xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 
57 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
58 {
59 	SDMA0_REGISTER_OFFSET,
60 	SDMA1_REGISTER_OFFSET
61 };
62 
63 static const u32 golden_settings_tonga_a11[] =
64 {
65 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
66 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
67 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
68 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
69 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
70 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
71 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
72 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
73 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
74 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
75 };
76 
77 static const u32 tonga_mgcg_cgcg_init[] =
78 {
79 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
80 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
81 };
82 
83 static const u32 cz_golden_settings_a11[] =
84 {
85 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
86 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
87 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
88 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
89 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
90 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
91 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
92 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
93 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
94 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
95 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
96 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
97 };
98 
99 static const u32 cz_mgcg_cgcg_init[] =
100 {
101 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
102 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
103 };
104 
105 /*
106  * sDMA - System DMA
107  * Starting with CIK, the GPU has new asynchronous
108  * DMA engines.  These engines are used for compute
109  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
110  * and each one supports 1 ring buffer used for gfx
111  * and 2 queues used for compute.
112  *
113  * The programming model is very similar to the CP
114  * (ring buffer, IBs, etc.), but sDMA has it's own
115  * packet format that is different from the PM4 format
116  * used by the CP. sDMA supports copying data, writing
117  * embedded data, solid fills, and a number of other
118  * things.  It also has support for tiling/detiling of
119  * buffers.
120  */
121 
122 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
123 {
124 	switch (adev->asic_type) {
125 	case CHIP_TONGA:
126 		amdgpu_program_register_sequence(adev,
127 						 tonga_mgcg_cgcg_init,
128 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
129 		amdgpu_program_register_sequence(adev,
130 						 golden_settings_tonga_a11,
131 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
132 		break;
133 	case CHIP_CARRIZO:
134 		amdgpu_program_register_sequence(adev,
135 						 cz_mgcg_cgcg_init,
136 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
137 		amdgpu_program_register_sequence(adev,
138 						 cz_golden_settings_a11,
139 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
140 		break;
141 	default:
142 		break;
143 	}
144 }
145 
146 /**
147  * sdma_v3_0_init_microcode - load ucode images from disk
148  *
149  * @adev: amdgpu_device pointer
150  *
151  * Use the firmware interface to load the ucode images into
152  * the driver (not loaded into hw).
153  * Returns 0 on success, error on failure.
154  */
155 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
156 {
157 	const char *chip_name;
158 	char fw_name[30];
159 	int err, i;
160 	struct amdgpu_firmware_info *info = NULL;
161 	const struct common_firmware_header *header = NULL;
162 
163 	DRM_DEBUG("\n");
164 
165 	switch (adev->asic_type) {
166 	case CHIP_TONGA:
167 		chip_name = "tonga";
168 		break;
169 	case CHIP_CARRIZO:
170 		chip_name = "carrizo";
171 		break;
172 	default: BUG();
173 	}
174 
175 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
176 		if (i == 0)
177 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
178 		else
179 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
180 		err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
181 		if (err)
182 			goto out;
183 		err = amdgpu_ucode_validate(adev->sdma[i].fw);
184 		if (err)
185 			goto out;
186 
187 		if (adev->firmware.smu_load) {
188 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
189 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
190 			info->fw = adev->sdma[i].fw;
191 			header = (const struct common_firmware_header *)info->fw->data;
192 			adev->firmware.fw_size +=
193 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
194 		}
195 	}
196 out:
197 	if (err) {
198 		printk(KERN_ERR
199 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
200 		       fw_name);
201 		for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
202 			release_firmware(adev->sdma[i].fw);
203 			adev->sdma[i].fw = NULL;
204 		}
205 	}
206 	return err;
207 }
208 
209 /**
210  * sdma_v3_0_ring_get_rptr - get the current read pointer
211  *
212  * @ring: amdgpu ring pointer
213  *
214  * Get the current rptr from the hardware (VI+).
215  */
216 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
217 {
218 	u32 rptr;
219 
220 	/* XXX check if swapping is necessary on BE */
221 	rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
222 
223 	return rptr;
224 }
225 
226 /**
227  * sdma_v3_0_ring_get_wptr - get the current write pointer
228  *
229  * @ring: amdgpu ring pointer
230  *
231  * Get the current wptr from the hardware (VI+).
232  */
233 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
234 {
235 	struct amdgpu_device *adev = ring->adev;
236 	u32 wptr;
237 
238 	if (ring->use_doorbell) {
239 		/* XXX check if swapping is necessary on BE */
240 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
241 	} else {
242 		int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
243 
244 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
245 	}
246 
247 	return wptr;
248 }
249 
250 /**
251  * sdma_v3_0_ring_set_wptr - commit the write pointer
252  *
253  * @ring: amdgpu ring pointer
254  *
255  * Write the wptr back to the hardware (VI+).
256  */
257 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
258 {
259 	struct amdgpu_device *adev = ring->adev;
260 
261 	if (ring->use_doorbell) {
262 		/* XXX check if swapping is necessary on BE */
263 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
264 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
265 	} else {
266 		int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
267 
268 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
269 	}
270 }
271 
272 /**
273  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
274  *
275  * @ring: amdgpu ring pointer
276  * @ib: IB object to schedule
277  *
278  * Schedule an IB in the DMA ring (VI).
279  */
280 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
281 				   struct amdgpu_ib *ib)
282 {
283 	u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
284 	u32 next_rptr = ring->wptr + 5;
285 
286 	while ((next_rptr & 7) != 2)
287 		next_rptr++;
288 	next_rptr += 6;
289 
290 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
291 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
292 	amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
293 	amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
294 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
295 	amdgpu_ring_write(ring, next_rptr);
296 
297 	/* IB packet must end on a 8 DW boundary */
298 	while ((ring->wptr & 7) != 2)
299 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
300 
301 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
302 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
303 	/* base must be 32 byte aligned */
304 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
305 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
306 	amdgpu_ring_write(ring, ib->length_dw);
307 	amdgpu_ring_write(ring, 0);
308 	amdgpu_ring_write(ring, 0);
309 
310 }
311 
312 /**
313  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
314  *
315  * @ring: amdgpu ring pointer
316  *
317  * Emit an hdp flush packet on the requested DMA ring.
318  */
319 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
320 {
321 	u32 ref_and_mask = 0;
322 
323 	if (ring == &ring->adev->sdma[0].ring)
324 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
325 	else
326 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
327 
328 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
329 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
330 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
331 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
332 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
333 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
334 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
335 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
336 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
337 }
338 
339 /**
340  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
341  *
342  * @ring: amdgpu ring pointer
343  * @fence: amdgpu fence object
344  *
345  * Add a DMA fence packet to the ring to write
346  * the fence seq number and DMA trap packet to generate
347  * an interrupt if needed (VI).
348  */
349 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
350 				      unsigned flags)
351 {
352 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
353 	/* write the fence */
354 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
355 	amdgpu_ring_write(ring, lower_32_bits(addr));
356 	amdgpu_ring_write(ring, upper_32_bits(addr));
357 	amdgpu_ring_write(ring, lower_32_bits(seq));
358 
359 	/* optionally write high bits as well */
360 	if (write64bit) {
361 		addr += 4;
362 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
363 		amdgpu_ring_write(ring, lower_32_bits(addr));
364 		amdgpu_ring_write(ring, upper_32_bits(addr));
365 		amdgpu_ring_write(ring, upper_32_bits(seq));
366 	}
367 
368 	/* generate an interrupt */
369 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
370 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
371 }
372 
373 
374 /**
375  * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
376  *
377  * @ring: amdgpu_ring structure holding ring information
378  * @semaphore: amdgpu semaphore object
379  * @emit_wait: wait or signal semaphore
380  *
381  * Add a DMA semaphore packet to the ring wait on or signal
382  * other rings (VI).
383  */
384 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
385 					  struct amdgpu_semaphore *semaphore,
386 					  bool emit_wait)
387 {
388 	u64 addr = semaphore->gpu_addr;
389 	u32 sig = emit_wait ? 0 : 1;
390 
391 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
392 			  SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
393 	amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
394 	amdgpu_ring_write(ring, upper_32_bits(addr));
395 
396 	return true;
397 }
398 
399 /**
400  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
401  *
402  * @adev: amdgpu_device pointer
403  *
404  * Stop the gfx async dma ring buffers (VI).
405  */
406 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
407 {
408 	struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
409 	struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
410 	u32 rb_cntl, ib_cntl;
411 	int i;
412 
413 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
414 	    (adev->mman.buffer_funcs_ring == sdma1))
415 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
416 
417 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
418 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
419 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
420 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
421 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
422 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
423 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
424 	}
425 	sdma0->ready = false;
426 	sdma1->ready = false;
427 }
428 
429 /**
430  * sdma_v3_0_rlc_stop - stop the compute async dma engines
431  *
432  * @adev: amdgpu_device pointer
433  *
434  * Stop the compute async dma queues (VI).
435  */
436 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
437 {
438 	/* XXX todo */
439 }
440 
441 /**
442  * sdma_v3_0_enable - stop the async dma engines
443  *
444  * @adev: amdgpu_device pointer
445  * @enable: enable/disable the DMA MEs.
446  *
447  * Halt or unhalt the async dma engines (VI).
448  */
449 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
450 {
451 	u32 f32_cntl;
452 	int i;
453 
454 	if (enable == false) {
455 		sdma_v3_0_gfx_stop(adev);
456 		sdma_v3_0_rlc_stop(adev);
457 	}
458 
459 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
460 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
461 		if (enable)
462 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
463 		else
464 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
465 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
466 	}
467 }
468 
469 /**
470  * sdma_v3_0_gfx_resume - setup and start the async dma engines
471  *
472  * @adev: amdgpu_device pointer
473  *
474  * Set up the gfx DMA ring buffers and enable them (VI).
475  * Returns 0 for success, error for failure.
476  */
477 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
478 {
479 	struct amdgpu_ring *ring;
480 	u32 rb_cntl, ib_cntl;
481 	u32 rb_bufsz;
482 	u32 wb_offset;
483 	u32 doorbell;
484 	int i, j, r;
485 
486 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
487 		ring = &adev->sdma[i].ring;
488 		wb_offset = (ring->rptr_offs * 4);
489 
490 		mutex_lock(&adev->srbm_mutex);
491 		for (j = 0; j < 16; j++) {
492 			vi_srbm_select(adev, 0, 0, 0, j);
493 			/* SDMA GFX */
494 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
495 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
496 		}
497 		vi_srbm_select(adev, 0, 0, 0, 0);
498 		mutex_unlock(&adev->srbm_mutex);
499 
500 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
501 
502 		/* Set ring buffer size in dwords */
503 		rb_bufsz = order_base_2(ring->ring_size / 4);
504 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
505 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
506 #ifdef __BIG_ENDIAN
507 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
508 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
509 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
510 #endif
511 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
512 
513 		/* Initialize the ring buffer's read and write pointers */
514 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
515 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
516 
517 		/* set the wb address whether it's enabled or not */
518 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
519 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
520 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
521 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
522 
523 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
524 
525 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
526 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
527 
528 		ring->wptr = 0;
529 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
530 
531 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
532 
533 		if (ring->use_doorbell) {
534 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
535 						 OFFSET, ring->doorbell_index);
536 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
537 		} else {
538 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
539 		}
540 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
541 
542 		/* enable DMA RB */
543 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
544 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
545 
546 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
547 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
548 #ifdef __BIG_ENDIAN
549 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
550 #endif
551 		/* enable DMA IBs */
552 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
553 
554 		ring->ready = true;
555 
556 		r = amdgpu_ring_test_ring(ring);
557 		if (r) {
558 			ring->ready = false;
559 			return r;
560 		}
561 
562 		if (adev->mman.buffer_funcs_ring == ring)
563 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
564 	}
565 
566 	return 0;
567 }
568 
569 /**
570  * sdma_v3_0_rlc_resume - setup and start the async dma engines
571  *
572  * @adev: amdgpu_device pointer
573  *
574  * Set up the compute DMA queues and enable them (VI).
575  * Returns 0 for success, error for failure.
576  */
577 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
578 {
579 	/* XXX todo */
580 	return 0;
581 }
582 
583 /**
584  * sdma_v3_0_load_microcode - load the sDMA ME ucode
585  *
586  * @adev: amdgpu_device pointer
587  *
588  * Loads the sDMA0/1 ucode.
589  * Returns 0 for success, -EINVAL if the ucode is not available.
590  */
591 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
592 {
593 	const struct sdma_firmware_header_v1_0 *hdr;
594 	const __le32 *fw_data;
595 	u32 fw_size;
596 	int i, j;
597 
598 	if (!adev->sdma[0].fw || !adev->sdma[1].fw)
599 		return -EINVAL;
600 
601 	/* halt the MEs */
602 	sdma_v3_0_enable(adev, false);
603 
604 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
605 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
606 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
607 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
608 		adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
609 
610 		fw_data = (const __le32 *)
611 			(adev->sdma[i].fw->data +
612 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
613 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
614 		for (j = 0; j < fw_size; j++)
615 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
616 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
617 	}
618 
619 	return 0;
620 }
621 
622 /**
623  * sdma_v3_0_start - setup and start the async dma engines
624  *
625  * @adev: amdgpu_device pointer
626  *
627  * Set up the DMA engines and enable them (VI).
628  * Returns 0 for success, error for failure.
629  */
630 static int sdma_v3_0_start(struct amdgpu_device *adev)
631 {
632 	int r;
633 
634 	if (!adev->firmware.smu_load) {
635 		r = sdma_v3_0_load_microcode(adev);
636 		if (r)
637 			return r;
638 	} else {
639 		r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
640 						AMDGPU_UCODE_ID_SDMA0);
641 		if (r)
642 			return -EINVAL;
643 		r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
644 						AMDGPU_UCODE_ID_SDMA1);
645 		if (r)
646 			return -EINVAL;
647 	}
648 
649 	/* unhalt the MEs */
650 	sdma_v3_0_enable(adev, true);
651 
652 	/* start the gfx rings and rlc compute queues */
653 	r = sdma_v3_0_gfx_resume(adev);
654 	if (r)
655 		return r;
656 	r = sdma_v3_0_rlc_resume(adev);
657 	if (r)
658 		return r;
659 
660 	return 0;
661 }
662 
663 /**
664  * sdma_v3_0_ring_test_ring - simple async dma engine test
665  *
666  * @ring: amdgpu_ring structure holding ring information
667  *
668  * Test the DMA engine by writing using it to write an
669  * value to memory. (VI).
670  * Returns 0 for success, error for failure.
671  */
672 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
673 {
674 	struct amdgpu_device *adev = ring->adev;
675 	unsigned i;
676 	unsigned index;
677 	int r;
678 	u32 tmp;
679 	u64 gpu_addr;
680 
681 	r = amdgpu_wb_get(adev, &index);
682 	if (r) {
683 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
684 		return r;
685 	}
686 
687 	gpu_addr = adev->wb.gpu_addr + (index * 4);
688 	tmp = 0xCAFEDEAD;
689 	adev->wb.wb[index] = cpu_to_le32(tmp);
690 
691 	r = amdgpu_ring_lock(ring, 5);
692 	if (r) {
693 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
694 		amdgpu_wb_free(adev, index);
695 		return r;
696 	}
697 
698 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
699 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
700 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
701 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
702 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
703 	amdgpu_ring_write(ring, 0xDEADBEEF);
704 	amdgpu_ring_unlock_commit(ring);
705 
706 	for (i = 0; i < adev->usec_timeout; i++) {
707 		tmp = le32_to_cpu(adev->wb.wb[index]);
708 		if (tmp == 0xDEADBEEF)
709 			break;
710 		DRM_UDELAY(1);
711 	}
712 
713 	if (i < adev->usec_timeout) {
714 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
715 	} else {
716 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
717 			  ring->idx, tmp);
718 		r = -EINVAL;
719 	}
720 	amdgpu_wb_free(adev, index);
721 
722 	return r;
723 }
724 
725 /**
726  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
727  *
728  * @ring: amdgpu_ring structure holding ring information
729  *
730  * Test a simple IB in the DMA ring (VI).
731  * Returns 0 on success, error on failure.
732  */
733 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
734 {
735 	struct amdgpu_device *adev = ring->adev;
736 	struct amdgpu_ib ib;
737 	unsigned i;
738 	unsigned index;
739 	int r;
740 	u32 tmp = 0;
741 	u64 gpu_addr;
742 
743 	r = amdgpu_wb_get(adev, &index);
744 	if (r) {
745 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
746 		return r;
747 	}
748 
749 	gpu_addr = adev->wb.gpu_addr + (index * 4);
750 	tmp = 0xCAFEDEAD;
751 	adev->wb.wb[index] = cpu_to_le32(tmp);
752 
753 	r = amdgpu_ib_get(ring, NULL, 256, &ib);
754 	if (r) {
755 		amdgpu_wb_free(adev, index);
756 		DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
757 		return r;
758 	}
759 
760 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
761 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
762 	ib.ptr[1] = lower_32_bits(gpu_addr);
763 	ib.ptr[2] = upper_32_bits(gpu_addr);
764 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
765 	ib.ptr[4] = 0xDEADBEEF;
766 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
767 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
768 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
769 	ib.length_dw = 8;
770 
771 	r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_UNDEFINED);
772 	if (r) {
773 		amdgpu_ib_free(adev, &ib);
774 		amdgpu_wb_free(adev, index);
775 		DRM_ERROR("amdgpu: failed to schedule ib (%d).\n", r);
776 		return r;
777 	}
778 	r = amdgpu_fence_wait(ib.fence, false);
779 	if (r) {
780 		amdgpu_ib_free(adev, &ib);
781 		amdgpu_wb_free(adev, index);
782 		DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
783 		return r;
784 	}
785 	for (i = 0; i < adev->usec_timeout; i++) {
786 		tmp = le32_to_cpu(adev->wb.wb[index]);
787 		if (tmp == 0xDEADBEEF)
788 			break;
789 		DRM_UDELAY(1);
790 	}
791 	if (i < adev->usec_timeout) {
792 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
793 			 ib.fence->ring->idx, i);
794 	} else {
795 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
796 		r = -EINVAL;
797 	}
798 	amdgpu_ib_free(adev, &ib);
799 	amdgpu_wb_free(adev, index);
800 	return r;
801 }
802 
803 /**
804  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
805  *
806  * @ib: indirect buffer to fill with commands
807  * @pe: addr of the page entry
808  * @src: src addr to copy from
809  * @count: number of page entries to update
810  *
811  * Update PTEs by copying them from the GART using sDMA (CIK).
812  */
813 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
814 				  uint64_t pe, uint64_t src,
815 				  unsigned count)
816 {
817 	while (count) {
818 		unsigned bytes = count * 8;
819 		if (bytes > 0x1FFFF8)
820 			bytes = 0x1FFFF8;
821 
822 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
823 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
824 		ib->ptr[ib->length_dw++] = bytes;
825 		ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
826 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
827 		ib->ptr[ib->length_dw++] = upper_32_bits(src);
828 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
829 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
830 
831 		pe += bytes;
832 		src += bytes;
833 		count -= bytes / 8;
834 	}
835 }
836 
837 /**
838  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
839  *
840  * @ib: indirect buffer to fill with commands
841  * @pe: addr of the page entry
842  * @addr: dst addr to write into pe
843  * @count: number of page entries to update
844  * @incr: increase next addr by incr bytes
845  * @flags: access flags
846  *
847  * Update PTEs by writing them manually using sDMA (CIK).
848  */
849 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
850 				   uint64_t pe,
851 				   uint64_t addr, unsigned count,
852 				   uint32_t incr, uint32_t flags)
853 {
854 	uint64_t value;
855 	unsigned ndw;
856 
857 	while (count) {
858 		ndw = count * 2;
859 		if (ndw > 0xFFFFE)
860 			ndw = 0xFFFFE;
861 
862 		/* for non-physically contiguous pages (system) */
863 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
864 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
865 		ib->ptr[ib->length_dw++] = pe;
866 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
867 		ib->ptr[ib->length_dw++] = ndw;
868 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
869 			if (flags & AMDGPU_PTE_SYSTEM) {
870 				value = amdgpu_vm_map_gart(ib->ring->adev, addr);
871 				value &= 0xFFFFFFFFFFFFF000ULL;
872 			} else if (flags & AMDGPU_PTE_VALID) {
873 				value = addr;
874 			} else {
875 				value = 0;
876 			}
877 			addr += incr;
878 			value |= flags;
879 			ib->ptr[ib->length_dw++] = value;
880 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
881 		}
882 	}
883 }
884 
885 /**
886  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
887  *
888  * @ib: indirect buffer to fill with commands
889  * @pe: addr of the page entry
890  * @addr: dst addr to write into pe
891  * @count: number of page entries to update
892  * @incr: increase next addr by incr bytes
893  * @flags: access flags
894  *
895  * Update the page tables using sDMA (CIK).
896  */
897 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
898 				     uint64_t pe,
899 				     uint64_t addr, unsigned count,
900 				     uint32_t incr, uint32_t flags)
901 {
902 	uint64_t value;
903 	unsigned ndw;
904 
905 	while (count) {
906 		ndw = count;
907 		if (ndw > 0x7FFFF)
908 			ndw = 0x7FFFF;
909 
910 		if (flags & AMDGPU_PTE_VALID)
911 			value = addr;
912 		else
913 			value = 0;
914 
915 		/* for physically contiguous pages (vram) */
916 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
917 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
918 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
919 		ib->ptr[ib->length_dw++] = flags; /* mask */
920 		ib->ptr[ib->length_dw++] = 0;
921 		ib->ptr[ib->length_dw++] = value; /* value */
922 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
923 		ib->ptr[ib->length_dw++] = incr; /* increment size */
924 		ib->ptr[ib->length_dw++] = 0;
925 		ib->ptr[ib->length_dw++] = ndw; /* number of entries */
926 
927 		pe += ndw * 8;
928 		addr += ndw * incr;
929 		count -= ndw;
930 	}
931 }
932 
933 /**
934  * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
935  *
936  * @ib: indirect buffer to fill with padding
937  *
938  */
939 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
940 {
941 	while (ib->length_dw & 0x7)
942 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
943 }
944 
945 /**
946  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
947  *
948  * @ring: amdgpu_ring pointer
949  * @vm: amdgpu_vm pointer
950  *
951  * Update the page table base and flush the VM TLB
952  * using sDMA (VI).
953  */
954 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
955 					 unsigned vm_id, uint64_t pd_addr)
956 {
957 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
958 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
959 	if (vm_id < 8) {
960 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
961 	} else {
962 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
963 	}
964 	amdgpu_ring_write(ring, pd_addr >> 12);
965 
966 	/* flush TLB */
967 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
968 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
969 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
970 	amdgpu_ring_write(ring, 1 << vm_id);
971 
972 	/* wait for flush */
973 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
974 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
975 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
976 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
977 	amdgpu_ring_write(ring, 0);
978 	amdgpu_ring_write(ring, 0); /* reference */
979 	amdgpu_ring_write(ring, 0); /* mask */
980 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
981 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
982 }
983 
984 static int sdma_v3_0_early_init(void *handle)
985 {
986 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
987 
988 	sdma_v3_0_set_ring_funcs(adev);
989 	sdma_v3_0_set_buffer_funcs(adev);
990 	sdma_v3_0_set_vm_pte_funcs(adev);
991 	sdma_v3_0_set_irq_funcs(adev);
992 
993 	return 0;
994 }
995 
996 static int sdma_v3_0_sw_init(void *handle)
997 {
998 	struct amdgpu_ring *ring;
999 	int r;
1000 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1001 
1002 	/* SDMA trap event */
1003 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
1004 	if (r)
1005 		return r;
1006 
1007 	/* SDMA Privileged inst */
1008 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
1009 	if (r)
1010 		return r;
1011 
1012 	/* SDMA Privileged inst */
1013 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
1014 	if (r)
1015 		return r;
1016 
1017 	r = sdma_v3_0_init_microcode(adev);
1018 	if (r) {
1019 		DRM_ERROR("Failed to load sdma firmware!\n");
1020 		return r;
1021 	}
1022 
1023 	ring = &adev->sdma[0].ring;
1024 	ring->ring_obj = NULL;
1025 	ring->use_doorbell = true;
1026 	ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
1027 
1028 	ring = &adev->sdma[1].ring;
1029 	ring->ring_obj = NULL;
1030 	ring->use_doorbell = true;
1031 	ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
1032 
1033 	ring = &adev->sdma[0].ring;
1034 	sprintf(ring->name, "sdma0");
1035 	r = amdgpu_ring_init(adev, ring, 256 * 1024,
1036 			     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1037 			     &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
1038 			     AMDGPU_RING_TYPE_SDMA);
1039 	if (r)
1040 		return r;
1041 
1042 	ring = &adev->sdma[1].ring;
1043 	sprintf(ring->name, "sdma1");
1044 	r = amdgpu_ring_init(adev, ring, 256 * 1024,
1045 			     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1046 			     &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
1047 			     AMDGPU_RING_TYPE_SDMA);
1048 	if (r)
1049 		return r;
1050 
1051 	return r;
1052 }
1053 
1054 static int sdma_v3_0_sw_fini(void *handle)
1055 {
1056 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1057 
1058 	amdgpu_ring_fini(&adev->sdma[0].ring);
1059 	amdgpu_ring_fini(&adev->sdma[1].ring);
1060 
1061 	return 0;
1062 }
1063 
1064 static int sdma_v3_0_hw_init(void *handle)
1065 {
1066 	int r;
1067 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1068 
1069 	sdma_v3_0_init_golden_registers(adev);
1070 
1071 	r = sdma_v3_0_start(adev);
1072 	if (r)
1073 		return r;
1074 
1075 	return r;
1076 }
1077 
1078 static int sdma_v3_0_hw_fini(void *handle)
1079 {
1080 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1081 
1082 	sdma_v3_0_enable(adev, false);
1083 
1084 	return 0;
1085 }
1086 
1087 static int sdma_v3_0_suspend(void *handle)
1088 {
1089 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1090 
1091 	return sdma_v3_0_hw_fini(adev);
1092 }
1093 
1094 static int sdma_v3_0_resume(void *handle)
1095 {
1096 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1097 
1098 	return sdma_v3_0_hw_init(adev);
1099 }
1100 
1101 static bool sdma_v3_0_is_idle(void *handle)
1102 {
1103 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1104 	u32 tmp = RREG32(mmSRBM_STATUS2);
1105 
1106 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1107 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1108 	    return false;
1109 
1110 	return true;
1111 }
1112 
1113 static int sdma_v3_0_wait_for_idle(void *handle)
1114 {
1115 	unsigned i;
1116 	u32 tmp;
1117 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1118 
1119 	for (i = 0; i < adev->usec_timeout; i++) {
1120 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1121 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1122 
1123 		if (!tmp)
1124 			return 0;
1125 		udelay(1);
1126 	}
1127 	return -ETIMEDOUT;
1128 }
1129 
1130 static void sdma_v3_0_print_status(void *handle)
1131 {
1132 	int i, j;
1133 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1134 
1135 	dev_info(adev->dev, "VI SDMA registers\n");
1136 	dev_info(adev->dev, "  SRBM_STATUS2=0x%08X\n",
1137 		 RREG32(mmSRBM_STATUS2));
1138 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
1139 		dev_info(adev->dev, "  SDMA%d_STATUS_REG=0x%08X\n",
1140 			 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1141 		dev_info(adev->dev, "  SDMA%d_F32_CNTL=0x%08X\n",
1142 			 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1143 		dev_info(adev->dev, "  SDMA%d_CNTL=0x%08X\n",
1144 			 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1145 		dev_info(adev->dev, "  SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1146 			 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1147 		dev_info(adev->dev, "  SDMA%d_GFX_IB_CNTL=0x%08X\n",
1148 			 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1149 		dev_info(adev->dev, "  SDMA%d_GFX_RB_CNTL=0x%08X\n",
1150 			 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1151 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR=0x%08X\n",
1152 			 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1153 		dev_info(adev->dev, "  SDMA%d_GFX_RB_WPTR=0x%08X\n",
1154 			 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1155 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1156 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1157 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1158 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1159 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE=0x%08X\n",
1160 			 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1161 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1162 			 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1163 		dev_info(adev->dev, "  SDMA%d_GFX_DOORBELL=0x%08X\n",
1164 			 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1165 		mutex_lock(&adev->srbm_mutex);
1166 		for (j = 0; j < 16; j++) {
1167 			vi_srbm_select(adev, 0, 0, 0, j);
1168 			dev_info(adev->dev, "  VM %d:\n", j);
1169 			dev_info(adev->dev, "  SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1170 				 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1171 			dev_info(adev->dev, "  SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1172 				 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1173 		}
1174 		vi_srbm_select(adev, 0, 0, 0, 0);
1175 		mutex_unlock(&adev->srbm_mutex);
1176 	}
1177 }
1178 
1179 static int sdma_v3_0_soft_reset(void *handle)
1180 {
1181 	u32 srbm_soft_reset = 0;
1182 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1183 	u32 tmp = RREG32(mmSRBM_STATUS2);
1184 
1185 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1186 		/* sdma0 */
1187 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1188 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1189 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1190 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1191 	}
1192 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1193 		/* sdma1 */
1194 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1195 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1196 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1197 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1198 	}
1199 
1200 	if (srbm_soft_reset) {
1201 		sdma_v3_0_print_status((void *)adev);
1202 
1203 		tmp = RREG32(mmSRBM_SOFT_RESET);
1204 		tmp |= srbm_soft_reset;
1205 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1206 		WREG32(mmSRBM_SOFT_RESET, tmp);
1207 		tmp = RREG32(mmSRBM_SOFT_RESET);
1208 
1209 		udelay(50);
1210 
1211 		tmp &= ~srbm_soft_reset;
1212 		WREG32(mmSRBM_SOFT_RESET, tmp);
1213 		tmp = RREG32(mmSRBM_SOFT_RESET);
1214 
1215 		/* Wait a little for things to settle down */
1216 		udelay(50);
1217 
1218 		sdma_v3_0_print_status((void *)adev);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1225 					struct amdgpu_irq_src *source,
1226 					unsigned type,
1227 					enum amdgpu_interrupt_state state)
1228 {
1229 	u32 sdma_cntl;
1230 
1231 	switch (type) {
1232 	case AMDGPU_SDMA_IRQ_TRAP0:
1233 		switch (state) {
1234 		case AMDGPU_IRQ_STATE_DISABLE:
1235 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1236 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1237 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1238 			break;
1239 		case AMDGPU_IRQ_STATE_ENABLE:
1240 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1241 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1242 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1243 			break;
1244 		default:
1245 			break;
1246 		}
1247 		break;
1248 	case AMDGPU_SDMA_IRQ_TRAP1:
1249 		switch (state) {
1250 		case AMDGPU_IRQ_STATE_DISABLE:
1251 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1252 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1253 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1254 			break;
1255 		case AMDGPU_IRQ_STATE_ENABLE:
1256 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1257 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1258 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1259 			break;
1260 		default:
1261 			break;
1262 		}
1263 		break;
1264 	default:
1265 		break;
1266 	}
1267 	return 0;
1268 }
1269 
1270 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1271 				      struct amdgpu_irq_src *source,
1272 				      struct amdgpu_iv_entry *entry)
1273 {
1274 	u8 instance_id, queue_id;
1275 
1276 	instance_id = (entry->ring_id & 0x3) >> 0;
1277 	queue_id = (entry->ring_id & 0xc) >> 2;
1278 	DRM_DEBUG("IH: SDMA trap\n");
1279 	switch (instance_id) {
1280 	case 0:
1281 		switch (queue_id) {
1282 		case 0:
1283 			amdgpu_fence_process(&adev->sdma[0].ring);
1284 			break;
1285 		case 1:
1286 			/* XXX compute */
1287 			break;
1288 		case 2:
1289 			/* XXX compute */
1290 			break;
1291 		}
1292 		break;
1293 	case 1:
1294 		switch (queue_id) {
1295 		case 0:
1296 			amdgpu_fence_process(&adev->sdma[1].ring);
1297 			break;
1298 		case 1:
1299 			/* XXX compute */
1300 			break;
1301 		case 2:
1302 			/* XXX compute */
1303 			break;
1304 		}
1305 		break;
1306 	}
1307 	return 0;
1308 }
1309 
1310 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1311 					      struct amdgpu_irq_src *source,
1312 					      struct amdgpu_iv_entry *entry)
1313 {
1314 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1315 	schedule_work(&adev->reset_work);
1316 	return 0;
1317 }
1318 
1319 static int sdma_v3_0_set_clockgating_state(void *handle,
1320 					  enum amd_clockgating_state state)
1321 {
1322 	return 0;
1323 }
1324 
1325 static int sdma_v3_0_set_powergating_state(void *handle,
1326 					  enum amd_powergating_state state)
1327 {
1328 	return 0;
1329 }
1330 
1331 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1332 	.early_init = sdma_v3_0_early_init,
1333 	.late_init = NULL,
1334 	.sw_init = sdma_v3_0_sw_init,
1335 	.sw_fini = sdma_v3_0_sw_fini,
1336 	.hw_init = sdma_v3_0_hw_init,
1337 	.hw_fini = sdma_v3_0_hw_fini,
1338 	.suspend = sdma_v3_0_suspend,
1339 	.resume = sdma_v3_0_resume,
1340 	.is_idle = sdma_v3_0_is_idle,
1341 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1342 	.soft_reset = sdma_v3_0_soft_reset,
1343 	.print_status = sdma_v3_0_print_status,
1344 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1345 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1346 };
1347 
1348 /**
1349  * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
1350  *
1351  * @ring: amdgpu_ring structure holding ring information
1352  *
1353  * Check if the async DMA engine is locked up (VI).
1354  * Returns true if the engine appears to be locked up, false if not.
1355  */
1356 static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
1357 {
1358 
1359 	if (sdma_v3_0_is_idle(ring->adev)) {
1360 		amdgpu_ring_lockup_update(ring);
1361 		return false;
1362 	}
1363 	return amdgpu_ring_test_lockup(ring);
1364 }
1365 
1366 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1367 	.get_rptr = sdma_v3_0_ring_get_rptr,
1368 	.get_wptr = sdma_v3_0_ring_get_wptr,
1369 	.set_wptr = sdma_v3_0_ring_set_wptr,
1370 	.parse_cs = NULL,
1371 	.emit_ib = sdma_v3_0_ring_emit_ib,
1372 	.emit_fence = sdma_v3_0_ring_emit_fence,
1373 	.emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1374 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1375 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1376 	.test_ring = sdma_v3_0_ring_test_ring,
1377 	.test_ib = sdma_v3_0_ring_test_ib,
1378 	.is_lockup = sdma_v3_0_ring_is_lockup,
1379 };
1380 
1381 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1382 {
1383 	adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
1384 	adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
1385 }
1386 
1387 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1388 	.set = sdma_v3_0_set_trap_irq_state,
1389 	.process = sdma_v3_0_process_trap_irq,
1390 };
1391 
1392 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1393 	.process = sdma_v3_0_process_illegal_inst_irq,
1394 };
1395 
1396 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1397 {
1398 	adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1399 	adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1400 	adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1401 }
1402 
1403 /**
1404  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1405  *
1406  * @ring: amdgpu_ring structure holding ring information
1407  * @src_offset: src GPU address
1408  * @dst_offset: dst GPU address
1409  * @byte_count: number of bytes to xfer
1410  *
1411  * Copy GPU buffers using the DMA engine (VI).
1412  * Used by the amdgpu ttm implementation to move pages if
1413  * registered as the asic copy callback.
1414  */
1415 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ring *ring,
1416 				       uint64_t src_offset,
1417 				       uint64_t dst_offset,
1418 				       uint32_t byte_count)
1419 {
1420 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1421 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR));
1422 	amdgpu_ring_write(ring, byte_count);
1423 	amdgpu_ring_write(ring, 0); /* src/dst endian swap */
1424 	amdgpu_ring_write(ring, lower_32_bits(src_offset));
1425 	amdgpu_ring_write(ring, upper_32_bits(src_offset));
1426 	amdgpu_ring_write(ring, lower_32_bits(dst_offset));
1427 	amdgpu_ring_write(ring, upper_32_bits(dst_offset));
1428 }
1429 
1430 /**
1431  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1432  *
1433  * @ring: amdgpu_ring structure holding ring information
1434  * @src_data: value to write to buffer
1435  * @dst_offset: dst GPU address
1436  * @byte_count: number of bytes to xfer
1437  *
1438  * Fill GPU buffers using the DMA engine (VI).
1439  */
1440 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
1441 				       uint32_t src_data,
1442 				       uint64_t dst_offset,
1443 				       uint32_t byte_count)
1444 {
1445 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
1446 	amdgpu_ring_write(ring, lower_32_bits(dst_offset));
1447 	amdgpu_ring_write(ring, upper_32_bits(dst_offset));
1448 	amdgpu_ring_write(ring, src_data);
1449 	amdgpu_ring_write(ring, byte_count);
1450 }
1451 
1452 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1453 	.copy_max_bytes = 0x1fffff,
1454 	.copy_num_dw = 7,
1455 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1456 
1457 	.fill_max_bytes = 0x1fffff,
1458 	.fill_num_dw = 5,
1459 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1460 };
1461 
1462 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1463 {
1464 	if (adev->mman.buffer_funcs == NULL) {
1465 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1466 		adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
1467 	}
1468 }
1469 
1470 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1471 	.copy_pte = sdma_v3_0_vm_copy_pte,
1472 	.write_pte = sdma_v3_0_vm_write_pte,
1473 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1474 	.pad_ib = sdma_v3_0_vm_pad_ib,
1475 };
1476 
1477 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1478 {
1479 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1480 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1481 		adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
1482 	}
1483 }
1484