1 /* 2 * Copyright © 2014-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "bxt_dpio_phy_regs.h" 25 #include "i915_reg.h" 26 #include "intel_ddi.h" 27 #include "intel_ddi_buf_trans.h" 28 #include "intel_de.h" 29 #include "intel_display_power_well.h" 30 #include "intel_display_types.h" 31 #include "intel_dp.h" 32 #include "intel_dpio_phy.h" 33 #include "vlv_sideband.h" 34 35 /** 36 * DOC: DPIO 37 * 38 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI 39 * ports. DPIO is the name given to such a display PHY. These PHYs 40 * don't follow the standard programming model using direct MMIO 41 * registers, and instead their registers must be accessed trough IOSF 42 * sideband. VLV has one such PHY for driving ports B and C, and CHV 43 * adds another PHY for driving port D. Each PHY responds to specific 44 * IOSF-SB port. 45 * 46 * Each display PHY is made up of one or two channels. Each channel 47 * houses a common lane part which contains the PLL and other common 48 * logic. CH0 common lane also contains the IOSF-SB logic for the 49 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock 50 * must be running when any DPIO registers are accessed. 51 * 52 * In addition to having their own registers, the PHYs are also 53 * controlled through some dedicated signals from the display 54 * controller. These include PLL reference clock enable, PLL enable, 55 * and CRI clock selection, for example. 56 * 57 * Eeach channel also has two splines (also called data lanes), and 58 * each spline is made up of one Physical Access Coding Sub-Layer 59 * (PCS) block and two TX lanes. So each channel has two PCS blocks 60 * and four TX lanes. The TX lanes are used as DP lanes or TMDS 61 * data/clock pairs depending on the output type. 62 * 63 * Additionally the PHY also contains an AUX lane with AUX blocks 64 * for each channel. This is used for DP AUX communication, but 65 * this fact isn't really relevant for the driver since AUX is 66 * controlled from the display controller side. No DPIO registers 67 * need to be accessed during AUX communication, 68 * 69 * Generally on VLV/CHV the common lane corresponds to the pipe and 70 * the spline (PCS/TX) corresponds to the port. 71 * 72 * For dual channel PHY (VLV/CHV): 73 * 74 * pipe A == CMN/PLL/REF CH0 75 * 76 * pipe B == CMN/PLL/REF CH1 77 * 78 * port B == PCS/TX CH0 79 * 80 * port C == PCS/TX CH1 81 * 82 * This is especially important when we cross the streams 83 * ie. drive port B with pipe B, or port C with pipe A. 84 * 85 * For single channel PHY (CHV): 86 * 87 * pipe C == CMN/PLL/REF CH0 88 * 89 * port D == PCS/TX CH0 90 * 91 * On BXT the entire PHY channel corresponds to the port. That means 92 * the PLL is also now associated with the port rather than the pipe, 93 * and so the clock needs to be routed to the appropriate transcoder. 94 * Port A PLL is directly connected to transcoder EDP and port B/C 95 * PLLs can be routed to any transcoder A/B/C. 96 * 97 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is 98 * digital port D (CHV) or port A (BXT). :: 99 * 100 * 101 * Dual channel PHY (VLV/CHV/BXT) 102 * --------------------------------- 103 * | CH0 | CH1 | 104 * | CMN/PLL/REF | CMN/PLL/REF | 105 * |---------------|---------------| Display PHY 106 * | PCS01 | PCS23 | PCS01 | PCS23 | 107 * |-------|-------|-------|-------| 108 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| 109 * --------------------------------- 110 * | DDI0 | DDI1 | DP/HDMI ports 111 * --------------------------------- 112 * 113 * Single channel PHY (CHV/BXT) 114 * ----------------- 115 * | CH0 | 116 * | CMN/PLL/REF | 117 * |---------------| Display PHY 118 * | PCS01 | PCS23 | 119 * |-------|-------| 120 * |TX0|TX1|TX2|TX3| 121 * ----------------- 122 * | DDI2 | DP/HDMI port 123 * ----------------- 124 */ 125 126 /** 127 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy 128 */ 129 struct bxt_dpio_phy_info { 130 /** 131 * @dual_channel: true if this phy has a second channel. 132 */ 133 bool dual_channel; 134 135 /** 136 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. 137 * Otherwise the GRC value will be copied from the phy indicated by 138 * this field. 139 */ 140 enum dpio_phy rcomp_phy; 141 142 /** 143 * @reset_delay: delay in us to wait before setting the common reset 144 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. 145 */ 146 int reset_delay; 147 148 /** 149 * @pwron_mask: Mask with the appropriate bit set that would cause the 150 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. 151 */ 152 u32 pwron_mask; 153 154 /** 155 * @channel: struct containing per channel information. 156 */ 157 struct { 158 /** 159 * @channel.port: which port maps to this channel. 160 */ 161 enum port port; 162 } channel[2]; 163 }; 164 165 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = { 166 [DPIO_PHY0] = { 167 .dual_channel = true, 168 .rcomp_phy = DPIO_PHY1, 169 .pwron_mask = BIT(0), 170 171 .channel = { 172 [DPIO_CH0] = { .port = PORT_B }, 173 [DPIO_CH1] = { .port = PORT_C }, 174 } 175 }, 176 [DPIO_PHY1] = { 177 .dual_channel = false, 178 .rcomp_phy = -1, 179 .pwron_mask = BIT(1), 180 181 .channel = { 182 [DPIO_CH0] = { .port = PORT_A }, 183 } 184 }, 185 }; 186 187 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = { 188 [DPIO_PHY0] = { 189 .dual_channel = false, 190 .rcomp_phy = DPIO_PHY1, 191 .pwron_mask = BIT(0), 192 .reset_delay = 20, 193 194 .channel = { 195 [DPIO_CH0] = { .port = PORT_B }, 196 } 197 }, 198 [DPIO_PHY1] = { 199 .dual_channel = false, 200 .rcomp_phy = -1, 201 .pwron_mask = BIT(3), 202 .reset_delay = 20, 203 204 .channel = { 205 [DPIO_CH0] = { .port = PORT_A }, 206 } 207 }, 208 [DPIO_PHY2] = { 209 .dual_channel = false, 210 .rcomp_phy = DPIO_PHY1, 211 .pwron_mask = BIT(1), 212 .reset_delay = 20, 213 214 .channel = { 215 [DPIO_CH0] = { .port = PORT_C }, 216 } 217 }, 218 }; 219 220 static const struct bxt_dpio_phy_info * 221 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) 222 { 223 if (IS_GEMINILAKE(dev_priv)) { 224 *count = ARRAY_SIZE(glk_dpio_phy_info); 225 return glk_dpio_phy_info; 226 } else { 227 *count = ARRAY_SIZE(bxt_dpio_phy_info); 228 return bxt_dpio_phy_info; 229 } 230 } 231 232 static const struct bxt_dpio_phy_info * 233 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) 234 { 235 int count; 236 const struct bxt_dpio_phy_info *phy_list = 237 bxt_get_phy_list(dev_priv, &count); 238 239 return &phy_list[phy]; 240 } 241 242 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 243 enum dpio_phy *phy, enum dpio_channel *ch) 244 { 245 const struct bxt_dpio_phy_info *phy_info, *phys; 246 int i, count; 247 248 phys = bxt_get_phy_list(dev_priv, &count); 249 250 for (i = 0; i < count; i++) { 251 phy_info = &phys[i]; 252 253 if (port == phy_info->channel[DPIO_CH0].port) { 254 *phy = i; 255 *ch = DPIO_CH0; 256 return; 257 } 258 259 if (phy_info->dual_channel && 260 port == phy_info->channel[DPIO_CH1].port) { 261 *phy = i; 262 *ch = DPIO_CH1; 263 return; 264 } 265 } 266 267 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c", 268 port_name(port)); 269 *phy = DPIO_PHY0; 270 *ch = DPIO_CH0; 271 } 272 273 /* 274 * Like intel_de_rmw() but reads from a single per-lane register and 275 * writes to the group register to write the same value to all the lanes. 276 */ 277 static u32 bxt_dpio_phy_rmw_grp(struct drm_i915_private *i915, 278 i915_reg_t reg_single, 279 i915_reg_t reg_group, 280 u32 clear, u32 set) 281 { 282 u32 old, val; 283 284 old = intel_de_read(i915, reg_single); 285 val = (old & ~clear) | set; 286 intel_de_write(i915, reg_group, val); 287 288 return old; 289 } 290 291 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder, 292 const struct intel_crtc_state *crtc_state) 293 { 294 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 295 const struct intel_ddi_buf_trans *trans; 296 enum dpio_channel ch; 297 enum dpio_phy phy; 298 int lane, n_entries; 299 300 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); 301 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans)) 302 return; 303 304 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch); 305 306 /* 307 * While we write to the group register to program all lanes at once we 308 * can read only lane registers and we pick lanes 0/1 for that. 309 */ 310 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), 311 BXT_PORT_PCS_DW10_GRP(phy, ch), 312 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0); 313 314 for (lane = 0; lane < crtc_state->lane_count; lane++) { 315 int level = intel_ddi_level(encoder, crtc_state, lane); 316 317 intel_de_rmw(dev_priv, BXT_PORT_TX_DW2_LN(phy, ch, lane), 318 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK, 319 MARGIN_000(trans->entries[level].bxt.margin) | 320 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale)); 321 } 322 323 for (lane = 0; lane < crtc_state->lane_count; lane++) { 324 int level = intel_ddi_level(encoder, crtc_state, lane); 325 u32 val; 326 327 intel_de_rmw(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane), 328 SCALE_DCOMP_METHOD, 329 trans->entries[level].bxt.enable ? 330 SCALE_DCOMP_METHOD : 0); 331 332 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane)); 333 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) 334 drm_err(&dev_priv->drm, 335 "Disabled scaling while ouniqetrangenmethod was set"); 336 } 337 338 for (lane = 0; lane < crtc_state->lane_count; lane++) { 339 int level = intel_ddi_level(encoder, crtc_state, lane); 340 341 intel_de_rmw(dev_priv, BXT_PORT_TX_DW4_LN(phy, ch, lane), 342 DE_EMPHASIS_MASK, 343 DE_EMPHASIS(trans->entries[level].bxt.deemphasis)); 344 } 345 346 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), 347 BXT_PORT_PCS_DW10_GRP(phy, ch), 348 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); 349 } 350 351 bool bxt_dpio_phy_is_enabled(struct drm_i915_private *dev_priv, 352 enum dpio_phy phy) 353 { 354 const struct bxt_dpio_phy_info *phy_info; 355 356 phy_info = bxt_get_phy_info(dev_priv, phy); 357 358 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) 359 return false; 360 361 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) & 362 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { 363 drm_dbg(&dev_priv->drm, 364 "DDI PHY %d powered, but power hasn't settled\n", phy); 365 366 return false; 367 } 368 369 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { 370 drm_dbg(&dev_priv->drm, 371 "DDI PHY %d powered, but still in reset\n", phy); 372 373 return false; 374 } 375 376 return true; 377 } 378 379 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) 380 { 381 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy)); 382 383 return REG_FIELD_GET(GRC_CODE_MASK, val); 384 } 385 386 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, 387 enum dpio_phy phy) 388 { 389 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy), 390 GRC_DONE, 10)) 391 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n", 392 phy); 393 } 394 395 static void _bxt_dpio_phy_init(struct drm_i915_private *dev_priv, 396 enum dpio_phy phy) 397 { 398 const struct bxt_dpio_phy_info *phy_info; 399 u32 val; 400 401 phy_info = bxt_get_phy_info(dev_priv, phy); 402 403 if (bxt_dpio_phy_is_enabled(dev_priv, phy)) { 404 /* Still read out the GRC value for state verification */ 405 if (phy_info->rcomp_phy != -1) 406 dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy); 407 408 if (bxt_dpio_phy_verify_state(dev_priv, phy)) { 409 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, " 410 "won't reprogram it\n", phy); 411 return; 412 } 413 414 drm_dbg(&dev_priv->drm, 415 "DDI PHY %d enabled with invalid state, " 416 "force reprogramming it\n", phy); 417 } 418 419 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask); 420 421 /* 422 * The PHY registers start out inaccessible and respond to reads with 423 * all 1s. Eventually they become accessible as they power up, then 424 * the reserved bit will give the default 0. Poll on the reserved bit 425 * becoming 0 to find when the PHY is accessible. 426 * The flag should get set in 100us according to the HW team, but 427 * use 1ms due to occasional timeouts observed with that. 428 */ 429 if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy), 430 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1)) 431 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n", 432 phy); 433 434 /* Program PLL Rcomp code offset */ 435 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy), 436 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4)); 437 438 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy), 439 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4)); 440 441 /* Program power gating */ 442 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0, 443 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG); 444 445 if (phy_info->dual_channel) 446 intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0, 447 DW6_OLDO_DYN_PWR_DOWN_EN); 448 449 if (phy_info->rcomp_phy != -1) { 450 u32 grc_code; 451 452 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); 453 454 /* 455 * PHY0 isn't connected to an RCOMP resistor so copy over 456 * the corresponding calibrated value from PHY1, and disable 457 * the automatic calibration on PHY0. 458 */ 459 val = bxt_get_grc(dev_priv, phy_info->rcomp_phy); 460 dev_priv->display.state.bxt_phy_grc = val; 461 462 grc_code = GRC_CODE_FAST(val) | 463 GRC_CODE_SLOW(val) | 464 GRC_CODE_NOM(val); 465 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code); 466 intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy), 467 0, GRC_DIS | GRC_RDY_OVRD); 468 } 469 470 if (phy_info->reset_delay) 471 udelay(phy_info->reset_delay); 472 473 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS); 474 } 475 476 void bxt_dpio_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) 477 { 478 const struct bxt_dpio_phy_info *phy_info; 479 480 phy_info = bxt_get_phy_info(dev_priv, phy); 481 482 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0); 483 484 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0); 485 } 486 487 void bxt_dpio_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) 488 { 489 const struct bxt_dpio_phy_info *phy_info = 490 bxt_get_phy_info(dev_priv, phy); 491 enum dpio_phy rcomp_phy = phy_info->rcomp_phy; 492 bool was_enabled; 493 494 lockdep_assert_held(&dev_priv->display.power.domains.lock); 495 496 was_enabled = true; 497 if (rcomp_phy != -1) 498 was_enabled = bxt_dpio_phy_is_enabled(dev_priv, rcomp_phy); 499 500 /* 501 * We need to copy the GRC calibration value from rcomp_phy, 502 * so make sure it's powered up. 503 */ 504 if (!was_enabled) 505 _bxt_dpio_phy_init(dev_priv, rcomp_phy); 506 507 _bxt_dpio_phy_init(dev_priv, phy); 508 509 if (!was_enabled) 510 bxt_dpio_phy_uninit(dev_priv, rcomp_phy); 511 } 512 513 static bool __printf(6, 7) 514 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, 515 i915_reg_t reg, u32 mask, u32 expected, 516 const char *reg_fmt, ...) 517 { 518 struct va_format vaf; 519 va_list args; 520 u32 val; 521 522 val = intel_de_read(dev_priv, reg); 523 if ((val & mask) == expected) 524 return true; 525 526 va_start(args, reg_fmt); 527 vaf.fmt = reg_fmt; 528 vaf.va = &args; 529 530 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " 531 "current %08x, expected %08x (mask %08x)\n", 532 phy, &vaf, reg.reg, val, (val & ~mask) | expected, 533 mask); 534 535 va_end(args); 536 537 return false; 538 } 539 540 bool bxt_dpio_phy_verify_state(struct drm_i915_private *dev_priv, 541 enum dpio_phy phy) 542 { 543 const struct bxt_dpio_phy_info *phy_info; 544 u32 mask; 545 bool ok; 546 547 phy_info = bxt_get_phy_info(dev_priv, phy); 548 549 #define _CHK(reg, mask, exp, fmt, ...) \ 550 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ 551 ## __VA_ARGS__) 552 553 if (!bxt_dpio_phy_is_enabled(dev_priv, phy)) 554 return false; 555 556 ok = true; 557 558 /* PLL Rcomp code offset */ 559 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), 560 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4), 561 "BXT_PORT_CL1CM_DW9(%d)", phy); 562 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), 563 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4), 564 "BXT_PORT_CL1CM_DW10(%d)", phy); 565 566 /* Power gating */ 567 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; 568 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, 569 "BXT_PORT_CL1CM_DW28(%d)", phy); 570 571 if (phy_info->dual_channel) 572 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), 573 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, 574 "BXT_PORT_CL2CM_DW6(%d)", phy); 575 576 if (phy_info->rcomp_phy != -1) { 577 u32 grc_code = dev_priv->display.state.bxt_phy_grc; 578 579 grc_code = GRC_CODE_FAST(grc_code) | 580 GRC_CODE_SLOW(grc_code) | 581 GRC_CODE_NOM(grc_code); 582 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | 583 GRC_CODE_NOM_MASK; 584 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, 585 "BXT_PORT_REF_DW6(%d)", phy); 586 587 mask = GRC_DIS | GRC_RDY_OVRD; 588 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, 589 "BXT_PORT_REF_DW8(%d)", phy); 590 } 591 592 return ok; 593 #undef _CHK 594 } 595 596 u8 597 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count) 598 { 599 switch (lane_count) { 600 case 1: 601 return 0; 602 case 2: 603 return BIT(2) | BIT(0); 604 case 4: 605 return BIT(3) | BIT(2) | BIT(0); 606 default: 607 MISSING_CASE(lane_count); 608 609 return 0; 610 } 611 } 612 613 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder, 614 u8 lane_lat_optim_mask) 615 { 616 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 617 enum port port = encoder->port; 618 enum dpio_phy phy; 619 enum dpio_channel ch; 620 int lane; 621 622 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 623 624 for (lane = 0; lane < 4; lane++) { 625 /* 626 * Note that on CHV this flag is called UPAR, but has 627 * the same function. 628 */ 629 intel_de_rmw(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane), 630 LATENCY_OPTIM, 631 lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0); 632 } 633 } 634 635 u8 636 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) 637 { 638 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 639 enum port port = encoder->port; 640 enum dpio_phy phy; 641 enum dpio_channel ch; 642 int lane; 643 u8 mask; 644 645 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 646 647 mask = 0; 648 for (lane = 0; lane < 4; lane++) { 649 u32 val = intel_de_read(dev_priv, 650 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 651 652 if (val & LATENCY_OPTIM) 653 mask |= BIT(lane); 654 } 655 656 return mask; 657 } 658 659 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port) 660 { 661 switch (dig_port->base.port) { 662 default: 663 MISSING_CASE(dig_port->base.port); 664 fallthrough; 665 case PORT_B: 666 case PORT_D: 667 return DPIO_CH0; 668 case PORT_C: 669 return DPIO_CH1; 670 } 671 } 672 673 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port) 674 { 675 switch (dig_port->base.port) { 676 default: 677 MISSING_CASE(dig_port->base.port); 678 fallthrough; 679 case PORT_B: 680 case PORT_C: 681 return DPIO_PHY0; 682 case PORT_D: 683 return DPIO_PHY1; 684 } 685 } 686 687 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe) 688 { 689 switch (pipe) { 690 default: 691 MISSING_CASE(pipe); 692 fallthrough; 693 case PIPE_A: 694 case PIPE_B: 695 return DPIO_PHY0; 696 case PIPE_C: 697 return DPIO_PHY1; 698 } 699 } 700 701 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) 702 { 703 switch (pipe) { 704 default: 705 MISSING_CASE(pipe); 706 fallthrough; 707 case PIPE_A: 708 case PIPE_C: 709 return DPIO_CH0; 710 case PIPE_B: 711 return DPIO_CH1; 712 } 713 } 714 715 void chv_set_phy_signal_level(struct intel_encoder *encoder, 716 const struct intel_crtc_state *crtc_state, 717 u32 deemph_reg_value, u32 margin_reg_value, 718 bool uniq_trans_scale) 719 { 720 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 721 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 722 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 723 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 724 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 725 u32 val; 726 int i; 727 728 vlv_dpio_get(dev_priv); 729 730 /* Clear calc init */ 731 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); 732 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 733 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 734 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 735 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); 736 737 if (crtc_state->lane_count > 2) { 738 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); 739 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 740 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 741 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 742 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); 743 } 744 745 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch)); 746 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 747 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 748 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val); 749 750 if (crtc_state->lane_count > 2) { 751 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch)); 752 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 753 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 754 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val); 755 } 756 757 /* Program swing deemph */ 758 for (i = 0; i < crtc_state->lane_count; i++) { 759 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i)); 760 val &= ~DPIO_SWING_DEEMPH9P5_MASK; 761 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; 762 vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val); 763 } 764 765 /* Program swing margin */ 766 for (i = 0; i < crtc_state->lane_count; i++) { 767 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i)); 768 769 val &= ~DPIO_SWING_MARGIN000_MASK; 770 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; 771 772 /* 773 * Supposedly this value shouldn't matter when unique transition 774 * scale is disabled, but in fact it does matter. Let's just 775 * always program the same value and hope it's OK. 776 */ 777 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); 778 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT; 779 780 vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val); 781 } 782 783 /* 784 * The document said it needs to set bit 27 for ch0 and bit 26 785 * for ch1. Might be a typo in the doc. 786 * For now, for this unique transition scale selection, set bit 787 * 27 for ch0 and ch1. 788 */ 789 for (i = 0; i < crtc_state->lane_count; i++) { 790 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i)); 791 if (uniq_trans_scale) 792 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; 793 else 794 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; 795 vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val); 796 } 797 798 /* Start swing calculation */ 799 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); 800 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 801 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); 802 803 if (crtc_state->lane_count > 2) { 804 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); 805 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 806 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); 807 } 808 809 vlv_dpio_put(dev_priv); 810 } 811 812 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 813 const struct intel_crtc_state *crtc_state, 814 bool reset) 815 { 816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 817 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 818 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder)); 819 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 820 u32 val; 821 822 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch)); 823 if (reset) 824 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 825 else 826 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 827 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val); 828 829 if (crtc_state->lane_count > 2) { 830 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch)); 831 if (reset) 832 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 833 else 834 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 835 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val); 836 } 837 838 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch)); 839 val |= CHV_PCS_REQ_SOFTRESET_EN; 840 if (reset) 841 val &= ~DPIO_PCS_CLK_SOFT_RESET; 842 else 843 val |= DPIO_PCS_CLK_SOFT_RESET; 844 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val); 845 846 if (crtc_state->lane_count > 2) { 847 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch)); 848 val |= CHV_PCS_REQ_SOFTRESET_EN; 849 if (reset) 850 val &= ~DPIO_PCS_CLK_SOFT_RESET; 851 else 852 val |= DPIO_PCS_CLK_SOFT_RESET; 853 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val); 854 } 855 } 856 857 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 858 const struct intel_crtc_state *crtc_state) 859 { 860 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 861 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 863 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 864 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 865 enum pipe pipe = crtc->pipe; 866 unsigned int lane_mask = 867 intel_dp_unused_lane_mask(crtc_state->lane_count); 868 u32 val; 869 870 /* 871 * Must trick the second common lane into life. 872 * Otherwise we can't even access the PLL. 873 */ 874 if (ch == DPIO_CH0 && pipe == PIPE_B) 875 dig_port->release_cl2_override = 876 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); 877 878 chv_phy_powergate_lanes(encoder, true, lane_mask); 879 880 vlv_dpio_get(dev_priv); 881 882 /* Assert data lane reset */ 883 chv_data_lane_soft_reset(encoder, crtc_state, true); 884 885 /* program left/right clock distribution */ 886 if (pipe != PIPE_B) { 887 val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0); 888 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 889 if (ch == DPIO_CH0) 890 val |= CHV_BUFLEFTENA1_FORCE; 891 if (ch == DPIO_CH1) 892 val |= CHV_BUFRIGHTENA1_FORCE; 893 vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val); 894 } else { 895 val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1); 896 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 897 if (ch == DPIO_CH0) 898 val |= CHV_BUFLEFTENA2_FORCE; 899 if (ch == DPIO_CH1) 900 val |= CHV_BUFRIGHTENA2_FORCE; 901 vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val); 902 } 903 904 /* program clock channel usage */ 905 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch)); 906 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 907 if (pipe != PIPE_B) 908 val &= ~CHV_PCS_USEDCLKCHANNEL; 909 else 910 val |= CHV_PCS_USEDCLKCHANNEL; 911 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val); 912 913 if (crtc_state->lane_count > 2) { 914 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch)); 915 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 916 if (pipe != PIPE_B) 917 val &= ~CHV_PCS_USEDCLKCHANNEL; 918 else 919 val |= CHV_PCS_USEDCLKCHANNEL; 920 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val); 921 } 922 923 /* 924 * This a a bit weird since generally CL 925 * matches the pipe, but here we need to 926 * pick the CL based on the port. 927 */ 928 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch)); 929 if (pipe != PIPE_B) 930 val &= ~CHV_CMN_USEDCLKCHANNEL; 931 else 932 val |= CHV_CMN_USEDCLKCHANNEL; 933 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val); 934 935 vlv_dpio_put(dev_priv); 936 } 937 938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 939 const struct intel_crtc_state *crtc_state) 940 { 941 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 942 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 943 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 945 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 946 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 947 int data, i, stagger; 948 u32 val; 949 950 vlv_dpio_get(dev_priv); 951 952 /* allow hardware to manage TX FIFO reset source */ 953 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); 954 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 955 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); 956 957 if (crtc_state->lane_count > 2) { 958 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); 959 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 960 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); 961 } 962 963 /* Program Tx lane latency optimal setting*/ 964 for (i = 0; i < crtc_state->lane_count; i++) { 965 /* Set the upar bit */ 966 if (crtc_state->lane_count == 1) 967 data = 0x0; 968 else 969 data = (i == 1) ? 0x0 : 0x1; 970 vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), 971 data << DPIO_UPAR_SHIFT); 972 } 973 974 /* Data lane stagger programming */ 975 if (crtc_state->port_clock > 270000) 976 stagger = 0x18; 977 else if (crtc_state->port_clock > 135000) 978 stagger = 0xd; 979 else if (crtc_state->port_clock > 67500) 980 stagger = 0x7; 981 else if (crtc_state->port_clock > 33750) 982 stagger = 0x4; 983 else 984 stagger = 0x2; 985 986 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); 987 val |= DPIO_TX2_STAGGER_MASK(0x1f); 988 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); 989 990 if (crtc_state->lane_count > 2) { 991 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); 992 val |= DPIO_TX2_STAGGER_MASK(0x1f); 993 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); 994 } 995 996 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch), 997 DPIO_LANESTAGGER_STRAP(stagger) | 998 DPIO_LANESTAGGER_STRAP_OVRD | 999 DPIO_TX1_STAGGER_MASK(0x1f) | 1000 DPIO_TX1_STAGGER_MULT(6) | 1001 DPIO_TX2_STAGGER_MULT(0)); 1002 1003 if (crtc_state->lane_count > 2) { 1004 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch), 1005 DPIO_LANESTAGGER_STRAP(stagger) | 1006 DPIO_LANESTAGGER_STRAP_OVRD | 1007 DPIO_TX1_STAGGER_MASK(0x1f) | 1008 DPIO_TX1_STAGGER_MULT(7) | 1009 DPIO_TX2_STAGGER_MULT(5)); 1010 } 1011 1012 /* Deassert data lane reset */ 1013 chv_data_lane_soft_reset(encoder, crtc_state, false); 1014 1015 vlv_dpio_put(dev_priv); 1016 } 1017 1018 void chv_phy_release_cl2_override(struct intel_encoder *encoder) 1019 { 1020 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1021 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1022 1023 if (dig_port->release_cl2_override) { 1024 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); 1025 dig_port->release_cl2_override = false; 1026 } 1027 } 1028 1029 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 1030 const struct intel_crtc_state *old_crtc_state) 1031 { 1032 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1033 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; 1034 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 1035 u32 val; 1036 1037 vlv_dpio_get(dev_priv); 1038 1039 /* disable left/right clock distribution */ 1040 if (pipe != PIPE_B) { 1041 val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0); 1042 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 1043 vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val); 1044 } else { 1045 val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1); 1046 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 1047 vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val); 1048 } 1049 1050 vlv_dpio_put(dev_priv); 1051 1052 /* 1053 * Leave the power down bit cleared for at least one 1054 * lane so that chv_powergate_phy_ch() will power 1055 * on something when the channel is otherwise unused. 1056 * When the port is off and the override is removed 1057 * the lanes power down anyway, so otherwise it doesn't 1058 * really matter what the state of power down bits is 1059 * after this. 1060 */ 1061 chv_phy_powergate_lanes(encoder, false, 0x0); 1062 } 1063 1064 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 1065 const struct intel_crtc_state *crtc_state, 1066 u32 demph_reg_value, u32 preemph_reg_value, 1067 u32 uniqtranscale_reg_value, u32 tx3_demph) 1068 { 1069 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1070 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1071 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1072 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1073 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1074 1075 vlv_dpio_get(dev_priv); 1076 1077 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), 0x00000000); 1078 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(port), demph_reg_value); 1079 vlv_dpio_write(dev_priv, phy, VLV_TX_DW2(port), 1080 uniqtranscale_reg_value); 1081 vlv_dpio_write(dev_priv, phy, VLV_TX_DW3(port), 0x0C782040); 1082 1083 if (tx3_demph) 1084 vlv_dpio_write(dev_priv, phy, VLV_TX3_DW4(port), tx3_demph); 1085 1086 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11(port), 0x00030000); 1087 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9(port), preemph_reg_value); 1088 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1089 1090 vlv_dpio_put(dev_priv); 1091 } 1092 1093 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 1094 const struct intel_crtc_state *crtc_state) 1095 { 1096 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1097 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1098 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1099 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1100 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1101 1102 /* Program Tx lane resets to default */ 1103 vlv_dpio_get(dev_priv); 1104 1105 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port), 1106 DPIO_PCS_TX_LANE2_RESET | 1107 DPIO_PCS_TX_LANE1_RESET); 1108 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port), 1109 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1110 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1111 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | 1112 DPIO_PCS_CLK_SOFT_RESET); 1113 1114 /* Fix up inter-pair skew failure */ 1115 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12(port), 0x00750f00); 1116 vlv_dpio_write(dev_priv, phy, VLV_TX_DW11(port), 0x00001500); 1117 vlv_dpio_write(dev_priv, phy, VLV_TX_DW14(port), 0x40400000); 1118 1119 vlv_dpio_put(dev_priv); 1120 } 1121 1122 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 1123 const struct intel_crtc_state *crtc_state) 1124 { 1125 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1126 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1127 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1128 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1129 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1130 enum pipe pipe = crtc->pipe; 1131 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 1132 u32 val; 1133 1134 vlv_dpio_get(dev_priv); 1135 1136 /* Enable clock channels for this port */ 1137 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(port)); 1138 val = 0; 1139 if (pipe) 1140 val |= (1<<21); 1141 else 1142 val &= ~(1<<21); 1143 val |= 0x001000c4; 1144 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8(port), val); 1145 1146 /* Program lane clock */ 1147 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14(port), 0x00760018); 1148 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23(port), 0x00400888); 1149 1150 vlv_dpio_put(dev_priv); 1151 } 1152 1153 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 1154 const struct intel_crtc_state *old_crtc_state) 1155 { 1156 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1157 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1158 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1159 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1160 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1161 1162 vlv_dpio_get(dev_priv); 1163 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port), 0x00000000); 1164 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port), 0x00e00060); 1165 vlv_dpio_put(dev_priv); 1166 } 1167