1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 299 uint32_t copy_flags = 0; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 if (tmz) 329 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 332 &next, false, true, copy_flags); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 amdgpu_vram_mgr_set_cleared(bo->resource); 392 dma_fence_put(fence); 393 fence = wipe_fence; 394 } 395 } 396 397 /* Always block for VM page tables before committing the new location */ 398 if (bo->type == ttm_bo_type_kernel) 399 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 400 else 401 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 402 dma_fence_put(fence); 403 return r; 404 405 error: 406 if (fence) 407 dma_fence_wait(fence, false); 408 dma_fence_put(fence); 409 return r; 410 } 411 412 /** 413 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 414 * @adev: amdgpu device 415 * @res: the resource to check 416 * 417 * Returns: true if the full resource is CPU visible, false otherwise. 418 */ 419 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 420 struct ttm_resource *res) 421 { 422 struct amdgpu_res_cursor cursor; 423 424 if (!res) 425 return false; 426 427 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 428 res->mem_type == AMDGPU_PL_PREEMPT) 429 return true; 430 431 if (res->mem_type != TTM_PL_VRAM) 432 return false; 433 434 amdgpu_res_first(res, 0, res->size, &cursor); 435 while (cursor.remaining) { 436 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size) 437 return false; 438 amdgpu_res_next(&cursor, cursor.size); 439 } 440 441 return true; 442 } 443 444 /* 445 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 446 * 447 * Called by amdgpu_bo_move() 448 */ 449 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 450 struct ttm_resource *mem) 451 { 452 if (!amdgpu_res_cpu_visible(adev, mem)) 453 return false; 454 455 /* ttm_resource_ioremap only supports contiguous memory */ 456 if (mem->mem_type == TTM_PL_VRAM && 457 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 458 return false; 459 460 return true; 461 } 462 463 /* 464 * amdgpu_bo_move - Move a buffer object to a new memory location 465 * 466 * Called by ttm_bo_handle_move_mem() 467 */ 468 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 469 struct ttm_operation_ctx *ctx, 470 struct ttm_resource *new_mem, 471 struct ttm_place *hop) 472 { 473 struct amdgpu_device *adev; 474 struct amdgpu_bo *abo; 475 struct ttm_resource *old_mem = bo->resource; 476 int r; 477 478 if (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 480 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 481 if (r) 482 return r; 483 } 484 485 abo = ttm_to_amdgpu_bo(bo); 486 adev = amdgpu_ttm_adev(bo->bdev); 487 488 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 489 bo->ttm == NULL)) { 490 ttm_bo_move_null(bo, new_mem); 491 goto out; 492 } 493 if (old_mem->mem_type == TTM_PL_SYSTEM && 494 (new_mem->mem_type == TTM_PL_TT || 495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 496 ttm_bo_move_null(bo, new_mem); 497 goto out; 498 } 499 if ((old_mem->mem_type == TTM_PL_TT || 500 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 501 new_mem->mem_type == TTM_PL_SYSTEM) { 502 r = ttm_bo_wait_ctx(bo, ctx); 503 if (r) 504 return r; 505 506 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 507 ttm_resource_free(bo, &bo->resource); 508 ttm_bo_assign_mem(bo, new_mem); 509 goto out; 510 } 511 512 if (old_mem->mem_type == AMDGPU_PL_GDS || 513 old_mem->mem_type == AMDGPU_PL_GWS || 514 old_mem->mem_type == AMDGPU_PL_OA || 515 old_mem->mem_type == AMDGPU_PL_DOORBELL || 516 new_mem->mem_type == AMDGPU_PL_GDS || 517 new_mem->mem_type == AMDGPU_PL_GWS || 518 new_mem->mem_type == AMDGPU_PL_OA || 519 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 520 /* Nothing to save here */ 521 ttm_bo_move_null(bo, new_mem); 522 goto out; 523 } 524 525 if (bo->type == ttm_bo_type_device && 526 new_mem->mem_type == TTM_PL_VRAM && 527 old_mem->mem_type != TTM_PL_VRAM) { 528 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 529 * accesses the BO after it's moved. 530 */ 531 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 532 } 533 534 if (adev->mman.buffer_funcs_enabled) { 535 if (((old_mem->mem_type == TTM_PL_SYSTEM && 536 new_mem->mem_type == TTM_PL_VRAM) || 537 (old_mem->mem_type == TTM_PL_VRAM && 538 new_mem->mem_type == TTM_PL_SYSTEM))) { 539 hop->fpfn = 0; 540 hop->lpfn = 0; 541 hop->mem_type = TTM_PL_TT; 542 hop->flags = TTM_PL_FLAG_TEMPORARY; 543 return -EMULTIHOP; 544 } 545 546 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 547 } else { 548 r = -ENODEV; 549 } 550 551 if (r) { 552 /* Check that all memory is CPU accessible */ 553 if (!amdgpu_res_copyable(adev, old_mem) || 554 !amdgpu_res_copyable(adev, new_mem)) { 555 pr_err("Move buffer fallback to memcpy unavailable\n"); 556 return r; 557 } 558 559 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 560 if (r) 561 return r; 562 } 563 564 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 565 out: 566 /* update statistics */ 567 atomic64_add(bo->base.size, &adev->num_bytes_moved); 568 amdgpu_bo_move_notify(bo, evict); 569 return 0; 570 } 571 572 /* 573 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 574 * 575 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 576 */ 577 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 578 struct ttm_resource *mem) 579 { 580 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 581 582 switch (mem->mem_type) { 583 case TTM_PL_SYSTEM: 584 /* system memory */ 585 return 0; 586 case TTM_PL_TT: 587 case AMDGPU_PL_PREEMPT: 588 break; 589 case TTM_PL_VRAM: 590 mem->bus.offset = mem->start << PAGE_SHIFT; 591 592 if (adev->mman.aper_base_kaddr && 593 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 594 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 595 mem->bus.offset; 596 597 mem->bus.offset += adev->gmc.aper_base; 598 mem->bus.is_iomem = true; 599 break; 600 case AMDGPU_PL_DOORBELL: 601 mem->bus.offset = mem->start << PAGE_SHIFT; 602 mem->bus.offset += adev->doorbell.base; 603 mem->bus.is_iomem = true; 604 mem->bus.caching = ttm_uncached; 605 break; 606 default: 607 return -EINVAL; 608 } 609 return 0; 610 } 611 612 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 613 unsigned long page_offset) 614 { 615 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 616 struct amdgpu_res_cursor cursor; 617 618 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 619 &cursor); 620 621 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 622 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 623 624 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 625 } 626 627 /** 628 * amdgpu_ttm_domain_start - Returns GPU start address 629 * @adev: amdgpu device object 630 * @type: type of the memory 631 * 632 * Returns: 633 * GPU start address of a memory domain 634 */ 635 636 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 637 { 638 switch (type) { 639 case TTM_PL_TT: 640 return adev->gmc.gart_start; 641 case TTM_PL_VRAM: 642 return adev->gmc.vram_start; 643 } 644 645 return 0; 646 } 647 648 /* 649 * TTM backend functions. 650 */ 651 struct amdgpu_ttm_tt { 652 struct ttm_tt ttm; 653 struct drm_gem_object *gobj; 654 u64 offset; 655 uint64_t userptr; 656 struct task_struct *usertask; 657 uint32_t userflags; 658 bool bound; 659 int32_t pool_id; 660 }; 661 662 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 663 664 #ifdef CONFIG_DRM_AMDGPU_USERPTR 665 /* 666 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 667 * memory and start HMM tracking CPU page table update 668 * 669 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 670 * once afterwards to stop HMM tracking 671 */ 672 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 673 struct hmm_range **range) 674 { 675 struct ttm_tt *ttm = bo->tbo.ttm; 676 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 677 unsigned long start = gtt->userptr; 678 struct vm_area_struct *vma; 679 struct mm_struct *mm; 680 bool readonly; 681 int r = 0; 682 683 /* Make sure get_user_pages_done() can cleanup gracefully */ 684 *range = NULL; 685 686 mm = bo->notifier.mm; 687 if (unlikely(!mm)) { 688 DRM_DEBUG_DRIVER("BO is not registered?\n"); 689 return -EFAULT; 690 } 691 692 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 693 return -ESRCH; 694 695 mmap_read_lock(mm); 696 vma = vma_lookup(mm, start); 697 if (unlikely(!vma)) { 698 r = -EFAULT; 699 goto out_unlock; 700 } 701 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 702 vma->vm_file)) { 703 r = -EPERM; 704 goto out_unlock; 705 } 706 707 readonly = amdgpu_ttm_tt_is_readonly(ttm); 708 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 709 readonly, NULL, pages, range); 710 out_unlock: 711 mmap_read_unlock(mm); 712 if (r) 713 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 714 715 mmput(mm); 716 717 return r; 718 } 719 720 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 721 */ 722 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 723 struct hmm_range *range) 724 { 725 struct amdgpu_ttm_tt *gtt = (void *)ttm; 726 727 if (gtt && gtt->userptr && range) 728 amdgpu_hmm_range_get_pages_done(range); 729 } 730 731 /* 732 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 733 * Check if the pages backing this ttm range have been invalidated 734 * 735 * Returns: true if pages are still valid 736 */ 737 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 738 struct hmm_range *range) 739 { 740 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 741 742 if (!gtt || !gtt->userptr || !range) 743 return false; 744 745 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 746 gtt->userptr, ttm->num_pages); 747 748 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 749 750 return !amdgpu_hmm_range_get_pages_done(range); 751 } 752 #endif 753 754 /* 755 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 756 * 757 * Called by amdgpu_cs_list_validate(). This creates the page list 758 * that backs user memory and will ultimately be mapped into the device 759 * address space. 760 */ 761 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 762 { 763 unsigned long i; 764 765 for (i = 0; i < ttm->num_pages; ++i) 766 ttm->pages[i] = pages ? pages[i] : NULL; 767 } 768 769 /* 770 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 771 * 772 * Called by amdgpu_ttm_backend_bind() 773 **/ 774 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 775 struct ttm_tt *ttm) 776 { 777 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 778 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 779 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 780 enum dma_data_direction direction = write ? 781 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 782 int r; 783 784 /* Allocate an SG array and squash pages into it */ 785 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 786 (u64)ttm->num_pages << PAGE_SHIFT, 787 GFP_KERNEL); 788 if (r) 789 goto release_sg; 790 791 /* Map SG to device */ 792 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 793 if (r) 794 goto release_sg; 795 796 /* convert SG to linear array of pages and dma addresses */ 797 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 798 ttm->num_pages); 799 800 return 0; 801 802 release_sg: 803 kfree(ttm->sg); 804 ttm->sg = NULL; 805 return r; 806 } 807 808 /* 809 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 810 */ 811 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 812 struct ttm_tt *ttm) 813 { 814 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 815 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 816 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 817 enum dma_data_direction direction = write ? 818 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 819 820 /* double check that we don't free the table twice */ 821 if (!ttm->sg || !ttm->sg->sgl) 822 return; 823 824 /* unmap the pages mapped to the device */ 825 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 826 sg_free_table(ttm->sg); 827 } 828 829 /* 830 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 831 * MQDn+CtrlStackn where n is the number of XCCs per partition. 832 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 833 * and uses memory type default, UC. The rest of pages_per_xcc are 834 * Ctrl stack and modify their memory type to NC. 835 */ 836 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 837 struct ttm_tt *ttm, uint64_t flags) 838 { 839 struct amdgpu_ttm_tt *gtt = (void *)ttm; 840 uint64_t total_pages = ttm->num_pages; 841 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 842 uint64_t page_idx, pages_per_xcc; 843 int i; 844 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 845 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 846 847 pages_per_xcc = total_pages; 848 do_div(pages_per_xcc, num_xcc); 849 850 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 851 /* MQD page: use default flags */ 852 amdgpu_gart_bind(adev, 853 gtt->offset + (page_idx << PAGE_SHIFT), 854 1, >t->ttm.dma_address[page_idx], flags); 855 /* 856 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 857 * the second page of the BO onward. 858 */ 859 amdgpu_gart_bind(adev, 860 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 861 pages_per_xcc - 1, 862 >t->ttm.dma_address[page_idx + 1], 863 ctrl_flags); 864 } 865 } 866 867 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 868 struct ttm_buffer_object *tbo, 869 uint64_t flags) 870 { 871 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 872 struct ttm_tt *ttm = tbo->ttm; 873 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 874 875 if (amdgpu_bo_encrypted(abo)) 876 flags |= AMDGPU_PTE_TMZ; 877 878 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 879 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 880 } else { 881 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 882 gtt->ttm.dma_address, flags); 883 } 884 gtt->bound = true; 885 } 886 887 /* 888 * amdgpu_ttm_backend_bind - Bind GTT memory 889 * 890 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 891 * This handles binding GTT memory to the device address space. 892 */ 893 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 894 struct ttm_tt *ttm, 895 struct ttm_resource *bo_mem) 896 { 897 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 898 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 899 uint64_t flags; 900 int r; 901 902 if (!bo_mem) 903 return -EINVAL; 904 905 if (gtt->bound) 906 return 0; 907 908 if (gtt->userptr) { 909 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 910 if (r) { 911 DRM_ERROR("failed to pin userptr\n"); 912 return r; 913 } 914 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 915 if (!ttm->sg) { 916 struct dma_buf_attachment *attach; 917 struct sg_table *sgt; 918 919 attach = gtt->gobj->import_attach; 920 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 921 if (IS_ERR(sgt)) 922 return PTR_ERR(sgt); 923 924 ttm->sg = sgt; 925 } 926 927 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 928 ttm->num_pages); 929 } 930 931 if (!ttm->num_pages) { 932 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 933 ttm->num_pages, bo_mem, ttm); 934 } 935 936 if (bo_mem->mem_type != TTM_PL_TT || 937 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 938 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 939 return 0; 940 } 941 942 /* compute PTE flags relevant to this BO memory */ 943 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 944 945 /* bind pages into GART page tables */ 946 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 947 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 948 gtt->ttm.dma_address, flags); 949 gtt->bound = true; 950 return 0; 951 } 952 953 /* 954 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 955 * through AGP or GART aperture. 956 * 957 * If bo is accessible through AGP aperture, then use AGP aperture 958 * to access bo; otherwise allocate logical space in GART aperture 959 * and map bo to GART aperture. 960 */ 961 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 962 { 963 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 964 struct ttm_operation_ctx ctx = { false, false }; 965 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 966 struct ttm_placement placement; 967 struct ttm_place placements; 968 struct ttm_resource *tmp; 969 uint64_t addr, flags; 970 int r; 971 972 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 973 return 0; 974 975 addr = amdgpu_gmc_agp_addr(bo); 976 if (addr != AMDGPU_BO_INVALID_OFFSET) 977 return 0; 978 979 /* allocate GART space */ 980 placement.num_placement = 1; 981 placement.placement = &placements; 982 placements.fpfn = 0; 983 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 984 placements.mem_type = TTM_PL_TT; 985 placements.flags = bo->resource->placement; 986 987 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 988 if (unlikely(r)) 989 return r; 990 991 /* compute PTE flags for this buffer object */ 992 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 993 994 /* Bind pages */ 995 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 996 amdgpu_ttm_gart_bind(adev, bo, flags); 997 amdgpu_gart_invalidate_tlb(adev); 998 ttm_resource_free(bo, &bo->resource); 999 ttm_bo_assign_mem(bo, tmp); 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * amdgpu_ttm_recover_gart - Rebind GTT pages 1006 * 1007 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1008 * rebind GTT pages during a GPU reset. 1009 */ 1010 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1011 { 1012 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1013 uint64_t flags; 1014 1015 if (!tbo->ttm) 1016 return; 1017 1018 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1019 amdgpu_ttm_gart_bind(adev, tbo, flags); 1020 } 1021 1022 /* 1023 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1024 * 1025 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1026 * ttm_tt_destroy(). 1027 */ 1028 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1029 struct ttm_tt *ttm) 1030 { 1031 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1032 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1033 1034 /* if the pages have userptr pinning then clear that first */ 1035 if (gtt->userptr) { 1036 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1037 } else if (ttm->sg && gtt->gobj->import_attach) { 1038 struct dma_buf_attachment *attach; 1039 1040 attach = gtt->gobj->import_attach; 1041 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1042 ttm->sg = NULL; 1043 } 1044 1045 if (!gtt->bound) 1046 return; 1047 1048 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1049 return; 1050 1051 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1052 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1053 gtt->bound = false; 1054 } 1055 1056 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1057 struct ttm_tt *ttm) 1058 { 1059 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1060 1061 if (gtt->usertask) 1062 put_task_struct(gtt->usertask); 1063 1064 ttm_tt_fini(>t->ttm); 1065 kfree(gtt); 1066 } 1067 1068 /** 1069 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1070 * 1071 * @bo: The buffer object to create a GTT ttm_tt object around 1072 * @page_flags: Page flags to be added to the ttm_tt object 1073 * 1074 * Called by ttm_tt_create(). 1075 */ 1076 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1077 uint32_t page_flags) 1078 { 1079 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1080 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1081 struct amdgpu_ttm_tt *gtt; 1082 enum ttm_caching caching; 1083 1084 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1085 if (!gtt) 1086 return NULL; 1087 1088 gtt->gobj = &bo->base; 1089 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1090 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1091 else 1092 gtt->pool_id = abo->xcp_id; 1093 1094 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1095 caching = ttm_write_combined; 1096 else 1097 caching = ttm_cached; 1098 1099 /* allocate space for the uninitialized page entries */ 1100 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1101 kfree(gtt); 1102 return NULL; 1103 } 1104 return >t->ttm; 1105 } 1106 1107 /* 1108 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1109 * 1110 * Map the pages of a ttm_tt object to an address space visible 1111 * to the underlying device. 1112 */ 1113 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1114 struct ttm_tt *ttm, 1115 struct ttm_operation_ctx *ctx) 1116 { 1117 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1118 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1119 struct ttm_pool *pool; 1120 pgoff_t i; 1121 int ret; 1122 1123 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1124 if (gtt->userptr) { 1125 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1126 if (!ttm->sg) 1127 return -ENOMEM; 1128 return 0; 1129 } 1130 1131 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1132 return 0; 1133 1134 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1135 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1136 else 1137 pool = &adev->mman.bdev.pool; 1138 ret = ttm_pool_alloc(pool, ttm, ctx); 1139 if (ret) 1140 return ret; 1141 1142 for (i = 0; i < ttm->num_pages; ++i) 1143 ttm->pages[i]->mapping = bdev->dev_mapping; 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1150 * 1151 * Unmaps pages of a ttm_tt object from the device address space and 1152 * unpopulates the page array backing it. 1153 */ 1154 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1155 struct ttm_tt *ttm) 1156 { 1157 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1158 struct amdgpu_device *adev; 1159 struct ttm_pool *pool; 1160 pgoff_t i; 1161 1162 amdgpu_ttm_backend_unbind(bdev, ttm); 1163 1164 if (gtt->userptr) { 1165 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1166 kfree(ttm->sg); 1167 ttm->sg = NULL; 1168 return; 1169 } 1170 1171 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1172 return; 1173 1174 for (i = 0; i < ttm->num_pages; ++i) 1175 ttm->pages[i]->mapping = NULL; 1176 1177 adev = amdgpu_ttm_adev(bdev); 1178 1179 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1180 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1181 else 1182 pool = &adev->mman.bdev.pool; 1183 1184 return ttm_pool_free(pool, ttm); 1185 } 1186 1187 /** 1188 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1189 * task 1190 * 1191 * @tbo: The ttm_buffer_object that contains the userptr 1192 * @user_addr: The returned value 1193 */ 1194 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1195 uint64_t *user_addr) 1196 { 1197 struct amdgpu_ttm_tt *gtt; 1198 1199 if (!tbo->ttm) 1200 return -EINVAL; 1201 1202 gtt = (void *)tbo->ttm; 1203 *user_addr = gtt->userptr; 1204 return 0; 1205 } 1206 1207 /** 1208 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1209 * task 1210 * 1211 * @bo: The ttm_buffer_object to bind this userptr to 1212 * @addr: The address in the current tasks VM space to use 1213 * @flags: Requirements of userptr object. 1214 * 1215 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1216 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1217 * initialize GPU VM for a KFD process. 1218 */ 1219 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1220 uint64_t addr, uint32_t flags) 1221 { 1222 struct amdgpu_ttm_tt *gtt; 1223 1224 if (!bo->ttm) { 1225 /* TODO: We want a separate TTM object type for userptrs */ 1226 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1227 if (bo->ttm == NULL) 1228 return -ENOMEM; 1229 } 1230 1231 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1232 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1233 1234 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1235 gtt->userptr = addr; 1236 gtt->userflags = flags; 1237 1238 if (gtt->usertask) 1239 put_task_struct(gtt->usertask); 1240 gtt->usertask = current->group_leader; 1241 get_task_struct(gtt->usertask); 1242 1243 return 0; 1244 } 1245 1246 /* 1247 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1248 */ 1249 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1250 { 1251 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1252 1253 if (gtt == NULL) 1254 return NULL; 1255 1256 if (gtt->usertask == NULL) 1257 return NULL; 1258 1259 return gtt->usertask->mm; 1260 } 1261 1262 /* 1263 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1264 * address range for the current task. 1265 * 1266 */ 1267 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1268 unsigned long end, unsigned long *userptr) 1269 { 1270 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1271 unsigned long size; 1272 1273 if (gtt == NULL || !gtt->userptr) 1274 return false; 1275 1276 /* Return false if no part of the ttm_tt object lies within 1277 * the range 1278 */ 1279 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1280 if (gtt->userptr > end || gtt->userptr + size <= start) 1281 return false; 1282 1283 if (userptr) 1284 *userptr = gtt->userptr; 1285 return true; 1286 } 1287 1288 /* 1289 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1290 */ 1291 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1292 { 1293 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1294 1295 if (gtt == NULL || !gtt->userptr) 1296 return false; 1297 1298 return true; 1299 } 1300 1301 /* 1302 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1303 */ 1304 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1305 { 1306 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1307 1308 if (gtt == NULL) 1309 return false; 1310 1311 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1312 } 1313 1314 /** 1315 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1316 * 1317 * @ttm: The ttm_tt object to compute the flags for 1318 * @mem: The memory registry backing this ttm_tt object 1319 * 1320 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1321 */ 1322 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1323 { 1324 uint64_t flags = 0; 1325 1326 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1327 flags |= AMDGPU_PTE_VALID; 1328 1329 if (mem && (mem->mem_type == TTM_PL_TT || 1330 mem->mem_type == AMDGPU_PL_DOORBELL || 1331 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1332 flags |= AMDGPU_PTE_SYSTEM; 1333 1334 if (ttm->caching == ttm_cached) 1335 flags |= AMDGPU_PTE_SNOOPED; 1336 } 1337 1338 if (mem && mem->mem_type == TTM_PL_VRAM && 1339 mem->bus.caching == ttm_cached) 1340 flags |= AMDGPU_PTE_SNOOPED; 1341 1342 return flags; 1343 } 1344 1345 /** 1346 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1347 * 1348 * @adev: amdgpu_device pointer 1349 * @ttm: The ttm_tt object to compute the flags for 1350 * @mem: The memory registry backing this ttm_tt object 1351 * 1352 * Figure out the flags to use for a VM PTE (Page Table Entry). 1353 */ 1354 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1355 struct ttm_resource *mem) 1356 { 1357 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1358 1359 flags |= adev->gart.gart_pte_flags; 1360 flags |= AMDGPU_PTE_READABLE; 1361 1362 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1363 flags |= AMDGPU_PTE_WRITEABLE; 1364 1365 return flags; 1366 } 1367 1368 /* 1369 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1370 * object. 1371 * 1372 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1373 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1374 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1375 * used to clean out a memory space. 1376 */ 1377 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1378 const struct ttm_place *place) 1379 { 1380 struct dma_resv_iter resv_cursor; 1381 struct dma_fence *f; 1382 1383 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1384 return ttm_bo_eviction_valuable(bo, place); 1385 1386 /* Swapout? */ 1387 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1388 return true; 1389 1390 if (bo->type == ttm_bo_type_kernel && 1391 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1392 return false; 1393 1394 /* If bo is a KFD BO, check if the bo belongs to the current process. 1395 * If true, then return false as any KFD process needs all its BOs to 1396 * be resident to run successfully 1397 */ 1398 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1399 DMA_RESV_USAGE_BOOKKEEP, f) { 1400 if (amdkfd_fence_check_mm(f, current->mm)) 1401 return false; 1402 } 1403 1404 /* Preemptible BOs don't own system resources managed by the 1405 * driver (pages, VRAM, GART space). They point to resources 1406 * owned by someone else (e.g. pageable memory in user mode 1407 * or a DMABuf). They are used in a preemptible context so we 1408 * can guarantee no deadlocks and good QoS in case of MMU 1409 * notifiers or DMABuf move notifiers from the resource owner. 1410 */ 1411 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1412 return false; 1413 1414 if (bo->resource->mem_type == TTM_PL_TT && 1415 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1416 return false; 1417 1418 return ttm_bo_eviction_valuable(bo, place); 1419 } 1420 1421 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1422 void *buf, size_t size, bool write) 1423 { 1424 while (size) { 1425 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1426 uint64_t bytes = 4 - (pos & 0x3); 1427 uint32_t shift = (pos & 0x3) * 8; 1428 uint32_t mask = 0xffffffff << shift; 1429 uint32_t value = 0; 1430 1431 if (size < bytes) { 1432 mask &= 0xffffffff >> (bytes - size) * 8; 1433 bytes = size; 1434 } 1435 1436 if (mask != 0xffffffff) { 1437 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1438 if (write) { 1439 value &= ~mask; 1440 value |= (*(uint32_t *)buf << shift) & mask; 1441 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1442 } else { 1443 value = (value & mask) >> shift; 1444 memcpy(buf, &value, bytes); 1445 } 1446 } else { 1447 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1448 } 1449 1450 pos += bytes; 1451 buf += bytes; 1452 size -= bytes; 1453 } 1454 } 1455 1456 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1457 unsigned long offset, void *buf, 1458 int len, int write) 1459 { 1460 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1461 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1462 struct amdgpu_res_cursor src_mm; 1463 struct amdgpu_job *job; 1464 struct dma_fence *fence; 1465 uint64_t src_addr, dst_addr; 1466 unsigned int num_dw; 1467 int r, idx; 1468 1469 if (len != PAGE_SIZE) 1470 return -EINVAL; 1471 1472 if (!adev->mman.sdma_access_ptr) 1473 return -EACCES; 1474 1475 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1476 return -ENODEV; 1477 1478 if (write) 1479 memcpy(adev->mman.sdma_access_ptr, buf, len); 1480 1481 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1482 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1483 AMDGPU_FENCE_OWNER_UNDEFINED, 1484 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1485 &job); 1486 if (r) 1487 goto out; 1488 1489 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1490 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1491 src_mm.start; 1492 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1493 if (write) 1494 swap(src_addr, dst_addr); 1495 1496 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1497 PAGE_SIZE, 0); 1498 1499 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1500 WARN_ON(job->ibs[0].length_dw > num_dw); 1501 1502 fence = amdgpu_job_submit(job); 1503 1504 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1505 r = -ETIMEDOUT; 1506 dma_fence_put(fence); 1507 1508 if (!(r || write)) 1509 memcpy(buf, adev->mman.sdma_access_ptr, len); 1510 out: 1511 drm_dev_exit(idx); 1512 return r; 1513 } 1514 1515 /** 1516 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1517 * 1518 * @bo: The buffer object to read/write 1519 * @offset: Offset into buffer object 1520 * @buf: Secondary buffer to write/read from 1521 * @len: Length in bytes of access 1522 * @write: true if writing 1523 * 1524 * This is used to access VRAM that backs a buffer object via MMIO 1525 * access for debugging purposes. 1526 */ 1527 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1528 unsigned long offset, void *buf, int len, 1529 int write) 1530 { 1531 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1532 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1533 struct amdgpu_res_cursor cursor; 1534 int ret = 0; 1535 1536 if (bo->resource->mem_type != TTM_PL_VRAM) 1537 return -EIO; 1538 1539 if (amdgpu_device_has_timeouts_enabled(adev) && 1540 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1541 return len; 1542 1543 amdgpu_res_first(bo->resource, offset, len, &cursor); 1544 while (cursor.remaining) { 1545 size_t count, size = cursor.size; 1546 loff_t pos = cursor.start; 1547 1548 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1549 size -= count; 1550 if (size) { 1551 /* using MM to access rest vram and handle un-aligned address */ 1552 pos += count; 1553 buf += count; 1554 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1555 } 1556 1557 ret += cursor.size; 1558 buf += cursor.size; 1559 amdgpu_res_next(&cursor, cursor.size); 1560 } 1561 1562 return ret; 1563 } 1564 1565 static void 1566 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1567 { 1568 amdgpu_bo_move_notify(bo, false); 1569 } 1570 1571 static struct ttm_device_funcs amdgpu_bo_driver = { 1572 .ttm_tt_create = &amdgpu_ttm_tt_create, 1573 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1574 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1575 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1576 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1577 .evict_flags = &amdgpu_evict_flags, 1578 .move = &amdgpu_bo_move, 1579 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1580 .release_notify = &amdgpu_bo_release_notify, 1581 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1582 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1583 .access_memory = &amdgpu_ttm_access_memory, 1584 }; 1585 1586 /* 1587 * Firmware Reservation functions 1588 */ 1589 /** 1590 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1591 * 1592 * @adev: amdgpu_device pointer 1593 * 1594 * free fw reserved vram if it has been reserved. 1595 */ 1596 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1597 { 1598 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1599 NULL, &adev->mman.fw_vram_usage_va); 1600 } 1601 1602 /* 1603 * Driver Reservation functions 1604 */ 1605 /** 1606 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1607 * 1608 * @adev: amdgpu_device pointer 1609 * 1610 * free drv reserved vram if it has been reserved. 1611 */ 1612 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1613 { 1614 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1615 NULL, 1616 &adev->mman.drv_vram_usage_va); 1617 } 1618 1619 /** 1620 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1621 * 1622 * @adev: amdgpu_device pointer 1623 * 1624 * create bo vram reservation from fw. 1625 */ 1626 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1627 { 1628 uint64_t vram_size = adev->gmc.visible_vram_size; 1629 1630 adev->mman.fw_vram_usage_va = NULL; 1631 adev->mman.fw_vram_usage_reserved_bo = NULL; 1632 1633 if (adev->mman.fw_vram_usage_size == 0 || 1634 adev->mman.fw_vram_usage_size > vram_size) 1635 return 0; 1636 1637 return amdgpu_bo_create_kernel_at(adev, 1638 adev->mman.fw_vram_usage_start_offset, 1639 adev->mman.fw_vram_usage_size, 1640 &adev->mman.fw_vram_usage_reserved_bo, 1641 &adev->mman.fw_vram_usage_va); 1642 } 1643 1644 /** 1645 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1646 * 1647 * @adev: amdgpu_device pointer 1648 * 1649 * create bo vram reservation from drv. 1650 */ 1651 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1652 { 1653 u64 vram_size = adev->gmc.visible_vram_size; 1654 1655 adev->mman.drv_vram_usage_va = NULL; 1656 adev->mman.drv_vram_usage_reserved_bo = NULL; 1657 1658 if (adev->mman.drv_vram_usage_size == 0 || 1659 adev->mman.drv_vram_usage_size > vram_size) 1660 return 0; 1661 1662 return amdgpu_bo_create_kernel_at(adev, 1663 adev->mman.drv_vram_usage_start_offset, 1664 adev->mman.drv_vram_usage_size, 1665 &adev->mman.drv_vram_usage_reserved_bo, 1666 &adev->mman.drv_vram_usage_va); 1667 } 1668 1669 /* 1670 * Memoy training reservation functions 1671 */ 1672 1673 /** 1674 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1675 * 1676 * @adev: amdgpu_device pointer 1677 * 1678 * free memory training reserved vram if it has been reserved. 1679 */ 1680 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1681 { 1682 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1683 1684 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1685 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1686 ctx->c2p_bo = NULL; 1687 1688 return 0; 1689 } 1690 1691 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1692 uint32_t reserve_size) 1693 { 1694 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1695 1696 memset(ctx, 0, sizeof(*ctx)); 1697 1698 ctx->c2p_train_data_offset = 1699 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1700 ctx->p2c_train_data_offset = 1701 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1702 ctx->train_data_size = 1703 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1704 1705 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1706 ctx->train_data_size, 1707 ctx->p2c_train_data_offset, 1708 ctx->c2p_train_data_offset); 1709 } 1710 1711 /* 1712 * reserve TMR memory at the top of VRAM which holds 1713 * IP Discovery data and is protected by PSP. 1714 */ 1715 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1716 { 1717 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1718 bool mem_train_support = false; 1719 uint32_t reserve_size = 0; 1720 int ret; 1721 1722 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1723 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1724 mem_train_support = true; 1725 else 1726 DRM_DEBUG("memory training does not support!\n"); 1727 } 1728 1729 /* 1730 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1731 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1732 * 1733 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1734 * discovery data and G6 memory training data respectively 1735 */ 1736 if (adev->bios) 1737 reserve_size = 1738 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1739 1740 if (!adev->bios && 1741 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1742 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1743 else if (!reserve_size) 1744 reserve_size = DISCOVERY_TMR_OFFSET; 1745 1746 if (mem_train_support) { 1747 /* reserve vram for mem train according to TMR location */ 1748 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1749 ret = amdgpu_bo_create_kernel_at(adev, 1750 ctx->c2p_train_data_offset, 1751 ctx->train_data_size, 1752 &ctx->c2p_bo, 1753 NULL); 1754 if (ret) { 1755 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1756 amdgpu_ttm_training_reserve_vram_fini(adev); 1757 return ret; 1758 } 1759 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1760 } 1761 1762 if (!adev->gmc.is_app_apu) { 1763 ret = amdgpu_bo_create_kernel_at( 1764 adev, adev->gmc.real_vram_size - reserve_size, 1765 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1766 if (ret) { 1767 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1768 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1769 NULL, NULL); 1770 return ret; 1771 } 1772 } else { 1773 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1774 } 1775 1776 return 0; 1777 } 1778 1779 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1780 { 1781 int i; 1782 1783 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1784 return 0; 1785 1786 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1787 sizeof(*adev->mman.ttm_pools), 1788 GFP_KERNEL); 1789 if (!adev->mman.ttm_pools) 1790 return -ENOMEM; 1791 1792 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1793 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1794 adev->gmc.mem_partitions[i].numa.node, 1795 false, false); 1796 } 1797 return 0; 1798 } 1799 1800 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1801 { 1802 int i; 1803 1804 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1805 return; 1806 1807 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1808 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1809 1810 kfree(adev->mman.ttm_pools); 1811 adev->mman.ttm_pools = NULL; 1812 } 1813 1814 /* 1815 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1816 * gtt/vram related fields. 1817 * 1818 * This initializes all of the memory space pools that the TTM layer 1819 * will need such as the GTT space (system memory mapped to the device), 1820 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1821 * can be mapped per VMID. 1822 */ 1823 int amdgpu_ttm_init(struct amdgpu_device *adev) 1824 { 1825 uint64_t gtt_size; 1826 int r; 1827 1828 mutex_init(&adev->mman.gtt_window_lock); 1829 1830 /* No others user of address space so set it to 0 */ 1831 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1832 adev_to_drm(adev)->anon_inode->i_mapping, 1833 adev_to_drm(adev)->vma_offset_manager, 1834 adev->need_swiotlb, 1835 dma_addressing_limited(adev->dev)); 1836 if (r) { 1837 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1838 return r; 1839 } 1840 1841 r = amdgpu_ttm_pools_init(adev); 1842 if (r) { 1843 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1844 return r; 1845 } 1846 adev->mman.initialized = true; 1847 1848 /* Initialize VRAM pool with all of VRAM divided into pages */ 1849 r = amdgpu_vram_mgr_init(adev); 1850 if (r) { 1851 DRM_ERROR("Failed initializing VRAM heap.\n"); 1852 return r; 1853 } 1854 1855 /* Change the size here instead of the init above so only lpfn is affected */ 1856 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1857 #ifdef CONFIG_64BIT 1858 #ifdef CONFIG_X86 1859 if (adev->gmc.xgmi.connected_to_cpu) 1860 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1861 adev->gmc.visible_vram_size); 1862 1863 else if (adev->gmc.is_app_apu) 1864 DRM_DEBUG_DRIVER( 1865 "No need to ioremap when real vram size is 0\n"); 1866 else 1867 #endif 1868 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1869 adev->gmc.visible_vram_size); 1870 #endif 1871 1872 /* 1873 *The reserved vram for firmware must be pinned to the specified 1874 *place on the VRAM, so reserve it early. 1875 */ 1876 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1877 if (r) 1878 return r; 1879 1880 /* 1881 *The reserved vram for driver must be pinned to the specified 1882 *place on the VRAM, so reserve it early. 1883 */ 1884 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1885 if (r) 1886 return r; 1887 1888 /* 1889 * only NAVI10 and onwards ASIC support for IP discovery. 1890 * If IP discovery enabled, a block of memory should be 1891 * reserved for IP discovey. 1892 */ 1893 if (adev->mman.discovery_bin) { 1894 r = amdgpu_ttm_reserve_tmr(adev); 1895 if (r) 1896 return r; 1897 } 1898 1899 /* allocate memory as required for VGA 1900 * This is used for VGA emulation and pre-OS scanout buffers to 1901 * avoid display artifacts while transitioning between pre-OS 1902 * and driver. 1903 */ 1904 if (!adev->gmc.is_app_apu) { 1905 r = amdgpu_bo_create_kernel_at(adev, 0, 1906 adev->mman.stolen_vga_size, 1907 &adev->mman.stolen_vga_memory, 1908 NULL); 1909 if (r) 1910 return r; 1911 1912 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1913 adev->mman.stolen_extended_size, 1914 &adev->mman.stolen_extended_memory, 1915 NULL); 1916 1917 if (r) 1918 return r; 1919 1920 r = amdgpu_bo_create_kernel_at(adev, 1921 adev->mman.stolen_reserved_offset, 1922 adev->mman.stolen_reserved_size, 1923 &adev->mman.stolen_reserved_memory, 1924 NULL); 1925 if (r) 1926 return r; 1927 } else { 1928 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1929 } 1930 1931 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1932 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1933 1934 /* Compute GTT size, either based on TTM limit 1935 * or whatever the user passed on module init. 1936 */ 1937 if (amdgpu_gtt_size == -1) 1938 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1939 else 1940 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1941 1942 /* Initialize GTT memory pool */ 1943 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1944 if (r) { 1945 DRM_ERROR("Failed initializing GTT heap.\n"); 1946 return r; 1947 } 1948 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1949 (unsigned int)(gtt_size / (1024 * 1024))); 1950 1951 /* Initiailize doorbell pool on PCI BAR */ 1952 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1953 if (r) { 1954 DRM_ERROR("Failed initializing doorbell heap.\n"); 1955 return r; 1956 } 1957 1958 /* Create a boorbell page for kernel usages */ 1959 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1960 if (r) { 1961 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1962 return r; 1963 } 1964 1965 /* Initialize preemptible memory pool */ 1966 r = amdgpu_preempt_mgr_init(adev); 1967 if (r) { 1968 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1969 return r; 1970 } 1971 1972 /* Initialize various on-chip memory pools */ 1973 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1974 if (r) { 1975 DRM_ERROR("Failed initializing GDS heap.\n"); 1976 return r; 1977 } 1978 1979 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1980 if (r) { 1981 DRM_ERROR("Failed initializing gws heap.\n"); 1982 return r; 1983 } 1984 1985 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1986 if (r) { 1987 DRM_ERROR("Failed initializing oa heap.\n"); 1988 return r; 1989 } 1990 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1991 AMDGPU_GEM_DOMAIN_GTT, 1992 &adev->mman.sdma_access_bo, NULL, 1993 &adev->mman.sdma_access_ptr)) 1994 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2001 */ 2002 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2003 { 2004 int idx; 2005 2006 if (!adev->mman.initialized) 2007 return; 2008 2009 amdgpu_ttm_pools_fini(adev); 2010 2011 amdgpu_ttm_training_reserve_vram_fini(adev); 2012 /* return the stolen vga memory back to VRAM */ 2013 if (!adev->gmc.is_app_apu) { 2014 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2015 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2016 /* return the FW reserved memory back to VRAM */ 2017 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2018 NULL); 2019 if (adev->mman.stolen_reserved_size) 2020 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2021 NULL, NULL); 2022 } 2023 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2024 &adev->mman.sdma_access_ptr); 2025 amdgpu_ttm_fw_reserve_vram_fini(adev); 2026 amdgpu_ttm_drv_reserve_vram_fini(adev); 2027 2028 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2029 2030 if (adev->mman.aper_base_kaddr) 2031 iounmap(adev->mman.aper_base_kaddr); 2032 adev->mman.aper_base_kaddr = NULL; 2033 2034 drm_dev_exit(idx); 2035 } 2036 2037 amdgpu_vram_mgr_fini(adev); 2038 amdgpu_gtt_mgr_fini(adev); 2039 amdgpu_preempt_mgr_fini(adev); 2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2041 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2042 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2043 ttm_device_fini(&adev->mman.bdev); 2044 adev->mman.initialized = false; 2045 DRM_INFO("amdgpu: ttm finalized\n"); 2046 } 2047 2048 /** 2049 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2050 * 2051 * @adev: amdgpu_device pointer 2052 * @enable: true when we can use buffer functions. 2053 * 2054 * Enable/disable use of buffer functions during suspend/resume. This should 2055 * only be called at bootup or when userspace isn't running. 2056 */ 2057 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2058 { 2059 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2060 uint64_t size; 2061 int r; 2062 2063 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2064 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2065 return; 2066 2067 if (enable) { 2068 struct amdgpu_ring *ring; 2069 struct drm_gpu_scheduler *sched; 2070 2071 ring = adev->mman.buffer_funcs_ring; 2072 sched = &ring->sched; 2073 r = drm_sched_entity_init(&adev->mman.high_pr, 2074 DRM_SCHED_PRIORITY_KERNEL, &sched, 2075 1, NULL); 2076 if (r) { 2077 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2078 r); 2079 return; 2080 } 2081 2082 r = drm_sched_entity_init(&adev->mman.low_pr, 2083 DRM_SCHED_PRIORITY_NORMAL, &sched, 2084 1, NULL); 2085 if (r) { 2086 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2087 r); 2088 goto error_free_entity; 2089 } 2090 } else { 2091 drm_sched_entity_destroy(&adev->mman.high_pr); 2092 drm_sched_entity_destroy(&adev->mman.low_pr); 2093 dma_fence_put(man->move); 2094 man->move = NULL; 2095 } 2096 2097 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2098 if (enable) 2099 size = adev->gmc.real_vram_size; 2100 else 2101 size = adev->gmc.visible_vram_size; 2102 man->size = size; 2103 adev->mman.buffer_funcs_enabled = enable; 2104 2105 return; 2106 2107 error_free_entity: 2108 drm_sched_entity_destroy(&adev->mman.high_pr); 2109 } 2110 2111 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2112 bool direct_submit, 2113 unsigned int num_dw, 2114 struct dma_resv *resv, 2115 bool vm_needs_flush, 2116 struct amdgpu_job **job, 2117 bool delayed) 2118 { 2119 enum amdgpu_ib_pool_type pool = direct_submit ? 2120 AMDGPU_IB_POOL_DIRECT : 2121 AMDGPU_IB_POOL_DELAYED; 2122 int r; 2123 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2124 &adev->mman.high_pr; 2125 r = amdgpu_job_alloc_with_ib(adev, entity, 2126 AMDGPU_FENCE_OWNER_UNDEFINED, 2127 num_dw * 4, pool, job); 2128 if (r) 2129 return r; 2130 2131 if (vm_needs_flush) { 2132 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2133 adev->gmc.pdb0_bo : 2134 adev->gart.bo); 2135 (*job)->vm_needs_flush = true; 2136 } 2137 if (!resv) 2138 return 0; 2139 2140 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2141 DMA_RESV_USAGE_BOOKKEEP); 2142 } 2143 2144 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2145 uint64_t dst_offset, uint32_t byte_count, 2146 struct dma_resv *resv, 2147 struct dma_fence **fence, bool direct_submit, 2148 bool vm_needs_flush, uint32_t copy_flags) 2149 { 2150 struct amdgpu_device *adev = ring->adev; 2151 unsigned int num_loops, num_dw; 2152 struct amdgpu_job *job; 2153 uint32_t max_bytes; 2154 unsigned int i; 2155 int r; 2156 2157 if (!direct_submit && !ring->sched.ready) { 2158 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2159 return -EINVAL; 2160 } 2161 2162 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2163 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2164 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2165 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2166 resv, vm_needs_flush, &job, false); 2167 if (r) 2168 return r; 2169 2170 for (i = 0; i < num_loops; i++) { 2171 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2172 2173 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2174 dst_offset, cur_size_in_bytes, copy_flags); 2175 src_offset += cur_size_in_bytes; 2176 dst_offset += cur_size_in_bytes; 2177 byte_count -= cur_size_in_bytes; 2178 } 2179 2180 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2181 WARN_ON(job->ibs[0].length_dw > num_dw); 2182 if (direct_submit) 2183 r = amdgpu_job_submit_direct(job, ring, fence); 2184 else 2185 *fence = amdgpu_job_submit(job); 2186 if (r) 2187 goto error_free; 2188 2189 return r; 2190 2191 error_free: 2192 amdgpu_job_free(job); 2193 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2194 return r; 2195 } 2196 2197 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2198 uint64_t dst_addr, uint32_t byte_count, 2199 struct dma_resv *resv, 2200 struct dma_fence **fence, 2201 bool vm_needs_flush, bool delayed) 2202 { 2203 struct amdgpu_device *adev = ring->adev; 2204 unsigned int num_loops, num_dw; 2205 struct amdgpu_job *job; 2206 uint32_t max_bytes; 2207 unsigned int i; 2208 int r; 2209 2210 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2211 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2212 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2213 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2214 &job, delayed); 2215 if (r) 2216 return r; 2217 2218 for (i = 0; i < num_loops; i++) { 2219 uint32_t cur_size = min(byte_count, max_bytes); 2220 2221 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2222 cur_size); 2223 2224 dst_addr += cur_size; 2225 byte_count -= cur_size; 2226 } 2227 2228 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2229 WARN_ON(job->ibs[0].length_dw > num_dw); 2230 *fence = amdgpu_job_submit(job); 2231 return 0; 2232 } 2233 2234 /** 2235 * amdgpu_ttm_clear_buffer - clear memory buffers 2236 * @bo: amdgpu buffer object 2237 * @resv: reservation object 2238 * @fence: dma_fence associated with the operation 2239 * 2240 * Clear the memory buffer resource. 2241 * 2242 * Returns: 2243 * 0 for success or a negative error code on failure. 2244 */ 2245 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2246 struct dma_resv *resv, 2247 struct dma_fence **fence) 2248 { 2249 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2250 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2251 struct amdgpu_res_cursor cursor; 2252 u64 addr; 2253 int r; 2254 2255 if (!adev->mman.buffer_funcs_enabled) 2256 return -EINVAL; 2257 2258 if (!fence) 2259 return -EINVAL; 2260 2261 *fence = dma_fence_get_stub(); 2262 2263 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2264 2265 mutex_lock(&adev->mman.gtt_window_lock); 2266 while (cursor.remaining) { 2267 struct dma_fence *next = NULL; 2268 u64 size; 2269 2270 if (amdgpu_res_cleared(&cursor)) { 2271 amdgpu_res_next(&cursor, cursor.size); 2272 continue; 2273 } 2274 2275 /* Never clear more than 256MiB at once to avoid timeouts */ 2276 size = min(cursor.size, 256ULL << 20); 2277 2278 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2279 1, ring, false, &size, &addr); 2280 if (r) 2281 goto err; 2282 2283 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2284 &next, true, true); 2285 if (r) 2286 goto err; 2287 2288 dma_fence_put(*fence); 2289 *fence = next; 2290 2291 amdgpu_res_next(&cursor, size); 2292 } 2293 err: 2294 mutex_unlock(&adev->mman.gtt_window_lock); 2295 2296 return r; 2297 } 2298 2299 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2300 uint32_t src_data, 2301 struct dma_resv *resv, 2302 struct dma_fence **f, 2303 bool delayed) 2304 { 2305 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2306 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2307 struct dma_fence *fence = NULL; 2308 struct amdgpu_res_cursor dst; 2309 int r; 2310 2311 if (!adev->mman.buffer_funcs_enabled) { 2312 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2313 return -EINVAL; 2314 } 2315 2316 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2317 2318 mutex_lock(&adev->mman.gtt_window_lock); 2319 while (dst.remaining) { 2320 struct dma_fence *next; 2321 uint64_t cur_size, to; 2322 2323 /* Never fill more than 256MiB at once to avoid timeouts */ 2324 cur_size = min(dst.size, 256ULL << 20); 2325 2326 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2327 1, ring, false, &cur_size, &to); 2328 if (r) 2329 goto error; 2330 2331 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2332 &next, true, delayed); 2333 if (r) 2334 goto error; 2335 2336 dma_fence_put(fence); 2337 fence = next; 2338 2339 amdgpu_res_next(&dst, cur_size); 2340 } 2341 error: 2342 mutex_unlock(&adev->mman.gtt_window_lock); 2343 if (f) 2344 *f = dma_fence_get(fence); 2345 dma_fence_put(fence); 2346 return r; 2347 } 2348 2349 /** 2350 * amdgpu_ttm_evict_resources - evict memory buffers 2351 * @adev: amdgpu device object 2352 * @mem_type: evicted BO's memory type 2353 * 2354 * Evicts all @mem_type buffers on the lru list of the memory type. 2355 * 2356 * Returns: 2357 * 0 for success or a negative error code on failure. 2358 */ 2359 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2360 { 2361 struct ttm_resource_manager *man; 2362 2363 switch (mem_type) { 2364 case TTM_PL_VRAM: 2365 case TTM_PL_TT: 2366 case AMDGPU_PL_GWS: 2367 case AMDGPU_PL_GDS: 2368 case AMDGPU_PL_OA: 2369 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2370 break; 2371 default: 2372 DRM_ERROR("Trying to evict invalid memory type\n"); 2373 return -EINVAL; 2374 } 2375 2376 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2377 } 2378 2379 #if defined(CONFIG_DEBUG_FS) 2380 2381 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2382 { 2383 struct amdgpu_device *adev = m->private; 2384 2385 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2386 } 2387 2388 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2389 2390 /* 2391 * amdgpu_ttm_vram_read - Linear read access to VRAM 2392 * 2393 * Accesses VRAM via MMIO for debugging purposes. 2394 */ 2395 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2396 size_t size, loff_t *pos) 2397 { 2398 struct amdgpu_device *adev = file_inode(f)->i_private; 2399 ssize_t result = 0; 2400 2401 if (size & 0x3 || *pos & 0x3) 2402 return -EINVAL; 2403 2404 if (*pos >= adev->gmc.mc_vram_size) 2405 return -ENXIO; 2406 2407 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2408 while (size) { 2409 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2410 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2411 2412 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2413 if (copy_to_user(buf, value, bytes)) 2414 return -EFAULT; 2415 2416 result += bytes; 2417 buf += bytes; 2418 *pos += bytes; 2419 size -= bytes; 2420 } 2421 2422 return result; 2423 } 2424 2425 /* 2426 * amdgpu_ttm_vram_write - Linear write access to VRAM 2427 * 2428 * Accesses VRAM via MMIO for debugging purposes. 2429 */ 2430 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2431 size_t size, loff_t *pos) 2432 { 2433 struct amdgpu_device *adev = file_inode(f)->i_private; 2434 ssize_t result = 0; 2435 int r; 2436 2437 if (size & 0x3 || *pos & 0x3) 2438 return -EINVAL; 2439 2440 if (*pos >= adev->gmc.mc_vram_size) 2441 return -ENXIO; 2442 2443 while (size) { 2444 uint32_t value; 2445 2446 if (*pos >= adev->gmc.mc_vram_size) 2447 return result; 2448 2449 r = get_user(value, (uint32_t *)buf); 2450 if (r) 2451 return r; 2452 2453 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2454 2455 result += 4; 2456 buf += 4; 2457 *pos += 4; 2458 size -= 4; 2459 } 2460 2461 return result; 2462 } 2463 2464 static const struct file_operations amdgpu_ttm_vram_fops = { 2465 .owner = THIS_MODULE, 2466 .read = amdgpu_ttm_vram_read, 2467 .write = amdgpu_ttm_vram_write, 2468 .llseek = default_llseek, 2469 }; 2470 2471 /* 2472 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2473 * 2474 * This function is used to read memory that has been mapped to the 2475 * GPU and the known addresses are not physical addresses but instead 2476 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2477 */ 2478 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2479 size_t size, loff_t *pos) 2480 { 2481 struct amdgpu_device *adev = file_inode(f)->i_private; 2482 struct iommu_domain *dom; 2483 ssize_t result = 0; 2484 int r; 2485 2486 /* retrieve the IOMMU domain if any for this device */ 2487 dom = iommu_get_domain_for_dev(adev->dev); 2488 2489 while (size) { 2490 phys_addr_t addr = *pos & PAGE_MASK; 2491 loff_t off = *pos & ~PAGE_MASK; 2492 size_t bytes = PAGE_SIZE - off; 2493 unsigned long pfn; 2494 struct page *p; 2495 void *ptr; 2496 2497 bytes = min(bytes, size); 2498 2499 /* Translate the bus address to a physical address. If 2500 * the domain is NULL it means there is no IOMMU active 2501 * and the address translation is the identity 2502 */ 2503 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2504 2505 pfn = addr >> PAGE_SHIFT; 2506 if (!pfn_valid(pfn)) 2507 return -EPERM; 2508 2509 p = pfn_to_page(pfn); 2510 if (p->mapping != adev->mman.bdev.dev_mapping) 2511 return -EPERM; 2512 2513 ptr = kmap_local_page(p); 2514 r = copy_to_user(buf, ptr + off, bytes); 2515 kunmap_local(ptr); 2516 if (r) 2517 return -EFAULT; 2518 2519 size -= bytes; 2520 *pos += bytes; 2521 result += bytes; 2522 } 2523 2524 return result; 2525 } 2526 2527 /* 2528 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2529 * 2530 * This function is used to write memory that has been mapped to the 2531 * GPU and the known addresses are not physical addresses but instead 2532 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2533 */ 2534 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2535 size_t size, loff_t *pos) 2536 { 2537 struct amdgpu_device *adev = file_inode(f)->i_private; 2538 struct iommu_domain *dom; 2539 ssize_t result = 0; 2540 int r; 2541 2542 dom = iommu_get_domain_for_dev(adev->dev); 2543 2544 while (size) { 2545 phys_addr_t addr = *pos & PAGE_MASK; 2546 loff_t off = *pos & ~PAGE_MASK; 2547 size_t bytes = PAGE_SIZE - off; 2548 unsigned long pfn; 2549 struct page *p; 2550 void *ptr; 2551 2552 bytes = min(bytes, size); 2553 2554 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2555 2556 pfn = addr >> PAGE_SHIFT; 2557 if (!pfn_valid(pfn)) 2558 return -EPERM; 2559 2560 p = pfn_to_page(pfn); 2561 if (p->mapping != adev->mman.bdev.dev_mapping) 2562 return -EPERM; 2563 2564 ptr = kmap_local_page(p); 2565 r = copy_from_user(ptr + off, buf, bytes); 2566 kunmap_local(ptr); 2567 if (r) 2568 return -EFAULT; 2569 2570 size -= bytes; 2571 *pos += bytes; 2572 result += bytes; 2573 } 2574 2575 return result; 2576 } 2577 2578 static const struct file_operations amdgpu_ttm_iomem_fops = { 2579 .owner = THIS_MODULE, 2580 .read = amdgpu_iomem_read, 2581 .write = amdgpu_iomem_write, 2582 .llseek = default_llseek 2583 }; 2584 2585 #endif 2586 2587 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2588 { 2589 #if defined(CONFIG_DEBUG_FS) 2590 struct drm_minor *minor = adev_to_drm(adev)->primary; 2591 struct dentry *root = minor->debugfs_root; 2592 2593 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2594 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2595 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2596 &amdgpu_ttm_iomem_fops); 2597 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2598 &amdgpu_ttm_page_pool_fops); 2599 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2600 TTM_PL_VRAM), 2601 root, "amdgpu_vram_mm"); 2602 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2603 TTM_PL_TT), 2604 root, "amdgpu_gtt_mm"); 2605 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2606 AMDGPU_PL_GDS), 2607 root, "amdgpu_gds_mm"); 2608 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2609 AMDGPU_PL_GWS), 2610 root, "amdgpu_gws_mm"); 2611 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2612 AMDGPU_PL_OA), 2613 root, "amdgpu_oa_mm"); 2614 2615 #endif 2616 } 2617