)
235 		return 1;
236 	else
237 		return -1;
238 }
239 
240 /*
241  * intel_de_read_fw(), only for fast reads of display block, no need for
242  * forcewake etc.
243  */
244 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
245 {
246 	struct intel_display *display = to_intel_display(crtc);
247 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
248 	const struct drm_display_mode *mode = &vblank->hwmode;
249 	enum pipe pipe = crtc->pipe;
250 	int position, vtotal;
251 
252 	if (!crtc->active)
253 		return 0;
254 
255 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
256 		return __intel_get_crtc_scanline_from_timestamp(crtc);
257 
258 	vtotal = intel_mode_vtotal(mode);
259 
260 	position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
261 
262 	/*
263 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
264 	 * read it just before the start of vblank.  So try it again
265 	 * so we don't accidentally end up spanning a vblank frame
266 	 * increment, causing the pipe_update_end() code to squak at us.
267 	 *
268 	 * The nature of this problem means we can't simply check the ISR
269 	 * bit and return the vblank start value; nor can we use the scanline
270 	 * debug register in the transcoder as it appears to have the same
271 	 * problem.  We may need to extend this to include other platforms,
272 	 * but so far testing only shows the problem on HSW.
273 	 */
274 	if (HAS_DDI(display) && !position) {
275 		int i, temp;
276 
277 		for (i = 0; i < 100; i++) {
278 			udelay(1);
279 			temp = intel_de_read_fw(display,
280 						PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
281 			if (temp != position) {
282 				position = temp;
283 				break;
284 			}
285 		}
286 	}
287 
288 	/*
289 	 * See update_scanline_offset() for the details on the
290 	 * scanline_offset adjustment.
291 	 */
292 	return (position + vtotal + crtc->scanline_offset) % vtotal;
293 }
294 
295 /*
296  * The uncore version of the spin lock functions is used to decide
297  * whether we need to lock the uncore lock or not.  This is only
298  * needed in i915, not in Xe.
299  *
300  * This lock in i915 is needed because some old platforms (at least
301  * IVB and possibly HSW as well), which are not supported in Xe, need
302  * all register accesses to the same cacheline to be serialized,
303  * otherwise they may hang.
304  */
305 #ifdef I915
306 static void intel_vblank_section_enter(struct intel_display *display)
307 	__acquires(i915->uncore.lock)
308 {
309 	struct drm_i915_private *i915 = to_i915(display->drm);
310 	spin_lock(&i915->uncore.lock);
311 }
312 
313 static void intel_vblank_section_exit(struct intel_display *display)
314 	__releases(i915->uncore.lock)
315 {
316 	struct drm_i915_private *i915 = to_i915(display->drm);
317 	spin_unlock(&i915->uncore.lock);
318 }
319 #else
320 static void intel_vblank_section_enter(struct intel_display *display)
321 {
322 }
323 
324 static void intel_vblank_section_exit(struct intel_display *display)
325 {
326 }
327 #endif
328 
329 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
330 				     bool in_vblank_irq,
331 				     int *vpos, int *hpos,
332 				     ktime_t *stime, ktime_t *etime,
333 				     const struct drm_display_mode *mode)
334 {
335 	struct intel_display *display = to_intel_display(_crtc->dev);
336 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
337 	enum pipe pipe = crtc->pipe;
338 	int position;
339 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
340 	unsigned long irqflags;
341 	bool use_scanline_counter = DISPLAY_VER(display) >= 5 ||
342 		display->platform.g4x || DISPLAY_VER(display) == 2 ||
343 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
344 
345 	if (drm_WARN_ON(display->drm, !mode->crtc_clock)) {
346 		drm_dbg(display->drm,
347 			"trying to get scanoutpos for disabled pipe %c\n",
348 			pipe_name(pipe));
349 		return false;
350 	}
351 
352 	htotal = mode->crtc_htotal;
353 	hsync_start = mode->crtc_hsync_start;
354 	vtotal = intel_mode_vtotal(mode);
355 	vbl_start = intel_mode_vblank_start(mode);
356 	vbl_end = intel_mode_vblank_end(mode);
357 
358 	/*
359 	 * Enter vblank critical section, as we will do multiple
360 	 * timing critical raw register reads, potentially with
361 	 * preemption disabled, so the following code must not block.
362 	 */
363 	local_irq_save(irqflags);
364 	intel_vblank_section_enter(display);
365 
366 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
367 
368 	/* Get optional system timestamp before query. */
369 	if (stime)
370 		*stime = ktime_get();
371 
372 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
373 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
374 
375 		position = __intel_get_crtc_scanline(crtc);
376 
377 		/*
378 		 * Already exiting vblank? If so, shift our position
379 		 * so it looks like we're already approaching the full
380 		 * vblank end. This should make the generated timestamp
381 		 * more or less match when the active portion will start.
382 		 */
383 		if (position >= vbl_start && scanlines < position)
384 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
385 	} else if (use_scanline_counter) {
386 		/* No obvious pixelcount register. Only query vertical
387 		 * scanout position from Display scan line register.
388 		 */
389 		position = __intel_get_crtc_scanline(crtc);
390 	} else {
391 		/*
392 		 * Have access to pixelcount since start of frame.
393 		 * We can split this into vertical and horizontal
394 		 * scanout position.
395 		 */
396 		position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
397 
398 		/* convert to pixel counts */
399 		vbl_start *= htotal;
400 		vbl_end *= htotal;
401 		vtotal *= htotal;
402 
403 		/*
404 		 * In interlaced modes, the pixel counter counts all pixels,
405 		 * so one field will have htotal more pixels. In order to avoid
406 		 * the reported position from jumping backwards when the pixel
407 		 * counter is beyond the length of the shorter field, just
408 		 * clamp the position the length of the shorter field. This
409 		 * matches how the scanline counter based position works since
410 		 * the scanline counter doesn't count the two half lines.
411 		 */
412 		position = min(position, vtotal - 1);
413 
414 		/*
415 		 * Start of vblank interrupt is triggered at start of hsync,
416 		 * just prior to the first active line of vblank. However we
417 		 * consider lines to start at the leading edge of horizontal
418 		 * active. So, should we get here before we've crossed into
419 		 * the horizontal active of the first line in vblank, we would
420 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
421 		 * always add htotal-hsync_start to the current pixel position.
422 		 */
423 		position = (position + htotal - hsync_start) % vtotal;
424 	}
425 
426 	/* Get optional system timestamp after query. */
427 	if (etime)
428 		*etime = ktime_get();
429 
430 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
431 
432 	intel_vblank_section_exit(display);
433 	local_irq_restore(irqflags);
434 
435 	/*
436 	 * While in vblank, position will be negative
437 	 * counting up towards 0 at vbl_end. And outside
438 	 * vblank, position will be positive counting
439 	 * up since vbl_end.
440 	 */
441 	if (position >= vbl_start)
442 		position -= vbl_end;
443 	else
444 		position += vtotal - vbl_end;
445 
446 	if (use_scanline_counter) {
447 		*vpos = position;
448 		*hpos = 0;
449 	} else {
450 		*vpos = position / htotal;
451 		*hpos = position - (*vpos * htotal);
452 	}
453 
454 	return true;
455 }
456 
457 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
458 				     ktime_t *vblank_time, bool in_vblank_irq)
459 {
460 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
461 		crtc, max_error, vblank_time, in_vblank_irq,
462 		i915_get_crtc_scanoutpos);
463 }
464 
465 int intel_get_crtc_scanline(struct intel_crtc *crtc)
466 {
467 	struct intel_display *display = to_intel_display(crtc);
468 	unsigned long irqflags;
469 	int position;
470 
471 	local_irq_save(irqflags);
472 	intel_vblank_section_enter(display);
473 
474 	position = __intel_get_crtc_scanline(crtc);
475 
476 	intel_vblank_section_exit(display);
477 	local_irq_restore(irqflags);
478 
479 	return position;
480 }
481 
482 static bool pipe_scanline_is_moving(struct intel_display *display,
483 				    enum pipe pipe)
484 {
485 	i915_reg_t reg = PIPEDSL(display, pipe);
486 	u32 line1, line2;
487 
488 	line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
489 	msleep(5);
490 	line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
491 
492 	return line1 != line2;
493 }
494 
495 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
496 {
497 	struct intel_display *display = to_intel_display(crtc);
498 	enum pipe pipe = crtc->pipe;
499 	bool is_moving;
500 	int ret;
501 
502 	/* Wait for the display line to settle/start moving */
503 	ret = poll_timeout_us(is_moving = pipe_scanline_is_moving(display, pipe),
504 			      is_moving == state,
505 			      500, 100 * 1000, false);
506 	if (ret)
507 		drm_err(display->drm,
508 			"pipe %c scanline %s wait timed out\n",
509 			pipe_name(pipe), str_on_off(state));
510 }
511 
512 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
513 {
514 	wait_for_pipe_scanline_moving(crtc, false);
515 }
516 
517 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
518 {
519 	wait_for_pipe_scanline_moving(crtc, true);
520 }
521 
522 static void intel_crtc_active_timings(struct drm_display_mode *mode,
523 				      int *vmax_vblank_start,
524 				      const struct intel_crtc_state *crtc_state,
525 				      bool vrr_enable)
526 {
527 	drm_mode_init(mode, &crtc_state->hw.adjusted_mode);
528 	*vmax_vblank_start = 0;
529 
530 	if (!vrr_enable)
531 		return;
532 
533 	mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state);
534 	mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state);
535 	mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
536 	*vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
537 }
538 
539 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
540 				      bool vrr_enable)
541 {
542 	struct intel_display *display = to_intel_display(crtc_state);
543 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
544 	u8 mode_flags = crtc_state->mode_flags;
545 	struct drm_display_mode adjusted_mode;
546 	int vmax_vblank_start = 0;
547 	unsigned long irqflags;
548 
549 	intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start,
550 				  crtc_state, vrr_enable);
551 
552 	if (vrr_enable)
553 		drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
554 	else
555 		mode_flags &= ~I915_MODE_FLAG_VRR;
556 
557 	/*
558 	 * Belts and suspenders locking to guarantee everyone sees 100%
559 	 * consistent state during fastset seamless refresh rate changes.
560 	 *
561 	 * vblank_time_lock takes care of all drm_vblank.c stuff, and
562 	 * uncore.lock takes care of __intel_get_crtc_scanline() which
563 	 * may get called elsewhere as well.
564 	 *
565 	 * TODO maybe just protect everything (including
566 	 * __intel_get_crtc_scanline()) with vblank_time_lock?
567 	 * Need to audit everything to make sure it's safe.
568 	 */
569 	spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags);
570 	intel_vblank_section_enter(display);
571 
572 	drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
573 
574 	crtc->vmax_vblank_start = vmax_vblank_start;
575 
576 	crtc->mode_flags = mode_flags;
577 
578 	crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
579 	intel_vblank_section_exit(display);
580 	spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags);
581 }
582 
583 int intel_mode_vdisplay(const struct drm_display_mode *mode)
584 {
585 	int vdisplay = mode->crtc_vdisplay;
586 
587 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
588 		vdisplay = DIV_ROUND_UP(vdisplay, 2);
589 
590 	return vdisplay;
591 }
592 
593 int intel_mode_vblank_start(const struct drm_display_mode *mode)
594 {
595 	int vblank_start = mode->crtc_vblank_start;
596 
597 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
598 		vblank_start = DIV_ROUND_UP(vblank_start, 2);
599 
600 	return vblank_start;
601 }
602 
603 int intel_mode_vblank_end(const struct drm_display_mode *mode)
604 {
605 	int vblank_end = mode->crtc_vblank_end;
606 
607 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
608 		vblank_end /= 2;
609 
610 	return vblank_end;
611 }
612 
613 int intel_mode_vtotal(const struct drm_display_mode *mode)
614 {
615 	int vtotal = mode->crtc_vtotal;
616 
617 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
618 		vtotal /= 2;
619 
620 	return vtotal;
621 }
622 
623 int intel_mode_vblank_delay(const struct drm_display_mode *mode)
624 {
625 	return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode);
626 }
627 
628 static const struct intel_crtc_state *
629 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state,
630 		      const struct intel_crtc_state *new_crtc_state)
631 {
632 	/*
633 	 * During fastsets/etc. the transcoder is still
634 	 * running with the old timings at this point.
635 	 */
636 	if (intel_crtc_needs_modeset(new_crtc_state))
637 		return new_crtc_state;
638 	else
639 		return old_crtc_state;
640 }
641 
642 const struct intel_crtc_state *
643 intel_pre_commit_crtc_state(struct intel_atomic_state *state,
644 			    struct intel_crtc *crtc)
645 {
646 	const struct intel_crtc_state *old_crtc_state =
647 		intel_atomic_get_old_crtc_state(state, crtc);
648 	const struct intel_crtc_state *new_crtc_state =
649 		intel_atomic_get_new_crtc_state(state, crtc);
650 
651 	return pre_commit_crtc_state(old_crtc_state, new_crtc_state);
652 }
653 
654 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state,
655 			     const struct intel_crtc_state *new_crtc_state,
656 			     struct intel_vblank_evade_ctx *evade)
657 {
658 	struct intel_display *display = to_intel_display(new_crtc_state);
659 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
660 	const struct intel_crtc_state *crtc_state;
661 	const struct drm_display_mode *adjusted_mode;
662 	int vblank_delay;
663 
664 	evade->crtc = crtc;
665 
666 	evade->need_vlv_dsi_wa = (display->platform.valleyview ||
667 				  display->platform.cherryview) &&
668 		intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
669 
670 	/* TODO: maybe just use the active timings here? */
671 	crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state);
672 
673 	adjusted_mode = &crtc_state->hw.adjusted_mode;
674 
675 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
676 		/* timing changes should happen with VRR disabled */
677 		drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) ||
678 			    new_crtc_state->update_m_n || new_crtc_state->update_lrr);
679 
680 		if (intel_vrr_is_push_sent(crtc_state))
681 			evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
682 		else
683 			evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
684 
685 		vblank_delay = intel_vrr_vblank_delay(crtc_state);
686 	} else {
687 		evade->vblank_start = intel_mode_vblank_start(adjusted_mode);
688 
689 		vblank_delay = intel_mode_vblank_delay(adjusted_mode);
690 	}
691 
692 	/* FIXME needs to be calibrated sensibly */
693 	evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode,
694 								    VBLANK_EVASION_TIME_US);
695 	evade->max = evade->vblank_start - 1;
696 
697 	/*
698 	 * M/N and TRANS_VTOTAL are double buffered on the transcoder's
699 	 * undelayed vblank, so with seamless M/N and LRR we must evade
700 	 * both vblanks.
701 	 *
702 	 * DSB execution waits for the transcoder's undelayed vblank,
703 	 * hence we must kick off the commit before that.
704 	 */
705 	if (intel_color_uses_dsb(new_crtc_state) ||
706 	    new_crtc_state->update_m_n || new_crtc_state->update_lrr)
707 		evade->min -= vblank_delay;
708 }
709 
710 /* must be called with vblank interrupt already enabled! */
711 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade)
712 {
713 	struct intel_crtc *crtc = evade->crtc;
714 	struct intel_display *display = to_intel_display(crtc);
715 	long timeout = msecs_to_jiffies_timeout(1);
716 	wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
717 	DEFINE_WAIT(wait);
718 	int scanline;
719 
720 	if (evade->min <= 0 || evade->max <= 0)
721 		return 0;
722 
723 	for (;;) {
724 		/*
725 		 * prepare_to_wait() has a memory barrier, which guarantees
726 		 * other CPUs can see the task state update by the time we
727 		 * read the scanline.
728 		 */
729 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
730 
731 		scanline = intel_get_crtc_scanline(crtc);
732 		if (scanline < evade->min || scanline > evade->max)
733 			break;
734 
735 		if (!timeout) {
736 			drm_dbg_kms(display->drm,
737 				    "Potential atomic update failure on pipe %c\n",
738 				    pipe_name(crtc->pipe));
739 			break;
740 		}
741 
742 		local_irq_enable();
743 
744 		timeout = schedule_timeout(timeout);
745 
746 		local_irq_disable();
747 	}
748 
749 	finish_wait(wq, &wait);
750 
751 	/*
752 	 * On VLV/CHV DSI the scanline counter would appear to
753 	 * increment approx. 1/3 of a scanline before start of vblank.
754 	 * The registers still get latched at start of vblank however.
755 	 * This means we must not write any registers on the first
756 	 * line of vblank (since not the whole line is actually in
757 	 * vblank). And unfortunately we can't use the interrupt to
758 	 * wait here since it will fire too soon. We could use the
759 	 * frame start interrupt instead since it will fire after the
760 	 * critical scanline, but that would require more changes
761 	 * in the interrupt code. So for now we'll just do the nasty
762 	 * thing and poll for the bad scanline to pass us by.
763 	 *
764 	 * FIXME figure out if BXT+ DSI suffers from this as well
765 	 */
766 	while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start)
767 		scanline = intel_get_crtc_scanline(crtc);
768 
769 	return scanline;
770 }
771