1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_vblank_crtc_config.disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts can 140 * use DRM vblank timers to send vblank events at the rate of the current 141 * display mode's refresh. While not synchronized to the hardware's 142 * vertical-blanking regions, the timer helps DRM clients and compositors to 143 * adapt their update cycle to the display output. Drivers should set up 144 * vblanking as usual, but call drm_crtc_vblank_start_timer() and 145 * drm_crtc_vblank_cancel_timer() as part of their atomic mode setting. 146 * See also DRM vblank helpers for more information. 147 * 148 * Drivers without support for vertical-blanking interrupts nor timers must 149 * not call drm_vblank_init(). For these drivers, atomic helpers will 150 * automatically generate fake vblank events as part of the display update. 151 * This functionality also can be controlled by the driver by enabling and 152 * disabling struct drm_crtc_state.no_vblank. 153 */ 154 155 /* Retry timestamp calculation up to 3 times to satisfy 156 * drm_timestamp_precision before giving up. 157 */ 158 #define DRM_TIMESTAMP_MAXRETRIES 3 159 160 /* Threshold in nanoseconds for detection of redundant 161 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 162 */ 163 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 164 165 static bool 166 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 167 ktime_t *tvblank, bool in_vblank_irq); 168 169 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 170 171 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 172 173 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 174 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 175 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 176 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 177 178 static struct drm_vblank_crtc * 179 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 180 { 181 return &dev->vblank[pipe]; 182 } 183 184 struct drm_vblank_crtc * 185 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 186 { 187 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 188 } 189 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 190 191 static void store_vblank(struct drm_device *dev, unsigned int pipe, 192 u32 vblank_count_inc, 193 ktime_t t_vblank, u32 last) 194 { 195 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 196 197 assert_spin_locked(&dev->vblank_time_lock); 198 199 vblank->last = last; 200 201 write_seqlock(&vblank->seqlock); 202 vblank->time = t_vblank; 203 atomic64_add(vblank_count_inc, &vblank->count); 204 write_sequnlock(&vblank->seqlock); 205 } 206 207 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 208 { 209 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 210 211 return vblank->max_vblank_count ?: dev->max_vblank_count; 212 } 213 214 /* 215 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 216 * if there is no usable hardware frame counter available. 217 */ 218 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 219 { 220 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 221 return 0; 222 } 223 224 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 225 { 226 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 227 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 228 229 if (drm_WARN_ON(dev, !crtc)) 230 return 0; 231 232 if (crtc->funcs->get_vblank_counter) 233 return crtc->funcs->get_vblank_counter(crtc); 234 } 235 236 return drm_vblank_no_hw_counter(dev, pipe); 237 } 238 239 /* 240 * Reset the stored timestamp for the current vblank count to correspond 241 * to the last vblank occurred. 242 * 243 * Only to be called from drm_crtc_vblank_on(). 244 * 245 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 246 * device vblank fields. 247 */ 248 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 249 { 250 u32 cur_vblank; 251 bool rc; 252 ktime_t t_vblank; 253 int count = DRM_TIMESTAMP_MAXRETRIES; 254 255 spin_lock(&dev->vblank_time_lock); 256 257 /* 258 * sample the current counter to avoid random jumps 259 * when drm_vblank_enable() applies the diff 260 */ 261 do { 262 cur_vblank = __get_vblank_counter(dev, pipe); 263 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 264 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 265 266 /* 267 * Only reinitialize corresponding vblank timestamp if high-precision query 268 * available and didn't fail. Otherwise reinitialize delayed at next vblank 269 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 270 */ 271 if (!rc) 272 t_vblank = 0; 273 274 /* 275 * +1 to make sure user will never see the same 276 * vblank counter value before and after a modeset 277 */ 278 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 279 280 spin_unlock(&dev->vblank_time_lock); 281 } 282 283 /* 284 * Call back into the driver to update the appropriate vblank counter 285 * (specified by @pipe). Deal with wraparound, if it occurred, and 286 * update the last read value so we can deal with wraparound on the next 287 * call if necessary. 288 * 289 * Only necessary when going from off->on, to account for frames we 290 * didn't get an interrupt for. 291 * 292 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 293 * device vblank fields. 294 */ 295 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 296 bool in_vblank_irq) 297 { 298 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 299 u32 cur_vblank, diff; 300 bool rc; 301 ktime_t t_vblank; 302 int count = DRM_TIMESTAMP_MAXRETRIES; 303 int framedur_ns = vblank->framedur_ns; 304 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 305 306 /* 307 * Interrupts were disabled prior to this call, so deal with counter 308 * wrap if needed. 309 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 310 * here if the register is small or we had vblank interrupts off for 311 * a long time. 312 * 313 * We repeat the hardware vblank counter & timestamp query until 314 * we get consistent results. This to prevent races between gpu 315 * updating its hardware counter while we are retrieving the 316 * corresponding vblank timestamp. 317 */ 318 do { 319 cur_vblank = __get_vblank_counter(dev, pipe); 320 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 321 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 322 323 if (max_vblank_count) { 324 /* trust the hw counter when it's around */ 325 diff = (cur_vblank - vblank->last) & max_vblank_count; 326 } else if (rc && framedur_ns) { 327 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 328 329 /* 330 * Figure out how many vblanks we've missed based 331 * on the difference in the timestamps and the 332 * frame/field duration. 333 */ 334 335 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 336 " diff_ns = %lld, framedur_ns = %d)\n", 337 pipe, (long long)diff_ns, framedur_ns); 338 339 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 340 341 if (diff == 0 && in_vblank_irq) 342 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 343 pipe); 344 } else { 345 /* some kind of default for drivers w/o accurate vbl timestamping */ 346 diff = in_vblank_irq ? 1 : 0; 347 } 348 349 /* 350 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 351 * interval? If so then vblank irqs keep running and it will likely 352 * happen that the hardware vblank counter is not trustworthy as it 353 * might reset at some point in that interval and vblank timestamps 354 * are not trustworthy either in that interval. Iow. this can result 355 * in a bogus diff >> 1 which must be avoided as it would cause 356 * random large forward jumps of the software vblank counter. 357 */ 358 if (diff > 1 && (vblank->inmodeset & 0x2)) { 359 drm_dbg_vbl(dev, 360 "clamping vblank bump to 1 on crtc %u: diffr=%u" 361 " due to pre-modeset.\n", pipe, diff); 362 diff = 1; 363 } 364 365 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 366 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 367 pipe, (unsigned long long)atomic64_read(&vblank->count), 368 diff, cur_vblank, vblank->last); 369 370 if (diff == 0) { 371 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 372 return; 373 } 374 375 /* 376 * Only reinitialize corresponding vblank timestamp if high-precision query 377 * available and didn't fail, or we were called from the vblank interrupt. 378 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 379 * for now, to mark the vblanktimestamp as invalid. 380 */ 381 if (!rc && !in_vblank_irq) 382 t_vblank = 0; 383 384 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 385 } 386 387 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 388 { 389 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 390 u64 count; 391 392 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 393 return 0; 394 395 count = atomic64_read(&vblank->count); 396 397 /* 398 * This read barrier corresponds to the implicit write barrier of the 399 * write seqlock in store_vblank(). Note that this is the only place 400 * where we need an explicit barrier, since all other access goes 401 * through drm_vblank_count_and_time(), which already has the required 402 * read barrier curtesy of the read seqlock. 403 */ 404 smp_rmb(); 405 406 return count; 407 } 408 409 /** 410 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 411 * @crtc: which counter to retrieve 412 * 413 * This function is similar to drm_crtc_vblank_count() but this function 414 * interpolates to handle a race with vblank interrupts using the high precision 415 * timestamping support. 416 * 417 * This is mostly useful for hardware that can obtain the scanout position, but 418 * doesn't have a hardware frame counter. 419 */ 420 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 421 { 422 struct drm_device *dev = crtc->dev; 423 unsigned int pipe = drm_crtc_index(crtc); 424 u64 vblank; 425 unsigned long flags; 426 427 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 428 !crtc->funcs->get_vblank_timestamp, 429 "This function requires support for accurate vblank timestamps."); 430 431 spin_lock_irqsave(&dev->vblank_time_lock, flags); 432 433 drm_update_vblank_count(dev, pipe, false); 434 vblank = drm_vblank_count(dev, pipe); 435 436 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 437 438 return vblank; 439 } 440 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 441 442 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 443 { 444 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 445 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 446 447 if (drm_WARN_ON(dev, !crtc)) 448 return; 449 450 if (crtc->funcs->disable_vblank) 451 crtc->funcs->disable_vblank(crtc); 452 } 453 } 454 455 /* 456 * Disable vblank irq's on crtc, make sure that last vblank count 457 * of hardware and corresponding consistent software vblank counter 458 * are preserved, even if there are any spurious vblank irq's after 459 * disable. 460 */ 461 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 462 { 463 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 464 unsigned long irqflags; 465 466 assert_spin_locked(&dev->vbl_lock); 467 468 /* Prevent vblank irq processing while disabling vblank irqs, 469 * so no updates of timestamps or count can happen after we've 470 * disabled. Needed to prevent races in case of delayed irq's. 471 */ 472 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 473 474 /* 475 * Update vblank count and disable vblank interrupts only if the 476 * interrupts were enabled. This avoids calling the ->disable_vblank() 477 * operation in atomic context with the hardware potentially runtime 478 * suspended. 479 */ 480 if (!vblank->enabled) 481 goto out; 482 483 /* 484 * Update the count and timestamp to maintain the 485 * appearance that the counter has been ticking all along until 486 * this time. This makes the count account for the entire time 487 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 488 */ 489 drm_update_vblank_count(dev, pipe, false); 490 __disable_vblank(dev, pipe); 491 vblank->enabled = false; 492 493 out: 494 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 495 } 496 497 static void vblank_disable_fn(struct timer_list *t) 498 { 499 struct drm_vblank_crtc *vblank = timer_container_of(vblank, t, 500 disable_timer); 501 struct drm_device *dev = vblank->dev; 502 unsigned int pipe = vblank->pipe; 503 unsigned long irqflags; 504 505 spin_lock_irqsave(&dev->vbl_lock, irqflags); 506 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 507 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 508 drm_vblank_disable_and_save(dev, pipe); 509 } 510 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 511 } 512 513 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 514 { 515 struct drm_vblank_crtc *vblank = ptr; 516 517 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 518 drm_core_check_feature(dev, DRIVER_MODESET)); 519 520 if (vblank->vblank_timer.crtc) 521 hrtimer_cancel(&vblank->vblank_timer.timer); 522 523 drm_vblank_destroy_worker(vblank); 524 timer_delete_sync(&vblank->disable_timer); 525 } 526 527 /** 528 * drm_vblank_init - initialize vblank support 529 * @dev: DRM device 530 * @num_crtcs: number of CRTCs supported by @dev 531 * 532 * This function initializes vblank support for @num_crtcs display pipelines. 533 * Cleanup is handled automatically through a cleanup function added with 534 * drmm_add_action_or_reset(). 535 * 536 * Returns: 537 * Zero on success or a negative error code on failure. 538 */ 539 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 540 { 541 int ret; 542 unsigned int i; 543 544 spin_lock_init(&dev->vbl_lock); 545 spin_lock_init(&dev->vblank_time_lock); 546 547 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 548 if (!dev->vblank) 549 return -ENOMEM; 550 551 dev->num_crtcs = num_crtcs; 552 553 for (i = 0; i < num_crtcs; i++) { 554 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 555 556 vblank->dev = dev; 557 vblank->pipe = i; 558 init_waitqueue_head(&vblank->queue); 559 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 560 seqlock_init(&vblank->seqlock); 561 562 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 563 vblank); 564 if (ret) 565 return ret; 566 567 ret = drm_vblank_worker_init(vblank); 568 if (ret) 569 return ret; 570 } 571 572 return 0; 573 } 574 EXPORT_SYMBOL(drm_vblank_init); 575 576 /** 577 * drm_dev_has_vblank - test if vblanking has been initialized for 578 * a device 579 * @dev: the device 580 * 581 * Drivers may call this function to test if vblank support is 582 * initialized for a device. For most hardware this means that vblanking 583 * can also be enabled. 584 * 585 * Atomic helpers use this function to initialize 586 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 587 * 588 * Returns: 589 * True if vblanking has been initialized for the given device, false 590 * otherwise. 591 */ 592 bool drm_dev_has_vblank(const struct drm_device *dev) 593 { 594 return dev->num_crtcs != 0; 595 } 596 EXPORT_SYMBOL(drm_dev_has_vblank); 597 598 /** 599 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 600 * @crtc: which CRTC's vblank waitqueue to retrieve 601 * 602 * This function returns a pointer to the vblank waitqueue for the CRTC. 603 * Drivers can use this to implement vblank waits using wait_event() and related 604 * functions. 605 */ 606 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 607 { 608 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 609 } 610 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 611 612 613 /** 614 * drm_calc_timestamping_constants - calculate vblank timestamp constants 615 * @crtc: drm_crtc whose timestamp constants should be updated. 616 * @mode: display mode containing the scanout timings 617 * 618 * Calculate and store various constants which are later needed by vblank and 619 * swap-completion timestamping, e.g, by 620 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 621 * CRTC's true scanout timing, so they take things like panel scaling or 622 * other adjustments into account. 623 */ 624 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 625 const struct drm_display_mode *mode) 626 { 627 struct drm_device *dev = crtc->dev; 628 unsigned int pipe = drm_crtc_index(crtc); 629 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 630 int linedur_ns = 0, framedur_ns = 0; 631 int dotclock = mode->crtc_clock; 632 633 if (!drm_dev_has_vblank(dev)) 634 return; 635 636 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 637 return; 638 639 /* Valid dotclock? */ 640 if (dotclock > 0) { 641 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 642 643 /* 644 * Convert scanline length in pixels and video 645 * dot clock to line duration and frame duration 646 * in nanoseconds: 647 */ 648 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 649 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 650 651 /* 652 * Fields of interlaced scanout modes are only half a frame duration. 653 */ 654 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 655 framedur_ns /= 2; 656 } else { 657 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 658 crtc->base.id); 659 } 660 661 vblank->linedur_ns = linedur_ns; 662 vblank->framedur_ns = framedur_ns; 663 drm_mode_copy(&vblank->hwmode, mode); 664 665 drm_dbg_core(dev, 666 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 667 crtc->base.id, mode->crtc_htotal, 668 mode->crtc_vtotal, mode->crtc_vdisplay); 669 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 670 crtc->base.id, dotclock, framedur_ns, linedur_ns); 671 } 672 EXPORT_SYMBOL(drm_calc_timestamping_constants); 673 674 /** 675 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 676 * timestamp helper 677 * @crtc: CRTC whose vblank timestamp to retrieve 678 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 679 * On return contains true maximum error of timestamp 680 * @vblank_time: Pointer to time which should receive the timestamp 681 * @in_vblank_irq: 682 * True when called from drm_crtc_handle_vblank(). Some drivers 683 * need to apply some workarounds for gpu-specific vblank irq quirks 684 * if flag is set. 685 * @get_scanout_position: 686 * Callback function to retrieve the scanout position. See 687 * @struct drm_crtc_helper_funcs.get_scanout_position. 688 * 689 * Implements calculation of exact vblank timestamps from given drm_display_mode 690 * timings and current video scanout position of a CRTC. 691 * 692 * The current implementation only handles standard video modes. For double scan 693 * and interlaced modes the driver is supposed to adjust the hardware mode 694 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 695 * match the scanout position reported. 696 * 697 * Note that atomic drivers must call drm_calc_timestamping_constants() before 698 * enabling a CRTC. The atomic helpers already take care of that in 699 * drm_atomic_helper_calc_timestamping_constants(). 700 * 701 * Returns: 702 * Returns true on success, and false on failure, i.e. when no accurate 703 * timestamp could be acquired. 704 */ 705 bool 706 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 707 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 708 bool in_vblank_irq, 709 drm_vblank_get_scanout_position_func get_scanout_position) 710 { 711 struct drm_device *dev = crtc->dev; 712 unsigned int pipe = crtc->index; 713 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 714 struct timespec64 ts_etime, ts_vblank_time; 715 ktime_t stime, etime; 716 bool vbl_status; 717 const struct drm_display_mode *mode; 718 int vpos, hpos, i; 719 int delta_ns, duration_ns; 720 721 if (pipe >= dev->num_crtcs) { 722 drm_err(dev, "Invalid crtc %u\n", pipe); 723 return false; 724 } 725 726 /* Scanout position query not supported? Should not happen. */ 727 if (!get_scanout_position) { 728 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 729 return false; 730 } 731 732 if (drm_drv_uses_atomic_modeset(dev)) 733 mode = &vblank->hwmode; 734 else 735 mode = &crtc->hwmode; 736 737 /* If mode timing undefined, just return as no-op: 738 * Happens during initial modesetting of a crtc. 739 */ 740 if (mode->crtc_clock == 0) { 741 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 742 pipe); 743 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 744 return false; 745 } 746 747 /* Get current scanout position with system timestamp. 748 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 749 * if single query takes longer than max_error nanoseconds. 750 * 751 * This guarantees a tight bound on maximum error if 752 * code gets preempted or delayed for some reason. 753 */ 754 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 755 /* 756 * Get vertical and horizontal scanout position vpos, hpos, 757 * and bounding timestamps stime, etime, pre/post query. 758 */ 759 vbl_status = get_scanout_position(crtc, in_vblank_irq, 760 &vpos, &hpos, 761 &stime, &etime, 762 mode); 763 764 /* Return as no-op if scanout query unsupported or failed. */ 765 if (!vbl_status) { 766 drm_dbg_core(dev, 767 "crtc %u : scanoutpos query failed.\n", 768 pipe); 769 return false; 770 } 771 772 /* Compute uncertainty in timestamp of scanout position query. */ 773 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 774 775 /* Accept result with < max_error nsecs timing uncertainty. */ 776 if (duration_ns <= *max_error) 777 break; 778 } 779 780 /* Noisy system timing? */ 781 if (i == DRM_TIMESTAMP_MAXRETRIES) { 782 drm_dbg_core(dev, 783 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 784 pipe, duration_ns / 1000, *max_error / 1000, i); 785 } 786 787 /* Return upper bound of timestamp precision error. */ 788 *max_error = duration_ns; 789 790 /* Convert scanout position into elapsed time at raw_time query 791 * since start of scanout at first display scanline. delta_ns 792 * can be negative if start of scanout hasn't happened yet. 793 */ 794 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 795 mode->crtc_clock); 796 797 /* Subtract time delta from raw timestamp to get final 798 * vblank_time timestamp for end of vblank. 799 */ 800 *vblank_time = ktime_sub_ns(etime, delta_ns); 801 802 if (!drm_debug_enabled(DRM_UT_VBL)) 803 return true; 804 805 ts_etime = ktime_to_timespec64(etime); 806 ts_vblank_time = ktime_to_timespec64(*vblank_time); 807 808 drm_dbg_vbl(dev, 809 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 810 pipe, hpos, vpos, 811 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 812 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 813 duration_ns / 1000, i); 814 815 return true; 816 } 817 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 818 819 /** 820 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 821 * helper 822 * @crtc: CRTC whose vblank timestamp to retrieve 823 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 824 * On return contains true maximum error of timestamp 825 * @vblank_time: Pointer to time which should receive the timestamp 826 * @in_vblank_irq: 827 * True when called from drm_crtc_handle_vblank(). Some drivers 828 * need to apply some workarounds for gpu-specific vblank irq quirks 829 * if flag is set. 830 * 831 * Implements calculation of exact vblank timestamps from given drm_display_mode 832 * timings and current video scanout position of a CRTC. This can be directly 833 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 834 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 835 * 836 * The current implementation only handles standard video modes. For double scan 837 * and interlaced modes the driver is supposed to adjust the hardware mode 838 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 839 * match the scanout position reported. 840 * 841 * Note that atomic drivers must call drm_calc_timestamping_constants() before 842 * enabling a CRTC. The atomic helpers already take care of that in 843 * drm_atomic_helper_calc_timestamping_constants(). 844 * 845 * Returns: 846 * Returns true on success, and false on failure, i.e. when no accurate 847 * timestamp could be acquired. 848 */ 849 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 850 int *max_error, 851 ktime_t *vblank_time, 852 bool in_vblank_irq) 853 { 854 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 855 crtc, max_error, vblank_time, in_vblank_irq, 856 crtc->helper_private->get_scanout_position); 857 } 858 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 859 860 /** 861 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 862 * recent vblank interval 863 * @crtc: CRTC whose vblank timestamp to retrieve 864 * @tvblank: Pointer to target time which should receive the timestamp 865 * @in_vblank_irq: 866 * True when called from drm_crtc_handle_vblank(). Some drivers 867 * need to apply some workarounds for gpu-specific vblank irq quirks 868 * if flag is set. 869 * 870 * Fetches the system timestamp corresponding to the time of the most recent 871 * vblank interval on specified CRTC. May call into kms-driver to 872 * compute the timestamp with a high-precision GPU specific method. 873 * 874 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 875 * call, i.e., it isn't very precisely locked to the true vblank. 876 * 877 * Returns: 878 * True if timestamp is considered to be very precise, false otherwise. 879 */ 880 static bool 881 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 882 bool in_vblank_irq) 883 { 884 bool ret = false; 885 886 /* Define requested maximum error on timestamps (nanoseconds). */ 887 int max_error = (int) drm_timestamp_precision * 1000; 888 889 /* Query driver if possible and precision timestamping enabled. */ 890 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 891 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 892 tvblank, in_vblank_irq); 893 } 894 895 /* GPU high precision timestamp query unsupported or failed. 896 * Return current monotonic/gettimeofday timestamp as best estimate. 897 */ 898 if (!ret) 899 *tvblank = ktime_get(); 900 901 return ret; 902 } 903 904 static bool 905 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 906 ktime_t *tvblank, bool in_vblank_irq) 907 { 908 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 909 910 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 911 } 912 913 /** 914 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 915 * @crtc: which counter to retrieve 916 * 917 * Fetches the "cooked" vblank count value that represents the number of 918 * vblank events since the system was booted, including lost events due to 919 * modesetting activity. Note that this timer isn't correct against a racing 920 * vblank interrupt (since it only reports the software vblank counter), see 921 * drm_crtc_accurate_vblank_count() for such use-cases. 922 * 923 * Note that for a given vblank counter value drm_crtc_handle_vblank() 924 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 925 * provide a barrier: Any writes done before calling 926 * drm_crtc_handle_vblank() will be visible to callers of the later 927 * functions, if the vblank count is the same or a later one. 928 * 929 * See also &drm_vblank_crtc.count. 930 * 931 * Returns: 932 * The software vblank counter. 933 */ 934 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 935 { 936 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 937 } 938 EXPORT_SYMBOL(drm_crtc_vblank_count); 939 940 /** 941 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 942 * system timestamp corresponding to that vblank counter value. 943 * @dev: DRM device 944 * @pipe: index of CRTC whose counter to retrieve 945 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 946 * 947 * Fetches the "cooked" vblank count value that represents the number of 948 * vblank events since the system was booted, including lost events due to 949 * modesetting activity. Returns corresponding system timestamp of the time 950 * of the vblank interval that corresponds to the current vblank counter value. 951 * 952 * This is the legacy version of drm_crtc_vblank_count_and_time(). 953 */ 954 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 955 ktime_t *vblanktime) 956 { 957 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 958 u64 vblank_count; 959 unsigned int seq; 960 961 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 962 *vblanktime = 0; 963 return 0; 964 } 965 966 do { 967 seq = read_seqbegin(&vblank->seqlock); 968 vblank_count = atomic64_read(&vblank->count); 969 *vblanktime = vblank->time; 970 } while (read_seqretry(&vblank->seqlock, seq)); 971 972 return vblank_count; 973 } 974 975 /** 976 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 977 * and the system timestamp corresponding to that vblank counter value 978 * @crtc: which counter to retrieve 979 * @vblanktime: Pointer to time to receive the vblank timestamp. 980 * 981 * Fetches the "cooked" vblank count value that represents the number of 982 * vblank events since the system was booted, including lost events due to 983 * modesetting activity. Returns corresponding system timestamp of the time 984 * of the vblank interval that corresponds to the current vblank counter value. 985 * 986 * Note that for a given vblank counter value drm_crtc_handle_vblank() 987 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 988 * provide a barrier: Any writes done before calling 989 * drm_crtc_handle_vblank() will be visible to callers of the later 990 * functions, if the vblank count is the same or a later one. 991 * 992 * See also &drm_vblank_crtc.count. 993 */ 994 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 995 ktime_t *vblanktime) 996 { 997 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 998 vblanktime); 999 } 1000 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 1001 1002 /** 1003 * drm_crtc_next_vblank_start - calculate the time of the next vblank 1004 * @crtc: the crtc for which to calculate next vblank time 1005 * @vblanktime: pointer to time to receive the next vblank timestamp. 1006 * 1007 * Calculate the expected time of the start of the next vblank period, 1008 * based on time of previous vblank and frame duration 1009 */ 1010 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 1011 { 1012 struct drm_vblank_crtc *vblank; 1013 struct drm_display_mode *mode; 1014 u64 vblank_start; 1015 1016 if (!drm_dev_has_vblank(crtc->dev)) 1017 return -EINVAL; 1018 1019 vblank = drm_crtc_vblank_crtc(crtc); 1020 mode = &vblank->hwmode; 1021 1022 if (!vblank->framedur_ns || !vblank->linedur_ns) 1023 return -EINVAL; 1024 1025 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1026 return -EINVAL; 1027 1028 vblank_start = DIV_ROUND_DOWN_ULL( 1029 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1030 mode->crtc_vtotal); 1031 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1032 1033 return 0; 1034 } 1035 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1036 1037 static void send_vblank_event(struct drm_device *dev, 1038 struct drm_pending_vblank_event *e, 1039 u64 seq, ktime_t now) 1040 { 1041 struct timespec64 tv; 1042 1043 switch (e->event.base.type) { 1044 case DRM_EVENT_VBLANK: 1045 case DRM_EVENT_FLIP_COMPLETE: 1046 tv = ktime_to_timespec64(now); 1047 e->event.vbl.sequence = seq; 1048 /* 1049 * e->event is a user space structure, with hardcoded unsigned 1050 * 32-bit seconds/microseconds. This is safe as we always use 1051 * monotonic timestamps since linux-4.15 1052 */ 1053 e->event.vbl.tv_sec = tv.tv_sec; 1054 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1055 break; 1056 case DRM_EVENT_CRTC_SEQUENCE: 1057 if (seq) 1058 e->event.seq.sequence = seq; 1059 e->event.seq.time_ns = ktime_to_ns(now); 1060 break; 1061 } 1062 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1063 /* 1064 * Use the same timestamp for any associated fence signal to avoid 1065 * mismatch in timestamps for vsync & fence events triggered by the 1066 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1067 * retire-fence timestamp to match exactly with HW vsync as it uses it 1068 * for its software vsync modeling. 1069 */ 1070 drm_send_event_timestamp_locked(dev, &e->base, now); 1071 } 1072 1073 /** 1074 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1075 * @crtc: the source CRTC of the vblank event 1076 * @e: the event to send 1077 * 1078 * A lot of drivers need to generate vblank events for the very next vblank 1079 * interrupt. For example when the page flip interrupt happens when the page 1080 * flip gets armed, but not when it actually executes within the next vblank 1081 * period. This helper function implements exactly the required vblank arming 1082 * behaviour. 1083 * 1084 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1085 * atomic commit must ensure that the next vblank happens at exactly the same 1086 * time as the atomic commit is committed to the hardware. This function itself 1087 * does **not** protect against the next vblank interrupt racing with either this 1088 * function call or the atomic commit operation. A possible sequence could be: 1089 * 1090 * 1. Driver commits new hardware state into vblank-synchronized registers. 1091 * 2. A vblank happens, committing the hardware state. Also the corresponding 1092 * vblank interrupt is fired off and fully processed by the interrupt 1093 * handler. 1094 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1095 * 4. The event is only send out for the next vblank, which is wrong. 1096 * 1097 * An equivalent race can happen when the driver calls 1098 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1099 * 1100 * The only way to make this work safely is to prevent the vblank from firing 1101 * (and the hardware from committing anything else) until the entire atomic 1102 * commit sequence has run to completion. If the hardware does not have such a 1103 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1104 * Instead drivers need to manually send out the event from their interrupt 1105 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1106 * possible race with the hardware committing the atomic update. 1107 * 1108 * Caller must hold a vblank reference for the event @e acquired by a 1109 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1110 */ 1111 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1112 struct drm_pending_vblank_event *e) 1113 { 1114 struct drm_device *dev = crtc->dev; 1115 unsigned int pipe = drm_crtc_index(crtc); 1116 1117 assert_spin_locked(&dev->event_lock); 1118 1119 e->pipe = pipe; 1120 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1121 list_add_tail(&e->base.link, &dev->vblank_event_list); 1122 } 1123 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1124 1125 /** 1126 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1127 * @crtc: the source CRTC of the vblank event 1128 * @e: the event to send 1129 * 1130 * Updates sequence # and timestamp on event for the most recently processed 1131 * vblank, and sends it to userspace. Caller must hold event lock. 1132 * 1133 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1134 * situation, especially to send out events for atomic commit operations. 1135 */ 1136 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1137 struct drm_pending_vblank_event *e) 1138 { 1139 struct drm_device *dev = crtc->dev; 1140 u64 seq; 1141 unsigned int pipe = drm_crtc_index(crtc); 1142 ktime_t now; 1143 1144 if (drm_dev_has_vblank(dev)) { 1145 seq = drm_vblank_count_and_time(dev, pipe, &now); 1146 } else { 1147 seq = 0; 1148 1149 now = ktime_get(); 1150 } 1151 e->pipe = pipe; 1152 send_vblank_event(dev, e, seq, now); 1153 } 1154 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1155 1156 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1157 { 1158 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1159 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1160 1161 if (drm_WARN_ON(dev, !crtc)) 1162 return 0; 1163 1164 if (crtc->funcs->enable_vblank) 1165 return crtc->funcs->enable_vblank(crtc); 1166 } 1167 1168 return -EINVAL; 1169 } 1170 1171 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1172 { 1173 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1174 int ret = 0; 1175 1176 assert_spin_locked(&dev->vbl_lock); 1177 1178 spin_lock(&dev->vblank_time_lock); 1179 1180 if (!vblank->enabled) { 1181 /* 1182 * Enable vblank irqs under vblank_time_lock protection. 1183 * All vblank count & timestamp updates are held off 1184 * until we are done reinitializing master counter and 1185 * timestamps. Filtercode in drm_handle_vblank() will 1186 * prevent double-accounting of same vblank interval. 1187 */ 1188 ret = __enable_vblank(dev, pipe); 1189 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1190 pipe, ret); 1191 if (ret) { 1192 atomic_dec(&vblank->refcount); 1193 } else { 1194 drm_update_vblank_count(dev, pipe, 0); 1195 /* drm_update_vblank_count() includes a wmb so we just 1196 * need to ensure that the compiler emits the write 1197 * to mark the vblank as enabled after the call 1198 * to drm_update_vblank_count(). 1199 */ 1200 WRITE_ONCE(vblank->enabled, true); 1201 } 1202 } 1203 1204 spin_unlock(&dev->vblank_time_lock); 1205 1206 return ret; 1207 } 1208 1209 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1210 { 1211 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1212 unsigned long irqflags; 1213 int ret = 0; 1214 1215 if (!drm_dev_has_vblank(dev)) 1216 return -EINVAL; 1217 1218 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1219 return -EINVAL; 1220 1221 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1222 /* Going from 0->1 means we have to enable interrupts again */ 1223 if (atomic_add_return(1, &vblank->refcount) == 1) { 1224 ret = drm_vblank_enable(dev, pipe); 1225 } else { 1226 if (!vblank->enabled) { 1227 atomic_dec(&vblank->refcount); 1228 ret = -EINVAL; 1229 } 1230 } 1231 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1232 1233 return ret; 1234 } 1235 1236 /** 1237 * drm_crtc_vblank_get - get a reference count on vblank events 1238 * @crtc: which CRTC to own 1239 * 1240 * Acquire a reference count on vblank events to avoid having them disabled 1241 * while in use. 1242 * 1243 * Returns: 1244 * Zero on success or a negative error code on failure. 1245 */ 1246 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1247 { 1248 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1249 } 1250 EXPORT_SYMBOL(drm_crtc_vblank_get); 1251 1252 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1253 { 1254 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1255 int vblank_offdelay = vblank->config.offdelay_ms; 1256 1257 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1258 return; 1259 1260 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1261 return; 1262 1263 /* Last user schedules interrupt disable */ 1264 if (atomic_dec_and_test(&vblank->refcount)) { 1265 if (!vblank_offdelay) 1266 return; 1267 else if (vblank_offdelay < 0) 1268 vblank_disable_fn(&vblank->disable_timer); 1269 else if (!vblank->config.disable_immediate) 1270 mod_timer(&vblank->disable_timer, 1271 jiffies + ((vblank_offdelay * HZ) / 1000)); 1272 } 1273 } 1274 1275 /** 1276 * drm_crtc_vblank_put - give up ownership of vblank events 1277 * @crtc: which counter to give up 1278 * 1279 * Release ownership of a given vblank counter, turning off interrupts 1280 * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms 1281 * milliseconds. 1282 */ 1283 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1284 { 1285 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1286 } 1287 EXPORT_SYMBOL(drm_crtc_vblank_put); 1288 1289 /** 1290 * drm_wait_one_vblank - wait for one vblank 1291 * @dev: DRM device 1292 * @pipe: CRTC index 1293 * 1294 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1295 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1296 * due to lack of driver support or because the crtc is off. 1297 * 1298 * This is the legacy version of drm_crtc_wait_one_vblank(). 1299 */ 1300 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1301 { 1302 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1303 int ret; 1304 u64 last; 1305 1306 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1307 return; 1308 1309 ret = drm_vblank_get(dev, pipe); 1310 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1311 pipe, ret)) 1312 return; 1313 1314 last = drm_vblank_count(dev, pipe); 1315 1316 ret = wait_event_timeout(vblank->queue, 1317 last != drm_vblank_count(dev, pipe), 1318 msecs_to_jiffies(100)); 1319 1320 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1321 1322 drm_vblank_put(dev, pipe); 1323 } 1324 EXPORT_SYMBOL(drm_wait_one_vblank); 1325 1326 /** 1327 * drm_crtc_wait_one_vblank - wait for one vblank 1328 * @crtc: DRM crtc 1329 * 1330 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1331 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1332 * due to lack of driver support or because the crtc is off. 1333 */ 1334 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1335 { 1336 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1337 } 1338 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1339 1340 /** 1341 * drm_crtc_vblank_off - disable vblank events on a CRTC 1342 * @crtc: CRTC in question 1343 * 1344 * Drivers can use this function to shut down the vblank interrupt handling when 1345 * disabling a crtc. This function ensures that the latest vblank frame count is 1346 * stored so that drm_vblank_on can restore it again. 1347 * 1348 * Drivers must use this function when the hardware vblank counter can get 1349 * reset, e.g. when suspending or disabling the @crtc in general. 1350 */ 1351 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1352 { 1353 struct drm_device *dev = crtc->dev; 1354 unsigned int pipe = drm_crtc_index(crtc); 1355 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1356 struct drm_pending_vblank_event *e, *t; 1357 ktime_t now; 1358 u64 seq; 1359 1360 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1361 return; 1362 1363 /* 1364 * Grab event_lock early to prevent vblank work from being scheduled 1365 * while we're in the middle of shutting down vblank interrupts 1366 */ 1367 spin_lock_irq(&dev->event_lock); 1368 1369 spin_lock(&dev->vbl_lock); 1370 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1371 pipe, vblank->enabled, vblank->inmodeset); 1372 1373 /* Avoid redundant vblank disables without previous 1374 * drm_crtc_vblank_on(). */ 1375 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1376 drm_vblank_disable_and_save(dev, pipe); 1377 1378 wake_up(&vblank->queue); 1379 1380 /* 1381 * Prevent subsequent drm_vblank_get() from re-enabling 1382 * the vblank interrupt by bumping the refcount. 1383 */ 1384 if (!vblank->inmodeset) { 1385 atomic_inc(&vblank->refcount); 1386 vblank->inmodeset = 1; 1387 } 1388 spin_unlock(&dev->vbl_lock); 1389 1390 /* Send any queued vblank events, lest the natives grow disquiet */ 1391 seq = drm_vblank_count_and_time(dev, pipe, &now); 1392 1393 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1394 if (e->pipe != pipe) 1395 continue; 1396 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1397 "wanted %llu, current %llu\n", 1398 e->sequence, seq); 1399 list_del(&e->base.link); 1400 drm_vblank_put(dev, pipe); 1401 send_vblank_event(dev, e, seq, now); 1402 } 1403 1404 /* Cancel any leftover pending vblank work */ 1405 drm_vblank_cancel_pending_works(vblank); 1406 1407 spin_unlock_irq(&dev->event_lock); 1408 1409 /* Will be reset by the modeset helpers when re-enabling the crtc by 1410 * calling drm_calc_timestamping_constants(). */ 1411 vblank->hwmode.crtc_clock = 0; 1412 1413 /* Wait for any vblank work that's still executing to finish */ 1414 drm_vblank_flush_worker(vblank); 1415 } 1416 EXPORT_SYMBOL(drm_crtc_vblank_off); 1417 1418 /** 1419 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1420 * @crtc: CRTC in question 1421 * 1422 * Drivers can use this function to reset the vblank state to off at load time. 1423 * Drivers should use this together with the drm_crtc_vblank_off() and 1424 * drm_crtc_vblank_on() functions. The difference compared to 1425 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1426 * and hence doesn't need to call any driver hooks. 1427 * 1428 * This is useful for recovering driver state e.g. on driver load, or on resume. 1429 */ 1430 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1431 { 1432 struct drm_device *dev = crtc->dev; 1433 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1434 1435 spin_lock_irq(&dev->vbl_lock); 1436 /* 1437 * Prevent subsequent drm_vblank_get() from enabling the vblank 1438 * interrupt by bumping the refcount. 1439 */ 1440 if (!vblank->inmodeset) { 1441 atomic_inc(&vblank->refcount); 1442 vblank->inmodeset = 1; 1443 } 1444 spin_unlock_irq(&dev->vbl_lock); 1445 1446 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1447 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1448 } 1449 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1450 1451 /** 1452 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1453 * @crtc: CRTC in question 1454 * @max_vblank_count: max hardware vblank counter value 1455 * 1456 * Update the maximum hardware vblank counter value for @crtc 1457 * at runtime. Useful for hardware where the operation of the 1458 * hardware vblank counter depends on the currently active 1459 * display configuration. 1460 * 1461 * For example, if the hardware vblank counter does not work 1462 * when a specific connector is active the maximum can be set 1463 * to zero. And when that specific connector isn't active the 1464 * maximum can again be set to the appropriate non-zero value. 1465 * 1466 * If used, must be called before drm_vblank_on(). 1467 */ 1468 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1469 u32 max_vblank_count) 1470 { 1471 struct drm_device *dev = crtc->dev; 1472 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1473 1474 drm_WARN_ON(dev, dev->max_vblank_count); 1475 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1476 1477 vblank->max_vblank_count = max_vblank_count; 1478 } 1479 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1480 1481 /** 1482 * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom 1483 * configuration options 1484 * @crtc: CRTC in question 1485 * @config: Vblank configuration value 1486 * 1487 * See drm_crtc_vblank_on(). In addition, this function allows you to provide a 1488 * custom vblank configuration for a given CRTC. 1489 * 1490 * Note that @config is copied, the pointer does not need to stay valid beyond 1491 * this function call. For details of the parameters see 1492 * struct drm_vblank_crtc_config. 1493 */ 1494 void drm_crtc_vblank_on_config(struct drm_crtc *crtc, 1495 const struct drm_vblank_crtc_config *config) 1496 { 1497 struct drm_device *dev = crtc->dev; 1498 unsigned int pipe = drm_crtc_index(crtc); 1499 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1500 1501 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1502 return; 1503 1504 spin_lock_irq(&dev->vbl_lock); 1505 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1506 pipe, vblank->enabled, vblank->inmodeset); 1507 1508 vblank->config = *config; 1509 1510 /* Drop our private "prevent drm_vblank_get" refcount */ 1511 if (vblank->inmodeset) { 1512 atomic_dec(&vblank->refcount); 1513 vblank->inmodeset = 0; 1514 } 1515 1516 drm_reset_vblank_timestamp(dev, pipe); 1517 1518 /* 1519 * re-enable interrupts if there are users left, or the 1520 * user wishes vblank interrupts to be enabled all the time. 1521 */ 1522 if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms) 1523 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1524 spin_unlock_irq(&dev->vbl_lock); 1525 } 1526 EXPORT_SYMBOL(drm_crtc_vblank_on_config); 1527 1528 /** 1529 * drm_crtc_vblank_on - enable vblank events on a CRTC 1530 * @crtc: CRTC in question 1531 * 1532 * This functions restores the vblank interrupt state captured with 1533 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1534 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1535 * unbalanced and so can also be unconditionally called in driver load code to 1536 * reflect the current hardware state of the crtc. 1537 * 1538 * Note that unlike in drm_crtc_vblank_on_config(), default values are used. 1539 */ 1540 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1541 { 1542 const struct drm_vblank_crtc_config config = { 1543 .offdelay_ms = drm_vblank_offdelay, 1544 .disable_immediate = crtc->dev->vblank_disable_immediate 1545 }; 1546 1547 drm_crtc_vblank_on_config(crtc, &config); 1548 } 1549 EXPORT_SYMBOL(drm_crtc_vblank_on); 1550 1551 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1552 { 1553 ktime_t t_vblank; 1554 struct drm_vblank_crtc *vblank; 1555 int framedur_ns; 1556 u64 diff_ns; 1557 u32 cur_vblank, diff = 1; 1558 int count = DRM_TIMESTAMP_MAXRETRIES; 1559 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1560 1561 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1562 return; 1563 1564 assert_spin_locked(&dev->vbl_lock); 1565 assert_spin_locked(&dev->vblank_time_lock); 1566 1567 vblank = drm_vblank_crtc(dev, pipe); 1568 drm_WARN_ONCE(dev, 1569 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1570 "Cannot compute missed vblanks without frame duration\n"); 1571 framedur_ns = vblank->framedur_ns; 1572 1573 do { 1574 cur_vblank = __get_vblank_counter(dev, pipe); 1575 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1576 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1577 1578 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1579 if (framedur_ns) 1580 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1581 1582 1583 drm_dbg_vbl(dev, 1584 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1585 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1586 vblank->last = (cur_vblank - diff) & max_vblank_count; 1587 } 1588 1589 /** 1590 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1591 * @crtc: CRTC in question 1592 * 1593 * Power manamement features can cause frame counter resets between vblank 1594 * disable and enable. Drivers can use this function in their 1595 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1596 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1597 * vblank counter. 1598 * 1599 * Note that drivers must have race-free high-precision timestamping support, 1600 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1601 * &drm_vblank_crtc_config.disable_immediate must be set to indicate the 1602 * time-stamping functions are race-free against vblank hardware counter 1603 * increments. 1604 */ 1605 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1606 { 1607 struct drm_device *dev = crtc->dev; 1608 unsigned int pipe = drm_crtc_index(crtc); 1609 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1610 1611 drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp); 1612 drm_WARN_ON_ONCE(dev, vblank->inmodeset); 1613 drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate); 1614 1615 drm_vblank_restore(dev, pipe); 1616 } 1617 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1618 1619 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1620 u64 req_seq, 1621 union drm_wait_vblank *vblwait, 1622 struct drm_file *file_priv) 1623 { 1624 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1625 struct drm_pending_vblank_event *e; 1626 ktime_t now; 1627 u64 seq; 1628 int ret; 1629 1630 e = kzalloc(sizeof(*e), GFP_KERNEL); 1631 if (e == NULL) { 1632 ret = -ENOMEM; 1633 goto err_put; 1634 } 1635 1636 e->pipe = pipe; 1637 e->event.base.type = DRM_EVENT_VBLANK; 1638 e->event.base.length = sizeof(e->event.vbl); 1639 e->event.vbl.user_data = vblwait->request.signal; 1640 e->event.vbl.crtc_id = 0; 1641 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1642 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1643 1644 if (crtc) 1645 e->event.vbl.crtc_id = crtc->base.id; 1646 } 1647 1648 spin_lock_irq(&dev->event_lock); 1649 1650 /* 1651 * drm_crtc_vblank_off() might have been called after we called 1652 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1653 * vblank disable, so no need for further locking. The reference from 1654 * drm_vblank_get() protects against vblank disable from another source. 1655 */ 1656 if (!READ_ONCE(vblank->enabled)) { 1657 ret = -EINVAL; 1658 goto err_unlock; 1659 } 1660 1661 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1662 &e->event.base); 1663 1664 if (ret) 1665 goto err_unlock; 1666 1667 seq = drm_vblank_count_and_time(dev, pipe, &now); 1668 1669 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1670 req_seq, seq, pipe); 1671 1672 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1673 1674 e->sequence = req_seq; 1675 if (drm_vblank_passed(seq, req_seq)) { 1676 drm_vblank_put(dev, pipe); 1677 send_vblank_event(dev, e, seq, now); 1678 vblwait->reply.sequence = seq; 1679 } else { 1680 /* drm_handle_vblank_events will call drm_vblank_put */ 1681 list_add_tail(&e->base.link, &dev->vblank_event_list); 1682 vblwait->reply.sequence = req_seq; 1683 } 1684 1685 spin_unlock_irq(&dev->event_lock); 1686 1687 return 0; 1688 1689 err_unlock: 1690 spin_unlock_irq(&dev->event_lock); 1691 kfree(e); 1692 err_put: 1693 drm_vblank_put(dev, pipe); 1694 return ret; 1695 } 1696 1697 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1698 { 1699 if (vblwait->request.sequence) 1700 return false; 1701 1702 return _DRM_VBLANK_RELATIVE == 1703 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1704 _DRM_VBLANK_EVENT | 1705 _DRM_VBLANK_NEXTONMISS)); 1706 } 1707 1708 /* 1709 * Widen a 32-bit param to 64-bits. 1710 * 1711 * \param narrow 32-bit value (missing upper 32 bits) 1712 * \param near 64-bit value that should be 'close' to near 1713 * 1714 * This function returns a 64-bit value using the lower 32-bits from 1715 * 'narrow' and constructing the upper 32-bits so that the result is 1716 * as close as possible to 'near'. 1717 */ 1718 1719 static u64 widen_32_to_64(u32 narrow, u64 near) 1720 { 1721 return near + (s32) (narrow - near); 1722 } 1723 1724 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1725 struct drm_wait_vblank_reply *reply) 1726 { 1727 ktime_t now; 1728 struct timespec64 ts; 1729 1730 /* 1731 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1732 * to store the seconds. This is safe as we always use monotonic 1733 * timestamps since linux-4.15. 1734 */ 1735 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1736 ts = ktime_to_timespec64(now); 1737 reply->tval_sec = (u32)ts.tv_sec; 1738 reply->tval_usec = ts.tv_nsec / 1000; 1739 } 1740 1741 static bool drm_wait_vblank_supported(struct drm_device *dev) 1742 { 1743 return drm_dev_has_vblank(dev); 1744 } 1745 1746 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1747 struct drm_file *file_priv) 1748 { 1749 struct drm_crtc *crtc; 1750 struct drm_vblank_crtc *vblank; 1751 union drm_wait_vblank *vblwait = data; 1752 int ret; 1753 u64 req_seq, seq; 1754 unsigned int pipe_index; 1755 unsigned int flags, pipe, high_pipe; 1756 1757 if (!drm_wait_vblank_supported(dev)) 1758 return -EOPNOTSUPP; 1759 1760 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1761 return -EINVAL; 1762 1763 if (vblwait->request.type & 1764 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1765 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1766 drm_dbg_core(dev, 1767 "Unsupported type value 0x%x, supported mask 0x%x\n", 1768 vblwait->request.type, 1769 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1770 _DRM_VBLANK_HIGH_CRTC_MASK)); 1771 return -EINVAL; 1772 } 1773 1774 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1775 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1776 if (high_pipe) 1777 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1778 else 1779 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1780 1781 /* Convert lease-relative crtc index into global crtc index */ 1782 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1783 pipe = 0; 1784 drm_for_each_crtc(crtc, dev) { 1785 if (drm_lease_held(file_priv, crtc->base.id)) { 1786 if (pipe_index == 0) 1787 break; 1788 pipe_index--; 1789 } 1790 pipe++; 1791 } 1792 } else { 1793 pipe = pipe_index; 1794 } 1795 1796 if (pipe >= dev->num_crtcs) 1797 return -EINVAL; 1798 1799 vblank = &dev->vblank[pipe]; 1800 1801 /* If the counter is currently enabled and accurate, short-circuit 1802 * queries to return the cached timestamp of the last vblank. 1803 */ 1804 if (vblank->config.disable_immediate && 1805 drm_wait_vblank_is_query(vblwait) && 1806 READ_ONCE(vblank->enabled)) { 1807 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1808 return 0; 1809 } 1810 1811 ret = drm_vblank_get(dev, pipe); 1812 if (ret) { 1813 drm_dbg_core(dev, 1814 "crtc %d failed to acquire vblank counter, %d\n", 1815 pipe, ret); 1816 return ret; 1817 } 1818 seq = drm_vblank_count(dev, pipe); 1819 1820 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1821 case _DRM_VBLANK_RELATIVE: 1822 req_seq = seq + vblwait->request.sequence; 1823 vblwait->request.sequence = req_seq; 1824 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1825 break; 1826 case _DRM_VBLANK_ABSOLUTE: 1827 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1828 break; 1829 default: 1830 ret = -EINVAL; 1831 goto done; 1832 } 1833 1834 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1835 drm_vblank_passed(seq, req_seq)) { 1836 req_seq = seq + 1; 1837 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1838 vblwait->request.sequence = req_seq; 1839 } 1840 1841 if (flags & _DRM_VBLANK_EVENT) { 1842 /* must hold on to the vblank ref until the event fires 1843 * drm_vblank_put will be called asynchronously 1844 */ 1845 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1846 } 1847 1848 if (req_seq != seq) { 1849 int wait; 1850 1851 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1852 req_seq, pipe); 1853 wait = wait_event_interruptible_timeout(vblank->queue, 1854 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1855 !READ_ONCE(vblank->enabled), 1856 msecs_to_jiffies(3000)); 1857 1858 switch (wait) { 1859 case 0: 1860 /* timeout */ 1861 ret = -EBUSY; 1862 break; 1863 case -ERESTARTSYS: 1864 /* interrupted by signal */ 1865 ret = -EINTR; 1866 break; 1867 default: 1868 ret = 0; 1869 break; 1870 } 1871 } 1872 1873 if (ret != -EINTR) { 1874 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1875 1876 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1877 pipe, vblwait->reply.sequence); 1878 } else { 1879 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1880 pipe); 1881 } 1882 1883 done: 1884 drm_vblank_put(dev, pipe); 1885 return ret; 1886 } 1887 1888 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1889 { 1890 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1891 bool high_prec = false; 1892 struct drm_pending_vblank_event *e, *t; 1893 ktime_t now; 1894 u64 seq; 1895 1896 assert_spin_locked(&dev->event_lock); 1897 1898 seq = drm_vblank_count_and_time(dev, pipe, &now); 1899 1900 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1901 if (e->pipe != pipe) 1902 continue; 1903 if (!drm_vblank_passed(seq, e->sequence)) 1904 continue; 1905 1906 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1907 e->sequence, seq); 1908 1909 list_del(&e->base.link); 1910 drm_vblank_put(dev, pipe); 1911 send_vblank_event(dev, e, seq, now); 1912 } 1913 1914 if (crtc && crtc->funcs->get_vblank_timestamp) 1915 high_prec = true; 1916 1917 trace_drm_vblank_event(pipe, seq, now, high_prec); 1918 } 1919 1920 /** 1921 * drm_handle_vblank - handle a vblank event 1922 * @dev: DRM device 1923 * @pipe: index of CRTC where this event occurred 1924 * 1925 * Drivers should call this routine in their vblank interrupt handlers to 1926 * update the vblank counter and send any signals that may be pending. 1927 * 1928 * This is the legacy version of drm_crtc_handle_vblank(). 1929 */ 1930 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1931 { 1932 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1933 unsigned long irqflags; 1934 bool disable_irq; 1935 1936 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1937 return false; 1938 1939 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1940 return false; 1941 1942 spin_lock_irqsave(&dev->event_lock, irqflags); 1943 1944 /* Need timestamp lock to prevent concurrent execution with 1945 * vblank enable/disable, as this would cause inconsistent 1946 * or corrupted timestamps and vblank counts. 1947 */ 1948 spin_lock(&dev->vblank_time_lock); 1949 1950 /* Vblank irq handling disabled. Nothing to do. */ 1951 if (!vblank->enabled) { 1952 spin_unlock(&dev->vblank_time_lock); 1953 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1954 return false; 1955 } 1956 1957 drm_update_vblank_count(dev, pipe, true); 1958 1959 spin_unlock(&dev->vblank_time_lock); 1960 1961 wake_up(&vblank->queue); 1962 1963 /* With instant-off, we defer disabling the interrupt until after 1964 * we finish processing the following vblank after all events have 1965 * been signaled. The disable has to be last (after 1966 * drm_handle_vblank_events) so that the timestamp is always accurate. 1967 */ 1968 disable_irq = (vblank->config.disable_immediate && 1969 vblank->config.offdelay_ms > 0 && 1970 !atomic_read(&vblank->refcount)); 1971 1972 drm_handle_vblank_events(dev, pipe); 1973 drm_handle_vblank_works(vblank); 1974 1975 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1976 1977 if (disable_irq) 1978 vblank_disable_fn(&vblank->disable_timer); 1979 1980 return true; 1981 } 1982 EXPORT_SYMBOL(drm_handle_vblank); 1983 1984 /** 1985 * drm_crtc_handle_vblank - handle a vblank event 1986 * @crtc: where this event occurred 1987 * 1988 * Drivers should call this routine in their vblank interrupt handlers to 1989 * update the vblank counter and send any signals that may be pending. 1990 * 1991 * This is the native KMS version of drm_handle_vblank(). 1992 * 1993 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1994 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1995 * provide a barrier: Any writes done before calling 1996 * drm_crtc_handle_vblank() will be visible to callers of the later 1997 * functions, if the vblank count is the same or a later one. 1998 * 1999 * See also &drm_vblank_crtc.count. 2000 * 2001 * Returns: 2002 * True if the event was successfully handled, false on failure. 2003 */ 2004 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 2005 { 2006 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 2007 } 2008 EXPORT_SYMBOL(drm_crtc_handle_vblank); 2009 2010 /* 2011 * Get crtc VBLANK count. 2012 * 2013 * \param dev DRM device 2014 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2015 * \param file_priv drm file private for the user's open file descriptor 2016 */ 2017 2018 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2019 struct drm_file *file_priv) 2020 { 2021 struct drm_crtc *crtc; 2022 struct drm_vblank_crtc *vblank; 2023 int pipe; 2024 struct drm_crtc_get_sequence *get_seq = data; 2025 ktime_t now; 2026 bool vblank_enabled; 2027 int ret; 2028 2029 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2030 return -EOPNOTSUPP; 2031 2032 if (!drm_dev_has_vblank(dev)) 2033 return -EOPNOTSUPP; 2034 2035 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2036 if (!crtc) 2037 return -ENOENT; 2038 2039 pipe = drm_crtc_index(crtc); 2040 2041 vblank = drm_crtc_vblank_crtc(crtc); 2042 vblank_enabled = READ_ONCE(vblank->config.disable_immediate) && 2043 READ_ONCE(vblank->enabled); 2044 2045 if (!vblank_enabled) { 2046 ret = drm_crtc_vblank_get(crtc); 2047 if (ret) { 2048 drm_dbg_core(dev, 2049 "crtc %d failed to acquire vblank counter, %d\n", 2050 pipe, ret); 2051 return ret; 2052 } 2053 } 2054 drm_modeset_lock(&crtc->mutex, NULL); 2055 if (crtc->state) 2056 get_seq->active = crtc->state->enable; 2057 else 2058 get_seq->active = crtc->enabled; 2059 drm_modeset_unlock(&crtc->mutex); 2060 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2061 get_seq->sequence_ns = ktime_to_ns(now); 2062 if (!vblank_enabled) 2063 drm_crtc_vblank_put(crtc); 2064 return 0; 2065 } 2066 2067 /* 2068 * Queue a event for VBLANK sequence 2069 * 2070 * \param dev DRM device 2071 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2072 * \param file_priv drm file private for the user's open file descriptor 2073 */ 2074 2075 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2076 struct drm_file *file_priv) 2077 { 2078 struct drm_crtc *crtc; 2079 struct drm_vblank_crtc *vblank; 2080 int pipe; 2081 struct drm_crtc_queue_sequence *queue_seq = data; 2082 ktime_t now; 2083 struct drm_pending_vblank_event *e; 2084 u32 flags; 2085 u64 seq; 2086 u64 req_seq; 2087 int ret; 2088 2089 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2090 return -EOPNOTSUPP; 2091 2092 if (!drm_dev_has_vblank(dev)) 2093 return -EOPNOTSUPP; 2094 2095 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2096 if (!crtc) 2097 return -ENOENT; 2098 2099 flags = queue_seq->flags; 2100 /* Check valid flag bits */ 2101 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2102 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2103 return -EINVAL; 2104 2105 pipe = drm_crtc_index(crtc); 2106 2107 vblank = drm_crtc_vblank_crtc(crtc); 2108 2109 e = kzalloc(sizeof(*e), GFP_KERNEL); 2110 if (e == NULL) 2111 return -ENOMEM; 2112 2113 ret = drm_crtc_vblank_get(crtc); 2114 if (ret) { 2115 drm_dbg_core(dev, 2116 "crtc %d failed to acquire vblank counter, %d\n", 2117 pipe, ret); 2118 goto err_free; 2119 } 2120 2121 seq = drm_vblank_count_and_time(dev, pipe, &now); 2122 req_seq = queue_seq->sequence; 2123 2124 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2125 req_seq += seq; 2126 2127 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2128 req_seq = seq + 1; 2129 2130 e->pipe = pipe; 2131 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2132 e->event.base.length = sizeof(e->event.seq); 2133 e->event.seq.user_data = queue_seq->user_data; 2134 2135 spin_lock_irq(&dev->event_lock); 2136 2137 /* 2138 * drm_crtc_vblank_off() might have been called after we called 2139 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2140 * vblank disable, so no need for further locking. The reference from 2141 * drm_crtc_vblank_get() protects against vblank disable from another source. 2142 */ 2143 if (!READ_ONCE(vblank->enabled)) { 2144 ret = -EINVAL; 2145 goto err_unlock; 2146 } 2147 2148 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2149 &e->event.base); 2150 2151 if (ret) 2152 goto err_unlock; 2153 2154 e->sequence = req_seq; 2155 2156 if (drm_vblank_passed(seq, req_seq)) { 2157 drm_crtc_vblank_put(crtc); 2158 send_vblank_event(dev, e, seq, now); 2159 queue_seq->sequence = seq; 2160 } else { 2161 /* drm_handle_vblank_events will call drm_vblank_put */ 2162 list_add_tail(&e->base.link, &dev->vblank_event_list); 2163 queue_seq->sequence = req_seq; 2164 } 2165 2166 spin_unlock_irq(&dev->event_lock); 2167 return 0; 2168 2169 err_unlock: 2170 spin_unlock_irq(&dev->event_lock); 2171 drm_crtc_vblank_put(crtc); 2172 err_free: 2173 kfree(e); 2174 return ret; 2175 } 2176 2177 /* 2178 * VBLANK timer 2179 */ 2180 2181 static enum hrtimer_restart drm_vblank_timer_function(struct hrtimer *timer) 2182 { 2183 struct drm_vblank_crtc_timer *vtimer = 2184 container_of(timer, struct drm_vblank_crtc_timer, timer); 2185 struct drm_crtc *crtc = vtimer->crtc; 2186 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 2187 struct drm_device *dev = crtc->dev; 2188 unsigned long flags; 2189 ktime_t interval; 2190 u64 ret_overrun; 2191 bool succ; 2192 2193 spin_lock_irqsave(&vtimer->interval_lock, flags); 2194 interval = vtimer->interval; 2195 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2196 2197 if (!interval) 2198 return HRTIMER_NORESTART; 2199 2200 ret_overrun = hrtimer_forward_now(&vtimer->timer, interval); 2201 if (ret_overrun != 1) 2202 drm_dbg_vbl(dev, "vblank timer overrun\n"); 2203 2204 if (crtc_funcs->handle_vblank_timeout) 2205 succ = crtc_funcs->handle_vblank_timeout(crtc); 2206 else 2207 succ = drm_crtc_handle_vblank(crtc); 2208 if (!succ) 2209 return HRTIMER_NORESTART; 2210 2211 return HRTIMER_RESTART; 2212 } 2213 2214 /** 2215 * drm_crtc_vblank_start_timer - Starts the vblank timer on the given CRTC 2216 * @crtc: the CRTC 2217 * 2218 * Drivers should call this function from their CRTC's enable_vblank 2219 * function to start a vblank timer. The timer will fire after the duration 2220 * of a full frame. drm_crtc_vblank_cancel_timer() disables a running timer. 2221 * 2222 * Returns: 2223 * 0 on success, or a negative errno code otherwise. 2224 */ 2225 int drm_crtc_vblank_start_timer(struct drm_crtc *crtc) 2226 { 2227 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2228 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2229 unsigned long flags; 2230 2231 if (!vtimer->crtc) { 2232 /* 2233 * Set up the data structures on the first invocation. 2234 */ 2235 vtimer->crtc = crtc; 2236 spin_lock_init(&vtimer->interval_lock); 2237 hrtimer_setup(&vtimer->timer, drm_vblank_timer_function, 2238 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2239 } else { 2240 /* 2241 * Timer should not be active. If it is, wait for the 2242 * previous cancel operations to finish. 2243 */ 2244 while (hrtimer_active(&vtimer->timer)) 2245 hrtimer_try_to_cancel(&vtimer->timer); 2246 } 2247 2248 drm_calc_timestamping_constants(crtc, &crtc->mode); 2249 2250 spin_lock_irqsave(&vtimer->interval_lock, flags); 2251 vtimer->interval = ns_to_ktime(vblank->framedur_ns); 2252 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2253 2254 hrtimer_start(&vtimer->timer, vtimer->interval, HRTIMER_MODE_REL); 2255 2256 return 0; 2257 } 2258 EXPORT_SYMBOL(drm_crtc_vblank_start_timer); 2259 2260 /** 2261 * drm_crtc_vblank_start_timer - Cancels the given CRTC's vblank timer 2262 * @crtc: the CRTC 2263 * 2264 * Drivers should call this function from their CRTC's disable_vblank 2265 * function to stop a vblank timer. 2266 */ 2267 void drm_crtc_vblank_cancel_timer(struct drm_crtc *crtc) 2268 { 2269 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2270 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2271 unsigned long flags; 2272 2273 /* 2274 * Calling hrtimer_cancel() can result in a deadlock with DRM's 2275 * vblank_time_lime_lock and hrtimers' softirq_expiry_lock. So 2276 * clear interval and indicate cancellation. The timer function 2277 * will cancel itself on the next invocation. 2278 */ 2279 2280 spin_lock_irqsave(&vtimer->interval_lock, flags); 2281 vtimer->interval = 0; 2282 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2283 2284 hrtimer_try_to_cancel(&vtimer->timer); 2285 } 2286 EXPORT_SYMBOL(drm_crtc_vblank_cancel_timer); 2287 2288 /** 2289 * drm_crtc_vblank_get_vblank_timeout - Returns the vblank timeout 2290 * @crtc: The CRTC 2291 * @vblank_time: Returns the next vblank timestamp 2292 * 2293 * The helper drm_crtc_vblank_get_vblank_timeout() returns the next vblank 2294 * timestamp of the CRTC's vblank timer according to the timer's expiry 2295 * time. 2296 */ 2297 void drm_crtc_vblank_get_vblank_timeout(struct drm_crtc *crtc, ktime_t *vblank_time) 2298 { 2299 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2300 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2301 u64 cur_count; 2302 ktime_t cur_time; 2303 2304 if (!READ_ONCE(vblank->enabled)) { 2305 *vblank_time = ktime_get(); 2306 return; 2307 } 2308 2309 /* 2310 * A concurrent vblank timeout could update the expires field before 2311 * we compare it with the vblank time. Hence we'd compare the old 2312 * expiry time to the new vblank time; deducing the timer had already 2313 * expired. Reread until we get consistent values from both fields. 2314 */ 2315 do { 2316 cur_count = drm_crtc_vblank_count_and_time(crtc, &cur_time); 2317 *vblank_time = READ_ONCE(vtimer->timer.node.expires); 2318 } while (cur_count != drm_crtc_vblank_count_and_time(crtc, &cur_time)); 2319 2320 if (drm_WARN_ON(crtc->dev, !ktime_compare(*vblank_time, cur_time))) 2321 return; /* Already expired */ 2322 2323 /* 2324 * To prevent races we roll the hrtimer forward before we do any 2325 * interrupt processing - this is how real hw works (the interrupt 2326 * is only generated after all the vblank registers are updated) 2327 * and what the vblank core expects. Therefore we need to always 2328 * correct the timestamp by one frame. 2329 */ 2330 *vblank_time = ktime_sub(*vblank_time, vtimer->interval); 2331 } 2332 EXPORT_SYMBOL(drm_crtc_vblank_get_vblank_timeout); 2333