1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_atomic_state_helper.h> 7 8 #include "soc/intel_dram.h" 9 10 #include "i915_drv.h" 11 #include "i915_reg.h" 12 #include "i915_utils.h" 13 #include "intel_atomic.h" 14 #include "intel_bw.h" 15 #include "intel_cdclk.h" 16 #include "intel_display_core.h" 17 #include "intel_display_regs.h" 18 #include "intel_display_types.h" 19 #include "intel_mchbar_regs.h" 20 #include "intel_pcode.h" 21 #include "skl_watermark.h" 22 23 /* Parameters for Qclk Geyserville (QGV) */ 24 struct intel_qgv_point { 25 u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; 26 }; 27 28 #define DEPROGBWPCLIMIT 60 29 30 struct intel_psf_gv_point { 31 u8 clk; /* clock in multiples of 16.6666 MHz */ 32 }; 33 34 struct intel_qgv_info { 35 struct intel_qgv_point points[I915_NUM_QGV_POINTS]; 36 struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; 37 u8 num_points; 38 u8 num_psf_points; 39 u8 t_bl; 40 u8 max_numchannels; 41 u8 channel_width; 42 u8 deinterleave; 43 }; 44 45 static int dg1_mchbar_read_qgv_point_info(struct intel_display *display, 46 struct intel_qgv_point *sp, 47 int point) 48 { 49 struct drm_i915_private *i915 = to_i915(display->drm); 50 u32 dclk_ratio, dclk_reference; 51 u32 val; 52 53 val = intel_uncore_read(&i915->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); 54 dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); 55 if (val & DG1_QCLK_REFERENCE) 56 dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ 57 else 58 dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ 59 sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000); 60 61 val = intel_uncore_read(&i915->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); 62 if (val & DG1_GEAR_TYPE) 63 sp->dclk *= 2; 64 65 if (sp->dclk == 0) 66 return -EINVAL; 67 68 val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); 69 sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); 70 sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); 71 72 val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); 73 sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); 74 sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); 75 76 sp->t_rc = sp->t_rp + sp->t_ras; 77 78 return 0; 79 } 80 81 static int icl_pcode_read_qgv_point_info(struct intel_display *display, 82 struct intel_qgv_point *sp, 83 int point) 84 { 85 struct drm_i915_private *i915 = to_i915(display->drm); 86 u32 val = 0, val2 = 0; 87 u16 dclk; 88 int ret; 89 90 ret = snb_pcode_read(&i915->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 91 ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), 92 &val, &val2); 93 if (ret) 94 return ret; 95 96 dclk = val & 0xffff; 97 sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(display) >= 12 ? 500 : 0), 98 1000); 99 sp->t_rp = (val & 0xff0000) >> 16; 100 sp->t_rcd = (val & 0xff000000) >> 24; 101 102 sp->t_rdpre = val2 & 0xff; 103 sp->t_ras = (val2 & 0xff00) >> 8; 104 105 sp->t_rc = sp->t_rp + sp->t_ras; 106 107 return 0; 108 } 109 110 static int adls_pcode_read_psf_gv_point_info(struct intel_display *display, 111 struct intel_psf_gv_point *points) 112 { 113 struct drm_i915_private *i915 = to_i915(display->drm); 114 u32 val = 0; 115 int ret; 116 int i; 117 118 ret = snb_pcode_read(&i915->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 119 ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL); 120 if (ret) 121 return ret; 122 123 for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { 124 points[i].clk = val & 0xff; 125 val >>= 8; 126 } 127 128 return 0; 129 } 130 131 static u16 icl_qgv_points_mask(struct intel_display *display) 132 { 133 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 134 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 135 u16 qgv_points = 0, psf_points = 0; 136 137 /* 138 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects 139 * it with failure if we try masking any unadvertised points. 140 * So need to operate only with those returned from PCode. 141 */ 142 if (num_qgv_points > 0) 143 qgv_points = GENMASK(num_qgv_points - 1, 0); 144 145 if (num_psf_gv_points > 0) 146 psf_points = GENMASK(num_psf_gv_points - 1, 0); 147 148 return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points); 149 } 150 151 static bool is_sagv_enabled(struct intel_display *display, u16 points_mask) 152 { 153 return !is_power_of_2(~points_mask & icl_qgv_points_mask(display) & 154 ICL_PCODE_REQ_QGV_PT_MASK); 155 } 156 157 int icl_pcode_restrict_qgv_points(struct intel_display *display, 158 u32 points_mask) 159 { 160 struct drm_i915_private *i915 = to_i915(display->drm); 161 int ret; 162 163 if (DISPLAY_VER(display) >= 14) 164 return 0; 165 166 /* bspec says to keep retrying for at least 1 ms */ 167 ret = skl_pcode_request(&i915->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, 168 points_mask, 169 ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK, 170 ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE, 171 1); 172 173 if (ret < 0) { 174 drm_err(display->drm, 175 "Failed to disable qgv points (0x%x) points: 0x%x\n", 176 ret, points_mask); 177 return ret; 178 } 179 180 display->sagv.status = is_sagv_enabled(display, points_mask) ? 181 I915_SAGV_ENABLED : I915_SAGV_DISABLED; 182 183 return 0; 184 } 185 186 static int mtl_read_qgv_point_info(struct intel_display *display, 187 struct intel_qgv_point *sp, int point) 188 { 189 struct drm_i915_private *i915 = to_i915(display->drm); 190 u32 val, val2; 191 u16 dclk; 192 193 val = intel_uncore_read(&i915->uncore, 194 MTL_MEM_SS_INFO_QGV_POINT_LOW(point)); 195 val2 = intel_uncore_read(&i915->uncore, 196 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point)); 197 dclk = REG_FIELD_GET(MTL_DCLK_MASK, val); 198 sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000); 199 sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val); 200 sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val); 201 202 sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2); 203 sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2); 204 205 sp->t_rc = sp->t_rp + sp->t_ras; 206 207 return 0; 208 } 209 210 static int 211 intel_read_qgv_point_info(struct intel_display *display, 212 struct intel_qgv_point *sp, 213 int point) 214 { 215 if (DISPLAY_VER(display) >= 14) 216 return mtl_read_qgv_point_info(display, sp, point); 217 else if (display->platform.dg1) 218 return dg1_mchbar_read_qgv_point_info(display, sp, point); 219 else 220 return icl_pcode_read_qgv_point_info(display, sp, point); 221 } 222 223 static int icl_get_qgv_points(struct intel_display *display, 224 const struct dram_info *dram_info, 225 struct intel_qgv_info *qi, 226 bool is_y_tile) 227 { 228 int i, ret; 229 230 qi->num_points = dram_info->num_qgv_points; 231 qi->num_psf_points = dram_info->num_psf_gv_points; 232 233 if (DISPLAY_VER(display) >= 14) { 234 switch (dram_info->type) { 235 case INTEL_DRAM_DDR4: 236 qi->t_bl = 4; 237 qi->max_numchannels = 2; 238 qi->channel_width = 64; 239 qi->deinterleave = 2; 240 break; 241 case INTEL_DRAM_DDR5: 242 qi->t_bl = 8; 243 qi->max_numchannels = 4; 244 qi->channel_width = 32; 245 qi->deinterleave = 2; 246 break; 247 case INTEL_DRAM_LPDDR4: 248 case INTEL_DRAM_LPDDR5: 249 qi->t_bl = 16; 250 qi->max_numchannels = 8; 251 qi->channel_width = 16; 252 qi->deinterleave = 4; 253 break; 254 case INTEL_DRAM_GDDR: 255 case INTEL_DRAM_GDDR_ECC: 256 qi->channel_width = 32; 257 break; 258 default: 259 MISSING_CASE(dram_info->type); 260 return -EINVAL; 261 } 262 } else if (DISPLAY_VER(display) >= 12) { 263 switch (dram_info->type) { 264 case INTEL_DRAM_DDR4: 265 qi->t_bl = is_y_tile ? 8 : 4; 266 qi->max_numchannels = 2; 267 qi->channel_width = 64; 268 qi->deinterleave = is_y_tile ? 1 : 2; 269 break; 270 case INTEL_DRAM_DDR5: 271 qi->t_bl = is_y_tile ? 16 : 8; 272 qi->max_numchannels = 4; 273 qi->channel_width = 32; 274 qi->deinterleave = is_y_tile ? 1 : 2; 275 break; 276 case INTEL_DRAM_LPDDR4: 277 if (display->platform.rocketlake) { 278 qi->t_bl = 8; 279 qi->max_numchannels = 4; 280 qi->channel_width = 32; 281 qi->deinterleave = 2; 282 break; 283 } 284 fallthrough; 285 case INTEL_DRAM_LPDDR5: 286 qi->t_bl = 16; 287 qi->max_numchannels = 8; 288 qi->channel_width = 16; 289 qi->deinterleave = is_y_tile ? 2 : 4; 290 break; 291 default: 292 qi->t_bl = 16; 293 qi->max_numchannels = 1; 294 break; 295 } 296 } else if (DISPLAY_VER(display) == 11) { 297 qi->t_bl = dram_info->type == INTEL_DRAM_DDR4 ? 4 : 8; 298 qi->max_numchannels = 1; 299 } 300 301 if (drm_WARN_ON(display->drm, 302 qi->num_points > ARRAY_SIZE(qi->points))) 303 qi->num_points = ARRAY_SIZE(qi->points); 304 305 for (i = 0; i < qi->num_points; i++) { 306 struct intel_qgv_point *sp = &qi->points[i]; 307 308 ret = intel_read_qgv_point_info(display, sp, i); 309 if (ret) { 310 drm_dbg_kms(display->drm, "Could not read QGV %d info\n", i); 311 return ret; 312 } 313 314 drm_dbg_kms(display->drm, 315 "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", 316 i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, 317 sp->t_rcd, sp->t_rc); 318 } 319 320 if (qi->num_psf_points > 0) { 321 ret = adls_pcode_read_psf_gv_point_info(display, qi->psf_points); 322 if (ret) { 323 drm_err(display->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); 324 qi->num_psf_points = 0; 325 } 326 327 for (i = 0; i < qi->num_psf_points; i++) 328 drm_dbg_kms(display->drm, 329 "PSF GV %d: CLK=%d \n", 330 i, qi->psf_points[i].clk); 331 } 332 333 return 0; 334 } 335 336 static int adl_calc_psf_bw(int clk) 337 { 338 /* 339 * clk is multiples of 16.666MHz (100/6) 340 * According to BSpec PSF GV bandwidth is 341 * calculated as BW = 64 * clk * 16.666Mhz 342 */ 343 return DIV_ROUND_CLOSEST(64 * clk * 100, 6); 344 } 345 346 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) 347 { 348 u16 dclk = 0; 349 int i; 350 351 for (i = 0; i < qi->num_points; i++) 352 dclk = max(dclk, qi->points[i].dclk); 353 354 return dclk; 355 } 356 357 struct intel_sa_info { 358 u16 displayrtids; 359 u8 deburst, deprogbwlimit, derating; 360 }; 361 362 static const struct intel_sa_info icl_sa_info = { 363 .deburst = 8, 364 .deprogbwlimit = 25, /* GB/s */ 365 .displayrtids = 128, 366 .derating = 10, 367 }; 368 369 static const struct intel_sa_info tgl_sa_info = { 370 .deburst = 16, 371 .deprogbwlimit = 34, /* GB/s */ 372 .displayrtids = 256, 373 .derating = 10, 374 }; 375 376 static const struct intel_sa_info rkl_sa_info = { 377 .deburst = 8, 378 .deprogbwlimit = 20, /* GB/s */ 379 .displayrtids = 128, 380 .derating = 10, 381 }; 382 383 static const struct intel_sa_info adls_sa_info = { 384 .deburst = 16, 385 .deprogbwlimit = 38, /* GB/s */ 386 .displayrtids = 256, 387 .derating = 10, 388 }; 389 390 static const struct intel_sa_info adlp_sa_info = { 391 .deburst = 16, 392 .deprogbwlimit = 38, /* GB/s */ 393 .displayrtids = 256, 394 .derating = 20, 395 }; 396 397 static const struct intel_sa_info mtl_sa_info = { 398 .deburst = 32, 399 .deprogbwlimit = 38, /* GB/s */ 400 .displayrtids = 256, 401 .derating = 10, 402 }; 403 404 static const struct intel_sa_info xe2_hpd_sa_info = { 405 .derating = 30, 406 .deprogbwlimit = 53, 407 /* Other values not used by simplified algorithm */ 408 }; 409 410 static const struct intel_sa_info xe2_hpd_ecc_sa_info = { 411 .derating = 45, 412 .deprogbwlimit = 53, 413 /* Other values not used by simplified algorithm */ 414 }; 415 416 static const struct intel_sa_info xe3lpd_sa_info = { 417 .deburst = 32, 418 .deprogbwlimit = 65, /* GB/s */ 419 .displayrtids = 256, 420 .derating = 10, 421 }; 422 423 static int icl_get_bw_info(struct intel_display *display, 424 const struct dram_info *dram_info, 425 const struct intel_sa_info *sa) 426 { 427 struct intel_qgv_info qi = {}; 428 bool is_y_tile = true; /* assume y tile may be used */ 429 int num_channels = max_t(u8, 1, dram_info->num_channels); 430 int ipqdepth, ipqdepthpch = 16; 431 int dclk_max; 432 int maxdebw; 433 int num_groups = ARRAY_SIZE(display->bw.max); 434 int i, ret; 435 436 ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); 437 if (ret) { 438 drm_dbg_kms(display->drm, 439 "Failed to get memory subsystem information, ignoring bandwidth limits"); 440 return ret; 441 } 442 443 dclk_max = icl_sagv_max_dclk(&qi); 444 maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10); 445 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 446 qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 447 448 for (i = 0; i < num_groups; i++) { 449 struct intel_bw_info *bi = &display->bw.max[i]; 450 int clpchgroup; 451 int j; 452 453 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 454 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; 455 456 bi->num_qgv_points = qi.num_points; 457 bi->num_psf_gv_points = qi.num_psf_points; 458 459 for (j = 0; j < qi.num_points; j++) { 460 const struct intel_qgv_point *sp = &qi.points[j]; 461 int ct, bw; 462 463 /* 464 * Max row cycle time 465 * 466 * FIXME what is the logic behind the 467 * assumed burst length? 468 */ 469 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 470 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 471 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 472 473 bi->deratedbw[j] = min(maxdebw, 474 bw * (100 - sa->derating) / 100); 475 476 drm_dbg_kms(display->drm, 477 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", 478 i, j, bi->num_planes, bi->deratedbw[j]); 479 } 480 } 481 /* 482 * In case if SAGV is disabled in BIOS, we always get 1 483 * SAGV point, but we can't send PCode commands to restrict it 484 * as it will fail and pointless anyway. 485 */ 486 if (qi.num_points == 1) 487 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 488 else 489 display->sagv.status = I915_SAGV_ENABLED; 490 491 return 0; 492 } 493 494 static int tgl_get_bw_info(struct intel_display *display, 495 const struct dram_info *dram_info, 496 const struct intel_sa_info *sa) 497 { 498 struct intel_qgv_info qi = {}; 499 bool is_y_tile = true; /* assume y tile may be used */ 500 int num_channels = max_t(u8, 1, dram_info->num_channels); 501 int ipqdepth, ipqdepthpch = 16; 502 int dclk_max; 503 int maxdebw, peakbw; 504 int clperchgroup; 505 int num_groups = ARRAY_SIZE(display->bw.max); 506 int i, ret; 507 508 ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); 509 if (ret) { 510 drm_dbg_kms(display->drm, 511 "Failed to get memory subsystem information, ignoring bandwidth limits"); 512 return ret; 513 } 514 515 if (DISPLAY_VER(display) < 14 && 516 (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)) 517 num_channels *= 2; 518 519 qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 520 521 if (num_channels < qi.max_numchannels && DISPLAY_VER(display) >= 12) 522 qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1); 523 524 if (DISPLAY_VER(display) >= 12 && num_channels > qi.max_numchannels) 525 drm_warn(display->drm, "Number of channels exceeds max number of channels."); 526 if (qi.max_numchannels != 0) 527 num_channels = min_t(u8, num_channels, qi.max_numchannels); 528 529 dclk_max = icl_sagv_max_dclk(&qi); 530 531 peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max; 532 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 100); 533 534 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 535 /* 536 * clperchgroup = 4kpagespermempage * clperchperblock, 537 * clperchperblock = 8 / num_channels * interleave 538 */ 539 clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave; 540 541 for (i = 0; i < num_groups; i++) { 542 struct intel_bw_info *bi = &display->bw.max[i]; 543 struct intel_bw_info *bi_next; 544 int clpchgroup; 545 int j; 546 547 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 548 549 if (i < num_groups - 1) { 550 bi_next = &display->bw.max[i + 1]; 551 552 if (clpchgroup < clperchgroup) 553 bi_next->num_planes = (ipqdepth - clpchgroup) / 554 clpchgroup + 1; 555 else 556 bi_next->num_planes = 0; 557 } 558 559 bi->num_qgv_points = qi.num_points; 560 bi->num_psf_gv_points = qi.num_psf_points; 561 562 for (j = 0; j < qi.num_points; j++) { 563 const struct intel_qgv_point *sp = &qi.points[j]; 564 int ct, bw; 565 566 /* 567 * Max row cycle time 568 * 569 * FIXME what is the logic behind the 570 * assumed burst length? 571 */ 572 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 573 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 574 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 575 576 bi->deratedbw[j] = min(maxdebw, 577 bw * (100 - sa->derating) / 100); 578 bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk * 579 num_channels * 580 qi.channel_width, 8); 581 582 drm_dbg_kms(display->drm, 583 "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n", 584 i, j, bi->num_planes, bi->deratedbw[j], 585 bi->peakbw[j]); 586 } 587 588 for (j = 0; j < qi.num_psf_points; j++) { 589 const struct intel_psf_gv_point *sp = &qi.psf_points[j]; 590 591 bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); 592 593 drm_dbg_kms(display->drm, 594 "BW%d / PSF GV %d: num_planes=%d bw=%u\n", 595 i, j, bi->num_planes, bi->psf_bw[j]); 596 } 597 } 598 599 /* 600 * In case if SAGV is disabled in BIOS, we always get 1 601 * SAGV point, but we can't send PCode commands to restrict it 602 * as it will fail and pointless anyway. 603 */ 604 if (qi.num_points == 1) 605 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 606 else 607 display->sagv.status = I915_SAGV_ENABLED; 608 609 return 0; 610 } 611 612 static void dg2_get_bw_info(struct intel_display *display) 613 { 614 unsigned int deratedbw = display->platform.dg2_g11 ? 38000 : 50000; 615 int num_groups = ARRAY_SIZE(display->bw.max); 616 int i; 617 618 /* 619 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth 620 * that doesn't depend on the number of planes enabled. So fill all the 621 * plane group with constant bw information for uniformity with other 622 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth, 623 * whereas DG2-G11 platforms have 38 GB/s. 624 */ 625 for (i = 0; i < num_groups; i++) { 626 struct intel_bw_info *bi = &display->bw.max[i]; 627 628 bi->num_planes = 1; 629 /* Need only one dummy QGV point per group */ 630 bi->num_qgv_points = 1; 631 bi->deratedbw[0] = deratedbw; 632 } 633 634 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 635 } 636 637 static int xe2_hpd_get_bw_info(struct intel_display *display, 638 const struct dram_info *dram_info, 639 const struct intel_sa_info *sa) 640 { 641 struct intel_qgv_info qi = {}; 642 int num_channels = dram_info->num_channels; 643 int peakbw, maxdebw; 644 int ret, i; 645 646 ret = icl_get_qgv_points(display, dram_info, &qi, true); 647 if (ret) { 648 drm_dbg_kms(display->drm, 649 "Failed to get memory subsystem information, ignoring bandwidth limits"); 650 return ret; 651 } 652 653 peakbw = num_channels * qi.channel_width / 8 * icl_sagv_max_dclk(&qi); 654 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 10); 655 656 for (i = 0; i < qi.num_points; i++) { 657 const struct intel_qgv_point *point = &qi.points[i]; 658 int bw = num_channels * (qi.channel_width / 8) * point->dclk; 659 660 display->bw.max[0].deratedbw[i] = 661 min(maxdebw, (100 - sa->derating) * bw / 100); 662 display->bw.max[0].peakbw[i] = bw; 663 664 drm_dbg_kms(display->drm, "QGV %d: deratedbw=%u peakbw: %u\n", 665 i, display->bw.max[0].deratedbw[i], 666 display->bw.max[0].peakbw[i]); 667 } 668 669 /* Bandwidth does not depend on # of planes; set all groups the same */ 670 display->bw.max[0].num_planes = 1; 671 display->bw.max[0].num_qgv_points = qi.num_points; 672 for (i = 1; i < ARRAY_SIZE(display->bw.max); i++) 673 memcpy(&display->bw.max[i], &display->bw.max[0], 674 sizeof(display->bw.max[0])); 675 676 /* 677 * Xe2_HPD should always have exactly two QGV points representing 678 * battery and plugged-in operation. 679 */ 680 drm_WARN_ON(display->drm, qi.num_points != 2); 681 display->sagv.status = I915_SAGV_ENABLED; 682 683 return 0; 684 } 685 686 static unsigned int icl_max_bw_index(struct intel_display *display, 687 int num_planes, int qgv_point) 688 { 689 int i; 690 691 /* 692 * Let's return max bw for 0 planes 693 */ 694 num_planes = max(1, num_planes); 695 696 for (i = 0; i < ARRAY_SIZE(display->bw.max); i++) { 697 const struct intel_bw_info *bi = 698 &display->bw.max[i]; 699 700 /* 701 * Pcode will not expose all QGV points when 702 * SAGV is forced to off/min/med/max. 703 */ 704 if (qgv_point >= bi->num_qgv_points) 705 return UINT_MAX; 706 707 if (num_planes >= bi->num_planes) 708 return i; 709 } 710 711 return UINT_MAX; 712 } 713 714 static unsigned int tgl_max_bw_index(struct intel_display *display, 715 int num_planes, int qgv_point) 716 { 717 int i; 718 719 /* 720 * Let's return max bw for 0 planes 721 */ 722 num_planes = max(1, num_planes); 723 724 for (i = ARRAY_SIZE(display->bw.max) - 1; i >= 0; i--) { 725 const struct intel_bw_info *bi = 726 &display->bw.max[i]; 727 728 /* 729 * Pcode will not expose all QGV points when 730 * SAGV is forced to off/min/med/max. 731 */ 732 if (qgv_point >= bi->num_qgv_points) 733 return UINT_MAX; 734 735 if (num_planes <= bi->num_planes) 736 return i; 737 } 738 739 return 0; 740 } 741 742 static unsigned int adl_psf_bw(struct intel_display *display, 743 int psf_gv_point) 744 { 745 const struct intel_bw_info *bi = 746 &display->bw.max[0]; 747 748 return bi->psf_bw[psf_gv_point]; 749 } 750 751 static unsigned int icl_qgv_bw(struct intel_display *display, 752 int num_active_planes, int qgv_point) 753 { 754 unsigned int idx; 755 756 if (DISPLAY_VER(display) >= 12) 757 idx = tgl_max_bw_index(display, num_active_planes, qgv_point); 758 else 759 idx = icl_max_bw_index(display, num_active_planes, qgv_point); 760 761 if (idx >= ARRAY_SIZE(display->bw.max)) 762 return 0; 763 764 return display->bw.max[idx].deratedbw[qgv_point]; 765 } 766 767 void intel_bw_init_hw(struct intel_display *display) 768 { 769 const struct dram_info *dram_info = intel_dram_info(display->drm); 770 771 if (!HAS_DISPLAY(display)) 772 return; 773 774 if (DISPLAY_VER(display) >= 30) 775 tgl_get_bw_info(display, dram_info, &xe3lpd_sa_info); 776 else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx && 777 dram_info->type == INTEL_DRAM_GDDR_ECC) 778 xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_ecc_sa_info); 779 else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx) 780 xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_sa_info); 781 else if (DISPLAY_VER(display) >= 14) 782 tgl_get_bw_info(display, dram_info, &mtl_sa_info); 783 else if (display->platform.dg2) 784 dg2_get_bw_info(display); 785 else if (display->platform.alderlake_p) 786 tgl_get_bw_info(display, dram_info, &adlp_sa_info); 787 else if (display->platform.alderlake_s) 788 tgl_get_bw_info(display, dram_info, &adls_sa_info); 789 else if (display->platform.rocketlake) 790 tgl_get_bw_info(display, dram_info, &rkl_sa_info); 791 else if (DISPLAY_VER(display) == 12) 792 tgl_get_bw_info(display, dram_info, &tgl_sa_info); 793 else if (DISPLAY_VER(display) == 11) 794 icl_get_bw_info(display, dram_info, &icl_sa_info); 795 } 796 797 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state) 798 { 799 /* 800 * We assume cursors are small enough 801 * to not not cause bandwidth problems. 802 */ 803 return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); 804 } 805 806 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state) 807 { 808 struct intel_display *display = to_intel_display(crtc_state); 809 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 810 unsigned int data_rate = 0; 811 enum plane_id plane_id; 812 813 for_each_plane_id_on_crtc(crtc, plane_id) { 814 /* 815 * We assume cursors are small enough 816 * to not not cause bandwidth problems. 817 */ 818 if (plane_id == PLANE_CURSOR) 819 continue; 820 821 data_rate += crtc_state->data_rate[plane_id]; 822 823 if (DISPLAY_VER(display) < 11) 824 data_rate += crtc_state->data_rate_y[plane_id]; 825 } 826 827 return data_rate; 828 } 829 830 /* "Maximum Pipe Read Bandwidth" */ 831 static int intel_bw_crtc_min_cdclk(struct intel_display *display, 832 unsigned int data_rate) 833 { 834 if (DISPLAY_VER(display) < 12) 835 return 0; 836 837 return DIV_ROUND_UP_ULL(mul_u32_u32(data_rate, 10), 512); 838 } 839 840 static unsigned int intel_bw_num_active_planes(struct intel_display *display, 841 const struct intel_bw_state *bw_state) 842 { 843 unsigned int num_active_planes = 0; 844 enum pipe pipe; 845 846 for_each_pipe(display, pipe) 847 num_active_planes += bw_state->num_active_planes[pipe]; 848 849 return num_active_planes; 850 } 851 852 static unsigned int intel_bw_data_rate(struct intel_display *display, 853 const struct intel_bw_state *bw_state) 854 { 855 struct drm_i915_private *i915 = to_i915(display->drm); 856 unsigned int data_rate = 0; 857 enum pipe pipe; 858 859 for_each_pipe(display, pipe) 860 data_rate += bw_state->data_rate[pipe]; 861 862 if (DISPLAY_VER(display) >= 13 && i915_vtd_active(i915)) 863 data_rate = DIV_ROUND_UP(data_rate * 105, 100); 864 865 return data_rate; 866 } 867 868 struct intel_bw_state * 869 intel_atomic_get_old_bw_state(struct intel_atomic_state *state) 870 { 871 struct intel_display *display = to_intel_display(state); 872 struct intel_global_state *bw_state; 873 874 bw_state = intel_atomic_get_old_global_obj_state(state, &display->bw.obj); 875 876 return to_intel_bw_state(bw_state); 877 } 878 879 struct intel_bw_state * 880 intel_atomic_get_new_bw_state(struct intel_atomic_state *state) 881 { 882 struct intel_display *display = to_intel_display(state); 883 struct intel_global_state *bw_state; 884 885 bw_state = intel_atomic_get_new_global_obj_state(state, &display->bw.obj); 886 887 return to_intel_bw_state(bw_state); 888 } 889 890 struct intel_bw_state * 891 intel_atomic_get_bw_state(struct intel_atomic_state *state) 892 { 893 struct intel_display *display = to_intel_display(state); 894 struct intel_global_state *bw_state; 895 896 bw_state = intel_atomic_get_global_obj_state(state, &display->bw.obj); 897 if (IS_ERR(bw_state)) 898 return ERR_CAST(bw_state); 899 900 return to_intel_bw_state(bw_state); 901 } 902 903 static unsigned int icl_max_bw_qgv_point_mask(struct intel_display *display, 904 int num_active_planes) 905 { 906 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 907 unsigned int max_bw_point = 0; 908 unsigned int max_bw = 0; 909 int i; 910 911 for (i = 0; i < num_qgv_points; i++) { 912 unsigned int max_data_rate = 913 icl_qgv_bw(display, num_active_planes, i); 914 915 /* 916 * We need to know which qgv point gives us 917 * maximum bandwidth in order to disable SAGV 918 * if we find that we exceed SAGV block time 919 * with watermarks. By that moment we already 920 * have those, as it is calculated earlier in 921 * intel_atomic_check, 922 */ 923 if (max_data_rate > max_bw) { 924 max_bw_point = BIT(i); 925 max_bw = max_data_rate; 926 } 927 } 928 929 return max_bw_point; 930 } 931 932 static u16 icl_prepare_qgv_points_mask(struct intel_display *display, 933 unsigned int qgv_points, 934 unsigned int psf_points) 935 { 936 return ~(ICL_PCODE_REQ_QGV_PT(qgv_points) | 937 ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(display); 938 } 939 940 static unsigned int icl_max_bw_psf_gv_point_mask(struct intel_display *display) 941 { 942 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 943 unsigned int max_bw_point_mask = 0; 944 unsigned int max_bw = 0; 945 int i; 946 947 for (i = 0; i < num_psf_gv_points; i++) { 948 unsigned int max_data_rate = adl_psf_bw(display, i); 949 950 if (max_data_rate > max_bw) { 951 max_bw_point_mask = BIT(i); 952 max_bw = max_data_rate; 953 } else if (max_data_rate == max_bw) { 954 max_bw_point_mask |= BIT(i); 955 } 956 } 957 958 return max_bw_point_mask; 959 } 960 961 static void icl_force_disable_sagv(struct intel_display *display, 962 struct intel_bw_state *bw_state) 963 { 964 unsigned int qgv_points = icl_max_bw_qgv_point_mask(display, 0); 965 unsigned int psf_points = icl_max_bw_psf_gv_point_mask(display); 966 967 bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, 968 qgv_points, 969 psf_points); 970 971 drm_dbg_kms(display->drm, "Forcing SAGV disable: mask 0x%x\n", 972 bw_state->qgv_points_mask); 973 974 icl_pcode_restrict_qgv_points(display, bw_state->qgv_points_mask); 975 } 976 977 static int mtl_find_qgv_points(struct intel_display *display, 978 unsigned int data_rate, 979 unsigned int num_active_planes, 980 struct intel_bw_state *new_bw_state) 981 { 982 unsigned int best_rate = UINT_MAX; 983 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 984 unsigned int qgv_peak_bw = 0; 985 int i; 986 int ret; 987 988 ret = intel_atomic_lock_global_state(&new_bw_state->base); 989 if (ret) 990 return ret; 991 992 /* 993 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's 994 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is 995 * not enabled. PM Demand code will clamp the value for the register 996 */ 997 if (!intel_can_enable_sagv(display, new_bw_state)) { 998 new_bw_state->qgv_point_peakbw = U16_MAX; 999 drm_dbg_kms(display->drm, "No SAGV, use UINT_MAX as peak bw."); 1000 return 0; 1001 } 1002 1003 /* 1004 * Find the best QGV point by comparing the data_rate with max data rate 1005 * offered per plane group 1006 */ 1007 for (i = 0; i < num_qgv_points; i++) { 1008 unsigned int bw_index = 1009 tgl_max_bw_index(display, num_active_planes, i); 1010 unsigned int max_data_rate; 1011 1012 if (bw_index >= ARRAY_SIZE(display->bw.max)) 1013 continue; 1014 1015 max_data_rate = display->bw.max[bw_index].deratedbw[i]; 1016 1017 if (max_data_rate < data_rate) 1018 continue; 1019 1020 if (max_data_rate - data_rate < best_rate) { 1021 best_rate = max_data_rate - data_rate; 1022 qgv_peak_bw = display->bw.max[bw_index].peakbw[i]; 1023 } 1024 1025 drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n", 1026 i, max_data_rate, data_rate, qgv_peak_bw); 1027 } 1028 1029 drm_dbg_kms(display->drm, "Matching peaks QGV bw: %d for required data rate: %d\n", 1030 qgv_peak_bw, data_rate); 1031 1032 /* 1033 * The display configuration cannot be supported if no QGV point 1034 * satisfying the required data rate is found 1035 */ 1036 if (qgv_peak_bw == 0) { 1037 drm_dbg_kms(display->drm, "No QGV points for bw %d for display configuration(%d active planes).\n", 1038 data_rate, num_active_planes); 1039 return -EINVAL; 1040 } 1041 1042 /* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */ 1043 new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100); 1044 1045 return 0; 1046 } 1047 1048 static int icl_find_qgv_points(struct intel_display *display, 1049 unsigned int data_rate, 1050 unsigned int num_active_planes, 1051 const struct intel_bw_state *old_bw_state, 1052 struct intel_bw_state *new_bw_state) 1053 { 1054 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 1055 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 1056 u16 psf_points = 0; 1057 u16 qgv_points = 0; 1058 int i; 1059 int ret; 1060 1061 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1062 if (ret) 1063 return ret; 1064 1065 for (i = 0; i < num_qgv_points; i++) { 1066 unsigned int max_data_rate = icl_qgv_bw(display, 1067 num_active_planes, i); 1068 if (max_data_rate >= data_rate) 1069 qgv_points |= BIT(i); 1070 1071 drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d\n", 1072 i, max_data_rate, data_rate); 1073 } 1074 1075 for (i = 0; i < num_psf_gv_points; i++) { 1076 unsigned int max_data_rate = adl_psf_bw(display, i); 1077 1078 if (max_data_rate >= data_rate) 1079 psf_points |= BIT(i); 1080 1081 drm_dbg_kms(display->drm, "PSF GV point %d: max bw %d" 1082 " required %d\n", 1083 i, max_data_rate, data_rate); 1084 } 1085 1086 /* 1087 * BSpec states that we always should have at least one allowed point 1088 * left, so if we couldn't - simply reject the configuration for obvious 1089 * reasons. 1090 */ 1091 if (qgv_points == 0) { 1092 drm_dbg_kms(display->drm, "No QGV points provide sufficient memory" 1093 " bandwidth %d for display configuration(%d active planes).\n", 1094 data_rate, num_active_planes); 1095 return -EINVAL; 1096 } 1097 1098 if (num_psf_gv_points > 0 && psf_points == 0) { 1099 drm_dbg_kms(display->drm, "No PSF GV points provide sufficient memory" 1100 " bandwidth %d for display configuration(%d active planes).\n", 1101 data_rate, num_active_planes); 1102 return -EINVAL; 1103 } 1104 1105 /* 1106 * Leave only single point with highest bandwidth, if 1107 * we can't enable SAGV due to the increased memory latency it may 1108 * cause. 1109 */ 1110 if (!intel_can_enable_sagv(display, new_bw_state)) { 1111 qgv_points = icl_max_bw_qgv_point_mask(display, num_active_planes); 1112 drm_dbg_kms(display->drm, "No SAGV, using single QGV point mask 0x%x\n", 1113 qgv_points); 1114 } 1115 1116 /* 1117 * We store the ones which need to be masked as that is what PCode 1118 * actually accepts as a parameter. 1119 */ 1120 new_bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, 1121 qgv_points, 1122 psf_points); 1123 /* 1124 * If the actual mask had changed we need to make sure that 1125 * the commits are serialized(in case this is a nomodeset, nonblocking) 1126 */ 1127 if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { 1128 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 return 0; 1134 } 1135 1136 static int intel_bw_check_qgv_points(struct intel_display *display, 1137 const struct intel_bw_state *old_bw_state, 1138 struct intel_bw_state *new_bw_state) 1139 { 1140 unsigned int data_rate = intel_bw_data_rate(display, new_bw_state); 1141 unsigned int num_active_planes = 1142 intel_bw_num_active_planes(display, new_bw_state); 1143 1144 data_rate = DIV_ROUND_UP(data_rate, 1000); 1145 1146 if (DISPLAY_VER(display) >= 14) 1147 return mtl_find_qgv_points(display, data_rate, num_active_planes, 1148 new_bw_state); 1149 else 1150 return icl_find_qgv_points(display, data_rate, num_active_planes, 1151 old_bw_state, new_bw_state); 1152 } 1153 1154 static bool intel_dbuf_bw_changed(struct intel_display *display, 1155 const struct intel_dbuf_bw *old_dbuf_bw, 1156 const struct intel_dbuf_bw *new_dbuf_bw) 1157 { 1158 enum dbuf_slice slice; 1159 1160 for_each_dbuf_slice(display, slice) { 1161 if (old_dbuf_bw->max_bw[slice] != new_dbuf_bw->max_bw[slice] || 1162 old_dbuf_bw->active_planes[slice] != new_dbuf_bw->active_planes[slice]) 1163 return true; 1164 } 1165 1166 return false; 1167 } 1168 1169 static bool intel_bw_state_changed(struct intel_display *display, 1170 const struct intel_bw_state *old_bw_state, 1171 const struct intel_bw_state *new_bw_state) 1172 { 1173 enum pipe pipe; 1174 1175 for_each_pipe(display, pipe) { 1176 const struct intel_dbuf_bw *old_dbuf_bw = 1177 &old_bw_state->dbuf_bw[pipe]; 1178 const struct intel_dbuf_bw *new_dbuf_bw = 1179 &new_bw_state->dbuf_bw[pipe]; 1180 1181 if (intel_dbuf_bw_changed(display, old_dbuf_bw, new_dbuf_bw)) 1182 return true; 1183 1184 if (intel_bw_crtc_min_cdclk(display, old_bw_state->data_rate[pipe]) != 1185 intel_bw_crtc_min_cdclk(display, new_bw_state->data_rate[pipe])) 1186 return true; 1187 } 1188 1189 return false; 1190 } 1191 1192 static void skl_plane_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw, 1193 struct intel_crtc *crtc, 1194 enum plane_id plane_id, 1195 const struct skl_ddb_entry *ddb, 1196 unsigned int data_rate) 1197 { 1198 struct intel_display *display = to_intel_display(crtc); 1199 unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(display, ddb); 1200 enum dbuf_slice slice; 1201 1202 /* 1203 * The arbiter can only really guarantee an 1204 * equal share of the total bw to each plane. 1205 */ 1206 for_each_dbuf_slice_in_mask(display, slice, dbuf_mask) { 1207 dbuf_bw->max_bw[slice] = max(dbuf_bw->max_bw[slice], data_rate); 1208 dbuf_bw->active_planes[slice] |= BIT(plane_id); 1209 } 1210 } 1211 1212 static void skl_crtc_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw, 1213 const struct intel_crtc_state *crtc_state) 1214 { 1215 struct intel_display *display = to_intel_display(crtc_state); 1216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1217 enum plane_id plane_id; 1218 1219 memset(dbuf_bw, 0, sizeof(*dbuf_bw)); 1220 1221 if (!crtc_state->hw.active) 1222 return; 1223 1224 for_each_plane_id_on_crtc(crtc, plane_id) { 1225 /* 1226 * We assume cursors are small enough 1227 * to not cause bandwidth problems. 1228 */ 1229 if (plane_id == PLANE_CURSOR) 1230 continue; 1231 1232 skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id, 1233 &crtc_state->wm.skl.plane_ddb[plane_id], 1234 crtc_state->data_rate[plane_id]); 1235 1236 if (DISPLAY_VER(display) < 11) 1237 skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id, 1238 &crtc_state->wm.skl.plane_ddb_y[plane_id], 1239 crtc_state->data_rate[plane_id]); 1240 } 1241 } 1242 1243 /* "Maximum Data Buffer Bandwidth" */ 1244 static int 1245 intel_bw_dbuf_min_cdclk(struct intel_display *display, 1246 const struct intel_bw_state *bw_state) 1247 { 1248 unsigned int total_max_bw = 0; 1249 enum dbuf_slice slice; 1250 1251 for_each_dbuf_slice(display, slice) { 1252 int num_active_planes = 0; 1253 unsigned int max_bw = 0; 1254 enum pipe pipe; 1255 1256 /* 1257 * The arbiter can only really guarantee an 1258 * equal share of the total bw to each plane. 1259 */ 1260 for_each_pipe(display, pipe) { 1261 const struct intel_dbuf_bw *dbuf_bw = &bw_state->dbuf_bw[pipe]; 1262 1263 max_bw = max(dbuf_bw->max_bw[slice], max_bw); 1264 num_active_planes += hweight8(dbuf_bw->active_planes[slice]); 1265 } 1266 max_bw *= num_active_planes; 1267 1268 total_max_bw = max(total_max_bw, max_bw); 1269 } 1270 1271 return DIV_ROUND_UP(total_max_bw, 64); 1272 } 1273 1274 int intel_bw_min_cdclk(struct intel_display *display, 1275 const struct intel_bw_state *bw_state) 1276 { 1277 enum pipe pipe; 1278 int min_cdclk; 1279 1280 min_cdclk = intel_bw_dbuf_min_cdclk(display, bw_state); 1281 1282 for_each_pipe(display, pipe) 1283 min_cdclk = max(min_cdclk, 1284 intel_bw_crtc_min_cdclk(display, 1285 bw_state->data_rate[pipe])); 1286 1287 return min_cdclk; 1288 } 1289 1290 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state, 1291 bool *need_cdclk_calc) 1292 { 1293 struct intel_display *display = to_intel_display(state); 1294 struct intel_bw_state *new_bw_state = NULL; 1295 const struct intel_bw_state *old_bw_state = NULL; 1296 const struct intel_cdclk_state *cdclk_state; 1297 const struct intel_crtc_state *old_crtc_state; 1298 const struct intel_crtc_state *new_crtc_state; 1299 int old_min_cdclk, new_min_cdclk; 1300 struct intel_crtc *crtc; 1301 int i; 1302 1303 if (DISPLAY_VER(display) < 9) 1304 return 0; 1305 1306 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1307 new_crtc_state, i) { 1308 struct intel_dbuf_bw old_dbuf_bw, new_dbuf_bw; 1309 1310 skl_crtc_calc_dbuf_bw(&old_dbuf_bw, old_crtc_state); 1311 skl_crtc_calc_dbuf_bw(&new_dbuf_bw, new_crtc_state); 1312 1313 if (!intel_dbuf_bw_changed(display, &old_dbuf_bw, &new_dbuf_bw)) 1314 continue; 1315 1316 new_bw_state = intel_atomic_get_bw_state(state); 1317 if (IS_ERR(new_bw_state)) 1318 return PTR_ERR(new_bw_state); 1319 1320 old_bw_state = intel_atomic_get_old_bw_state(state); 1321 1322 new_bw_state->dbuf_bw[crtc->pipe] = new_dbuf_bw; 1323 } 1324 1325 if (!old_bw_state) 1326 return 0; 1327 1328 if (intel_bw_state_changed(display, old_bw_state, new_bw_state)) { 1329 int ret = intel_atomic_lock_global_state(&new_bw_state->base); 1330 if (ret) 1331 return ret; 1332 } 1333 1334 old_min_cdclk = intel_bw_min_cdclk(display, old_bw_state); 1335 new_min_cdclk = intel_bw_min_cdclk(display, new_bw_state); 1336 1337 /* 1338 * No need to check against the cdclk state if 1339 * the min cdclk doesn't increase. 1340 * 1341 * Ie. we only ever increase the cdclk due to bandwidth 1342 * requirements. This can reduce back and forth 1343 * display blinking due to constant cdclk changes. 1344 */ 1345 if (new_min_cdclk <= old_min_cdclk) 1346 return 0; 1347 1348 cdclk_state = intel_atomic_get_cdclk_state(state); 1349 if (IS_ERR(cdclk_state)) 1350 return PTR_ERR(cdclk_state); 1351 1352 /* 1353 * No need to recalculate the cdclk state if 1354 * the min cdclk doesn't increase. 1355 * 1356 * Ie. we only ever increase the cdclk due to bandwidth 1357 * requirements. This can reduce back and forth 1358 * display blinking due to constant cdclk changes. 1359 */ 1360 if (new_min_cdclk <= cdclk_state->bw_min_cdclk) 1361 return 0; 1362 1363 drm_dbg_kms(display->drm, 1364 "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n", 1365 new_min_cdclk, cdclk_state->bw_min_cdclk); 1366 *need_cdclk_calc = true; 1367 1368 return 0; 1369 } 1370 1371 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed) 1372 { 1373 struct intel_display *display = to_intel_display(state); 1374 const struct intel_crtc_state *new_crtc_state, *old_crtc_state; 1375 struct intel_crtc *crtc; 1376 int i; 1377 1378 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1379 new_crtc_state, i) { 1380 unsigned int old_data_rate = 1381 intel_bw_crtc_data_rate(old_crtc_state); 1382 unsigned int new_data_rate = 1383 intel_bw_crtc_data_rate(new_crtc_state); 1384 unsigned int old_active_planes = 1385 intel_bw_crtc_num_active_planes(old_crtc_state); 1386 unsigned int new_active_planes = 1387 intel_bw_crtc_num_active_planes(new_crtc_state); 1388 struct intel_bw_state *new_bw_state; 1389 1390 /* 1391 * Avoid locking the bw state when 1392 * nothing significant has changed. 1393 */ 1394 if (old_data_rate == new_data_rate && 1395 old_active_planes == new_active_planes) 1396 continue; 1397 1398 new_bw_state = intel_atomic_get_bw_state(state); 1399 if (IS_ERR(new_bw_state)) 1400 return PTR_ERR(new_bw_state); 1401 1402 new_bw_state->data_rate[crtc->pipe] = new_data_rate; 1403 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; 1404 1405 *changed = true; 1406 1407 drm_dbg_kms(display->drm, 1408 "[CRTC:%d:%s] data rate %u num active planes %u\n", 1409 crtc->base.base.id, crtc->base.name, 1410 new_bw_state->data_rate[crtc->pipe], 1411 new_bw_state->num_active_planes[crtc->pipe]); 1412 } 1413 1414 return 0; 1415 } 1416 1417 static int intel_bw_modeset_checks(struct intel_atomic_state *state) 1418 { 1419 struct intel_display *display = to_intel_display(state); 1420 const struct intel_bw_state *old_bw_state; 1421 struct intel_bw_state *new_bw_state; 1422 1423 if (DISPLAY_VER(display) < 9) 1424 return 0; 1425 1426 new_bw_state = intel_atomic_get_bw_state(state); 1427 if (IS_ERR(new_bw_state)) 1428 return PTR_ERR(new_bw_state); 1429 1430 old_bw_state = intel_atomic_get_old_bw_state(state); 1431 1432 new_bw_state->active_pipes = 1433 intel_calc_active_pipes(state, old_bw_state->active_pipes); 1434 1435 if (new_bw_state->active_pipes != old_bw_state->active_pipes) { 1436 int ret; 1437 1438 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1439 if (ret) 1440 return ret; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static int intel_bw_check_sagv_mask(struct intel_atomic_state *state) 1447 { 1448 struct intel_display *display = to_intel_display(state); 1449 const struct intel_crtc_state *old_crtc_state; 1450 const struct intel_crtc_state *new_crtc_state; 1451 const struct intel_bw_state *old_bw_state = NULL; 1452 struct intel_bw_state *new_bw_state = NULL; 1453 struct intel_crtc *crtc; 1454 int ret, i; 1455 1456 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1457 new_crtc_state, i) { 1458 if (intel_crtc_can_enable_sagv(old_crtc_state) == 1459 intel_crtc_can_enable_sagv(new_crtc_state)) 1460 continue; 1461 1462 new_bw_state = intel_atomic_get_bw_state(state); 1463 if (IS_ERR(new_bw_state)) 1464 return PTR_ERR(new_bw_state); 1465 1466 old_bw_state = intel_atomic_get_old_bw_state(state); 1467 1468 if (intel_crtc_can_enable_sagv(new_crtc_state)) 1469 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); 1470 else 1471 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); 1472 } 1473 1474 if (!new_bw_state) 1475 return 0; 1476 1477 if (intel_can_enable_sagv(display, new_bw_state) != 1478 intel_can_enable_sagv(display, old_bw_state)) { 1479 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 1480 if (ret) 1481 return ret; 1482 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { 1483 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1484 if (ret) 1485 return ret; 1486 } 1487 1488 return 0; 1489 } 1490 1491 int intel_bw_atomic_check(struct intel_atomic_state *state, bool any_ms) 1492 { 1493 struct intel_display *display = to_intel_display(state); 1494 bool changed = false; 1495 struct intel_bw_state *new_bw_state; 1496 const struct intel_bw_state *old_bw_state; 1497 int ret; 1498 1499 if (DISPLAY_VER(display) < 9) 1500 return 0; 1501 1502 if (any_ms) { 1503 ret = intel_bw_modeset_checks(state); 1504 if (ret) 1505 return ret; 1506 } 1507 1508 ret = intel_bw_check_sagv_mask(state); 1509 if (ret) 1510 return ret; 1511 1512 /* FIXME earlier gens need some checks too */ 1513 if (DISPLAY_VER(display) < 11) 1514 return 0; 1515 1516 ret = intel_bw_check_data_rate(state, &changed); 1517 if (ret) 1518 return ret; 1519 1520 old_bw_state = intel_atomic_get_old_bw_state(state); 1521 new_bw_state = intel_atomic_get_new_bw_state(state); 1522 1523 if (new_bw_state && 1524 intel_can_enable_sagv(display, old_bw_state) != 1525 intel_can_enable_sagv(display, new_bw_state)) 1526 changed = true; 1527 1528 /* 1529 * If none of our inputs (data rates, number of active 1530 * planes, SAGV yes/no) changed then nothing to do here. 1531 */ 1532 if (!changed) 1533 return 0; 1534 1535 ret = intel_bw_check_qgv_points(display, old_bw_state, new_bw_state); 1536 if (ret) 1537 return ret; 1538 1539 return 0; 1540 } 1541 1542 static void intel_bw_crtc_update(struct intel_bw_state *bw_state, 1543 const struct intel_crtc_state *crtc_state) 1544 { 1545 struct intel_display *display = to_intel_display(crtc_state); 1546 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1547 1548 bw_state->data_rate[crtc->pipe] = 1549 intel_bw_crtc_data_rate(crtc_state); 1550 bw_state->num_active_planes[crtc->pipe] = 1551 intel_bw_crtc_num_active_planes(crtc_state); 1552 1553 drm_dbg_kms(display->drm, "pipe %c data rate %u num active planes %u\n", 1554 pipe_name(crtc->pipe), 1555 bw_state->data_rate[crtc->pipe], 1556 bw_state->num_active_planes[crtc->pipe]); 1557 } 1558 1559 void intel_bw_update_hw_state(struct intel_display *display) 1560 { 1561 struct intel_bw_state *bw_state = 1562 to_intel_bw_state(display->bw.obj.state); 1563 struct intel_crtc *crtc; 1564 1565 if (DISPLAY_VER(display) < 9) 1566 return; 1567 1568 bw_state->active_pipes = 0; 1569 bw_state->pipe_sagv_reject = 0; 1570 1571 for_each_intel_crtc(display->drm, crtc) { 1572 const struct intel_crtc_state *crtc_state = 1573 to_intel_crtc_state(crtc->base.state); 1574 enum pipe pipe = crtc->pipe; 1575 1576 if (crtc_state->hw.active) 1577 bw_state->active_pipes |= BIT(pipe); 1578 1579 if (DISPLAY_VER(display) >= 11) 1580 intel_bw_crtc_update(bw_state, crtc_state); 1581 1582 skl_crtc_calc_dbuf_bw(&bw_state->dbuf_bw[pipe], crtc_state); 1583 1584 /* initially SAGV has been forced off */ 1585 bw_state->pipe_sagv_reject |= BIT(pipe); 1586 } 1587 } 1588 1589 void intel_bw_crtc_disable_noatomic(struct intel_crtc *crtc) 1590 { 1591 struct intel_display *display = to_intel_display(crtc); 1592 struct intel_bw_state *bw_state = 1593 to_intel_bw_state(display->bw.obj.state); 1594 enum pipe pipe = crtc->pipe; 1595 1596 if (DISPLAY_VER(display) < 9) 1597 return; 1598 1599 bw_state->data_rate[pipe] = 0; 1600 bw_state->num_active_planes[pipe] = 0; 1601 memset(&bw_state->dbuf_bw[pipe], 0, sizeof(bw_state->dbuf_bw[pipe])); 1602 } 1603 1604 static struct intel_global_state * 1605 intel_bw_duplicate_state(struct intel_global_obj *obj) 1606 { 1607 struct intel_bw_state *state; 1608 1609 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 1610 if (!state) 1611 return NULL; 1612 1613 return &state->base; 1614 } 1615 1616 static void intel_bw_destroy_state(struct intel_global_obj *obj, 1617 struct intel_global_state *state) 1618 { 1619 kfree(state); 1620 } 1621 1622 static const struct intel_global_state_funcs intel_bw_funcs = { 1623 .atomic_duplicate_state = intel_bw_duplicate_state, 1624 .atomic_destroy_state = intel_bw_destroy_state, 1625 }; 1626 1627 int intel_bw_init(struct intel_display *display) 1628 { 1629 struct intel_bw_state *state; 1630 1631 state = kzalloc(sizeof(*state), GFP_KERNEL); 1632 if (!state) 1633 return -ENOMEM; 1634 1635 intel_atomic_global_obj_init(display, &display->bw.obj, 1636 &state->base, &intel_bw_funcs); 1637 1638 /* 1639 * Limit this only if we have SAGV. And for Display version 14 onwards 1640 * sagv is handled though pmdemand requests 1641 */ 1642 if (intel_has_sagv(display) && IS_DISPLAY_VER(display, 11, 13)) 1643 icl_force_disable_sagv(display, state); 1644 1645 return 0; 1646 } 1647