xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_mmap(struct file *, struct vm_area_struct *);
46 
47 static const char kfd_dev_name[] = "kfd";
48 
49 static const struct file_operations kfd_fops = {
50 	.owner = THIS_MODULE,
51 	.unlocked_ioctl = kfd_ioctl,
52 	.compat_ioctl = kfd_ioctl,
53 	.open = kfd_open,
54 	.mmap = kfd_mmap,
55 };
56 
57 static int kfd_char_dev_major = -1;
58 static struct class *kfd_class;
59 struct device *kfd_device;
60 
61 int kfd_chardev_init(void)
62 {
63 	int err = 0;
64 
65 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
66 	err = kfd_char_dev_major;
67 	if (err < 0)
68 		goto err_register_chrdev;
69 
70 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
71 	err = PTR_ERR(kfd_class);
72 	if (IS_ERR(kfd_class))
73 		goto err_class_create;
74 
75 	kfd_device = device_create(kfd_class, NULL,
76 					MKDEV(kfd_char_dev_major, 0),
77 					NULL, kfd_dev_name);
78 	err = PTR_ERR(kfd_device);
79 	if (IS_ERR(kfd_device))
80 		goto err_device_create;
81 
82 	return 0;
83 
84 err_device_create:
85 	class_destroy(kfd_class);
86 err_class_create:
87 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
88 err_register_chrdev:
89 	return err;
90 }
91 
92 void kfd_chardev_exit(void)
93 {
94 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
95 	class_destroy(kfd_class);
96 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
97 }
98 
99 struct device *kfd_chardev(void)
100 {
101 	return kfd_device;
102 }
103 
104 
105 static int kfd_open(struct inode *inode, struct file *filep)
106 {
107 	struct kfd_process *process;
108 	bool is_32bit_user_mode;
109 
110 	if (iminor(inode) != 0)
111 		return -ENODEV;
112 
113 	is_32bit_user_mode = in_compat_syscall();
114 
115 	if (is_32bit_user_mode) {
116 		dev_warn(kfd_device,
117 			"Process %d (32-bit) failed to open /dev/kfd\n"
118 			"32-bit processes are not supported by amdkfd\n",
119 			current->pid);
120 		return -EPERM;
121 	}
122 
123 	process = kfd_create_process(filep);
124 	if (IS_ERR(process))
125 		return PTR_ERR(process);
126 
127 	if (kfd_is_locked())
128 		return -EAGAIN;
129 
130 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
131 		process->pasid, process->is_32bit_user_mode);
132 
133 	return 0;
134 }
135 
136 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
137 					void *data)
138 {
139 	struct kfd_ioctl_get_version_args *args = data;
140 
141 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
142 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
143 
144 	return 0;
145 }
146 
147 static int set_queue_properties_from_user(struct queue_properties *q_properties,
148 				struct kfd_ioctl_create_queue_args *args)
149 {
150 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
151 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
152 		return -EINVAL;
153 	}
154 
155 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
156 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
157 		return -EINVAL;
158 	}
159 
160 	if ((args->ring_base_address) &&
161 		(!access_ok(VERIFY_WRITE,
162 			(const void __user *) args->ring_base_address,
163 			sizeof(uint64_t)))) {
164 		pr_err("Can't access ring base address\n");
165 		return -EFAULT;
166 	}
167 
168 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
169 		pr_err("Ring size must be a power of 2 or 0\n");
170 		return -EINVAL;
171 	}
172 
173 	if (!access_ok(VERIFY_WRITE,
174 			(const void __user *) args->read_pointer_address,
175 			sizeof(uint32_t))) {
176 		pr_err("Can't access read pointer\n");
177 		return -EFAULT;
178 	}
179 
180 	if (!access_ok(VERIFY_WRITE,
181 			(const void __user *) args->write_pointer_address,
182 			sizeof(uint32_t))) {
183 		pr_err("Can't access write pointer\n");
184 		return -EFAULT;
185 	}
186 
187 	if (args->eop_buffer_address &&
188 		!access_ok(VERIFY_WRITE,
189 			(const void __user *) args->eop_buffer_address,
190 			sizeof(uint32_t))) {
191 		pr_debug("Can't access eop buffer");
192 		return -EFAULT;
193 	}
194 
195 	if (args->ctx_save_restore_address &&
196 		!access_ok(VERIFY_WRITE,
197 			(const void __user *) args->ctx_save_restore_address,
198 			sizeof(uint32_t))) {
199 		pr_debug("Can't access ctx save restore buffer");
200 		return -EFAULT;
201 	}
202 
203 	q_properties->is_interop = false;
204 	q_properties->queue_percent = args->queue_percentage;
205 	q_properties->priority = args->queue_priority;
206 	q_properties->queue_address = args->ring_base_address;
207 	q_properties->queue_size = args->ring_size;
208 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
209 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
210 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
211 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
212 	q_properties->ctx_save_restore_area_address =
213 			args->ctx_save_restore_address;
214 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
215 	q_properties->ctl_stack_size = args->ctl_stack_size;
216 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
217 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
218 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
219 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
220 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
221 	else
222 		return -ENOTSUPP;
223 
224 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
225 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
226 	else
227 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
228 
229 	pr_debug("Queue Percentage: %d, %d\n",
230 			q_properties->queue_percent, args->queue_percentage);
231 
232 	pr_debug("Queue Priority: %d, %d\n",
233 			q_properties->priority, args->queue_priority);
234 
235 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
236 			q_properties->queue_address, args->ring_base_address);
237 
238 	pr_debug("Queue Size: 0x%llX, %u\n",
239 			q_properties->queue_size, args->ring_size);
240 
241 	pr_debug("Queue r/w Pointers: %px, %px\n",
242 			q_properties->read_ptr,
243 			q_properties->write_ptr);
244 
245 	pr_debug("Queue Format: %d\n", q_properties->format);
246 
247 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
248 
249 	pr_debug("Queue CTX save area: 0x%llX\n",
250 			q_properties->ctx_save_restore_area_address);
251 
252 	return 0;
253 }
254 
255 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
256 					void *data)
257 {
258 	struct kfd_ioctl_create_queue_args *args = data;
259 	struct kfd_dev *dev;
260 	int err = 0;
261 	unsigned int queue_id;
262 	struct kfd_process_device *pdd;
263 	struct queue_properties q_properties;
264 
265 	memset(&q_properties, 0, sizeof(struct queue_properties));
266 
267 	pr_debug("Creating queue ioctl\n");
268 
269 	err = set_queue_properties_from_user(&q_properties, args);
270 	if (err)
271 		return err;
272 
273 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
274 	dev = kfd_device_by_id(args->gpu_id);
275 	if (!dev) {
276 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
277 		return -EINVAL;
278 	}
279 
280 	mutex_lock(&p->mutex);
281 
282 	pdd = kfd_bind_process_to_device(dev, p);
283 	if (IS_ERR(pdd)) {
284 		err = -ESRCH;
285 		goto err_bind_process;
286 	}
287 
288 	pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
289 			p->pasid,
290 			dev->id);
291 
292 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
293 	if (err != 0)
294 		goto err_create_queue;
295 
296 	args->queue_id = queue_id;
297 
298 
299 	/* Return gpu_id as doorbell offset for mmap usage */
300 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
301 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
302 	args->doorbell_offset <<= PAGE_SHIFT;
303 	if (KFD_IS_SOC15(dev->device_info->asic_family))
304 		/* On SOC15 ASICs, doorbell allocation must be
305 		 * per-device, and independent from the per-process
306 		 * queue_id. Return the doorbell offset within the
307 		 * doorbell aperture to user mode.
308 		 */
309 		args->doorbell_offset |= q_properties.doorbell_off;
310 
311 	mutex_unlock(&p->mutex);
312 
313 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
314 
315 	pr_debug("Ring buffer address == 0x%016llX\n",
316 			args->ring_base_address);
317 
318 	pr_debug("Read ptr address    == 0x%016llX\n",
319 			args->read_pointer_address);
320 
321 	pr_debug("Write ptr address   == 0x%016llX\n",
322 			args->write_pointer_address);
323 
324 	return 0;
325 
326 err_create_queue:
327 err_bind_process:
328 	mutex_unlock(&p->mutex);
329 	return err;
330 }
331 
332 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
333 					void *data)
334 {
335 	int retval;
336 	struct kfd_ioctl_destroy_queue_args *args = data;
337 
338 	pr_debug("Destroying queue id %d for pasid %d\n",
339 				args->queue_id,
340 				p->pasid);
341 
342 	mutex_lock(&p->mutex);
343 
344 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
345 
346 	mutex_unlock(&p->mutex);
347 	return retval;
348 }
349 
350 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
351 					void *data)
352 {
353 	int retval;
354 	struct kfd_ioctl_update_queue_args *args = data;
355 	struct queue_properties properties;
356 
357 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
358 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
359 		return -EINVAL;
360 	}
361 
362 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
363 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
364 		return -EINVAL;
365 	}
366 
367 	if ((args->ring_base_address) &&
368 		(!access_ok(VERIFY_WRITE,
369 			(const void __user *) args->ring_base_address,
370 			sizeof(uint64_t)))) {
371 		pr_err("Can't access ring base address\n");
372 		return -EFAULT;
373 	}
374 
375 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
376 		pr_err("Ring size must be a power of 2 or 0\n");
377 		return -EINVAL;
378 	}
379 
380 	properties.queue_address = args->ring_base_address;
381 	properties.queue_size = args->ring_size;
382 	properties.queue_percent = args->queue_percentage;
383 	properties.priority = args->queue_priority;
384 
385 	pr_debug("Updating queue id %d for pasid %d\n",
386 			args->queue_id, p->pasid);
387 
388 	mutex_lock(&p->mutex);
389 
390 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
391 
392 	mutex_unlock(&p->mutex);
393 
394 	return retval;
395 }
396 
397 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
398 					void *data)
399 {
400 	int retval;
401 	const int max_num_cus = 1024;
402 	struct kfd_ioctl_set_cu_mask_args *args = data;
403 	struct queue_properties properties;
404 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
405 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
406 
407 	if ((args->num_cu_mask % 32) != 0) {
408 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
409 				args->num_cu_mask);
410 		return -EINVAL;
411 	}
412 
413 	properties.cu_mask_count = args->num_cu_mask;
414 	if (properties.cu_mask_count == 0) {
415 		pr_debug("CU mask cannot be 0");
416 		return -EINVAL;
417 	}
418 
419 	/* To prevent an unreasonably large CU mask size, set an arbitrary
420 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
421 	 * past max_num_cus bits and just use the first max_num_cus bits.
422 	 */
423 	if (properties.cu_mask_count > max_num_cus) {
424 		pr_debug("CU mask cannot be greater than 1024 bits");
425 		properties.cu_mask_count = max_num_cus;
426 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
427 	}
428 
429 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
430 	if (!properties.cu_mask)
431 		return -ENOMEM;
432 
433 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
434 	if (retval) {
435 		pr_debug("Could not copy CU mask from userspace");
436 		kfree(properties.cu_mask);
437 		return -EFAULT;
438 	}
439 
440 	mutex_lock(&p->mutex);
441 
442 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
443 
444 	mutex_unlock(&p->mutex);
445 
446 	if (retval)
447 		kfree(properties.cu_mask);
448 
449 	return retval;
450 }
451 
452 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
453 					  struct kfd_process *p, void *data)
454 {
455 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
456 	int r;
457 
458 	mutex_lock(&p->mutex);
459 
460 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
461 			       (void __user *)args->ctl_stack_address,
462 			       &args->ctl_stack_used_size,
463 			       &args->save_area_used_size);
464 
465 	mutex_unlock(&p->mutex);
466 
467 	return r;
468 }
469 
470 static int kfd_ioctl_set_memory_policy(struct file *filep,
471 					struct kfd_process *p, void *data)
472 {
473 	struct kfd_ioctl_set_memory_policy_args *args = data;
474 	struct kfd_dev *dev;
475 	int err = 0;
476 	struct kfd_process_device *pdd;
477 	enum cache_policy default_policy, alternate_policy;
478 
479 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
480 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
481 		return -EINVAL;
482 	}
483 
484 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
485 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
486 		return -EINVAL;
487 	}
488 
489 	dev = kfd_device_by_id(args->gpu_id);
490 	if (!dev)
491 		return -EINVAL;
492 
493 	mutex_lock(&p->mutex);
494 
495 	pdd = kfd_bind_process_to_device(dev, p);
496 	if (IS_ERR(pdd)) {
497 		err = -ESRCH;
498 		goto out;
499 	}
500 
501 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
502 			 ? cache_policy_coherent : cache_policy_noncoherent;
503 
504 	alternate_policy =
505 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
506 		   ? cache_policy_coherent : cache_policy_noncoherent;
507 
508 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
509 				&pdd->qpd,
510 				default_policy,
511 				alternate_policy,
512 				(void __user *)args->alternate_aperture_base,
513 				args->alternate_aperture_size))
514 		err = -EINVAL;
515 
516 out:
517 	mutex_unlock(&p->mutex);
518 
519 	return err;
520 }
521 
522 static int kfd_ioctl_set_trap_handler(struct file *filep,
523 					struct kfd_process *p, void *data)
524 {
525 	struct kfd_ioctl_set_trap_handler_args *args = data;
526 	struct kfd_dev *dev;
527 	int err = 0;
528 	struct kfd_process_device *pdd;
529 
530 	dev = kfd_device_by_id(args->gpu_id);
531 	if (dev == NULL)
532 		return -EINVAL;
533 
534 	mutex_lock(&p->mutex);
535 
536 	pdd = kfd_bind_process_to_device(dev, p);
537 	if (IS_ERR(pdd)) {
538 		err = -ESRCH;
539 		goto out;
540 	}
541 
542 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
543 					&pdd->qpd,
544 					args->tba_addr,
545 					args->tma_addr))
546 		err = -EINVAL;
547 
548 out:
549 	mutex_unlock(&p->mutex);
550 
551 	return err;
552 }
553 
554 static int kfd_ioctl_dbg_register(struct file *filep,
555 				struct kfd_process *p, void *data)
556 {
557 	struct kfd_ioctl_dbg_register_args *args = data;
558 	struct kfd_dev *dev;
559 	struct kfd_dbgmgr *dbgmgr_ptr;
560 	struct kfd_process_device *pdd;
561 	bool create_ok;
562 	long status = 0;
563 
564 	dev = kfd_device_by_id(args->gpu_id);
565 	if (!dev)
566 		return -EINVAL;
567 
568 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
569 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
570 		return -EINVAL;
571 	}
572 
573 	mutex_lock(&p->mutex);
574 	mutex_lock(kfd_get_dbgmgr_mutex());
575 
576 	/*
577 	 * make sure that we have pdd, if this the first queue created for
578 	 * this process
579 	 */
580 	pdd = kfd_bind_process_to_device(dev, p);
581 	if (IS_ERR(pdd)) {
582 		status = PTR_ERR(pdd);
583 		goto out;
584 	}
585 
586 	if (!dev->dbgmgr) {
587 		/* In case of a legal call, we have no dbgmgr yet */
588 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
589 		if (create_ok) {
590 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
591 			if (status != 0)
592 				kfd_dbgmgr_destroy(dbgmgr_ptr);
593 			else
594 				dev->dbgmgr = dbgmgr_ptr;
595 		}
596 	} else {
597 		pr_debug("debugger already registered\n");
598 		status = -EINVAL;
599 	}
600 
601 out:
602 	mutex_unlock(kfd_get_dbgmgr_mutex());
603 	mutex_unlock(&p->mutex);
604 
605 	return status;
606 }
607 
608 static int kfd_ioctl_dbg_unregister(struct file *filep,
609 				struct kfd_process *p, void *data)
610 {
611 	struct kfd_ioctl_dbg_unregister_args *args = data;
612 	struct kfd_dev *dev;
613 	long status;
614 
615 	dev = kfd_device_by_id(args->gpu_id);
616 	if (!dev || !dev->dbgmgr)
617 		return -EINVAL;
618 
619 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
620 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
621 		return -EINVAL;
622 	}
623 
624 	mutex_lock(kfd_get_dbgmgr_mutex());
625 
626 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
627 	if (!status) {
628 		kfd_dbgmgr_destroy(dev->dbgmgr);
629 		dev->dbgmgr = NULL;
630 	}
631 
632 	mutex_unlock(kfd_get_dbgmgr_mutex());
633 
634 	return status;
635 }
636 
637 /*
638  * Parse and generate variable size data structure for address watch.
639  * Total size of the buffer and # watch points is limited in order
640  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
641  * which is enforced by dbgdev module)
642  * please also note that the watch address itself are not "copied from user",
643  * since it be set into the HW in user mode values.
644  *
645  */
646 static int kfd_ioctl_dbg_address_watch(struct file *filep,
647 					struct kfd_process *p, void *data)
648 {
649 	struct kfd_ioctl_dbg_address_watch_args *args = data;
650 	struct kfd_dev *dev;
651 	struct dbg_address_watch_info aw_info;
652 	unsigned char *args_buff;
653 	long status;
654 	void __user *cmd_from_user;
655 	uint64_t watch_mask_value = 0;
656 	unsigned int args_idx = 0;
657 
658 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
659 
660 	dev = kfd_device_by_id(args->gpu_id);
661 	if (!dev)
662 		return -EINVAL;
663 
664 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
665 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
666 		return -EINVAL;
667 	}
668 
669 	cmd_from_user = (void __user *) args->content_ptr;
670 
671 	/* Validate arguments */
672 
673 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
674 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
675 		(cmd_from_user == NULL))
676 		return -EINVAL;
677 
678 	/* this is the actual buffer to work with */
679 	args_buff = memdup_user(cmd_from_user,
680 				args->buf_size_in_bytes - sizeof(*args));
681 	if (IS_ERR(args_buff))
682 		return PTR_ERR(args_buff);
683 
684 	aw_info.process = p;
685 
686 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
687 	args_idx += sizeof(aw_info.num_watch_points);
688 
689 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
690 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
691 
692 	/*
693 	 * set watch address base pointer to point on the array base
694 	 * within args_buff
695 	 */
696 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
697 
698 	/* skip over the addresses buffer */
699 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
700 
701 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
702 		status = -EINVAL;
703 		goto out;
704 	}
705 
706 	watch_mask_value = (uint64_t) args_buff[args_idx];
707 
708 	if (watch_mask_value > 0) {
709 		/*
710 		 * There is an array of masks.
711 		 * set watch mask base pointer to point on the array base
712 		 * within args_buff
713 		 */
714 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
715 
716 		/* skip over the masks buffer */
717 		args_idx += sizeof(aw_info.watch_mask) *
718 				aw_info.num_watch_points;
719 	} else {
720 		/* just the NULL mask, set to NULL and skip over it */
721 		aw_info.watch_mask = NULL;
722 		args_idx += sizeof(aw_info.watch_mask);
723 	}
724 
725 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
726 		status = -EINVAL;
727 		goto out;
728 	}
729 
730 	/* Currently HSA Event is not supported for DBG */
731 	aw_info.watch_event = NULL;
732 
733 	mutex_lock(kfd_get_dbgmgr_mutex());
734 
735 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
736 
737 	mutex_unlock(kfd_get_dbgmgr_mutex());
738 
739 out:
740 	kfree(args_buff);
741 
742 	return status;
743 }
744 
745 /* Parse and generate fixed size data structure for wave control */
746 static int kfd_ioctl_dbg_wave_control(struct file *filep,
747 					struct kfd_process *p, void *data)
748 {
749 	struct kfd_ioctl_dbg_wave_control_args *args = data;
750 	struct kfd_dev *dev;
751 	struct dbg_wave_control_info wac_info;
752 	unsigned char *args_buff;
753 	uint32_t computed_buff_size;
754 	long status;
755 	void __user *cmd_from_user;
756 	unsigned int args_idx = 0;
757 
758 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
759 
760 	/* we use compact form, independent of the packing attribute value */
761 	computed_buff_size = sizeof(*args) +
762 				sizeof(wac_info.mode) +
763 				sizeof(wac_info.operand) +
764 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
765 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
766 				sizeof(wac_info.trapId);
767 
768 	dev = kfd_device_by_id(args->gpu_id);
769 	if (!dev)
770 		return -EINVAL;
771 
772 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
773 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
774 		return -EINVAL;
775 	}
776 
777 	/* input size must match the computed "compact" size */
778 	if (args->buf_size_in_bytes != computed_buff_size) {
779 		pr_debug("size mismatch, computed : actual %u : %u\n",
780 				args->buf_size_in_bytes, computed_buff_size);
781 		return -EINVAL;
782 	}
783 
784 	cmd_from_user = (void __user *) args->content_ptr;
785 
786 	if (cmd_from_user == NULL)
787 		return -EINVAL;
788 
789 	/* copy the entire buffer from user */
790 
791 	args_buff = memdup_user(cmd_from_user,
792 				args->buf_size_in_bytes - sizeof(*args));
793 	if (IS_ERR(args_buff))
794 		return PTR_ERR(args_buff);
795 
796 	/* move ptr to the start of the "pay-load" area */
797 	wac_info.process = p;
798 
799 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
800 	args_idx += sizeof(wac_info.operand);
801 
802 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
803 	args_idx += sizeof(wac_info.mode);
804 
805 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
806 	args_idx += sizeof(wac_info.trapId);
807 
808 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
809 					*((uint32_t *)(&args_buff[args_idx]));
810 	wac_info.dbgWave_msg.MemoryVA = NULL;
811 
812 	mutex_lock(kfd_get_dbgmgr_mutex());
813 
814 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
815 			wac_info.process, wac_info.operand,
816 			wac_info.mode, wac_info.trapId,
817 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
818 
819 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
820 
821 	pr_debug("Returned status of dbg manager is %ld\n", status);
822 
823 	mutex_unlock(kfd_get_dbgmgr_mutex());
824 
825 	kfree(args_buff);
826 
827 	return status;
828 }
829 
830 static int kfd_ioctl_get_clock_counters(struct file *filep,
831 				struct kfd_process *p, void *data)
832 {
833 	struct kfd_ioctl_get_clock_counters_args *args = data;
834 	struct kfd_dev *dev;
835 
836 	dev = kfd_device_by_id(args->gpu_id);
837 	if (dev)
838 		/* Reading GPU clock counter from KGD */
839 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
840 	else
841 		/* Node without GPU resource */
842 		args->gpu_clock_counter = 0;
843 
844 	/* No access to rdtsc. Using raw monotonic time */
845 	args->cpu_clock_counter = ktime_get_raw_ns();
846 	args->system_clock_counter = ktime_get_boot_ns();
847 
848 	/* Since the counter is in nano-seconds we use 1GHz frequency */
849 	args->system_clock_freq = 1000000000;
850 
851 	return 0;
852 }
853 
854 
855 static int kfd_ioctl_get_process_apertures(struct file *filp,
856 				struct kfd_process *p, void *data)
857 {
858 	struct kfd_ioctl_get_process_apertures_args *args = data;
859 	struct kfd_process_device_apertures *pAperture;
860 	struct kfd_process_device *pdd;
861 
862 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
863 
864 	args->num_of_nodes = 0;
865 
866 	mutex_lock(&p->mutex);
867 
868 	/*if the process-device list isn't empty*/
869 	if (kfd_has_process_device_data(p)) {
870 		/* Run over all pdd of the process */
871 		pdd = kfd_get_first_process_device_data(p);
872 		do {
873 			pAperture =
874 				&args->process_apertures[args->num_of_nodes];
875 			pAperture->gpu_id = pdd->dev->id;
876 			pAperture->lds_base = pdd->lds_base;
877 			pAperture->lds_limit = pdd->lds_limit;
878 			pAperture->gpuvm_base = pdd->gpuvm_base;
879 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
880 			pAperture->scratch_base = pdd->scratch_base;
881 			pAperture->scratch_limit = pdd->scratch_limit;
882 
883 			dev_dbg(kfd_device,
884 				"node id %u\n", args->num_of_nodes);
885 			dev_dbg(kfd_device,
886 				"gpu id %u\n", pdd->dev->id);
887 			dev_dbg(kfd_device,
888 				"lds_base %llX\n", pdd->lds_base);
889 			dev_dbg(kfd_device,
890 				"lds_limit %llX\n", pdd->lds_limit);
891 			dev_dbg(kfd_device,
892 				"gpuvm_base %llX\n", pdd->gpuvm_base);
893 			dev_dbg(kfd_device,
894 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
895 			dev_dbg(kfd_device,
896 				"scratch_base %llX\n", pdd->scratch_base);
897 			dev_dbg(kfd_device,
898 				"scratch_limit %llX\n", pdd->scratch_limit);
899 
900 			args->num_of_nodes++;
901 
902 			pdd = kfd_get_next_process_device_data(p, pdd);
903 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
904 	}
905 
906 	mutex_unlock(&p->mutex);
907 
908 	return 0;
909 }
910 
911 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
912 				struct kfd_process *p, void *data)
913 {
914 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
915 	struct kfd_process_device_apertures *pa;
916 	struct kfd_process_device *pdd;
917 	uint32_t nodes = 0;
918 	int ret;
919 
920 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
921 
922 	if (args->num_of_nodes == 0) {
923 		/* Return number of nodes, so that user space can alloacate
924 		 * sufficient memory
925 		 */
926 		mutex_lock(&p->mutex);
927 
928 		if (!kfd_has_process_device_data(p))
929 			goto out_unlock;
930 
931 		/* Run over all pdd of the process */
932 		pdd = kfd_get_first_process_device_data(p);
933 		do {
934 			args->num_of_nodes++;
935 			pdd = kfd_get_next_process_device_data(p, pdd);
936 		} while (pdd);
937 
938 		goto out_unlock;
939 	}
940 
941 	/* Fill in process-aperture information for all available
942 	 * nodes, but not more than args->num_of_nodes as that is
943 	 * the amount of memory allocated by user
944 	 */
945 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
946 				args->num_of_nodes), GFP_KERNEL);
947 	if (!pa)
948 		return -ENOMEM;
949 
950 	mutex_lock(&p->mutex);
951 
952 	if (!kfd_has_process_device_data(p)) {
953 		args->num_of_nodes = 0;
954 		kfree(pa);
955 		goto out_unlock;
956 	}
957 
958 	/* Run over all pdd of the process */
959 	pdd = kfd_get_first_process_device_data(p);
960 	do {
961 		pa[nodes].gpu_id = pdd->dev->id;
962 		pa[nodes].lds_base = pdd->lds_base;
963 		pa[nodes].lds_limit = pdd->lds_limit;
964 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
965 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
966 		pa[nodes].scratch_base = pdd->scratch_base;
967 		pa[nodes].scratch_limit = pdd->scratch_limit;
968 
969 		dev_dbg(kfd_device,
970 			"gpu id %u\n", pdd->dev->id);
971 		dev_dbg(kfd_device,
972 			"lds_base %llX\n", pdd->lds_base);
973 		dev_dbg(kfd_device,
974 			"lds_limit %llX\n", pdd->lds_limit);
975 		dev_dbg(kfd_device,
976 			"gpuvm_base %llX\n", pdd->gpuvm_base);
977 		dev_dbg(kfd_device,
978 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
979 		dev_dbg(kfd_device,
980 			"scratch_base %llX\n", pdd->scratch_base);
981 		dev_dbg(kfd_device,
982 			"scratch_limit %llX\n", pdd->scratch_limit);
983 		nodes++;
984 
985 		pdd = kfd_get_next_process_device_data(p, pdd);
986 	} while (pdd && (nodes < args->num_of_nodes));
987 	mutex_unlock(&p->mutex);
988 
989 	args->num_of_nodes = nodes;
990 	ret = copy_to_user(
991 			(void __user *)args->kfd_process_device_apertures_ptr,
992 			pa,
993 			(nodes * sizeof(struct kfd_process_device_apertures)));
994 	kfree(pa);
995 	return ret ? -EFAULT : 0;
996 
997 out_unlock:
998 	mutex_unlock(&p->mutex);
999 	return 0;
1000 }
1001 
1002 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1003 					void *data)
1004 {
1005 	struct kfd_ioctl_create_event_args *args = data;
1006 	int err;
1007 
1008 	/* For dGPUs the event page is allocated in user mode. The
1009 	 * handle is passed to KFD with the first call to this IOCTL
1010 	 * through the event_page_offset field.
1011 	 */
1012 	if (args->event_page_offset) {
1013 		struct kfd_dev *kfd;
1014 		struct kfd_process_device *pdd;
1015 		void *mem, *kern_addr;
1016 		uint64_t size;
1017 
1018 		if (p->signal_page) {
1019 			pr_err("Event page is already set\n");
1020 			return -EINVAL;
1021 		}
1022 
1023 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1024 		if (!kfd) {
1025 			pr_err("Getting device by id failed in %s\n", __func__);
1026 			return -EINVAL;
1027 		}
1028 
1029 		mutex_lock(&p->mutex);
1030 		pdd = kfd_bind_process_to_device(kfd, p);
1031 		if (IS_ERR(pdd)) {
1032 			err = PTR_ERR(pdd);
1033 			goto out_unlock;
1034 		}
1035 
1036 		mem = kfd_process_device_translate_handle(pdd,
1037 				GET_IDR_HANDLE(args->event_page_offset));
1038 		if (!mem) {
1039 			pr_err("Can't find BO, offset is 0x%llx\n",
1040 			       args->event_page_offset);
1041 			err = -EINVAL;
1042 			goto out_unlock;
1043 		}
1044 		mutex_unlock(&p->mutex);
1045 
1046 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1047 						mem, &kern_addr, &size);
1048 		if (err) {
1049 			pr_err("Failed to map event page to kernel\n");
1050 			return err;
1051 		}
1052 
1053 		err = kfd_event_page_set(p, kern_addr, size);
1054 		if (err) {
1055 			pr_err("Failed to set event page\n");
1056 			return err;
1057 		}
1058 	}
1059 
1060 	err = kfd_event_create(filp, p, args->event_type,
1061 				args->auto_reset != 0, args->node_id,
1062 				&args->event_id, &args->event_trigger_data,
1063 				&args->event_page_offset,
1064 				&args->event_slot_index);
1065 
1066 	return err;
1067 
1068 out_unlock:
1069 	mutex_unlock(&p->mutex);
1070 	return err;
1071 }
1072 
1073 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1074 					void *data)
1075 {
1076 	struct kfd_ioctl_destroy_event_args *args = data;
1077 
1078 	return kfd_event_destroy(p, args->event_id);
1079 }
1080 
1081 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1082 				void *data)
1083 {
1084 	struct kfd_ioctl_set_event_args *args = data;
1085 
1086 	return kfd_set_event(p, args->event_id);
1087 }
1088 
1089 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1090 				void *data)
1091 {
1092 	struct kfd_ioctl_reset_event_args *args = data;
1093 
1094 	return kfd_reset_event(p, args->event_id);
1095 }
1096 
1097 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1098 				void *data)
1099 {
1100 	struct kfd_ioctl_wait_events_args *args = data;
1101 	int err;
1102 
1103 	err = kfd_wait_on_events(p, args->num_events,
1104 			(void __user *)args->events_ptr,
1105 			(args->wait_for_all != 0),
1106 			args->timeout, &args->wait_result);
1107 
1108 	return err;
1109 }
1110 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1111 					struct kfd_process *p, void *data)
1112 {
1113 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1114 	struct kfd_process_device *pdd;
1115 	struct kfd_dev *dev;
1116 	long err;
1117 
1118 	dev = kfd_device_by_id(args->gpu_id);
1119 	if (!dev)
1120 		return -EINVAL;
1121 
1122 	mutex_lock(&p->mutex);
1123 
1124 	pdd = kfd_bind_process_to_device(dev, p);
1125 	if (IS_ERR(pdd)) {
1126 		err = PTR_ERR(pdd);
1127 		goto bind_process_to_device_fail;
1128 	}
1129 
1130 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1131 
1132 	mutex_unlock(&p->mutex);
1133 
1134 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1135 	    pdd->qpd.vmid != 0)
1136 		dev->kfd2kgd->set_scratch_backing_va(
1137 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1138 
1139 	return 0;
1140 
1141 bind_process_to_device_fail:
1142 	mutex_unlock(&p->mutex);
1143 	return err;
1144 }
1145 
1146 static int kfd_ioctl_get_tile_config(struct file *filep,
1147 		struct kfd_process *p, void *data)
1148 {
1149 	struct kfd_ioctl_get_tile_config_args *args = data;
1150 	struct kfd_dev *dev;
1151 	struct tile_config config;
1152 	int err = 0;
1153 
1154 	dev = kfd_device_by_id(args->gpu_id);
1155 	if (!dev)
1156 		return -EINVAL;
1157 
1158 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1159 
1160 	args->gb_addr_config = config.gb_addr_config;
1161 	args->num_banks = config.num_banks;
1162 	args->num_ranks = config.num_ranks;
1163 
1164 	if (args->num_tile_configs > config.num_tile_configs)
1165 		args->num_tile_configs = config.num_tile_configs;
1166 	err = copy_to_user((void __user *)args->tile_config_ptr,
1167 			config.tile_config_ptr,
1168 			args->num_tile_configs * sizeof(uint32_t));
1169 	if (err) {
1170 		args->num_tile_configs = 0;
1171 		return -EFAULT;
1172 	}
1173 
1174 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1175 		args->num_macro_tile_configs =
1176 				config.num_macro_tile_configs;
1177 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1178 			config.macro_tile_config_ptr,
1179 			args->num_macro_tile_configs * sizeof(uint32_t));
1180 	if (err) {
1181 		args->num_macro_tile_configs = 0;
1182 		return -EFAULT;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1189 				void *data)
1190 {
1191 	struct kfd_ioctl_acquire_vm_args *args = data;
1192 	struct kfd_process_device *pdd;
1193 	struct kfd_dev *dev;
1194 	struct file *drm_file;
1195 	int ret;
1196 
1197 	dev = kfd_device_by_id(args->gpu_id);
1198 	if (!dev)
1199 		return -EINVAL;
1200 
1201 	drm_file = fget(args->drm_fd);
1202 	if (!drm_file)
1203 		return -EINVAL;
1204 
1205 	mutex_lock(&p->mutex);
1206 
1207 	pdd = kfd_get_process_device_data(dev, p);
1208 	if (!pdd) {
1209 		ret = -EINVAL;
1210 		goto err_unlock;
1211 	}
1212 
1213 	if (pdd->drm_file) {
1214 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1215 		goto err_unlock;
1216 	}
1217 
1218 	ret = kfd_process_device_init_vm(pdd, drm_file);
1219 	if (ret)
1220 		goto err_unlock;
1221 	/* On success, the PDD keeps the drm_file reference */
1222 	mutex_unlock(&p->mutex);
1223 
1224 	return 0;
1225 
1226 err_unlock:
1227 	mutex_unlock(&p->mutex);
1228 	fput(drm_file);
1229 	return ret;
1230 }
1231 
1232 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1233 {
1234 	struct kfd_local_mem_info mem_info;
1235 
1236 	if (debug_largebar) {
1237 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1238 		return true;
1239 	}
1240 
1241 	if (dev->device_info->needs_iommu_device)
1242 		return false;
1243 
1244 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1245 	if (mem_info.local_mem_size_private == 0 &&
1246 			mem_info.local_mem_size_public > 0)
1247 		return true;
1248 	return false;
1249 }
1250 
1251 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1252 					struct kfd_process *p, void *data)
1253 {
1254 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1255 	struct kfd_process_device *pdd;
1256 	void *mem;
1257 	struct kfd_dev *dev;
1258 	int idr_handle;
1259 	long err;
1260 	uint64_t offset = args->mmap_offset;
1261 	uint32_t flags = args->flags;
1262 
1263 	if (args->size == 0)
1264 		return -EINVAL;
1265 
1266 	dev = kfd_device_by_id(args->gpu_id);
1267 	if (!dev)
1268 		return -EINVAL;
1269 
1270 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1271 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1272 		!kfd_dev_is_large_bar(dev)) {
1273 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1274 		return -EINVAL;
1275 	}
1276 
1277 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1278 		if (args->size != kfd_doorbell_process_slice(dev))
1279 			return -EINVAL;
1280 		offset = kfd_get_process_doorbells(dev, p);
1281 	}
1282 
1283 	mutex_lock(&p->mutex);
1284 
1285 	pdd = kfd_bind_process_to_device(dev, p);
1286 	if (IS_ERR(pdd)) {
1287 		err = PTR_ERR(pdd);
1288 		goto err_unlock;
1289 	}
1290 
1291 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1292 		dev->kgd, args->va_addr, args->size,
1293 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1294 		flags);
1295 
1296 	if (err)
1297 		goto err_unlock;
1298 
1299 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1300 	if (idr_handle < 0) {
1301 		err = -EFAULT;
1302 		goto err_free;
1303 	}
1304 
1305 	mutex_unlock(&p->mutex);
1306 
1307 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1308 	args->mmap_offset = offset;
1309 
1310 	return 0;
1311 
1312 err_free:
1313 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1314 err_unlock:
1315 	mutex_unlock(&p->mutex);
1316 	return err;
1317 }
1318 
1319 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1320 					struct kfd_process *p, void *data)
1321 {
1322 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1323 	struct kfd_process_device *pdd;
1324 	void *mem;
1325 	struct kfd_dev *dev;
1326 	int ret;
1327 
1328 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1329 	if (!dev)
1330 		return -EINVAL;
1331 
1332 	mutex_lock(&p->mutex);
1333 
1334 	pdd = kfd_get_process_device_data(dev, p);
1335 	if (!pdd) {
1336 		pr_err("Process device data doesn't exist\n");
1337 		ret = -EINVAL;
1338 		goto err_unlock;
1339 	}
1340 
1341 	mem = kfd_process_device_translate_handle(
1342 		pdd, GET_IDR_HANDLE(args->handle));
1343 	if (!mem) {
1344 		ret = -EINVAL;
1345 		goto err_unlock;
1346 	}
1347 
1348 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1349 						(struct kgd_mem *)mem);
1350 
1351 	/* If freeing the buffer failed, leave the handle in place for
1352 	 * clean-up during process tear-down.
1353 	 */
1354 	if (!ret)
1355 		kfd_process_device_remove_obj_handle(
1356 			pdd, GET_IDR_HANDLE(args->handle));
1357 
1358 err_unlock:
1359 	mutex_unlock(&p->mutex);
1360 	return ret;
1361 }
1362 
1363 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1364 					struct kfd_process *p, void *data)
1365 {
1366 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1367 	struct kfd_process_device *pdd, *peer_pdd;
1368 	void *mem;
1369 	struct kfd_dev *dev, *peer;
1370 	long err = 0;
1371 	int i;
1372 	uint32_t *devices_arr = NULL;
1373 
1374 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1375 	if (!dev)
1376 		return -EINVAL;
1377 
1378 	if (!args->n_devices) {
1379 		pr_debug("Device IDs array empty\n");
1380 		return -EINVAL;
1381 	}
1382 	if (args->n_success > args->n_devices) {
1383 		pr_debug("n_success exceeds n_devices\n");
1384 		return -EINVAL;
1385 	}
1386 
1387 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1388 				    GFP_KERNEL);
1389 	if (!devices_arr)
1390 		return -ENOMEM;
1391 
1392 	err = copy_from_user(devices_arr,
1393 			     (void __user *)args->device_ids_array_ptr,
1394 			     args->n_devices * sizeof(*devices_arr));
1395 	if (err != 0) {
1396 		err = -EFAULT;
1397 		goto copy_from_user_failed;
1398 	}
1399 
1400 	mutex_lock(&p->mutex);
1401 
1402 	pdd = kfd_bind_process_to_device(dev, p);
1403 	if (IS_ERR(pdd)) {
1404 		err = PTR_ERR(pdd);
1405 		goto bind_process_to_device_failed;
1406 	}
1407 
1408 	mem = kfd_process_device_translate_handle(pdd,
1409 						GET_IDR_HANDLE(args->handle));
1410 	if (!mem) {
1411 		err = -ENOMEM;
1412 		goto get_mem_obj_from_handle_failed;
1413 	}
1414 
1415 	for (i = args->n_success; i < args->n_devices; i++) {
1416 		peer = kfd_device_by_id(devices_arr[i]);
1417 		if (!peer) {
1418 			pr_debug("Getting device by id failed for 0x%x\n",
1419 				 devices_arr[i]);
1420 			err = -EINVAL;
1421 			goto get_mem_obj_from_handle_failed;
1422 		}
1423 
1424 		peer_pdd = kfd_bind_process_to_device(peer, p);
1425 		if (IS_ERR(peer_pdd)) {
1426 			err = PTR_ERR(peer_pdd);
1427 			goto get_mem_obj_from_handle_failed;
1428 		}
1429 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1430 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1431 		if (err) {
1432 			pr_err("Failed to map to gpu %d/%d\n",
1433 			       i, args->n_devices);
1434 			goto map_memory_to_gpu_failed;
1435 		}
1436 		args->n_success = i+1;
1437 	}
1438 
1439 	mutex_unlock(&p->mutex);
1440 
1441 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1442 	if (err) {
1443 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1444 		goto sync_memory_failed;
1445 	}
1446 
1447 	/* Flush TLBs after waiting for the page table updates to complete */
1448 	for (i = 0; i < args->n_devices; i++) {
1449 		peer = kfd_device_by_id(devices_arr[i]);
1450 		if (WARN_ON_ONCE(!peer))
1451 			continue;
1452 		peer_pdd = kfd_get_process_device_data(peer, p);
1453 		if (WARN_ON_ONCE(!peer_pdd))
1454 			continue;
1455 		kfd_flush_tlb(peer_pdd);
1456 	}
1457 
1458 	kfree(devices_arr);
1459 
1460 	return err;
1461 
1462 bind_process_to_device_failed:
1463 get_mem_obj_from_handle_failed:
1464 map_memory_to_gpu_failed:
1465 	mutex_unlock(&p->mutex);
1466 copy_from_user_failed:
1467 sync_memory_failed:
1468 	kfree(devices_arr);
1469 
1470 	return err;
1471 }
1472 
1473 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1474 					struct kfd_process *p, void *data)
1475 {
1476 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1477 	struct kfd_process_device *pdd, *peer_pdd;
1478 	void *mem;
1479 	struct kfd_dev *dev, *peer;
1480 	long err = 0;
1481 	uint32_t *devices_arr = NULL, i;
1482 
1483 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1484 	if (!dev)
1485 		return -EINVAL;
1486 
1487 	if (!args->n_devices) {
1488 		pr_debug("Device IDs array empty\n");
1489 		return -EINVAL;
1490 	}
1491 	if (args->n_success > args->n_devices) {
1492 		pr_debug("n_success exceeds n_devices\n");
1493 		return -EINVAL;
1494 	}
1495 
1496 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1497 				    GFP_KERNEL);
1498 	if (!devices_arr)
1499 		return -ENOMEM;
1500 
1501 	err = copy_from_user(devices_arr,
1502 			     (void __user *)args->device_ids_array_ptr,
1503 			     args->n_devices * sizeof(*devices_arr));
1504 	if (err != 0) {
1505 		err = -EFAULT;
1506 		goto copy_from_user_failed;
1507 	}
1508 
1509 	mutex_lock(&p->mutex);
1510 
1511 	pdd = kfd_get_process_device_data(dev, p);
1512 	if (!pdd) {
1513 		err = -EINVAL;
1514 		goto bind_process_to_device_failed;
1515 	}
1516 
1517 	mem = kfd_process_device_translate_handle(pdd,
1518 						GET_IDR_HANDLE(args->handle));
1519 	if (!mem) {
1520 		err = -ENOMEM;
1521 		goto get_mem_obj_from_handle_failed;
1522 	}
1523 
1524 	for (i = args->n_success; i < args->n_devices; i++) {
1525 		peer = kfd_device_by_id(devices_arr[i]);
1526 		if (!peer) {
1527 			err = -EINVAL;
1528 			goto get_mem_obj_from_handle_failed;
1529 		}
1530 
1531 		peer_pdd = kfd_get_process_device_data(peer, p);
1532 		if (!peer_pdd) {
1533 			err = -ENODEV;
1534 			goto get_mem_obj_from_handle_failed;
1535 		}
1536 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1537 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1538 		if (err) {
1539 			pr_err("Failed to unmap from gpu %d/%d\n",
1540 			       i, args->n_devices);
1541 			goto unmap_memory_from_gpu_failed;
1542 		}
1543 		args->n_success = i+1;
1544 	}
1545 	kfree(devices_arr);
1546 
1547 	mutex_unlock(&p->mutex);
1548 
1549 	return 0;
1550 
1551 bind_process_to_device_failed:
1552 get_mem_obj_from_handle_failed:
1553 unmap_memory_from_gpu_failed:
1554 	mutex_unlock(&p->mutex);
1555 copy_from_user_failed:
1556 	kfree(devices_arr);
1557 	return err;
1558 }
1559 
1560 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1561 		struct kfd_process *p, void *data)
1562 {
1563 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1564 	struct kfd_dev *dev = NULL;
1565 	struct kgd_dev *dma_buf_kgd;
1566 	void *metadata_buffer = NULL;
1567 	uint32_t flags;
1568 	unsigned int i;
1569 	int r;
1570 
1571 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1572 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1573 		if (dev)
1574 			break;
1575 	if (!dev)
1576 		return -EINVAL;
1577 
1578 	if (args->metadata_ptr) {
1579 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1580 		if (!metadata_buffer)
1581 			return -ENOMEM;
1582 	}
1583 
1584 	/* Get dmabuf info from KGD */
1585 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1586 					  &dma_buf_kgd, &args->size,
1587 					  metadata_buffer, args->metadata_size,
1588 					  &args->metadata_size, &flags);
1589 	if (r)
1590 		goto exit;
1591 
1592 	/* Reverse-lookup gpu_id from kgd pointer */
1593 	dev = kfd_device_by_kgd(dma_buf_kgd);
1594 	if (!dev) {
1595 		r = -EINVAL;
1596 		goto exit;
1597 	}
1598 	args->gpu_id = dev->id;
1599 	args->flags = flags;
1600 
1601 	/* Copy metadata buffer to user mode */
1602 	if (metadata_buffer) {
1603 		r = copy_to_user((void __user *)args->metadata_ptr,
1604 				 metadata_buffer, args->metadata_size);
1605 		if (r != 0)
1606 			r = -EFAULT;
1607 	}
1608 
1609 exit:
1610 	kfree(metadata_buffer);
1611 
1612 	return r;
1613 }
1614 
1615 static int kfd_ioctl_import_dmabuf(struct file *filep,
1616 				   struct kfd_process *p, void *data)
1617 {
1618 	struct kfd_ioctl_import_dmabuf_args *args = data;
1619 	struct kfd_process_device *pdd;
1620 	struct dma_buf *dmabuf;
1621 	struct kfd_dev *dev;
1622 	int idr_handle;
1623 	uint64_t size;
1624 	void *mem;
1625 	int r;
1626 
1627 	dev = kfd_device_by_id(args->gpu_id);
1628 	if (!dev)
1629 		return -EINVAL;
1630 
1631 	dmabuf = dma_buf_get(args->dmabuf_fd);
1632 	if (!dmabuf)
1633 		return -EINVAL;
1634 
1635 	mutex_lock(&p->mutex);
1636 
1637 	pdd = kfd_bind_process_to_device(dev, p);
1638 	if (IS_ERR(pdd)) {
1639 		r = PTR_ERR(pdd);
1640 		goto err_unlock;
1641 	}
1642 
1643 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1644 					      args->va_addr, pdd->vm,
1645 					      (struct kgd_mem **)&mem, &size,
1646 					      NULL);
1647 	if (r)
1648 		goto err_unlock;
1649 
1650 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1651 	if (idr_handle < 0) {
1652 		r = -EFAULT;
1653 		goto err_free;
1654 	}
1655 
1656 	mutex_unlock(&p->mutex);
1657 
1658 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1659 
1660 	return 0;
1661 
1662 err_free:
1663 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1664 err_unlock:
1665 	mutex_unlock(&p->mutex);
1666 	return r;
1667 }
1668 
1669 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1670 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1671 			    .cmd_drv = 0, .name = #ioctl}
1672 
1673 /** Ioctl table */
1674 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1675 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1676 			kfd_ioctl_get_version, 0),
1677 
1678 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1679 			kfd_ioctl_create_queue, 0),
1680 
1681 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1682 			kfd_ioctl_destroy_queue, 0),
1683 
1684 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1685 			kfd_ioctl_set_memory_policy, 0),
1686 
1687 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1688 			kfd_ioctl_get_clock_counters, 0),
1689 
1690 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1691 			kfd_ioctl_get_process_apertures, 0),
1692 
1693 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1694 			kfd_ioctl_update_queue, 0),
1695 
1696 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1697 			kfd_ioctl_create_event, 0),
1698 
1699 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1700 			kfd_ioctl_destroy_event, 0),
1701 
1702 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1703 			kfd_ioctl_set_event, 0),
1704 
1705 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1706 			kfd_ioctl_reset_event, 0),
1707 
1708 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1709 			kfd_ioctl_wait_events, 0),
1710 
1711 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1712 			kfd_ioctl_dbg_register, 0),
1713 
1714 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1715 			kfd_ioctl_dbg_unregister, 0),
1716 
1717 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1718 			kfd_ioctl_dbg_address_watch, 0),
1719 
1720 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1721 			kfd_ioctl_dbg_wave_control, 0),
1722 
1723 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1724 			kfd_ioctl_set_scratch_backing_va, 0),
1725 
1726 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1727 			kfd_ioctl_get_tile_config, 0),
1728 
1729 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1730 			kfd_ioctl_set_trap_handler, 0),
1731 
1732 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1733 			kfd_ioctl_get_process_apertures_new, 0),
1734 
1735 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1736 			kfd_ioctl_acquire_vm, 0),
1737 
1738 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1739 			kfd_ioctl_alloc_memory_of_gpu, 0),
1740 
1741 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1742 			kfd_ioctl_free_memory_of_gpu, 0),
1743 
1744 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1745 			kfd_ioctl_map_memory_to_gpu, 0),
1746 
1747 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1748 			kfd_ioctl_unmap_memory_from_gpu, 0),
1749 
1750 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1751 			kfd_ioctl_set_cu_mask, 0),
1752 
1753 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1754 			kfd_ioctl_get_queue_wave_state, 0),
1755 
1756 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1757 				kfd_ioctl_get_dmabuf_info, 0),
1758 
1759 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1760 				kfd_ioctl_import_dmabuf, 0),
1761 
1762 };
1763 
1764 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1765 
1766 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1767 {
1768 	struct kfd_process *process;
1769 	amdkfd_ioctl_t *func;
1770 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1771 	unsigned int nr = _IOC_NR(cmd);
1772 	char stack_kdata[128];
1773 	char *kdata = NULL;
1774 	unsigned int usize, asize;
1775 	int retcode = -EINVAL;
1776 
1777 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1778 		goto err_i1;
1779 
1780 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1781 		u32 amdkfd_size;
1782 
1783 		ioctl = &amdkfd_ioctls[nr];
1784 
1785 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1786 		usize = asize = _IOC_SIZE(cmd);
1787 		if (amdkfd_size > asize)
1788 			asize = amdkfd_size;
1789 
1790 		cmd = ioctl->cmd;
1791 	} else
1792 		goto err_i1;
1793 
1794 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1795 
1796 	process = kfd_get_process(current);
1797 	if (IS_ERR(process)) {
1798 		dev_dbg(kfd_device, "no process\n");
1799 		goto err_i1;
1800 	}
1801 
1802 	/* Do not trust userspace, use our own definition */
1803 	func = ioctl->func;
1804 
1805 	if (unlikely(!func)) {
1806 		dev_dbg(kfd_device, "no function\n");
1807 		retcode = -EINVAL;
1808 		goto err_i1;
1809 	}
1810 
1811 	if (cmd & (IOC_IN | IOC_OUT)) {
1812 		if (asize <= sizeof(stack_kdata)) {
1813 			kdata = stack_kdata;
1814 		} else {
1815 			kdata = kmalloc(asize, GFP_KERNEL);
1816 			if (!kdata) {
1817 				retcode = -ENOMEM;
1818 				goto err_i1;
1819 			}
1820 		}
1821 		if (asize > usize)
1822 			memset(kdata + usize, 0, asize - usize);
1823 	}
1824 
1825 	if (cmd & IOC_IN) {
1826 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1827 			retcode = -EFAULT;
1828 			goto err_i1;
1829 		}
1830 	} else if (cmd & IOC_OUT) {
1831 		memset(kdata, 0, usize);
1832 	}
1833 
1834 	retcode = func(filep, process, kdata);
1835 
1836 	if (cmd & IOC_OUT)
1837 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1838 			retcode = -EFAULT;
1839 
1840 err_i1:
1841 	if (!ioctl)
1842 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1843 			  task_pid_nr(current), cmd, nr);
1844 
1845 	if (kdata != stack_kdata)
1846 		kfree(kdata);
1847 
1848 	if (retcode)
1849 		dev_dbg(kfd_device, "ret = %d\n", retcode);
1850 
1851 	return retcode;
1852 }
1853 
1854 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1855 {
1856 	struct kfd_process *process;
1857 	struct kfd_dev *dev = NULL;
1858 	unsigned long vm_pgoff;
1859 	unsigned int gpu_id;
1860 
1861 	process = kfd_get_process(current);
1862 	if (IS_ERR(process))
1863 		return PTR_ERR(process);
1864 
1865 	vm_pgoff = vma->vm_pgoff;
1866 	vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1867 	gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1868 	if (gpu_id)
1869 		dev = kfd_device_by_id(gpu_id);
1870 
1871 	switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1872 	case KFD_MMAP_TYPE_DOORBELL:
1873 		if (!dev)
1874 			return -ENODEV;
1875 		return kfd_doorbell_mmap(dev, process, vma);
1876 
1877 	case KFD_MMAP_TYPE_EVENTS:
1878 		return kfd_event_mmap(process, vma);
1879 
1880 	case KFD_MMAP_TYPE_RESERVED_MEM:
1881 		if (!dev)
1882 			return -ENODEV;
1883 		return kfd_reserved_mem_mmap(dev, process, vma);
1884 	}
1885 
1886 	return -EFAULT;
1887 }
1888