1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/sched/signal.h> 49 #include <linux/slab.h> 50 #include <linux/stacktrace.h> 51 52 #include <drm/drm_mm.h> 53 54 /** 55 * DOC: Overview 56 * 57 * drm_mm provides a simple range allocator. The drivers are free to use the 58 * resource allocator from the linux core if it suits them, the upside of drm_mm 59 * is that it's in the DRM core. Which means that it's easier to extend for 60 * some of the crazier special purpose needs of gpus. 61 * 62 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 63 * Drivers are free to embed either of them into their own suitable 64 * datastructures. drm_mm itself will not do any memory allocations of its own, 65 * so if drivers choose not to embed nodes they need to still allocate them 66 * themselves. 67 * 68 * The range allocator also supports reservation of preallocated blocks. This is 69 * useful for taking over initial mode setting configurations from the firmware, 70 * where an object needs to be created which exactly matches the firmware's 71 * scanout target. As long as the range is still free it can be inserted anytime 72 * after the allocator is initialized, which helps with avoiding looped 73 * dependencies in the driver load sequence. 74 * 75 * drm_mm maintains a stack of most recently freed holes, which of all 76 * simplistic datastructures seems to be a fairly decent approach to clustering 77 * allocations and avoiding too much fragmentation. This means free space 78 * searches are O(num_holes). Given that all the fancy features drm_mm supports 79 * something better would be fairly complex and since gfx thrashing is a fairly 80 * steep cliff not a real concern. Removing a node again is O(1). 81 * 82 * drm_mm supports a few features: Alignment and range restrictions can be 83 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 84 * opaque unsigned long) which in conjunction with a driver callback can be used 85 * to implement sophisticated placement restrictions. The i915 DRM driver uses 86 * this to implement guard pages between incompatible caching domains in the 87 * graphics TT. 88 * 89 * Two behaviors are supported for searching and allocating: bottom-up and 90 * top-down. The default is bottom-up. Top-down allocation can be used if the 91 * memory area has different restrictions, or just to reduce fragmentation. 92 * 93 * Finally iteration helpers to walk all nodes and all holes are provided as are 94 * some basic allocator dumpers for debugging. 95 * 96 * Note that this range allocator is not thread-safe, drivers need to protect 97 * modifications with their own locking. The idea behind this is that for a full 98 * memory manager additional data needs to be protected anyway, hence internal 99 * locking would be fully redundant. 100 */ 101 102 #ifdef CONFIG_DRM_DEBUG_MM 103 #include <linux/stackdepot.h> 104 105 #define STACKDEPTH 32 106 #define BUFSZ 4096 107 108 static noinline void save_stack(struct drm_mm_node *node) 109 { 110 unsigned long entries[STACKDEPTH]; 111 unsigned int n; 112 113 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 114 115 /* May be called under spinlock, so avoid sleeping */ 116 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 117 } 118 119 static void show_leaks(struct drm_mm *mm) 120 { 121 struct drm_mm_node *node; 122 unsigned long *entries; 123 unsigned int nr_entries; 124 char *buf; 125 126 buf = kmalloc(BUFSZ, GFP_KERNEL); 127 if (!buf) 128 return; 129 130 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 131 if (!node->stack) { 132 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 133 node->start, node->size); 134 continue; 135 } 136 137 nr_entries = stack_depot_fetch(node->stack, &entries); 138 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 139 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 140 node->start, node->size, buf); 141 } 142 143 kfree(buf); 144 } 145 146 #undef STACKDEPTH 147 #undef BUFSZ 148 #else 149 static void save_stack(struct drm_mm_node *node) { } 150 static void show_leaks(struct drm_mm *mm) { } 151 #endif 152 153 #define START(node) ((node)->start) 154 #define LAST(node) ((node)->start + (node)->size - 1) 155 156 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 157 u64, __subtree_last, 158 START, LAST, static inline, drm_mm_interval_tree) 159 160 struct drm_mm_node * 161 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 162 { 163 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 164 start, last) ?: (struct drm_mm_node *)&mm->head_node; 165 } 166 EXPORT_SYMBOL(__drm_mm_interval_first); 167 168 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 169 struct drm_mm_node *node) 170 { 171 struct drm_mm *mm = hole_node->mm; 172 struct rb_node **link, *rb; 173 struct drm_mm_node *parent; 174 bool leftmost; 175 176 node->__subtree_last = LAST(node); 177 178 if (drm_mm_node_allocated(hole_node)) { 179 rb = &hole_node->rb; 180 while (rb) { 181 parent = rb_entry(rb, struct drm_mm_node, rb); 182 if (parent->__subtree_last >= node->__subtree_last) 183 break; 184 185 parent->__subtree_last = node->__subtree_last; 186 rb = rb_parent(rb); 187 } 188 189 rb = &hole_node->rb; 190 link = &hole_node->rb.rb_right; 191 leftmost = false; 192 } else { 193 rb = NULL; 194 link = &mm->interval_tree.rb_root.rb_node; 195 leftmost = true; 196 } 197 198 while (*link) { 199 rb = *link; 200 parent = rb_entry(rb, struct drm_mm_node, rb); 201 if (parent->__subtree_last < node->__subtree_last) 202 parent->__subtree_last = node->__subtree_last; 203 if (node->start < parent->start) { 204 link = &parent->rb.rb_left; 205 } else { 206 link = &parent->rb.rb_right; 207 leftmost = false; 208 } 209 } 210 211 rb_link_node(&node->rb, rb, link); 212 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 213 &drm_mm_interval_tree_augment); 214 } 215 216 #define RB_INSERT(root, member, expr) do { \ 217 struct rb_node **link = &root.rb_node, *rb = NULL; \ 218 u64 x = expr(node); \ 219 while (*link) { \ 220 rb = *link; \ 221 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ 222 link = &rb->rb_left; \ 223 else \ 224 link = &rb->rb_right; \ 225 } \ 226 rb_link_node(&node->member, rb, link); \ 227 rb_insert_color(&node->member, &root); \ 228 } while (0) 229 230 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 231 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 232 233 static u64 rb_to_hole_size(struct rb_node *rb) 234 { 235 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 236 } 237 238 static void insert_hole_size(struct rb_root_cached *root, 239 struct drm_mm_node *node) 240 { 241 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 242 u64 x = node->hole_size; 243 bool first = true; 244 245 while (*link) { 246 rb = *link; 247 if (x > rb_to_hole_size(rb)) { 248 link = &rb->rb_left; 249 } else { 250 link = &rb->rb_right; 251 first = false; 252 } 253 } 254 255 rb_link_node(&node->rb_hole_size, rb, link); 256 rb_insert_color_cached(&node->rb_hole_size, root, first); 257 } 258 259 static void add_hole(struct drm_mm_node *node) 260 { 261 struct drm_mm *mm = node->mm; 262 263 node->hole_size = 264 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 265 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 266 267 insert_hole_size(&mm->holes_size, node); 268 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); 269 270 list_add(&node->hole_stack, &mm->hole_stack); 271 } 272 273 static void rm_hole(struct drm_mm_node *node) 274 { 275 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 276 277 list_del(&node->hole_stack); 278 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 279 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); 280 node->hole_size = 0; 281 282 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 283 } 284 285 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 286 { 287 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 288 } 289 290 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 291 { 292 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 293 } 294 295 static inline u64 rb_hole_size(struct rb_node *rb) 296 { 297 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 298 } 299 300 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 301 { 302 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 303 struct drm_mm_node *best = NULL; 304 305 do { 306 struct drm_mm_node *node = 307 rb_entry(rb, struct drm_mm_node, rb_hole_size); 308 309 if (size <= node->hole_size) { 310 best = node; 311 rb = rb->rb_right; 312 } else { 313 rb = rb->rb_left; 314 } 315 } while (rb); 316 317 return best; 318 } 319 320 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 321 { 322 struct rb_node *rb = mm->holes_addr.rb_node; 323 struct drm_mm_node *node = NULL; 324 325 while (rb) { 326 u64 hole_start; 327 328 node = rb_hole_addr_to_node(rb); 329 hole_start = __drm_mm_hole_node_start(node); 330 331 if (addr < hole_start) 332 rb = node->rb_hole_addr.rb_left; 333 else if (addr > hole_start + node->hole_size) 334 rb = node->rb_hole_addr.rb_right; 335 else 336 break; 337 } 338 339 return node; 340 } 341 342 static struct drm_mm_node * 343 first_hole(struct drm_mm *mm, 344 u64 start, u64 end, u64 size, 345 enum drm_mm_insert_mode mode) 346 { 347 switch (mode) { 348 default: 349 case DRM_MM_INSERT_BEST: 350 return best_hole(mm, size); 351 352 case DRM_MM_INSERT_LOW: 353 return find_hole(mm, start); 354 355 case DRM_MM_INSERT_HIGH: 356 return find_hole(mm, end); 357 358 case DRM_MM_INSERT_EVICT: 359 return list_first_entry_or_null(&mm->hole_stack, 360 struct drm_mm_node, 361 hole_stack); 362 } 363 } 364 365 static struct drm_mm_node * 366 next_hole(struct drm_mm *mm, 367 struct drm_mm_node *node, 368 enum drm_mm_insert_mode mode) 369 { 370 /* Searching is slow; check if we ran out of time/patience */ 371 cond_resched(); 372 if (fatal_signal_pending(current)) 373 return NULL; 374 375 switch (mode) { 376 default: 377 case DRM_MM_INSERT_BEST: 378 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 379 380 case DRM_MM_INSERT_LOW: 381 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); 382 383 case DRM_MM_INSERT_HIGH: 384 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); 385 386 case DRM_MM_INSERT_EVICT: 387 node = list_next_entry(node, hole_stack); 388 return &node->hole_stack == &mm->hole_stack ? NULL : node; 389 } 390 } 391 392 /** 393 * drm_mm_reserve_node - insert an pre-initialized node 394 * @mm: drm_mm allocator to insert @node into 395 * @node: drm_mm_node to insert 396 * 397 * This functions inserts an already set-up &drm_mm_node into the allocator, 398 * meaning that start, size and color must be set by the caller. All other 399 * fields must be cleared to 0. This is useful to initialize the allocator with 400 * preallocated objects which must be set-up before the range allocator can be 401 * set-up, e.g. when taking over a firmware framebuffer. 402 * 403 * Returns: 404 * 0 on success, -ENOSPC if there's no hole where @node is. 405 */ 406 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 407 { 408 struct drm_mm_node *hole; 409 u64 hole_start, hole_end; 410 u64 adj_start, adj_end; 411 u64 end; 412 413 end = node->start + node->size; 414 if (unlikely(end <= node->start)) 415 return -ENOSPC; 416 417 /* Find the relevant hole to add our node to */ 418 hole = find_hole(mm, node->start); 419 if (!hole) 420 return -ENOSPC; 421 422 adj_start = hole_start = __drm_mm_hole_node_start(hole); 423 adj_end = hole_end = hole_start + hole->hole_size; 424 425 if (mm->color_adjust) 426 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 427 428 if (adj_start > node->start || adj_end < end) 429 return -ENOSPC; 430 431 node->mm = mm; 432 433 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 434 list_add(&node->node_list, &hole->node_list); 435 drm_mm_interval_tree_add_node(hole, node); 436 node->hole_size = 0; 437 438 rm_hole(hole); 439 if (node->start > hole_start) 440 add_hole(hole); 441 if (end < hole_end) 442 add_hole(node); 443 444 save_stack(node); 445 return 0; 446 } 447 EXPORT_SYMBOL(drm_mm_reserve_node); 448 449 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 450 { 451 return rb ? rb_to_hole_size(rb) : 0; 452 } 453 454 /** 455 * drm_mm_insert_node_in_range - ranged search for space and insert @node 456 * @mm: drm_mm to allocate from 457 * @node: preallocate node to insert 458 * @size: size of the allocation 459 * @alignment: alignment of the allocation 460 * @color: opaque tag value to use for this node 461 * @range_start: start of the allowed range for this node 462 * @range_end: end of the allowed range for this node 463 * @mode: fine-tune the allocation search and placement 464 * 465 * The preallocated @node must be cleared to 0. 466 * 467 * Returns: 468 * 0 on success, -ENOSPC if there's no suitable hole. 469 */ 470 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 471 struct drm_mm_node * const node, 472 u64 size, u64 alignment, 473 unsigned long color, 474 u64 range_start, u64 range_end, 475 enum drm_mm_insert_mode mode) 476 { 477 struct drm_mm_node *hole; 478 u64 remainder_mask; 479 bool once; 480 481 DRM_MM_BUG_ON(range_start > range_end); 482 483 if (unlikely(size == 0 || range_end - range_start < size)) 484 return -ENOSPC; 485 486 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 487 return -ENOSPC; 488 489 if (alignment <= 1) 490 alignment = 0; 491 492 once = mode & DRM_MM_INSERT_ONCE; 493 mode &= ~DRM_MM_INSERT_ONCE; 494 495 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 496 for (hole = first_hole(mm, range_start, range_end, size, mode); 497 hole; 498 hole = once ? NULL : next_hole(mm, hole, mode)) { 499 u64 hole_start = __drm_mm_hole_node_start(hole); 500 u64 hole_end = hole_start + hole->hole_size; 501 u64 adj_start, adj_end; 502 u64 col_start, col_end; 503 504 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 505 break; 506 507 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 508 break; 509 510 col_start = hole_start; 511 col_end = hole_end; 512 if (mm->color_adjust) 513 mm->color_adjust(hole, color, &col_start, &col_end); 514 515 adj_start = max(col_start, range_start); 516 adj_end = min(col_end, range_end); 517 518 if (adj_end <= adj_start || adj_end - adj_start < size) 519 continue; 520 521 if (mode == DRM_MM_INSERT_HIGH) 522 adj_start = adj_end - size; 523 524 if (alignment) { 525 u64 rem; 526 527 if (likely(remainder_mask)) 528 rem = adj_start & remainder_mask; 529 else 530 div64_u64_rem(adj_start, alignment, &rem); 531 if (rem) { 532 adj_start -= rem; 533 if (mode != DRM_MM_INSERT_HIGH) 534 adj_start += alignment; 535 536 if (adj_start < max(col_start, range_start) || 537 min(col_end, range_end) - adj_start < size) 538 continue; 539 540 if (adj_end <= adj_start || 541 adj_end - adj_start < size) 542 continue; 543 } 544 } 545 546 node->mm = mm; 547 node->size = size; 548 node->start = adj_start; 549 node->color = color; 550 node->hole_size = 0; 551 552 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 553 list_add(&node->node_list, &hole->node_list); 554 drm_mm_interval_tree_add_node(hole, node); 555 556 rm_hole(hole); 557 if (adj_start > hole_start) 558 add_hole(hole); 559 if (adj_start + size < hole_end) 560 add_hole(node); 561 562 save_stack(node); 563 return 0; 564 } 565 566 return signal_pending(current) ? -ERESTARTSYS : -ENOSPC; 567 } 568 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 569 570 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) 571 { 572 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 573 } 574 575 /** 576 * drm_mm_remove_node - Remove a memory node from the allocator. 577 * @node: drm_mm_node to remove 578 * 579 * This just removes a node from its drm_mm allocator. The node does not need to 580 * be cleared again before it can be re-inserted into this or any other drm_mm 581 * allocator. It is a bug to call this function on a unallocated node. 582 */ 583 void drm_mm_remove_node(struct drm_mm_node *node) 584 { 585 struct drm_mm *mm = node->mm; 586 struct drm_mm_node *prev_node; 587 588 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 589 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 590 591 prev_node = list_prev_entry(node, node_list); 592 593 if (drm_mm_hole_follows(node)) 594 rm_hole(node); 595 596 drm_mm_interval_tree_remove(node, &mm->interval_tree); 597 list_del(&node->node_list); 598 599 if (drm_mm_hole_follows(prev_node)) 600 rm_hole(prev_node); 601 add_hole(prev_node); 602 603 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 604 } 605 EXPORT_SYMBOL(drm_mm_remove_node); 606 607 /** 608 * drm_mm_replace_node - move an allocation from @old to @new 609 * @old: drm_mm_node to remove from the allocator 610 * @new: drm_mm_node which should inherit @old's allocation 611 * 612 * This is useful for when drivers embed the drm_mm_node structure and hence 613 * can't move allocations by reassigning pointers. It's a combination of remove 614 * and insert with the guarantee that the allocation start will match. 615 */ 616 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 617 { 618 struct drm_mm *mm = old->mm; 619 620 DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); 621 622 *new = *old; 623 624 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); 625 list_replace(&old->node_list, &new->node_list); 626 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 627 628 if (drm_mm_hole_follows(old)) { 629 list_replace(&old->hole_stack, &new->hole_stack); 630 rb_replace_node_cached(&old->rb_hole_size, 631 &new->rb_hole_size, 632 &mm->holes_size); 633 rb_replace_node(&old->rb_hole_addr, 634 &new->rb_hole_addr, 635 &mm->holes_addr); 636 } 637 638 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); 639 } 640 EXPORT_SYMBOL(drm_mm_replace_node); 641 642 /** 643 * DOC: lru scan roster 644 * 645 * Very often GPUs need to have continuous allocations for a given object. When 646 * evicting objects to make space for a new one it is therefore not most 647 * efficient when we simply start to select all objects from the tail of an LRU 648 * until there's a suitable hole: Especially for big objects or nodes that 649 * otherwise have special allocation constraints there's a good chance we evict 650 * lots of (smaller) objects unnecessarily. 651 * 652 * The DRM range allocator supports this use-case through the scanning 653 * interfaces. First a scan operation needs to be initialized with 654 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 655 * objects to the roster, probably by walking an LRU list, but this can be 656 * freely implemented. Eviction candiates are added using 657 * drm_mm_scan_add_block() until a suitable hole is found or there are no 658 * further evictable objects. Eviction roster metadata is tracked in &struct 659 * drm_mm_scan. 660 * 661 * The driver must walk through all objects again in exactly the reverse 662 * order to restore the allocator state. Note that while the allocator is used 663 * in the scan mode no other operation is allowed. 664 * 665 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 666 * reported true) in the scan, and any overlapping nodes after color adjustment 667 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 668 * since freeing a node is also O(1) the overall complexity is 669 * O(scanned_objects). So like the free stack which needs to be walked before a 670 * scan operation even begins this is linear in the number of objects. It 671 * doesn't seem to hurt too badly. 672 */ 673 674 /** 675 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 676 * @scan: scan state 677 * @mm: drm_mm to scan 678 * @size: size of the allocation 679 * @alignment: alignment of the allocation 680 * @color: opaque tag value to use for the allocation 681 * @start: start of the allowed range for the allocation 682 * @end: end of the allowed range for the allocation 683 * @mode: fine-tune the allocation search and placement 684 * 685 * This simply sets up the scanning routines with the parameters for the desired 686 * hole. 687 * 688 * Warning: 689 * As long as the scan list is non-empty, no other operations than 690 * adding/removing nodes to/from the scan list are allowed. 691 */ 692 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 693 struct drm_mm *mm, 694 u64 size, 695 u64 alignment, 696 unsigned long color, 697 u64 start, 698 u64 end, 699 enum drm_mm_insert_mode mode) 700 { 701 DRM_MM_BUG_ON(start >= end); 702 DRM_MM_BUG_ON(!size || size > end - start); 703 DRM_MM_BUG_ON(mm->scan_active); 704 705 scan->mm = mm; 706 707 if (alignment <= 1) 708 alignment = 0; 709 710 scan->color = color; 711 scan->alignment = alignment; 712 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 713 scan->size = size; 714 scan->mode = mode; 715 716 DRM_MM_BUG_ON(end <= start); 717 scan->range_start = start; 718 scan->range_end = end; 719 720 scan->hit_start = U64_MAX; 721 scan->hit_end = 0; 722 } 723 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 724 725 /** 726 * drm_mm_scan_add_block - add a node to the scan list 727 * @scan: the active drm_mm scanner 728 * @node: drm_mm_node to add 729 * 730 * Add a node to the scan list that might be freed to make space for the desired 731 * hole. 732 * 733 * Returns: 734 * True if a hole has been found, false otherwise. 735 */ 736 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 737 struct drm_mm_node *node) 738 { 739 struct drm_mm *mm = scan->mm; 740 struct drm_mm_node *hole; 741 u64 hole_start, hole_end; 742 u64 col_start, col_end; 743 u64 adj_start, adj_end; 744 745 DRM_MM_BUG_ON(node->mm != mm); 746 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 747 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 748 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 749 mm->scan_active++; 750 751 /* Remove this block from the node_list so that we enlarge the hole 752 * (distance between the end of our previous node and the start of 753 * or next), without poisoning the link so that we can restore it 754 * later in drm_mm_scan_remove_block(). 755 */ 756 hole = list_prev_entry(node, node_list); 757 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 758 __list_del_entry(&node->node_list); 759 760 hole_start = __drm_mm_hole_node_start(hole); 761 hole_end = __drm_mm_hole_node_end(hole); 762 763 col_start = hole_start; 764 col_end = hole_end; 765 if (mm->color_adjust) 766 mm->color_adjust(hole, scan->color, &col_start, &col_end); 767 768 adj_start = max(col_start, scan->range_start); 769 adj_end = min(col_end, scan->range_end); 770 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 771 return false; 772 773 if (scan->mode == DRM_MM_INSERT_HIGH) 774 adj_start = adj_end - scan->size; 775 776 if (scan->alignment) { 777 u64 rem; 778 779 if (likely(scan->remainder_mask)) 780 rem = adj_start & scan->remainder_mask; 781 else 782 div64_u64_rem(adj_start, scan->alignment, &rem); 783 if (rem) { 784 adj_start -= rem; 785 if (scan->mode != DRM_MM_INSERT_HIGH) 786 adj_start += scan->alignment; 787 if (adj_start < max(col_start, scan->range_start) || 788 min(col_end, scan->range_end) - adj_start < scan->size) 789 return false; 790 791 if (adj_end <= adj_start || 792 adj_end - adj_start < scan->size) 793 return false; 794 } 795 } 796 797 scan->hit_start = adj_start; 798 scan->hit_end = adj_start + scan->size; 799 800 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 801 DRM_MM_BUG_ON(scan->hit_start < hole_start); 802 DRM_MM_BUG_ON(scan->hit_end > hole_end); 803 804 return true; 805 } 806 EXPORT_SYMBOL(drm_mm_scan_add_block); 807 808 /** 809 * drm_mm_scan_remove_block - remove a node from the scan list 810 * @scan: the active drm_mm scanner 811 * @node: drm_mm_node to remove 812 * 813 * Nodes **must** be removed in exactly the reverse order from the scan list as 814 * they have been added (e.g. using list_add() as they are added and then 815 * list_for_each() over that eviction list to remove), otherwise the internal 816 * state of the memory manager will be corrupted. 817 * 818 * When the scan list is empty, the selected memory nodes can be freed. An 819 * immediately following drm_mm_insert_node_in_range_generic() or one of the 820 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 821 * the just freed block (because it's at the top of the free_stack list). 822 * 823 * Returns: 824 * True if this block should be evicted, false otherwise. Will always 825 * return false when no hole has been found. 826 */ 827 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 828 struct drm_mm_node *node) 829 { 830 struct drm_mm_node *prev_node; 831 832 DRM_MM_BUG_ON(node->mm != scan->mm); 833 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); 834 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 835 836 DRM_MM_BUG_ON(!node->mm->scan_active); 837 node->mm->scan_active--; 838 839 /* During drm_mm_scan_add_block() we decoupled this node leaving 840 * its pointers intact. Now that the caller is walking back along 841 * the eviction list we can restore this block into its rightful 842 * place on the full node_list. To confirm that the caller is walking 843 * backwards correctly we check that prev_node->next == node->next, 844 * i.e. both believe the same node should be on the other side of the 845 * hole. 846 */ 847 prev_node = list_prev_entry(node, node_list); 848 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 849 list_next_entry(node, node_list)); 850 list_add(&node->node_list, &prev_node->node_list); 851 852 return (node->start + node->size > scan->hit_start && 853 node->start < scan->hit_end); 854 } 855 EXPORT_SYMBOL(drm_mm_scan_remove_block); 856 857 /** 858 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 859 * @scan: drm_mm scan with target hole 860 * 861 * After completing an eviction scan and removing the selected nodes, we may 862 * need to remove a few more nodes from either side of the target hole if 863 * mm.color_adjust is being used. 864 * 865 * Returns: 866 * A node to evict, or NULL if there are no overlapping nodes. 867 */ 868 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 869 { 870 struct drm_mm *mm = scan->mm; 871 struct drm_mm_node *hole; 872 u64 hole_start, hole_end; 873 874 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 875 876 if (!mm->color_adjust) 877 return NULL; 878 879 /* 880 * The hole found during scanning should ideally be the first element 881 * in the hole_stack list, but due to side-effects in the driver it 882 * may not be. 883 */ 884 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 885 hole_start = __drm_mm_hole_node_start(hole); 886 hole_end = hole_start + hole->hole_size; 887 888 if (hole_start <= scan->hit_start && 889 hole_end >= scan->hit_end) 890 break; 891 } 892 893 /* We should only be called after we found the hole previously */ 894 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 895 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 896 return NULL; 897 898 DRM_MM_BUG_ON(hole_start > scan->hit_start); 899 DRM_MM_BUG_ON(hole_end < scan->hit_end); 900 901 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 902 if (hole_start > scan->hit_start) 903 return hole; 904 if (hole_end < scan->hit_end) 905 return list_next_entry(hole, node_list); 906 907 return NULL; 908 } 909 EXPORT_SYMBOL(drm_mm_scan_color_evict); 910 911 /** 912 * drm_mm_init - initialize a drm-mm allocator 913 * @mm: the drm_mm structure to initialize 914 * @start: start of the range managed by @mm 915 * @size: end of the range managed by @mm 916 * 917 * Note that @mm must be cleared to 0 before calling this function. 918 */ 919 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 920 { 921 DRM_MM_BUG_ON(start + size <= start); 922 923 mm->color_adjust = NULL; 924 925 INIT_LIST_HEAD(&mm->hole_stack); 926 mm->interval_tree = RB_ROOT_CACHED; 927 mm->holes_size = RB_ROOT_CACHED; 928 mm->holes_addr = RB_ROOT; 929 930 /* Clever trick to avoid a special case in the free hole tracking. */ 931 INIT_LIST_HEAD(&mm->head_node.node_list); 932 mm->head_node.flags = 0; 933 mm->head_node.mm = mm; 934 mm->head_node.start = start + size; 935 mm->head_node.size = -size; 936 add_hole(&mm->head_node); 937 938 mm->scan_active = 0; 939 } 940 EXPORT_SYMBOL(drm_mm_init); 941 942 /** 943 * drm_mm_takedown - clean up a drm_mm allocator 944 * @mm: drm_mm allocator to clean up 945 * 946 * Note that it is a bug to call this function on an allocator which is not 947 * clean. 948 */ 949 void drm_mm_takedown(struct drm_mm *mm) 950 { 951 if (WARN(!drm_mm_clean(mm), 952 "Memory manager not clean during takedown.\n")) 953 show_leaks(mm); 954 } 955 EXPORT_SYMBOL(drm_mm_takedown); 956 957 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 958 { 959 u64 start, size; 960 961 size = entry->hole_size; 962 if (size) { 963 start = drm_mm_hole_node_start(entry); 964 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 965 start, start + size, size); 966 } 967 968 return size; 969 } 970 /** 971 * drm_mm_print - print allocator state 972 * @mm: drm_mm allocator to print 973 * @p: DRM printer to use 974 */ 975 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 976 { 977 const struct drm_mm_node *entry; 978 u64 total_used = 0, total_free = 0, total = 0; 979 980 total_free += drm_mm_dump_hole(p, &mm->head_node); 981 982 drm_mm_for_each_node(entry, mm) { 983 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 984 entry->start + entry->size, entry->size); 985 total_used += entry->size; 986 total_free += drm_mm_dump_hole(p, entry); 987 } 988 total = total_free + total_used; 989 990 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 991 total_used, total_free); 992 } 993 EXPORT_SYMBOL(drm_mm_print); 994