1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_atomic_state_helper.h> 7 #include <drm/drm_print.h> 8 9 #include "soc/intel_dram.h" 10 11 #include "i915_drv.h" 12 #include "i915_reg.h" 13 #include "i915_utils.h" 14 #include "intel_atomic.h" 15 #include "intel_bw.h" 16 #include "intel_cdclk.h" 17 #include "intel_display_core.h" 18 #include "intel_display_regs.h" 19 #include "intel_display_types.h" 20 #include "intel_mchbar_regs.h" 21 #include "intel_pcode.h" 22 #include "intel_uncore.h" 23 #include "skl_watermark.h" 24 25 struct intel_dbuf_bw { 26 unsigned int max_bw[I915_MAX_DBUF_SLICES]; 27 u8 active_planes[I915_MAX_DBUF_SLICES]; 28 }; 29 30 struct intel_bw_state { 31 struct intel_global_state base; 32 struct intel_dbuf_bw dbuf_bw[I915_MAX_PIPES]; 33 34 /* 35 * Contains a bit mask, used to determine, whether correspondent 36 * pipe allows SAGV or not. 37 */ 38 u8 pipe_sagv_reject; 39 40 /* bitmask of active pipes */ 41 u8 active_pipes; 42 43 /* 44 * From MTL onwards, to lock a QGV point, punit expects the peak BW of 45 * the selected QGV point as the parameter in multiples of 100MB/s 46 */ 47 u16 qgv_point_peakbw; 48 49 /* 50 * Current QGV points mask, which restricts 51 * some particular SAGV states, not to confuse 52 * with pipe_sagv_mask. 53 */ 54 u16 qgv_points_mask; 55 56 unsigned int data_rate[I915_MAX_PIPES]; 57 u8 num_active_planes[I915_MAX_PIPES]; 58 }; 59 60 /* Parameters for Qclk Geyserville (QGV) */ 61 struct intel_qgv_point { 62 u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; 63 }; 64 65 #define DEPROGBWPCLIMIT 60 66 67 struct intel_psf_gv_point { 68 u8 clk; /* clock in multiples of 16.6666 MHz */ 69 }; 70 71 struct intel_qgv_info { 72 struct intel_qgv_point points[I915_NUM_QGV_POINTS]; 73 struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; 74 u8 num_points; 75 u8 num_psf_points; 76 u8 t_bl; 77 u8 max_numchannels; 78 u8 channel_width; 79 u8 deinterleave; 80 }; 81 82 static int dg1_mchbar_read_qgv_point_info(struct intel_display *display, 83 struct intel_qgv_point *sp, 84 int point) 85 { 86 struct drm_i915_private *i915 = to_i915(display->drm); 87 u32 dclk_ratio, dclk_reference; 88 u32 val; 89 90 val = intel_uncore_read(&i915->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); 91 dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); 92 if (val & DG1_QCLK_REFERENCE) 93 dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ 94 else 95 dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ 96 sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000); 97 98 val = intel_uncore_read(&i915->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); 99 if (val & DG1_GEAR_TYPE) 100 sp->dclk *= 2; 101 102 if (sp->dclk == 0) 103 return -EINVAL; 104 105 val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); 106 sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); 107 sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); 108 109 val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); 110 sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); 111 sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); 112 113 sp->t_rc = sp->t_rp + sp->t_ras; 114 115 return 0; 116 } 117 118 static int icl_pcode_read_qgv_point_info(struct intel_display *display, 119 struct intel_qgv_point *sp, 120 int point) 121 { 122 u32 val = 0, val2 = 0; 123 u16 dclk; 124 int ret; 125 126 ret = intel_pcode_read(display->drm, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 127 ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), 128 &val, &val2); 129 if (ret) 130 return ret; 131 132 dclk = val & 0xffff; 133 sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(display) >= 12 ? 500 : 0), 134 1000); 135 sp->t_rp = (val & 0xff0000) >> 16; 136 sp->t_rcd = (val & 0xff000000) >> 24; 137 138 sp->t_rdpre = val2 & 0xff; 139 sp->t_ras = (val2 & 0xff00) >> 8; 140 141 sp->t_rc = sp->t_rp + sp->t_ras; 142 143 return 0; 144 } 145 146 static int adls_pcode_read_psf_gv_point_info(struct intel_display *display, 147 struct intel_psf_gv_point *points) 148 { 149 u32 val = 0; 150 int ret; 151 int i; 152 153 ret = intel_pcode_read(display->drm, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 154 ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL); 155 if (ret) 156 return ret; 157 158 for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { 159 points[i].clk = val & 0xff; 160 val >>= 8; 161 } 162 163 return 0; 164 } 165 166 static u16 icl_qgv_points_mask(struct intel_display *display) 167 { 168 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 169 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 170 u16 qgv_points = 0, psf_points = 0; 171 172 /* 173 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects 174 * it with failure if we try masking any unadvertised points. 175 * So need to operate only with those returned from PCode. 176 */ 177 if (num_qgv_points > 0) 178 qgv_points = GENMASK(num_qgv_points - 1, 0); 179 180 if (num_psf_gv_points > 0) 181 psf_points = GENMASK(num_psf_gv_points - 1, 0); 182 183 return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points); 184 } 185 186 static bool is_sagv_enabled(struct intel_display *display, u16 points_mask) 187 { 188 return !is_power_of_2(~points_mask & icl_qgv_points_mask(display) & 189 ICL_PCODE_REQ_QGV_PT_MASK); 190 } 191 192 static int icl_pcode_restrict_qgv_points(struct intel_display *display, 193 u32 points_mask) 194 { 195 int ret; 196 197 if (DISPLAY_VER(display) >= 14) 198 return 0; 199 200 /* bspec says to keep retrying for at least 1 ms */ 201 ret = intel_pcode_request(display->drm, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, 202 points_mask, 203 ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK, 204 ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE, 205 1); 206 207 if (ret < 0) { 208 drm_err(display->drm, 209 "Failed to disable qgv points (0x%x) points: 0x%x\n", 210 ret, points_mask); 211 return ret; 212 } 213 214 display->sagv.status = is_sagv_enabled(display, points_mask) ? 215 I915_SAGV_ENABLED : I915_SAGV_DISABLED; 216 217 return 0; 218 } 219 220 static int mtl_read_qgv_point_info(struct intel_display *display, 221 struct intel_qgv_point *sp, int point) 222 { 223 struct drm_i915_private *i915 = to_i915(display->drm); 224 u32 val, val2; 225 u16 dclk; 226 227 val = intel_uncore_read(&i915->uncore, 228 MTL_MEM_SS_INFO_QGV_POINT_LOW(point)); 229 val2 = intel_uncore_read(&i915->uncore, 230 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point)); 231 dclk = REG_FIELD_GET(MTL_DCLK_MASK, val); 232 sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000); 233 sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val); 234 sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val); 235 236 sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2); 237 sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2); 238 239 sp->t_rc = sp->t_rp + sp->t_ras; 240 241 return 0; 242 } 243 244 static int 245 intel_read_qgv_point_info(struct intel_display *display, 246 struct intel_qgv_point *sp, 247 int point) 248 { 249 if (DISPLAY_VER(display) >= 14) 250 return mtl_read_qgv_point_info(display, sp, point); 251 else if (display->platform.dg1) 252 return dg1_mchbar_read_qgv_point_info(display, sp, point); 253 else 254 return icl_pcode_read_qgv_point_info(display, sp, point); 255 } 256 257 static int icl_get_qgv_points(struct intel_display *display, 258 const struct dram_info *dram_info, 259 struct intel_qgv_info *qi, 260 bool is_y_tile) 261 { 262 int i, ret; 263 264 qi->num_points = dram_info->num_qgv_points; 265 qi->num_psf_points = dram_info->num_psf_gv_points; 266 267 if (DISPLAY_VER(display) >= 14) { 268 switch (dram_info->type) { 269 case INTEL_DRAM_DDR4: 270 qi->t_bl = 4; 271 qi->max_numchannels = 2; 272 qi->channel_width = 64; 273 qi->deinterleave = 2; 274 break; 275 case INTEL_DRAM_DDR5: 276 qi->t_bl = 8; 277 qi->max_numchannels = 4; 278 qi->channel_width = 32; 279 qi->deinterleave = 2; 280 break; 281 case INTEL_DRAM_LPDDR4: 282 case INTEL_DRAM_LPDDR5: 283 qi->t_bl = 16; 284 qi->max_numchannels = 8; 285 qi->channel_width = 16; 286 qi->deinterleave = 4; 287 break; 288 case INTEL_DRAM_GDDR: 289 case INTEL_DRAM_GDDR_ECC: 290 qi->channel_width = 32; 291 break; 292 default: 293 MISSING_CASE(dram_info->type); 294 return -EINVAL; 295 } 296 } else if (DISPLAY_VER(display) >= 12) { 297 switch (dram_info->type) { 298 case INTEL_DRAM_DDR4: 299 qi->t_bl = is_y_tile ? 8 : 4; 300 qi->max_numchannels = 2; 301 qi->channel_width = 64; 302 qi->deinterleave = is_y_tile ? 1 : 2; 303 break; 304 case INTEL_DRAM_DDR5: 305 qi->t_bl = is_y_tile ? 16 : 8; 306 qi->max_numchannels = 4; 307 qi->channel_width = 32; 308 qi->deinterleave = is_y_tile ? 1 : 2; 309 break; 310 case INTEL_DRAM_LPDDR4: 311 if (display->platform.rocketlake) { 312 qi->t_bl = 8; 313 qi->max_numchannels = 4; 314 qi->channel_width = 32; 315 qi->deinterleave = 2; 316 break; 317 } 318 fallthrough; 319 case INTEL_DRAM_LPDDR5: 320 qi->t_bl = 16; 321 qi->max_numchannels = 8; 322 qi->channel_width = 16; 323 qi->deinterleave = is_y_tile ? 2 : 4; 324 break; 325 default: 326 qi->t_bl = 16; 327 qi->max_numchannels = 1; 328 break; 329 } 330 } else if (DISPLAY_VER(display) == 11) { 331 qi->t_bl = dram_info->type == INTEL_DRAM_DDR4 ? 4 : 8; 332 qi->max_numchannels = 1; 333 } 334 335 if (drm_WARN_ON(display->drm, 336 qi->num_points > ARRAY_SIZE(qi->points))) 337 qi->num_points = ARRAY_SIZE(qi->points); 338 339 for (i = 0; i < qi->num_points; i++) { 340 struct intel_qgv_point *sp = &qi->points[i]; 341 342 ret = intel_read_qgv_point_info(display, sp, i); 343 if (ret) { 344 drm_dbg_kms(display->drm, "Could not read QGV %d info\n", i); 345 return ret; 346 } 347 348 drm_dbg_kms(display->drm, 349 "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", 350 i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, 351 sp->t_rcd, sp->t_rc); 352 } 353 354 if (qi->num_psf_points > 0) { 355 ret = adls_pcode_read_psf_gv_point_info(display, qi->psf_points); 356 if (ret) { 357 drm_err(display->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); 358 qi->num_psf_points = 0; 359 } 360 361 for (i = 0; i < qi->num_psf_points; i++) 362 drm_dbg_kms(display->drm, 363 "PSF GV %d: CLK=%d\n", 364 i, qi->psf_points[i].clk); 365 } 366 367 return 0; 368 } 369 370 static int adl_calc_psf_bw(int clk) 371 { 372 /* 373 * clk is multiples of 16.666MHz (100/6) 374 * According to BSpec PSF GV bandwidth is 375 * calculated as BW = 64 * clk * 16.666Mhz 376 */ 377 return DIV_ROUND_CLOSEST(64 * clk * 100, 6); 378 } 379 380 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) 381 { 382 u16 dclk = 0; 383 int i; 384 385 for (i = 0; i < qi->num_points; i++) 386 dclk = max(dclk, qi->points[i].dclk); 387 388 return dclk; 389 } 390 391 struct intel_sa_info { 392 u16 displayrtids; 393 u8 deburst, deprogbwlimit, derating; 394 }; 395 396 static const struct intel_sa_info icl_sa_info = { 397 .deburst = 8, 398 .deprogbwlimit = 25, /* GB/s */ 399 .displayrtids = 128, 400 .derating = 10, 401 }; 402 403 static const struct intel_sa_info tgl_sa_info = { 404 .deburst = 16, 405 .deprogbwlimit = 34, /* GB/s */ 406 .displayrtids = 256, 407 .derating = 10, 408 }; 409 410 static const struct intel_sa_info rkl_sa_info = { 411 .deburst = 8, 412 .deprogbwlimit = 20, /* GB/s */ 413 .displayrtids = 128, 414 .derating = 10, 415 }; 416 417 static const struct intel_sa_info adls_sa_info = { 418 .deburst = 16, 419 .deprogbwlimit = 38, /* GB/s */ 420 .displayrtids = 256, 421 .derating = 10, 422 }; 423 424 static const struct intel_sa_info adlp_sa_info = { 425 .deburst = 16, 426 .deprogbwlimit = 38, /* GB/s */ 427 .displayrtids = 256, 428 .derating = 20, 429 }; 430 431 static const struct intel_sa_info mtl_sa_info = { 432 .deburst = 32, 433 .deprogbwlimit = 38, /* GB/s */ 434 .displayrtids = 256, 435 .derating = 10, 436 }; 437 438 static const struct intel_sa_info xe2_hpd_sa_info = { 439 .derating = 30, 440 .deprogbwlimit = 53, 441 /* Other values not used by simplified algorithm */ 442 }; 443 444 static const struct intel_sa_info xe2_hpd_ecc_sa_info = { 445 .derating = 45, 446 .deprogbwlimit = 53, 447 /* Other values not used by simplified algorithm */ 448 }; 449 450 static const struct intel_sa_info xe3lpd_sa_info = { 451 .deburst = 32, 452 .deprogbwlimit = 65, /* GB/s */ 453 .displayrtids = 256, 454 .derating = 10, 455 }; 456 457 static const struct intel_sa_info xe3lpd_3002_sa_info = { 458 .deburst = 32, 459 .deprogbwlimit = 22, /* GB/s */ 460 .displayrtids = 256, 461 .derating = 10, 462 }; 463 464 static int icl_get_bw_info(struct intel_display *display, 465 const struct dram_info *dram_info, 466 const struct intel_sa_info *sa) 467 { 468 struct intel_qgv_info qi = {}; 469 bool is_y_tile = true; /* assume y tile may be used */ 470 int num_channels = max_t(u8, 1, dram_info->num_channels); 471 int ipqdepth, ipqdepthpch = 16; 472 int dclk_max; 473 int maxdebw; 474 int num_groups = ARRAY_SIZE(display->bw.max); 475 int i, ret; 476 477 ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); 478 if (ret) { 479 drm_dbg_kms(display->drm, 480 "Failed to get memory subsystem information, ignoring bandwidth limits"); 481 return ret; 482 } 483 484 dclk_max = icl_sagv_max_dclk(&qi); 485 maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10); 486 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 487 qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 488 489 for (i = 0; i < num_groups; i++) { 490 struct intel_bw_info *bi = &display->bw.max[i]; 491 int clpchgroup; 492 int j; 493 494 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 495 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; 496 497 bi->num_qgv_points = qi.num_points; 498 bi->num_psf_gv_points = qi.num_psf_points; 499 500 for (j = 0; j < qi.num_points; j++) { 501 const struct intel_qgv_point *sp = &qi.points[j]; 502 int ct, bw; 503 504 /* 505 * Max row cycle time 506 * 507 * FIXME what is the logic behind the 508 * assumed burst length? 509 */ 510 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 511 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 512 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 513 514 bi->deratedbw[j] = min(maxdebw, 515 bw * (100 - sa->derating) / 100); 516 517 drm_dbg_kms(display->drm, 518 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", 519 i, j, bi->num_planes, bi->deratedbw[j]); 520 } 521 } 522 /* 523 * In case if SAGV is disabled in BIOS, we always get 1 524 * SAGV point, but we can't send PCode commands to restrict it 525 * as it will fail and pointless anyway. 526 */ 527 if (qi.num_points == 1) 528 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 529 else 530 display->sagv.status = I915_SAGV_ENABLED; 531 532 return 0; 533 } 534 535 static int tgl_get_bw_info(struct intel_display *display, 536 const struct dram_info *dram_info, 537 const struct intel_sa_info *sa) 538 { 539 struct intel_qgv_info qi = {}; 540 bool is_y_tile = true; /* assume y tile may be used */ 541 int num_channels = max_t(u8, 1, dram_info->num_channels); 542 int ipqdepth, ipqdepthpch = 16; 543 int dclk_max; 544 int maxdebw, peakbw; 545 int clperchgroup; 546 int num_groups = ARRAY_SIZE(display->bw.max); 547 int i, ret; 548 549 ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); 550 if (ret) { 551 drm_dbg_kms(display->drm, 552 "Failed to get memory subsystem information, ignoring bandwidth limits"); 553 return ret; 554 } 555 556 if (DISPLAY_VER(display) < 14 && 557 (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)) 558 num_channels *= 2; 559 560 qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 561 562 if (num_channels < qi.max_numchannels && DISPLAY_VER(display) >= 12) 563 qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1); 564 565 if (DISPLAY_VER(display) >= 12 && num_channels > qi.max_numchannels) 566 drm_warn(display->drm, "Number of channels exceeds max number of channels."); 567 if (qi.max_numchannels != 0) 568 num_channels = min_t(u8, num_channels, qi.max_numchannels); 569 570 dclk_max = icl_sagv_max_dclk(&qi); 571 572 peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max; 573 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 100); 574 575 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 576 /* 577 * clperchgroup = 4kpagespermempage * clperchperblock, 578 * clperchperblock = 8 / num_channels * interleave 579 */ 580 clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave; 581 582 for (i = 0; i < num_groups; i++) { 583 struct intel_bw_info *bi = &display->bw.max[i]; 584 struct intel_bw_info *bi_next; 585 int clpchgroup; 586 int j; 587 588 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 589 590 if (i < num_groups - 1) { 591 bi_next = &display->bw.max[i + 1]; 592 593 if (clpchgroup < clperchgroup) 594 bi_next->num_planes = (ipqdepth - clpchgroup) / 595 clpchgroup + 1; 596 else 597 bi_next->num_planes = 0; 598 } 599 600 bi->num_qgv_points = qi.num_points; 601 bi->num_psf_gv_points = qi.num_psf_points; 602 603 for (j = 0; j < qi.num_points; j++) { 604 const struct intel_qgv_point *sp = &qi.points[j]; 605 int ct, bw; 606 607 /* 608 * Max row cycle time 609 * 610 * FIXME what is the logic behind the 611 * assumed burst length? 612 */ 613 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 614 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 615 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 616 617 bi->deratedbw[j] = min(maxdebw, 618 bw * (100 - sa->derating) / 100); 619 bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk * 620 num_channels * 621 qi.channel_width, 8); 622 623 drm_dbg_kms(display->drm, 624 "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n", 625 i, j, bi->num_planes, bi->deratedbw[j], 626 bi->peakbw[j]); 627 } 628 629 for (j = 0; j < qi.num_psf_points; j++) { 630 const struct intel_psf_gv_point *sp = &qi.psf_points[j]; 631 632 bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); 633 634 drm_dbg_kms(display->drm, 635 "BW%d / PSF GV %d: num_planes=%d bw=%u\n", 636 i, j, bi->num_planes, bi->psf_bw[j]); 637 } 638 } 639 640 /* 641 * In case if SAGV is disabled in BIOS, we always get 1 642 * SAGV point, but we can't send PCode commands to restrict it 643 * as it will fail and pointless anyway. 644 */ 645 if (qi.num_points == 1) 646 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 647 else 648 display->sagv.status = I915_SAGV_ENABLED; 649 650 return 0; 651 } 652 653 static void dg2_get_bw_info(struct intel_display *display) 654 { 655 unsigned int deratedbw = display->platform.dg2_g11 ? 38000 : 50000; 656 int num_groups = ARRAY_SIZE(display->bw.max); 657 int i; 658 659 /* 660 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth 661 * that doesn't depend on the number of planes enabled. So fill all the 662 * plane group with constant bw information for uniformity with other 663 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth, 664 * whereas DG2-G11 platforms have 38 GB/s. 665 */ 666 for (i = 0; i < num_groups; i++) { 667 struct intel_bw_info *bi = &display->bw.max[i]; 668 669 bi->num_planes = 1; 670 /* Need only one dummy QGV point per group */ 671 bi->num_qgv_points = 1; 672 bi->deratedbw[0] = deratedbw; 673 } 674 675 display->sagv.status = I915_SAGV_NOT_CONTROLLED; 676 } 677 678 static int xe2_hpd_get_bw_info(struct intel_display *display, 679 const struct dram_info *dram_info, 680 const struct intel_sa_info *sa) 681 { 682 struct intel_qgv_info qi = {}; 683 int num_channels = dram_info->num_channels; 684 int peakbw, maxdebw; 685 int ret, i; 686 687 ret = icl_get_qgv_points(display, dram_info, &qi, true); 688 if (ret) { 689 drm_dbg_kms(display->drm, 690 "Failed to get memory subsystem information, ignoring bandwidth limits"); 691 return ret; 692 } 693 694 peakbw = num_channels * qi.channel_width / 8 * icl_sagv_max_dclk(&qi); 695 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 10); 696 697 for (i = 0; i < qi.num_points; i++) { 698 const struct intel_qgv_point *point = &qi.points[i]; 699 int bw = num_channels * (qi.channel_width / 8) * point->dclk; 700 701 display->bw.max[0].deratedbw[i] = 702 min(maxdebw, (100 - sa->derating) * bw / 100); 703 display->bw.max[0].peakbw[i] = bw; 704 705 drm_dbg_kms(display->drm, "QGV %d: deratedbw=%u peakbw: %u\n", 706 i, display->bw.max[0].deratedbw[i], 707 display->bw.max[0].peakbw[i]); 708 } 709 710 /* Bandwidth does not depend on # of planes; set all groups the same */ 711 display->bw.max[0].num_planes = 1; 712 display->bw.max[0].num_qgv_points = qi.num_points; 713 for (i = 1; i < ARRAY_SIZE(display->bw.max); i++) 714 memcpy(&display->bw.max[i], &display->bw.max[0], 715 sizeof(display->bw.max[0])); 716 717 /* 718 * Xe2_HPD should always have exactly two QGV points representing 719 * battery and plugged-in operation. 720 */ 721 drm_WARN_ON(display->drm, qi.num_points != 2); 722 display->sagv.status = I915_SAGV_ENABLED; 723 724 return 0; 725 } 726 727 static unsigned int icl_max_bw_index(struct intel_display *display, 728 int num_planes, int qgv_point) 729 { 730 int i; 731 732 /* 733 * Let's return max bw for 0 planes 734 */ 735 num_planes = max(1, num_planes); 736 737 for (i = 0; i < ARRAY_SIZE(display->bw.max); i++) { 738 const struct intel_bw_info *bi = 739 &display->bw.max[i]; 740 741 /* 742 * Pcode will not expose all QGV points when 743 * SAGV is forced to off/min/med/max. 744 */ 745 if (qgv_point >= bi->num_qgv_points) 746 return UINT_MAX; 747 748 if (num_planes >= bi->num_planes) 749 return i; 750 } 751 752 return UINT_MAX; 753 } 754 755 static unsigned int tgl_max_bw_index(struct intel_display *display, 756 int num_planes, int qgv_point) 757 { 758 int i; 759 760 /* 761 * Let's return max bw for 0 planes 762 */ 763 num_planes = max(1, num_planes); 764 765 for (i = ARRAY_SIZE(display->bw.max) - 1; i >= 0; i--) { 766 const struct intel_bw_info *bi = 767 &display->bw.max[i]; 768 769 /* 770 * Pcode will not expose all QGV points when 771 * SAGV is forced to off/min/med/max. 772 */ 773 if (qgv_point >= bi->num_qgv_points) 774 return UINT_MAX; 775 776 if (num_planes <= bi->num_planes) 777 return i; 778 } 779 780 return 0; 781 } 782 783 static unsigned int adl_psf_bw(struct intel_display *display, 784 int psf_gv_point) 785 { 786 const struct intel_bw_info *bi = 787 &display->bw.max[0]; 788 789 return bi->psf_bw[psf_gv_point]; 790 } 791 792 static unsigned int icl_qgv_bw(struct intel_display *display, 793 int num_active_planes, int qgv_point) 794 { 795 unsigned int idx; 796 797 if (DISPLAY_VER(display) >= 12) 798 idx = tgl_max_bw_index(display, num_active_planes, qgv_point); 799 else 800 idx = icl_max_bw_index(display, num_active_planes, qgv_point); 801 802 if (idx >= ARRAY_SIZE(display->bw.max)) 803 return 0; 804 805 return display->bw.max[idx].deratedbw[qgv_point]; 806 } 807 808 void intel_bw_init_hw(struct intel_display *display) 809 { 810 const struct dram_info *dram_info = intel_dram_info(display->drm); 811 812 if (!HAS_DISPLAY(display)) 813 return; 814 815 if (DISPLAY_VERx100(display) >= 3002) 816 tgl_get_bw_info(display, dram_info, &xe3lpd_3002_sa_info); 817 else if (DISPLAY_VER(display) >= 30) 818 tgl_get_bw_info(display, dram_info, &xe3lpd_sa_info); 819 else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx && 820 dram_info->type == INTEL_DRAM_GDDR_ECC) 821 xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_ecc_sa_info); 822 else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx) 823 xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_sa_info); 824 else if (DISPLAY_VER(display) >= 14) 825 tgl_get_bw_info(display, dram_info, &mtl_sa_info); 826 else if (display->platform.dg2) 827 dg2_get_bw_info(display); 828 else if (display->platform.alderlake_p) 829 tgl_get_bw_info(display, dram_info, &adlp_sa_info); 830 else if (display->platform.alderlake_s) 831 tgl_get_bw_info(display, dram_info, &adls_sa_info); 832 else if (display->platform.rocketlake) 833 tgl_get_bw_info(display, dram_info, &rkl_sa_info); 834 else if (DISPLAY_VER(display) == 12) 835 tgl_get_bw_info(display, dram_info, &tgl_sa_info); 836 else if (DISPLAY_VER(display) == 11) 837 icl_get_bw_info(display, dram_info, &icl_sa_info); 838 } 839 840 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state) 841 { 842 /* 843 * We assume cursors are small enough 844 * to not not cause bandwidth problems. 845 */ 846 return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); 847 } 848 849 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state) 850 { 851 struct intel_display *display = to_intel_display(crtc_state); 852 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 853 unsigned int data_rate = 0; 854 enum plane_id plane_id; 855 856 for_each_plane_id_on_crtc(crtc, plane_id) { 857 /* 858 * We assume cursors are small enough 859 * to not not cause bandwidth problems. 860 */ 861 if (plane_id == PLANE_CURSOR) 862 continue; 863 864 data_rate += crtc_state->data_rate[plane_id]; 865 866 if (DISPLAY_VER(display) < 11) 867 data_rate += crtc_state->data_rate_y[plane_id]; 868 } 869 870 return data_rate; 871 } 872 873 /* "Maximum Pipe Read Bandwidth" */ 874 static int intel_bw_crtc_min_cdclk(struct intel_display *display, 875 unsigned int data_rate) 876 { 877 if (DISPLAY_VER(display) < 12) 878 return 0; 879 880 return DIV_ROUND_UP_ULL(mul_u32_u32(data_rate, 10), 512); 881 } 882 883 static unsigned int intel_bw_num_active_planes(struct intel_display *display, 884 const struct intel_bw_state *bw_state) 885 { 886 unsigned int num_active_planes = 0; 887 enum pipe pipe; 888 889 for_each_pipe(display, pipe) 890 num_active_planes += bw_state->num_active_planes[pipe]; 891 892 return num_active_planes; 893 } 894 895 static unsigned int intel_bw_data_rate(struct intel_display *display, 896 const struct intel_bw_state *bw_state) 897 { 898 struct drm_i915_private *i915 = to_i915(display->drm); 899 unsigned int data_rate = 0; 900 enum pipe pipe; 901 902 for_each_pipe(display, pipe) 903 data_rate += bw_state->data_rate[pipe]; 904 905 if (DISPLAY_VER(display) >= 13 && i915_vtd_active(i915)) 906 data_rate = DIV_ROUND_UP(data_rate * 105, 100); 907 908 return data_rate; 909 } 910 911 struct intel_bw_state *to_intel_bw_state(struct intel_global_state *obj_state) 912 { 913 return container_of(obj_state, struct intel_bw_state, base); 914 } 915 916 struct intel_bw_state * 917 intel_atomic_get_old_bw_state(struct intel_atomic_state *state) 918 { 919 struct intel_display *display = to_intel_display(state); 920 struct intel_global_state *bw_state; 921 922 bw_state = intel_atomic_get_old_global_obj_state(state, &display->bw.obj); 923 924 return to_intel_bw_state(bw_state); 925 } 926 927 struct intel_bw_state * 928 intel_atomic_get_new_bw_state(struct intel_atomic_state *state) 929 { 930 struct intel_display *display = to_intel_display(state); 931 struct intel_global_state *bw_state; 932 933 bw_state = intel_atomic_get_new_global_obj_state(state, &display->bw.obj); 934 935 return to_intel_bw_state(bw_state); 936 } 937 938 struct intel_bw_state * 939 intel_atomic_get_bw_state(struct intel_atomic_state *state) 940 { 941 struct intel_display *display = to_intel_display(state); 942 struct intel_global_state *bw_state; 943 944 bw_state = intel_atomic_get_global_obj_state(state, &display->bw.obj); 945 if (IS_ERR(bw_state)) 946 return ERR_CAST(bw_state); 947 948 return to_intel_bw_state(bw_state); 949 } 950 951 static unsigned int icl_max_bw_qgv_point_mask(struct intel_display *display, 952 int num_active_planes) 953 { 954 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 955 unsigned int max_bw_point = 0; 956 unsigned int max_bw = 0; 957 int i; 958 959 for (i = 0; i < num_qgv_points; i++) { 960 unsigned int max_data_rate = 961 icl_qgv_bw(display, num_active_planes, i); 962 963 /* 964 * We need to know which qgv point gives us 965 * maximum bandwidth in order to disable SAGV 966 * if we find that we exceed SAGV block time 967 * with watermarks. By that moment we already 968 * have those, as it is calculated earlier in 969 * intel_atomic_check, 970 */ 971 if (max_data_rate > max_bw) { 972 max_bw_point = BIT(i); 973 max_bw = max_data_rate; 974 } 975 } 976 977 return max_bw_point; 978 } 979 980 static u16 icl_prepare_qgv_points_mask(struct intel_display *display, 981 unsigned int qgv_points, 982 unsigned int psf_points) 983 { 984 return ~(ICL_PCODE_REQ_QGV_PT(qgv_points) | 985 ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(display); 986 } 987 988 static unsigned int icl_max_bw_psf_gv_point_mask(struct intel_display *display) 989 { 990 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 991 unsigned int max_bw_point_mask = 0; 992 unsigned int max_bw = 0; 993 int i; 994 995 for (i = 0; i < num_psf_gv_points; i++) { 996 unsigned int max_data_rate = adl_psf_bw(display, i); 997 998 if (max_data_rate > max_bw) { 999 max_bw_point_mask = BIT(i); 1000 max_bw = max_data_rate; 1001 } else if (max_data_rate == max_bw) { 1002 max_bw_point_mask |= BIT(i); 1003 } 1004 } 1005 1006 return max_bw_point_mask; 1007 } 1008 1009 static void icl_force_disable_sagv(struct intel_display *display, 1010 struct intel_bw_state *bw_state) 1011 { 1012 unsigned int qgv_points = icl_max_bw_qgv_point_mask(display, 0); 1013 unsigned int psf_points = icl_max_bw_psf_gv_point_mask(display); 1014 1015 bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, 1016 qgv_points, 1017 psf_points); 1018 1019 drm_dbg_kms(display->drm, "Forcing SAGV disable: mask 0x%x\n", 1020 bw_state->qgv_points_mask); 1021 1022 icl_pcode_restrict_qgv_points(display, bw_state->qgv_points_mask); 1023 } 1024 1025 void icl_sagv_pre_plane_update(struct intel_atomic_state *state) 1026 { 1027 struct intel_display *display = to_intel_display(state); 1028 const struct intel_bw_state *old_bw_state = 1029 intel_atomic_get_old_bw_state(state); 1030 const struct intel_bw_state *new_bw_state = 1031 intel_atomic_get_new_bw_state(state); 1032 u16 old_mask, new_mask; 1033 1034 if (!new_bw_state) 1035 return; 1036 1037 old_mask = old_bw_state->qgv_points_mask; 1038 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 1039 1040 if (old_mask == new_mask) 1041 return; 1042 1043 WARN_ON(!new_bw_state->base.changed); 1044 1045 drm_dbg_kms(display->drm, "Restricting QGV points: 0x%x -> 0x%x\n", 1046 old_mask, new_mask); 1047 1048 /* 1049 * Restrict required qgv points before updating the configuration. 1050 * According to BSpec we can't mask and unmask qgv points at the same 1051 * time. Also masking should be done before updating the configuration 1052 * and unmasking afterwards. 1053 */ 1054 icl_pcode_restrict_qgv_points(display, new_mask); 1055 } 1056 1057 void icl_sagv_post_plane_update(struct intel_atomic_state *state) 1058 { 1059 struct intel_display *display = to_intel_display(state); 1060 const struct intel_bw_state *old_bw_state = 1061 intel_atomic_get_old_bw_state(state); 1062 const struct intel_bw_state *new_bw_state = 1063 intel_atomic_get_new_bw_state(state); 1064 u16 old_mask, new_mask; 1065 1066 if (!new_bw_state) 1067 return; 1068 1069 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 1070 new_mask = new_bw_state->qgv_points_mask; 1071 1072 if (old_mask == new_mask) 1073 return; 1074 1075 WARN_ON(!new_bw_state->base.changed); 1076 1077 drm_dbg_kms(display->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", 1078 old_mask, new_mask); 1079 1080 /* 1081 * Allow required qgv points after updating the configuration. 1082 * According to BSpec we can't mask and unmask qgv points at the same 1083 * time. Also masking should be done before updating the configuration 1084 * and unmasking afterwards. 1085 */ 1086 icl_pcode_restrict_qgv_points(display, new_mask); 1087 } 1088 1089 static int mtl_find_qgv_points(struct intel_display *display, 1090 unsigned int data_rate, 1091 unsigned int num_active_planes, 1092 struct intel_bw_state *new_bw_state) 1093 { 1094 unsigned int best_rate = UINT_MAX; 1095 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 1096 unsigned int qgv_peak_bw = 0; 1097 int i; 1098 int ret; 1099 1100 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1101 if (ret) 1102 return ret; 1103 1104 /* 1105 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's 1106 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is 1107 * not enabled. PM Demand code will clamp the value for the register 1108 */ 1109 if (!intel_bw_can_enable_sagv(display, new_bw_state)) { 1110 new_bw_state->qgv_point_peakbw = U16_MAX; 1111 drm_dbg_kms(display->drm, "No SAGV, use UINT_MAX as peak bw."); 1112 return 0; 1113 } 1114 1115 /* 1116 * Find the best QGV point by comparing the data_rate with max data rate 1117 * offered per plane group 1118 */ 1119 for (i = 0; i < num_qgv_points; i++) { 1120 unsigned int bw_index = 1121 tgl_max_bw_index(display, num_active_planes, i); 1122 unsigned int max_data_rate; 1123 1124 if (bw_index >= ARRAY_SIZE(display->bw.max)) 1125 continue; 1126 1127 max_data_rate = display->bw.max[bw_index].deratedbw[i]; 1128 1129 if (max_data_rate < data_rate) 1130 continue; 1131 1132 if (max_data_rate - data_rate < best_rate) { 1133 best_rate = max_data_rate - data_rate; 1134 qgv_peak_bw = display->bw.max[bw_index].peakbw[i]; 1135 } 1136 1137 drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n", 1138 i, max_data_rate, data_rate, qgv_peak_bw); 1139 } 1140 1141 drm_dbg_kms(display->drm, "Matching peaks QGV bw: %d for required data rate: %d\n", 1142 qgv_peak_bw, data_rate); 1143 1144 /* 1145 * The display configuration cannot be supported if no QGV point 1146 * satisfying the required data rate is found 1147 */ 1148 if (qgv_peak_bw == 0) { 1149 drm_dbg_kms(display->drm, "No QGV points for bw %d for display configuration(%d active planes).\n", 1150 data_rate, num_active_planes); 1151 return -EINVAL; 1152 } 1153 1154 /* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */ 1155 new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100); 1156 1157 return 0; 1158 } 1159 1160 static int icl_find_qgv_points(struct intel_display *display, 1161 unsigned int data_rate, 1162 unsigned int num_active_planes, 1163 const struct intel_bw_state *old_bw_state, 1164 struct intel_bw_state *new_bw_state) 1165 { 1166 unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; 1167 unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; 1168 u16 psf_points = 0; 1169 u16 qgv_points = 0; 1170 int i; 1171 int ret; 1172 1173 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1174 if (ret) 1175 return ret; 1176 1177 for (i = 0; i < num_qgv_points; i++) { 1178 unsigned int max_data_rate = icl_qgv_bw(display, 1179 num_active_planes, i); 1180 if (max_data_rate >= data_rate) 1181 qgv_points |= BIT(i); 1182 1183 drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d\n", 1184 i, max_data_rate, data_rate); 1185 } 1186 1187 for (i = 0; i < num_psf_gv_points; i++) { 1188 unsigned int max_data_rate = adl_psf_bw(display, i); 1189 1190 if (max_data_rate >= data_rate) 1191 psf_points |= BIT(i); 1192 1193 drm_dbg_kms(display->drm, "PSF GV point %d: max bw %d" 1194 " required %d\n", 1195 i, max_data_rate, data_rate); 1196 } 1197 1198 /* 1199 * BSpec states that we always should have at least one allowed point 1200 * left, so if we couldn't - simply reject the configuration for obvious 1201 * reasons. 1202 */ 1203 if (qgv_points == 0) { 1204 drm_dbg_kms(display->drm, "No QGV points provide sufficient memory" 1205 " bandwidth %d for display configuration(%d active planes).\n", 1206 data_rate, num_active_planes); 1207 return -EINVAL; 1208 } 1209 1210 if (num_psf_gv_points > 0 && psf_points == 0) { 1211 drm_dbg_kms(display->drm, "No PSF GV points provide sufficient memory" 1212 " bandwidth %d for display configuration(%d active planes).\n", 1213 data_rate, num_active_planes); 1214 return -EINVAL; 1215 } 1216 1217 /* 1218 * Leave only single point with highest bandwidth, if 1219 * we can't enable SAGV due to the increased memory latency it may 1220 * cause. 1221 */ 1222 if (!intel_bw_can_enable_sagv(display, new_bw_state)) { 1223 qgv_points = icl_max_bw_qgv_point_mask(display, num_active_planes); 1224 drm_dbg_kms(display->drm, "No SAGV, using single QGV point mask 0x%x\n", 1225 qgv_points); 1226 } 1227 1228 /* 1229 * We store the ones which need to be masked as that is what PCode 1230 * actually accepts as a parameter. 1231 */ 1232 new_bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, 1233 qgv_points, 1234 psf_points); 1235 /* 1236 * If the actual mask had changed we need to make sure that 1237 * the commits are serialized(in case this is a nomodeset, nonblocking) 1238 */ 1239 if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { 1240 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 1241 if (ret) 1242 return ret; 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int intel_bw_check_qgv_points(struct intel_display *display, 1249 const struct intel_bw_state *old_bw_state, 1250 struct intel_bw_state *new_bw_state) 1251 { 1252 unsigned int data_rate = intel_bw_data_rate(display, new_bw_state); 1253 unsigned int num_active_planes = 1254 intel_bw_num_active_planes(display, new_bw_state); 1255 1256 data_rate = DIV_ROUND_UP(data_rate, 1000); 1257 1258 if (DISPLAY_VER(display) >= 14) 1259 return mtl_find_qgv_points(display, data_rate, num_active_planes, 1260 new_bw_state); 1261 else 1262 return icl_find_qgv_points(display, data_rate, num_active_planes, 1263 old_bw_state, new_bw_state); 1264 } 1265 1266 static bool intel_dbuf_bw_changed(struct intel_display *display, 1267 const struct intel_dbuf_bw *old_dbuf_bw, 1268 const struct intel_dbuf_bw *new_dbuf_bw) 1269 { 1270 enum dbuf_slice slice; 1271 1272 for_each_dbuf_slice(display, slice) { 1273 if (old_dbuf_bw->max_bw[slice] != new_dbuf_bw->max_bw[slice] || 1274 old_dbuf_bw->active_planes[slice] != new_dbuf_bw->active_planes[slice]) 1275 return true; 1276 } 1277 1278 return false; 1279 } 1280 1281 static bool intel_bw_state_changed(struct intel_display *display, 1282 const struct intel_bw_state *old_bw_state, 1283 const struct intel_bw_state *new_bw_state) 1284 { 1285 enum pipe pipe; 1286 1287 for_each_pipe(display, pipe) { 1288 const struct intel_dbuf_bw *old_dbuf_bw = 1289 &old_bw_state->dbuf_bw[pipe]; 1290 const struct intel_dbuf_bw *new_dbuf_bw = 1291 &new_bw_state->dbuf_bw[pipe]; 1292 1293 if (intel_dbuf_bw_changed(display, old_dbuf_bw, new_dbuf_bw)) 1294 return true; 1295 1296 if (intel_bw_crtc_min_cdclk(display, old_bw_state->data_rate[pipe]) != 1297 intel_bw_crtc_min_cdclk(display, new_bw_state->data_rate[pipe])) 1298 return true; 1299 } 1300 1301 return false; 1302 } 1303 1304 static void skl_plane_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw, 1305 struct intel_crtc *crtc, 1306 enum plane_id plane_id, 1307 const struct skl_ddb_entry *ddb, 1308 unsigned int data_rate) 1309 { 1310 struct intel_display *display = to_intel_display(crtc); 1311 unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(display, ddb); 1312 enum dbuf_slice slice; 1313 1314 /* 1315 * The arbiter can only really guarantee an 1316 * equal share of the total bw to each plane. 1317 */ 1318 for_each_dbuf_slice_in_mask(display, slice, dbuf_mask) { 1319 dbuf_bw->max_bw[slice] = max(dbuf_bw->max_bw[slice], data_rate); 1320 dbuf_bw->active_planes[slice] |= BIT(plane_id); 1321 } 1322 } 1323 1324 static void skl_crtc_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw, 1325 const struct intel_crtc_state *crtc_state) 1326 { 1327 struct intel_display *display = to_intel_display(crtc_state); 1328 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1329 enum plane_id plane_id; 1330 1331 memset(dbuf_bw, 0, sizeof(*dbuf_bw)); 1332 1333 if (!crtc_state->hw.active) 1334 return; 1335 1336 for_each_plane_id_on_crtc(crtc, plane_id) { 1337 /* 1338 * We assume cursors are small enough 1339 * to not cause bandwidth problems. 1340 */ 1341 if (plane_id == PLANE_CURSOR) 1342 continue; 1343 1344 skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id, 1345 &crtc_state->wm.skl.plane_ddb[plane_id], 1346 crtc_state->data_rate[plane_id]); 1347 1348 if (DISPLAY_VER(display) < 11) 1349 skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id, 1350 &crtc_state->wm.skl.plane_ddb_y[plane_id], 1351 crtc_state->data_rate[plane_id]); 1352 } 1353 } 1354 1355 /* "Maximum Data Buffer Bandwidth" */ 1356 static int 1357 intel_bw_dbuf_min_cdclk(struct intel_display *display, 1358 const struct intel_bw_state *bw_state) 1359 { 1360 unsigned int total_max_bw = 0; 1361 enum dbuf_slice slice; 1362 1363 for_each_dbuf_slice(display, slice) { 1364 int num_active_planes = 0; 1365 unsigned int max_bw = 0; 1366 enum pipe pipe; 1367 1368 /* 1369 * The arbiter can only really guarantee an 1370 * equal share of the total bw to each plane. 1371 */ 1372 for_each_pipe(display, pipe) { 1373 const struct intel_dbuf_bw *dbuf_bw = &bw_state->dbuf_bw[pipe]; 1374 1375 max_bw = max(dbuf_bw->max_bw[slice], max_bw); 1376 num_active_planes += hweight8(dbuf_bw->active_planes[slice]); 1377 } 1378 max_bw *= num_active_planes; 1379 1380 total_max_bw = max(total_max_bw, max_bw); 1381 } 1382 1383 return DIV_ROUND_UP(total_max_bw, 64); 1384 } 1385 1386 int intel_bw_min_cdclk(struct intel_display *display, 1387 const struct intel_bw_state *bw_state) 1388 { 1389 enum pipe pipe; 1390 int min_cdclk; 1391 1392 min_cdclk = intel_bw_dbuf_min_cdclk(display, bw_state); 1393 1394 for_each_pipe(display, pipe) 1395 min_cdclk = max(min_cdclk, 1396 intel_bw_crtc_min_cdclk(display, 1397 bw_state->data_rate[pipe])); 1398 1399 return min_cdclk; 1400 } 1401 1402 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state, 1403 bool *need_cdclk_calc) 1404 { 1405 struct intel_display *display = to_intel_display(state); 1406 struct intel_bw_state *new_bw_state = NULL; 1407 const struct intel_bw_state *old_bw_state = NULL; 1408 const struct intel_cdclk_state *cdclk_state; 1409 const struct intel_crtc_state *old_crtc_state; 1410 const struct intel_crtc_state *new_crtc_state; 1411 int old_min_cdclk, new_min_cdclk; 1412 struct intel_crtc *crtc; 1413 int i; 1414 1415 if (DISPLAY_VER(display) < 9) 1416 return 0; 1417 1418 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1419 new_crtc_state, i) { 1420 struct intel_dbuf_bw old_dbuf_bw, new_dbuf_bw; 1421 1422 skl_crtc_calc_dbuf_bw(&old_dbuf_bw, old_crtc_state); 1423 skl_crtc_calc_dbuf_bw(&new_dbuf_bw, new_crtc_state); 1424 1425 if (!intel_dbuf_bw_changed(display, &old_dbuf_bw, &new_dbuf_bw)) 1426 continue; 1427 1428 new_bw_state = intel_atomic_get_bw_state(state); 1429 if (IS_ERR(new_bw_state)) 1430 return PTR_ERR(new_bw_state); 1431 1432 old_bw_state = intel_atomic_get_old_bw_state(state); 1433 1434 new_bw_state->dbuf_bw[crtc->pipe] = new_dbuf_bw; 1435 } 1436 1437 if (!old_bw_state) 1438 return 0; 1439 1440 if (intel_bw_state_changed(display, old_bw_state, new_bw_state)) { 1441 int ret = intel_atomic_lock_global_state(&new_bw_state->base); 1442 if (ret) 1443 return ret; 1444 } 1445 1446 old_min_cdclk = intel_bw_min_cdclk(display, old_bw_state); 1447 new_min_cdclk = intel_bw_min_cdclk(display, new_bw_state); 1448 1449 /* 1450 * No need to check against the cdclk state if 1451 * the min cdclk doesn't increase. 1452 * 1453 * Ie. we only ever increase the cdclk due to bandwidth 1454 * requirements. This can reduce back and forth 1455 * display blinking due to constant cdclk changes. 1456 */ 1457 if (new_min_cdclk <= old_min_cdclk) 1458 return 0; 1459 1460 cdclk_state = intel_atomic_get_cdclk_state(state); 1461 if (IS_ERR(cdclk_state)) 1462 return PTR_ERR(cdclk_state); 1463 1464 /* 1465 * No need to recalculate the cdclk state if 1466 * the min cdclk doesn't increase. 1467 * 1468 * Ie. we only ever increase the cdclk due to bandwidth 1469 * requirements. This can reduce back and forth 1470 * display blinking due to constant cdclk changes. 1471 */ 1472 if (new_min_cdclk <= intel_cdclk_bw_min_cdclk(cdclk_state)) 1473 return 0; 1474 1475 drm_dbg_kms(display->drm, 1476 "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n", 1477 new_min_cdclk, intel_cdclk_bw_min_cdclk(cdclk_state)); 1478 *need_cdclk_calc = true; 1479 1480 return 0; 1481 } 1482 1483 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed) 1484 { 1485 struct intel_display *display = to_intel_display(state); 1486 const struct intel_crtc_state *new_crtc_state, *old_crtc_state; 1487 struct intel_crtc *crtc; 1488 int i; 1489 1490 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1491 new_crtc_state, i) { 1492 unsigned int old_data_rate = 1493 intel_bw_crtc_data_rate(old_crtc_state); 1494 unsigned int new_data_rate = 1495 intel_bw_crtc_data_rate(new_crtc_state); 1496 unsigned int old_active_planes = 1497 intel_bw_crtc_num_active_planes(old_crtc_state); 1498 unsigned int new_active_planes = 1499 intel_bw_crtc_num_active_planes(new_crtc_state); 1500 struct intel_bw_state *new_bw_state; 1501 1502 /* 1503 * Avoid locking the bw state when 1504 * nothing significant has changed. 1505 */ 1506 if (old_data_rate == new_data_rate && 1507 old_active_planes == new_active_planes) 1508 continue; 1509 1510 new_bw_state = intel_atomic_get_bw_state(state); 1511 if (IS_ERR(new_bw_state)) 1512 return PTR_ERR(new_bw_state); 1513 1514 new_bw_state->data_rate[crtc->pipe] = new_data_rate; 1515 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; 1516 1517 *changed = true; 1518 1519 drm_dbg_kms(display->drm, 1520 "[CRTC:%d:%s] data rate %u num active planes %u\n", 1521 crtc->base.base.id, crtc->base.name, 1522 new_bw_state->data_rate[crtc->pipe], 1523 new_bw_state->num_active_planes[crtc->pipe]); 1524 } 1525 1526 return 0; 1527 } 1528 1529 static int intel_bw_modeset_checks(struct intel_atomic_state *state) 1530 { 1531 struct intel_display *display = to_intel_display(state); 1532 const struct intel_bw_state *old_bw_state; 1533 struct intel_bw_state *new_bw_state; 1534 1535 if (DISPLAY_VER(display) < 9) 1536 return 0; 1537 1538 new_bw_state = intel_atomic_get_bw_state(state); 1539 if (IS_ERR(new_bw_state)) 1540 return PTR_ERR(new_bw_state); 1541 1542 old_bw_state = intel_atomic_get_old_bw_state(state); 1543 1544 new_bw_state->active_pipes = 1545 intel_calc_active_pipes(state, old_bw_state->active_pipes); 1546 1547 if (new_bw_state->active_pipes != old_bw_state->active_pipes) { 1548 int ret; 1549 1550 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1551 if (ret) 1552 return ret; 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int intel_bw_check_sagv_mask(struct intel_atomic_state *state) 1559 { 1560 struct intel_display *display = to_intel_display(state); 1561 const struct intel_crtc_state *old_crtc_state; 1562 const struct intel_crtc_state *new_crtc_state; 1563 const struct intel_bw_state *old_bw_state = NULL; 1564 struct intel_bw_state *new_bw_state = NULL; 1565 struct intel_crtc *crtc; 1566 int ret, i; 1567 1568 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1569 new_crtc_state, i) { 1570 if (intel_crtc_can_enable_sagv(old_crtc_state) == 1571 intel_crtc_can_enable_sagv(new_crtc_state)) 1572 continue; 1573 1574 new_bw_state = intel_atomic_get_bw_state(state); 1575 if (IS_ERR(new_bw_state)) 1576 return PTR_ERR(new_bw_state); 1577 1578 old_bw_state = intel_atomic_get_old_bw_state(state); 1579 1580 if (intel_crtc_can_enable_sagv(new_crtc_state)) 1581 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); 1582 else 1583 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); 1584 } 1585 1586 if (!new_bw_state) 1587 return 0; 1588 1589 if (intel_bw_can_enable_sagv(display, new_bw_state) != 1590 intel_bw_can_enable_sagv(display, old_bw_state)) { 1591 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 1592 if (ret) 1593 return ret; 1594 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { 1595 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1596 if (ret) 1597 return ret; 1598 } 1599 1600 return 0; 1601 } 1602 1603 int intel_bw_atomic_check(struct intel_atomic_state *state, bool any_ms) 1604 { 1605 struct intel_display *display = to_intel_display(state); 1606 bool changed = false; 1607 struct intel_bw_state *new_bw_state; 1608 const struct intel_bw_state *old_bw_state; 1609 int ret; 1610 1611 if (DISPLAY_VER(display) < 9) 1612 return 0; 1613 1614 if (any_ms) { 1615 ret = intel_bw_modeset_checks(state); 1616 if (ret) 1617 return ret; 1618 } 1619 1620 ret = intel_bw_check_sagv_mask(state); 1621 if (ret) 1622 return ret; 1623 1624 /* FIXME earlier gens need some checks too */ 1625 if (DISPLAY_VER(display) < 11) 1626 return 0; 1627 1628 ret = intel_bw_check_data_rate(state, &changed); 1629 if (ret) 1630 return ret; 1631 1632 old_bw_state = intel_atomic_get_old_bw_state(state); 1633 new_bw_state = intel_atomic_get_new_bw_state(state); 1634 1635 if (new_bw_state && 1636 intel_bw_can_enable_sagv(display, old_bw_state) != 1637 intel_bw_can_enable_sagv(display, new_bw_state)) 1638 changed = true; 1639 1640 /* 1641 * If none of our inputs (data rates, number of active 1642 * planes, SAGV yes/no) changed then nothing to do here. 1643 */ 1644 if (!changed) 1645 return 0; 1646 1647 ret = intel_bw_check_qgv_points(display, old_bw_state, new_bw_state); 1648 if (ret) 1649 return ret; 1650 1651 return 0; 1652 } 1653 1654 static void intel_bw_crtc_update(struct intel_bw_state *bw_state, 1655 const struct intel_crtc_state *crtc_state) 1656 { 1657 struct intel_display *display = to_intel_display(crtc_state); 1658 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1659 1660 bw_state->data_rate[crtc->pipe] = 1661 intel_bw_crtc_data_rate(crtc_state); 1662 bw_state->num_active_planes[crtc->pipe] = 1663 intel_bw_crtc_num_active_planes(crtc_state); 1664 1665 drm_dbg_kms(display->drm, "pipe %c data rate %u num active planes %u\n", 1666 pipe_name(crtc->pipe), 1667 bw_state->data_rate[crtc->pipe], 1668 bw_state->num_active_planes[crtc->pipe]); 1669 } 1670 1671 void intel_bw_update_hw_state(struct intel_display *display) 1672 { 1673 struct intel_bw_state *bw_state = 1674 to_intel_bw_state(display->bw.obj.state); 1675 struct intel_crtc *crtc; 1676 1677 if (DISPLAY_VER(display) < 9) 1678 return; 1679 1680 bw_state->active_pipes = 0; 1681 bw_state->pipe_sagv_reject = 0; 1682 1683 for_each_intel_crtc(display->drm, crtc) { 1684 const struct intel_crtc_state *crtc_state = 1685 to_intel_crtc_state(crtc->base.state); 1686 enum pipe pipe = crtc->pipe; 1687 1688 if (crtc_state->hw.active) 1689 bw_state->active_pipes |= BIT(pipe); 1690 1691 if (DISPLAY_VER(display) >= 11) 1692 intel_bw_crtc_update(bw_state, crtc_state); 1693 1694 skl_crtc_calc_dbuf_bw(&bw_state->dbuf_bw[pipe], crtc_state); 1695 1696 /* initially SAGV has been forced off */ 1697 bw_state->pipe_sagv_reject |= BIT(pipe); 1698 } 1699 } 1700 1701 void intel_bw_crtc_disable_noatomic(struct intel_crtc *crtc) 1702 { 1703 struct intel_display *display = to_intel_display(crtc); 1704 struct intel_bw_state *bw_state = 1705 to_intel_bw_state(display->bw.obj.state); 1706 enum pipe pipe = crtc->pipe; 1707 1708 if (DISPLAY_VER(display) < 9) 1709 return; 1710 1711 bw_state->data_rate[pipe] = 0; 1712 bw_state->num_active_planes[pipe] = 0; 1713 memset(&bw_state->dbuf_bw[pipe], 0, sizeof(bw_state->dbuf_bw[pipe])); 1714 } 1715 1716 static struct intel_global_state * 1717 intel_bw_duplicate_state(struct intel_global_obj *obj) 1718 { 1719 struct intel_bw_state *state; 1720 1721 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 1722 if (!state) 1723 return NULL; 1724 1725 return &state->base; 1726 } 1727 1728 static void intel_bw_destroy_state(struct intel_global_obj *obj, 1729 struct intel_global_state *state) 1730 { 1731 kfree(state); 1732 } 1733 1734 static const struct intel_global_state_funcs intel_bw_funcs = { 1735 .atomic_duplicate_state = intel_bw_duplicate_state, 1736 .atomic_destroy_state = intel_bw_destroy_state, 1737 }; 1738 1739 int intel_bw_init(struct intel_display *display) 1740 { 1741 struct intel_bw_state *state; 1742 1743 state = kzalloc(sizeof(*state), GFP_KERNEL); 1744 if (!state) 1745 return -ENOMEM; 1746 1747 intel_atomic_global_obj_init(display, &display->bw.obj, 1748 &state->base, &intel_bw_funcs); 1749 1750 /* 1751 * Limit this only if we have SAGV. And for Display version 14 onwards 1752 * sagv is handled though pmdemand requests 1753 */ 1754 if (intel_has_sagv(display) && IS_DISPLAY_VER(display, 11, 13)) 1755 icl_force_disable_sagv(display, state); 1756 1757 return 0; 1758 } 1759 1760 bool intel_bw_pmdemand_needs_update(struct intel_atomic_state *state) 1761 { 1762 const struct intel_bw_state *new_bw_state, *old_bw_state; 1763 1764 new_bw_state = intel_atomic_get_new_bw_state(state); 1765 old_bw_state = intel_atomic_get_old_bw_state(state); 1766 1767 if (new_bw_state && 1768 new_bw_state->qgv_point_peakbw != old_bw_state->qgv_point_peakbw) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 bool intel_bw_can_enable_sagv(struct intel_display *display, 1775 const struct intel_bw_state *bw_state) 1776 { 1777 if (DISPLAY_VER(display) < 11 && 1778 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) 1779 return false; 1780 1781 return bw_state->pipe_sagv_reject == 0; 1782 } 1783 1784 int intel_bw_qgv_point_peakbw(const struct intel_bw_state *bw_state) 1785 { 1786 return bw_state->qgv_point_peakbw; 1787 } 1788