xref: /linux/drivers/gpu/drm/drm_mm.c (revision fba4168edecdd2781bcd83cb131977ec1157f87c)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <linux/export.h>
46 #include <linux/interval_tree_generic.h>
47 #include <linux/seq_file.h>
48 #include <linux/sched/signal.h>
49 #include <linux/slab.h>
50 #include <linux/stacktrace.h>
51 
52 #include <drm/drm_mm.h>
53 
54 /**
55  * DOC: Overview
56  *
57  * drm_mm provides a simple range allocator. The drivers are free to use the
58  * resource allocator from the linux core if it suits them, the upside of drm_mm
59  * is that it's in the DRM core. Which means that it's easier to extend for
60  * some of the crazier special purpose needs of gpus.
61  *
62  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
63  * Drivers are free to embed either of them into their own suitable
64  * datastructures. drm_mm itself will not do any memory allocations of its own,
65  * so if drivers choose not to embed nodes they need to still allocate them
66  * themselves.
67  *
68  * The range allocator also supports reservation of preallocated blocks. This is
69  * useful for taking over initial mode setting configurations from the firmware,
70  * where an object needs to be created which exactly matches the firmware's
71  * scanout target. As long as the range is still free it can be inserted anytime
72  * after the allocator is initialized, which helps with avoiding looped
73  * dependencies in the driver load sequence.
74  *
75  * drm_mm maintains a stack of most recently freed holes, which of all
76  * simplistic datastructures seems to be a fairly decent approach to clustering
77  * allocations and avoiding too much fragmentation. This means free space
78  * searches are O(num_holes). Given that all the fancy features drm_mm supports
79  * something better would be fairly complex and since gfx thrashing is a fairly
80  * steep cliff not a real concern. Removing a node again is O(1).
81  *
82  * drm_mm supports a few features: Alignment and range restrictions can be
83  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
84  * opaque unsigned long) which in conjunction with a driver callback can be used
85  * to implement sophisticated placement restrictions. The i915 DRM driver uses
86  * this to implement guard pages between incompatible caching domains in the
87  * graphics TT.
88  *
89  * Two behaviors are supported for searching and allocating: bottom-up and
90  * top-down. The default is bottom-up. Top-down allocation can be used if the
91  * memory area has different restrictions, or just to reduce fragmentation.
92  *
93  * Finally iteration helpers to walk all nodes and all holes are provided as are
94  * some basic allocator dumpers for debugging.
95  *
96  * Note that this range allocator is not thread-safe, drivers need to protect
97  * modifications with their own locking. The idea behind this is that for a full
98  * memory manager additional data needs to be protected anyway, hence internal
99  * locking would be fully redundant.
100  */
101 
102 #ifdef CONFIG_DRM_DEBUG_MM
103 #include <linux/stackdepot.h>
104 
105 #define STACKDEPTH 32
106 #define BUFSZ 4096
107 
108 static noinline void save_stack(struct drm_mm_node *node)
109 {
110 	unsigned long entries[STACKDEPTH];
111 	unsigned int n;
112 
113 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
114 
115 	/* May be called under spinlock, so avoid sleeping */
116 	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
117 }
118 
119 static void show_leaks(struct drm_mm *mm)
120 {
121 	struct drm_mm_node *node;
122 	unsigned long *entries;
123 	unsigned int nr_entries;
124 	char *buf;
125 
126 	buf = kmalloc(BUFSZ, GFP_KERNEL);
127 	if (!buf)
128 		return;
129 
130 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
131 		if (!node->stack) {
132 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
133 				  node->start, node->size);
134 			continue;
135 		}
136 
137 		nr_entries = stack_depot_fetch(node->stack, &entries);
138 		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
139 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
140 			  node->start, node->size, buf);
141 	}
142 
143 	kfree(buf);
144 }
145 
146 #undef STACKDEPTH
147 #undef BUFSZ
148 #else
149 static void save_stack(struct drm_mm_node *node) { }
150 static void show_leaks(struct drm_mm *mm) { }
151 #endif
152 
153 #define START(node) ((node)->start)
154 #define LAST(node)  ((node)->start + (node)->size - 1)
155 
156 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
157 		     u64, __subtree_last,
158 		     START, LAST, static inline, drm_mm_interval_tree)
159 
160 struct drm_mm_node *
161 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
162 {
163 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
164 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
165 }
166 EXPORT_SYMBOL(__drm_mm_interval_first);
167 
168 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
169 					  struct drm_mm_node *node)
170 {
171 	struct drm_mm *mm = hole_node->mm;
172 	struct rb_node **link, *rb;
173 	struct drm_mm_node *parent;
174 	bool leftmost;
175 
176 	node->__subtree_last = LAST(node);
177 
178 	if (drm_mm_node_allocated(hole_node)) {
179 		rb = &hole_node->rb;
180 		while (rb) {
181 			parent = rb_entry(rb, struct drm_mm_node, rb);
182 			if (parent->__subtree_last >= node->__subtree_last)
183 				break;
184 
185 			parent->__subtree_last = node->__subtree_last;
186 			rb = rb_parent(rb);
187 		}
188 
189 		rb = &hole_node->rb;
190 		link = &hole_node->rb.rb_right;
191 		leftmost = false;
192 	} else {
193 		rb = NULL;
194 		link = &mm->interval_tree.rb_root.rb_node;
195 		leftmost = true;
196 	}
197 
198 	while (*link) {
199 		rb = *link;
200 		parent = rb_entry(rb, struct drm_mm_node, rb);
201 		if (parent->__subtree_last < node->__subtree_last)
202 			parent->__subtree_last = node->__subtree_last;
203 		if (node->start < parent->start) {
204 			link = &parent->rb.rb_left;
205 		} else {
206 			link = &parent->rb.rb_right;
207 			leftmost = false;
208 		}
209 	}
210 
211 	rb_link_node(&node->rb, rb, link);
212 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
213 				   &drm_mm_interval_tree_augment);
214 }
215 
216 #define RB_INSERT(root, member, expr) do { \
217 	struct rb_node **link = &root.rb_node, *rb = NULL; \
218 	u64 x = expr(node); \
219 	while (*link) { \
220 		rb = *link; \
221 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
222 			link = &rb->rb_left; \
223 		else \
224 			link = &rb->rb_right; \
225 	} \
226 	rb_link_node(&node->member, rb, link); \
227 	rb_insert_color(&node->member, &root); \
228 } while (0)
229 
230 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
231 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
232 
233 static u64 rb_to_hole_size(struct rb_node *rb)
234 {
235 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
236 }
237 
238 static void insert_hole_size(struct rb_root_cached *root,
239 			     struct drm_mm_node *node)
240 {
241 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
242 	u64 x = node->hole_size;
243 	bool first = true;
244 
245 	while (*link) {
246 		rb = *link;
247 		if (x > rb_to_hole_size(rb)) {
248 			link = &rb->rb_left;
249 		} else {
250 			link = &rb->rb_right;
251 			first = false;
252 		}
253 	}
254 
255 	rb_link_node(&node->rb_hole_size, rb, link);
256 	rb_insert_color_cached(&node->rb_hole_size, root, first);
257 }
258 
259 static void add_hole(struct drm_mm_node *node)
260 {
261 	struct drm_mm *mm = node->mm;
262 
263 	node->hole_size =
264 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
265 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
266 
267 	insert_hole_size(&mm->holes_size, node);
268 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
269 
270 	list_add(&node->hole_stack, &mm->hole_stack);
271 }
272 
273 static void rm_hole(struct drm_mm_node *node)
274 {
275 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
276 
277 	list_del(&node->hole_stack);
278 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
279 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
280 	node->hole_size = 0;
281 
282 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
283 }
284 
285 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
286 {
287 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
288 }
289 
290 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
291 {
292 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
293 }
294 
295 static inline u64 rb_hole_size(struct rb_node *rb)
296 {
297 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
298 }
299 
300 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
301 {
302 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
303 	struct drm_mm_node *best = NULL;
304 
305 	do {
306 		struct drm_mm_node *node =
307 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
308 
309 		if (size <= node->hole_size) {
310 			best = node;
311 			rb = rb->rb_right;
312 		} else {
313 			rb = rb->rb_left;
314 		}
315 	} while (rb);
316 
317 	return best;
318 }
319 
320 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
321 {
322 	struct rb_node *rb = mm->holes_addr.rb_node;
323 	struct drm_mm_node *node = NULL;
324 
325 	while (rb) {
326 		u64 hole_start;
327 
328 		node = rb_hole_addr_to_node(rb);
329 		hole_start = __drm_mm_hole_node_start(node);
330 
331 		if (addr < hole_start)
332 			rb = node->rb_hole_addr.rb_left;
333 		else if (addr > hole_start + node->hole_size)
334 			rb = node->rb_hole_addr.rb_right;
335 		else
336 			break;
337 	}
338 
339 	return node;
340 }
341 
342 static struct drm_mm_node *
343 first_hole(struct drm_mm *mm,
344 	   u64 start, u64 end, u64 size,
345 	   enum drm_mm_insert_mode mode)
346 {
347 	switch (mode) {
348 	default:
349 	case DRM_MM_INSERT_BEST:
350 		return best_hole(mm, size);
351 
352 	case DRM_MM_INSERT_LOW:
353 		return find_hole(mm, start);
354 
355 	case DRM_MM_INSERT_HIGH:
356 		return find_hole(mm, end);
357 
358 	case DRM_MM_INSERT_EVICT:
359 		return list_first_entry_or_null(&mm->hole_stack,
360 						struct drm_mm_node,
361 						hole_stack);
362 	}
363 }
364 
365 static struct drm_mm_node *
366 next_hole(struct drm_mm *mm,
367 	  struct drm_mm_node *node,
368 	  enum drm_mm_insert_mode mode)
369 {
370 	/* Searching is slow; check if we ran out of time/patience */
371 	cond_resched();
372 	if (fatal_signal_pending(current))
373 		return NULL;
374 
375 	switch (mode) {
376 	default:
377 	case DRM_MM_INSERT_BEST:
378 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
379 
380 	case DRM_MM_INSERT_LOW:
381 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
382 
383 	case DRM_MM_INSERT_HIGH:
384 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
385 
386 	case DRM_MM_INSERT_EVICT:
387 		node = list_next_entry(node, hole_stack);
388 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
389 	}
390 }
391 
392 /**
393  * drm_mm_reserve_node - insert an pre-initialized node
394  * @mm: drm_mm allocator to insert @node into
395  * @node: drm_mm_node to insert
396  *
397  * This functions inserts an already set-up &drm_mm_node into the allocator,
398  * meaning that start, size and color must be set by the caller. All other
399  * fields must be cleared to 0. This is useful to initialize the allocator with
400  * preallocated objects which must be set-up before the range allocator can be
401  * set-up, e.g. when taking over a firmware framebuffer.
402  *
403  * Returns:
404  * 0 on success, -ENOSPC if there's no hole where @node is.
405  */
406 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
407 {
408 	struct drm_mm_node *hole;
409 	u64 hole_start, hole_end;
410 	u64 adj_start, adj_end;
411 	u64 end;
412 
413 	end = node->start + node->size;
414 	if (unlikely(end <= node->start))
415 		return -ENOSPC;
416 
417 	/* Find the relevant hole to add our node to */
418 	hole = find_hole(mm, node->start);
419 	if (!hole)
420 		return -ENOSPC;
421 
422 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
423 	adj_end = hole_end = hole_start + hole->hole_size;
424 
425 	if (mm->color_adjust)
426 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
427 
428 	if (adj_start > node->start || adj_end < end)
429 		return -ENOSPC;
430 
431 	node->mm = mm;
432 
433 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
434 	list_add(&node->node_list, &hole->node_list);
435 	drm_mm_interval_tree_add_node(hole, node);
436 	node->hole_size = 0;
437 
438 	rm_hole(hole);
439 	if (node->start > hole_start)
440 		add_hole(hole);
441 	if (end < hole_end)
442 		add_hole(node);
443 
444 	save_stack(node);
445 	return 0;
446 }
447 EXPORT_SYMBOL(drm_mm_reserve_node);
448 
449 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
450 {
451 	return rb ? rb_to_hole_size(rb) : 0;
452 }
453 
454 /**
455  * drm_mm_insert_node_in_range - ranged search for space and insert @node
456  * @mm: drm_mm to allocate from
457  * @node: preallocate node to insert
458  * @size: size of the allocation
459  * @alignment: alignment of the allocation
460  * @color: opaque tag value to use for this node
461  * @range_start: start of the allowed range for this node
462  * @range_end: end of the allowed range for this node
463  * @mode: fine-tune the allocation search and placement
464  *
465  * The preallocated @node must be cleared to 0.
466  *
467  * Returns:
468  * 0 on success, -ENOSPC if there's no suitable hole.
469  */
470 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
471 				struct drm_mm_node * const node,
472 				u64 size, u64 alignment,
473 				unsigned long color,
474 				u64 range_start, u64 range_end,
475 				enum drm_mm_insert_mode mode)
476 {
477 	struct drm_mm_node *hole;
478 	u64 remainder_mask;
479 	bool once;
480 
481 	DRM_MM_BUG_ON(range_start > range_end);
482 
483 	if (unlikely(size == 0 || range_end - range_start < size))
484 		return -ENOSPC;
485 
486 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
487 		return -ENOSPC;
488 
489 	if (alignment <= 1)
490 		alignment = 0;
491 
492 	once = mode & DRM_MM_INSERT_ONCE;
493 	mode &= ~DRM_MM_INSERT_ONCE;
494 
495 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
496 	for (hole = first_hole(mm, range_start, range_end, size, mode);
497 	     hole;
498 	     hole = once ? NULL : next_hole(mm, hole, mode)) {
499 		u64 hole_start = __drm_mm_hole_node_start(hole);
500 		u64 hole_end = hole_start + hole->hole_size;
501 		u64 adj_start, adj_end;
502 		u64 col_start, col_end;
503 
504 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
505 			break;
506 
507 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
508 			break;
509 
510 		col_start = hole_start;
511 		col_end = hole_end;
512 		if (mm->color_adjust)
513 			mm->color_adjust(hole, color, &col_start, &col_end);
514 
515 		adj_start = max(col_start, range_start);
516 		adj_end = min(col_end, range_end);
517 
518 		if (adj_end <= adj_start || adj_end - adj_start < size)
519 			continue;
520 
521 		if (mode == DRM_MM_INSERT_HIGH)
522 			adj_start = adj_end - size;
523 
524 		if (alignment) {
525 			u64 rem;
526 
527 			if (likely(remainder_mask))
528 				rem = adj_start & remainder_mask;
529 			else
530 				div64_u64_rem(adj_start, alignment, &rem);
531 			if (rem) {
532 				adj_start -= rem;
533 				if (mode != DRM_MM_INSERT_HIGH)
534 					adj_start += alignment;
535 
536 				if (adj_start < max(col_start, range_start) ||
537 				    min(col_end, range_end) - adj_start < size)
538 					continue;
539 
540 				if (adj_end <= adj_start ||
541 				    adj_end - adj_start < size)
542 					continue;
543 			}
544 		}
545 
546 		node->mm = mm;
547 		node->size = size;
548 		node->start = adj_start;
549 		node->color = color;
550 		node->hole_size = 0;
551 
552 		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
553 		list_add(&node->node_list, &hole->node_list);
554 		drm_mm_interval_tree_add_node(hole, node);
555 
556 		rm_hole(hole);
557 		if (adj_start > hole_start)
558 			add_hole(hole);
559 		if (adj_start + size < hole_end)
560 			add_hole(node);
561 
562 		save_stack(node);
563 		return 0;
564 	}
565 
566 	return signal_pending(current) ? -ERESTARTSYS : -ENOSPC;
567 }
568 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
569 
570 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
571 {
572 	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
573 }
574 
575 /**
576  * drm_mm_remove_node - Remove a memory node from the allocator.
577  * @node: drm_mm_node to remove
578  *
579  * This just removes a node from its drm_mm allocator. The node does not need to
580  * be cleared again before it can be re-inserted into this or any other drm_mm
581  * allocator. It is a bug to call this function on a unallocated node.
582  */
583 void drm_mm_remove_node(struct drm_mm_node *node)
584 {
585 	struct drm_mm *mm = node->mm;
586 	struct drm_mm_node *prev_node;
587 
588 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
589 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
590 
591 	prev_node = list_prev_entry(node, node_list);
592 
593 	if (drm_mm_hole_follows(node))
594 		rm_hole(node);
595 
596 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
597 	list_del(&node->node_list);
598 
599 	if (drm_mm_hole_follows(prev_node))
600 		rm_hole(prev_node);
601 	add_hole(prev_node);
602 
603 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
604 }
605 EXPORT_SYMBOL(drm_mm_remove_node);
606 
607 /**
608  * drm_mm_replace_node - move an allocation from @old to @new
609  * @old: drm_mm_node to remove from the allocator
610  * @new: drm_mm_node which should inherit @old's allocation
611  *
612  * This is useful for when drivers embed the drm_mm_node structure and hence
613  * can't move allocations by reassigning pointers. It's a combination of remove
614  * and insert with the guarantee that the allocation start will match.
615  */
616 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
617 {
618 	struct drm_mm *mm = old->mm;
619 
620 	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
621 
622 	*new = *old;
623 
624 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
625 	list_replace(&old->node_list, &new->node_list);
626 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
627 
628 	if (drm_mm_hole_follows(old)) {
629 		list_replace(&old->hole_stack, &new->hole_stack);
630 		rb_replace_node_cached(&old->rb_hole_size,
631 				       &new->rb_hole_size,
632 				       &mm->holes_size);
633 		rb_replace_node(&old->rb_hole_addr,
634 				&new->rb_hole_addr,
635 				&mm->holes_addr);
636 	}
637 
638 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
639 }
640 EXPORT_SYMBOL(drm_mm_replace_node);
641 
642 /**
643  * DOC: lru scan roster
644  *
645  * Very often GPUs need to have continuous allocations for a given object. When
646  * evicting objects to make space for a new one it is therefore not most
647  * efficient when we simply start to select all objects from the tail of an LRU
648  * until there's a suitable hole: Especially for big objects or nodes that
649  * otherwise have special allocation constraints there's a good chance we evict
650  * lots of (smaller) objects unnecessarily.
651  *
652  * The DRM range allocator supports this use-case through the scanning
653  * interfaces. First a scan operation needs to be initialized with
654  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
655  * objects to the roster, probably by walking an LRU list, but this can be
656  * freely implemented. Eviction candiates are added using
657  * drm_mm_scan_add_block() until a suitable hole is found or there are no
658  * further evictable objects. Eviction roster metadata is tracked in &struct
659  * drm_mm_scan.
660  *
661  * The driver must walk through all objects again in exactly the reverse
662  * order to restore the allocator state. Note that while the allocator is used
663  * in the scan mode no other operation is allowed.
664  *
665  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
666  * reported true) in the scan, and any overlapping nodes after color adjustment
667  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
668  * since freeing a node is also O(1) the overall complexity is
669  * O(scanned_objects). So like the free stack which needs to be walked before a
670  * scan operation even begins this is linear in the number of objects. It
671  * doesn't seem to hurt too badly.
672  */
673 
674 /**
675  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
676  * @scan: scan state
677  * @mm: drm_mm to scan
678  * @size: size of the allocation
679  * @alignment: alignment of the allocation
680  * @color: opaque tag value to use for the allocation
681  * @start: start of the allowed range for the allocation
682  * @end: end of the allowed range for the allocation
683  * @mode: fine-tune the allocation search and placement
684  *
685  * This simply sets up the scanning routines with the parameters for the desired
686  * hole.
687  *
688  * Warning:
689  * As long as the scan list is non-empty, no other operations than
690  * adding/removing nodes to/from the scan list are allowed.
691  */
692 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
693 				 struct drm_mm *mm,
694 				 u64 size,
695 				 u64 alignment,
696 				 unsigned long color,
697 				 u64 start,
698 				 u64 end,
699 				 enum drm_mm_insert_mode mode)
700 {
701 	DRM_MM_BUG_ON(start >= end);
702 	DRM_MM_BUG_ON(!size || size > end - start);
703 	DRM_MM_BUG_ON(mm->scan_active);
704 
705 	scan->mm = mm;
706 
707 	if (alignment <= 1)
708 		alignment = 0;
709 
710 	scan->color = color;
711 	scan->alignment = alignment;
712 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
713 	scan->size = size;
714 	scan->mode = mode;
715 
716 	DRM_MM_BUG_ON(end <= start);
717 	scan->range_start = start;
718 	scan->range_end = end;
719 
720 	scan->hit_start = U64_MAX;
721 	scan->hit_end = 0;
722 }
723 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
724 
725 /**
726  * drm_mm_scan_add_block - add a node to the scan list
727  * @scan: the active drm_mm scanner
728  * @node: drm_mm_node to add
729  *
730  * Add a node to the scan list that might be freed to make space for the desired
731  * hole.
732  *
733  * Returns:
734  * True if a hole has been found, false otherwise.
735  */
736 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
737 			   struct drm_mm_node *node)
738 {
739 	struct drm_mm *mm = scan->mm;
740 	struct drm_mm_node *hole;
741 	u64 hole_start, hole_end;
742 	u64 col_start, col_end;
743 	u64 adj_start, adj_end;
744 
745 	DRM_MM_BUG_ON(node->mm != mm);
746 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
747 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
748 	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
749 	mm->scan_active++;
750 
751 	/* Remove this block from the node_list so that we enlarge the hole
752 	 * (distance between the end of our previous node and the start of
753 	 * or next), without poisoning the link so that we can restore it
754 	 * later in drm_mm_scan_remove_block().
755 	 */
756 	hole = list_prev_entry(node, node_list);
757 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
758 	__list_del_entry(&node->node_list);
759 
760 	hole_start = __drm_mm_hole_node_start(hole);
761 	hole_end = __drm_mm_hole_node_end(hole);
762 
763 	col_start = hole_start;
764 	col_end = hole_end;
765 	if (mm->color_adjust)
766 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
767 
768 	adj_start = max(col_start, scan->range_start);
769 	adj_end = min(col_end, scan->range_end);
770 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
771 		return false;
772 
773 	if (scan->mode == DRM_MM_INSERT_HIGH)
774 		adj_start = adj_end - scan->size;
775 
776 	if (scan->alignment) {
777 		u64 rem;
778 
779 		if (likely(scan->remainder_mask))
780 			rem = adj_start & scan->remainder_mask;
781 		else
782 			div64_u64_rem(adj_start, scan->alignment, &rem);
783 		if (rem) {
784 			adj_start -= rem;
785 			if (scan->mode != DRM_MM_INSERT_HIGH)
786 				adj_start += scan->alignment;
787 			if (adj_start < max(col_start, scan->range_start) ||
788 			    min(col_end, scan->range_end) - adj_start < scan->size)
789 				return false;
790 
791 			if (adj_end <= adj_start ||
792 			    adj_end - adj_start < scan->size)
793 				return false;
794 		}
795 	}
796 
797 	scan->hit_start = adj_start;
798 	scan->hit_end = adj_start + scan->size;
799 
800 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
801 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
802 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
803 
804 	return true;
805 }
806 EXPORT_SYMBOL(drm_mm_scan_add_block);
807 
808 /**
809  * drm_mm_scan_remove_block - remove a node from the scan list
810  * @scan: the active drm_mm scanner
811  * @node: drm_mm_node to remove
812  *
813  * Nodes **must** be removed in exactly the reverse order from the scan list as
814  * they have been added (e.g. using list_add() as they are added and then
815  * list_for_each() over that eviction list to remove), otherwise the internal
816  * state of the memory manager will be corrupted.
817  *
818  * When the scan list is empty, the selected memory nodes can be freed. An
819  * immediately following drm_mm_insert_node_in_range_generic() or one of the
820  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
821  * the just freed block (because it's at the top of the free_stack list).
822  *
823  * Returns:
824  * True if this block should be evicted, false otherwise. Will always
825  * return false when no hole has been found.
826  */
827 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
828 			      struct drm_mm_node *node)
829 {
830 	struct drm_mm_node *prev_node;
831 
832 	DRM_MM_BUG_ON(node->mm != scan->mm);
833 	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
834 	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
835 
836 	DRM_MM_BUG_ON(!node->mm->scan_active);
837 	node->mm->scan_active--;
838 
839 	/* During drm_mm_scan_add_block() we decoupled this node leaving
840 	 * its pointers intact. Now that the caller is walking back along
841 	 * the eviction list we can restore this block into its rightful
842 	 * place on the full node_list. To confirm that the caller is walking
843 	 * backwards correctly we check that prev_node->next == node->next,
844 	 * i.e. both believe the same node should be on the other side of the
845 	 * hole.
846 	 */
847 	prev_node = list_prev_entry(node, node_list);
848 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
849 		      list_next_entry(node, node_list));
850 	list_add(&node->node_list, &prev_node->node_list);
851 
852 	return (node->start + node->size > scan->hit_start &&
853 		node->start < scan->hit_end);
854 }
855 EXPORT_SYMBOL(drm_mm_scan_remove_block);
856 
857 /**
858  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
859  * @scan: drm_mm scan with target hole
860  *
861  * After completing an eviction scan and removing the selected nodes, we may
862  * need to remove a few more nodes from either side of the target hole if
863  * mm.color_adjust is being used.
864  *
865  * Returns:
866  * A node to evict, or NULL if there are no overlapping nodes.
867  */
868 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
869 {
870 	struct drm_mm *mm = scan->mm;
871 	struct drm_mm_node *hole;
872 	u64 hole_start, hole_end;
873 
874 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
875 
876 	if (!mm->color_adjust)
877 		return NULL;
878 
879 	/*
880 	 * The hole found during scanning should ideally be the first element
881 	 * in the hole_stack list, but due to side-effects in the driver it
882 	 * may not be.
883 	 */
884 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
885 		hole_start = __drm_mm_hole_node_start(hole);
886 		hole_end = hole_start + hole->hole_size;
887 
888 		if (hole_start <= scan->hit_start &&
889 		    hole_end >= scan->hit_end)
890 			break;
891 	}
892 
893 	/* We should only be called after we found the hole previously */
894 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
895 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
896 		return NULL;
897 
898 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
899 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
900 
901 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
902 	if (hole_start > scan->hit_start)
903 		return hole;
904 	if (hole_end < scan->hit_end)
905 		return list_next_entry(hole, node_list);
906 
907 	return NULL;
908 }
909 EXPORT_SYMBOL(drm_mm_scan_color_evict);
910 
911 /**
912  * drm_mm_init - initialize a drm-mm allocator
913  * @mm: the drm_mm structure to initialize
914  * @start: start of the range managed by @mm
915  * @size: end of the range managed by @mm
916  *
917  * Note that @mm must be cleared to 0 before calling this function.
918  */
919 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
920 {
921 	DRM_MM_BUG_ON(start + size <= start);
922 
923 	mm->color_adjust = NULL;
924 
925 	INIT_LIST_HEAD(&mm->hole_stack);
926 	mm->interval_tree = RB_ROOT_CACHED;
927 	mm->holes_size = RB_ROOT_CACHED;
928 	mm->holes_addr = RB_ROOT;
929 
930 	/* Clever trick to avoid a special case in the free hole tracking. */
931 	INIT_LIST_HEAD(&mm->head_node.node_list);
932 	mm->head_node.flags = 0;
933 	mm->head_node.mm = mm;
934 	mm->head_node.start = start + size;
935 	mm->head_node.size = -size;
936 	add_hole(&mm->head_node);
937 
938 	mm->scan_active = 0;
939 }
940 EXPORT_SYMBOL(drm_mm_init);
941 
942 /**
943  * drm_mm_takedown - clean up a drm_mm allocator
944  * @mm: drm_mm allocator to clean up
945  *
946  * Note that it is a bug to call this function on an allocator which is not
947  * clean.
948  */
949 void drm_mm_takedown(struct drm_mm *mm)
950 {
951 	if (WARN(!drm_mm_clean(mm),
952 		 "Memory manager not clean during takedown.\n"))
953 		show_leaks(mm);
954 }
955 EXPORT_SYMBOL(drm_mm_takedown);
956 
957 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
958 {
959 	u64 start, size;
960 
961 	size = entry->hole_size;
962 	if (size) {
963 		start = drm_mm_hole_node_start(entry);
964 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
965 			   start, start + size, size);
966 	}
967 
968 	return size;
969 }
970 /**
971  * drm_mm_print - print allocator state
972  * @mm: drm_mm allocator to print
973  * @p: DRM printer to use
974  */
975 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
976 {
977 	const struct drm_mm_node *entry;
978 	u64 total_used = 0, total_free = 0, total = 0;
979 
980 	total_free += drm_mm_dump_hole(p, &mm->head_node);
981 
982 	drm_mm_for_each_node(entry, mm) {
983 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
984 			   entry->start + entry->size, entry->size);
985 		total_used += entry->size;
986 		total_free += drm_mm_dump_hole(p, entry);
987 	}
988 	total = total_free + total_used;
989 
990 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
991 		   total_used, total_free);
992 }
993 EXPORT_SYMBOL(drm_mm_print);
994