1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 175 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 176 size_t system_mem_needed, ttm_mem_needed, vram_needed; 177 int ret = 0; 178 uint64_t vram_size = 0; 179 180 system_mem_needed = 0; 181 ttm_mem_needed = 0; 182 vram_needed = 0; 183 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 184 system_mem_needed = size; 185 ttm_mem_needed = size; 186 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 187 /* 188 * Conservatively round up the allocation requirement to 2 MB 189 * to avoid fragmentation caused by 4K allocations in the tail 190 * 2M BO chunk. 191 */ 192 vram_needed = size; 193 /* 194 * For GFX 9.4.3, get the VRAM size from XCP structs 195 */ 196 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 197 return -EINVAL; 198 199 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 200 if (adev->apu_prefer_gtt) { 201 system_mem_needed = size; 202 ttm_mem_needed = size; 203 } 204 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 205 system_mem_needed = size; 206 } else if (!(alloc_flag & 207 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 208 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 209 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 210 return -ENOMEM; 211 } 212 213 spin_lock(&kfd_mem_limit.mem_limit_lock); 214 215 if (kfd_mem_limit.system_mem_used + system_mem_needed > 216 kfd_mem_limit.max_system_mem_limit) { 217 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 218 if (!no_system_mem_limit) { 219 ret = -ENOMEM; 220 goto release; 221 } 222 } 223 224 if (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 225 kfd_mem_limit.max_ttm_mem_limit) { 226 ret = -ENOMEM; 227 goto release; 228 } 229 230 /*if is_app_apu is false and apu_prefer_gtt is true, it is an APU with 231 * carve out < gtt. In that case, VRAM allocation will go to gtt domain, skip 232 * VRAM check since ttm_mem_limit check already cover this allocation 233 */ 234 235 if (adev && xcp_id >= 0 && (!adev->apu_prefer_gtt || adev->gmc.is_app_apu)) { 236 uint64_t vram_available = 237 vram_size - reserved_for_pt - reserved_for_ras - 238 atomic64_read(&adev->vram_pin_size); 239 if (adev->kfd.vram_used[xcp_id] + vram_needed > vram_available) { 240 ret = -ENOMEM; 241 goto release; 242 } 243 } 244 245 /* Update memory accounting by decreasing available system 246 * memory, TTM memory and GPU memory as computed above 247 */ 248 WARN_ONCE(vram_needed && !adev, 249 "adev reference can't be null when vram is used"); 250 if (adev && xcp_id >= 0) { 251 adev->kfd.vram_used[xcp_id] += vram_needed; 252 adev->kfd.vram_used_aligned[xcp_id] += 253 adev->apu_prefer_gtt ? 254 vram_needed : 255 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 256 } 257 kfd_mem_limit.system_mem_used += system_mem_needed; 258 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 259 260 release: 261 spin_unlock(&kfd_mem_limit.mem_limit_lock); 262 return ret; 263 } 264 265 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 266 uint64_t size, u32 alloc_flag, int8_t xcp_id) 267 { 268 spin_lock(&kfd_mem_limit.mem_limit_lock); 269 270 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 271 kfd_mem_limit.system_mem_used -= size; 272 kfd_mem_limit.ttm_mem_used -= size; 273 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 274 WARN_ONCE(!adev, 275 "adev reference can't be null when alloc mem flags vram is set"); 276 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 277 goto release; 278 279 if (adev) { 280 adev->kfd.vram_used[xcp_id] -= size; 281 if (adev->apu_prefer_gtt) { 282 adev->kfd.vram_used_aligned[xcp_id] -= size; 283 kfd_mem_limit.system_mem_used -= size; 284 kfd_mem_limit.ttm_mem_used -= size; 285 } else { 286 adev->kfd.vram_used_aligned[xcp_id] -= 287 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 288 } 289 } 290 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 291 kfd_mem_limit.system_mem_used -= size; 292 } else if (!(alloc_flag & 293 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 294 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 295 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 296 goto release; 297 } 298 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 299 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 300 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 301 "KFD TTM memory accounting unbalanced"); 302 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 303 "KFD system memory accounting unbalanced"); 304 305 release: 306 spin_unlock(&kfd_mem_limit.mem_limit_lock); 307 } 308 309 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 310 { 311 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 312 u32 alloc_flags = bo->kfd_bo->alloc_flags; 313 u64 size = amdgpu_bo_size(bo); 314 315 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 316 bo->xcp_id); 317 318 kfree(bo->kfd_bo); 319 } 320 321 /** 322 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 323 * about USERPTR or DOOREBELL or MMIO BO. 324 * 325 * @adev: Device for which dmamap BO is being created 326 * @mem: BO of peer device that is being DMA mapped. Provides parameters 327 * in building the dmamap BO 328 * @bo_out: Output parameter updated with handle of dmamap BO 329 */ 330 static int 331 create_dmamap_sg_bo(struct amdgpu_device *adev, 332 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 333 { 334 struct drm_gem_object *gem_obj; 335 int ret; 336 uint64_t flags = 0; 337 338 ret = amdgpu_bo_reserve(mem->bo, false); 339 if (ret) 340 return ret; 341 342 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 343 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 344 AMDGPU_GEM_CREATE_UNCACHED); 345 346 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 347 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 348 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 349 350 amdgpu_bo_unreserve(mem->bo); 351 352 if (ret) { 353 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 354 return -EINVAL; 355 } 356 357 *bo_out = gem_to_amdgpu_bo(gem_obj); 358 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 359 return ret; 360 } 361 362 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 363 * reservation object. 364 * 365 * @bo: [IN] Remove eviction fence(s) from this BO 366 * @ef: [IN] This eviction fence is removed if it 367 * is present in the shared list. 368 * 369 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 370 */ 371 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 372 struct amdgpu_amdkfd_fence *ef) 373 { 374 struct dma_fence *replacement; 375 376 if (!ef) 377 return -EINVAL; 378 379 /* TODO: Instead of block before we should use the fence of the page 380 * table update and TLB flush here directly. 381 */ 382 replacement = dma_fence_get_stub(); 383 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 384 replacement, DMA_RESV_USAGE_BOOKKEEP); 385 dma_fence_put(replacement); 386 return 0; 387 } 388 389 /** 390 * amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences 391 * @bo: the BO where to remove the evictions fences from. 392 * 393 * This functions should only be used on release when all references to the BO 394 * are already dropped. We remove the eviction fence from the private copy of 395 * the dma_resv object here since that is what is used during release to 396 * determine of the BO is idle or not. 397 */ 398 void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo) 399 { 400 struct dma_resv *resv = &bo->tbo.base._resv; 401 struct dma_fence *fence, *stub; 402 struct dma_resv_iter cursor; 403 404 dma_resv_assert_held(resv); 405 406 stub = dma_fence_get_stub(); 407 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 408 if (!to_amdgpu_amdkfd_fence(fence)) 409 continue; 410 411 dma_resv_replace_fences(resv, fence->context, stub, 412 DMA_RESV_USAGE_BOOKKEEP); 413 } 414 dma_fence_put(stub); 415 } 416 417 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 418 bool wait) 419 { 420 struct ttm_operation_ctx ctx = { false, false }; 421 int ret; 422 423 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 424 "Called with userptr BO")) 425 return -EINVAL; 426 427 /* bo has been pinned, not need validate it */ 428 if (bo->tbo.pin_count) 429 return 0; 430 431 amdgpu_bo_placement_from_domain(bo, domain); 432 433 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 434 if (ret) 435 goto validate_fail; 436 if (wait) 437 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 438 439 validate_fail: 440 return ret; 441 } 442 443 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 444 uint32_t domain, 445 struct dma_fence *fence) 446 { 447 int ret = amdgpu_bo_reserve(bo, false); 448 449 if (ret) 450 return ret; 451 452 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 453 if (ret) 454 goto unreserve_out; 455 456 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 457 if (ret) 458 goto unreserve_out; 459 460 dma_resv_add_fence(bo->tbo.base.resv, fence, 461 DMA_RESV_USAGE_BOOKKEEP); 462 463 unreserve_out: 464 amdgpu_bo_unreserve(bo); 465 466 return ret; 467 } 468 469 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 470 { 471 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 472 } 473 474 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 475 * 476 * Page directories are not updated here because huge page handling 477 * during page table updates can invalidate page directory entries 478 * again. Page directories are only updated after updating page 479 * tables. 480 */ 481 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 482 struct ww_acquire_ctx *ticket) 483 { 484 struct amdgpu_bo *pd = vm->root.bo; 485 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 486 int ret; 487 488 ret = amdgpu_vm_validate(adev, vm, ticket, 489 amdgpu_amdkfd_validate_vm_bo, NULL); 490 if (ret) { 491 pr_err("failed to validate PT BOs\n"); 492 return ret; 493 } 494 495 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 496 497 return 0; 498 } 499 500 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 501 { 502 struct amdgpu_bo *pd = vm->root.bo; 503 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 504 int ret; 505 506 ret = amdgpu_vm_update_pdes(adev, vm, false); 507 if (ret) 508 return ret; 509 510 return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL); 511 } 512 513 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm, 514 struct kgd_mem *mem) 515 { 516 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 517 AMDGPU_VM_MTYPE_DEFAULT; 518 519 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 520 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 521 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 522 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 523 524 return mapping_flags; 525 } 526 527 /** 528 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 529 * @addr: The starting address to point to 530 * @size: Size of memory area in bytes being pointed to 531 * 532 * Allocates an instance of sg_table and initializes it to point to memory 533 * area specified by input parameters. The address used to build is assumed 534 * to be DMA mapped, if needed. 535 * 536 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 537 * because they are physically contiguous. 538 * 539 * Return: Initialized instance of SG Table or NULL 540 */ 541 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 542 { 543 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 544 545 if (!sg) 546 return NULL; 547 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 548 kfree(sg); 549 return NULL; 550 } 551 sg_dma_address(sg->sgl) = addr; 552 sg->sgl->length = size; 553 #ifdef CONFIG_NEED_SG_DMA_LENGTH 554 sg->sgl->dma_length = size; 555 #endif 556 return sg; 557 } 558 559 static int 560 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 561 struct kfd_mem_attachment *attachment) 562 { 563 enum dma_data_direction direction = 564 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 565 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 566 struct ttm_operation_ctx ctx = {.interruptible = true}; 567 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 568 struct amdgpu_device *adev = attachment->adev; 569 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 570 struct ttm_tt *ttm = bo->tbo.ttm; 571 int ret; 572 573 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 574 return -EINVAL; 575 576 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 577 if (unlikely(!ttm->sg)) 578 return -ENOMEM; 579 580 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 581 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 582 ttm->num_pages, 0, 583 (u64)ttm->num_pages << PAGE_SHIFT, 584 GFP_KERNEL); 585 if (unlikely(ret)) 586 goto free_sg; 587 588 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 589 if (unlikely(ret)) 590 goto release_sg; 591 592 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 593 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 594 if (ret) 595 goto unmap_sg; 596 597 return 0; 598 599 unmap_sg: 600 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 601 release_sg: 602 pr_err("DMA map userptr failed: %d\n", ret); 603 sg_free_table(ttm->sg); 604 free_sg: 605 kfree(ttm->sg); 606 ttm->sg = NULL; 607 return ret; 608 } 609 610 static int 611 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 612 { 613 struct ttm_operation_ctx ctx = {.interruptible = true}; 614 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 615 616 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 617 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 618 } 619 620 /** 621 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 622 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 623 * @attachment: Virtual address attachment of the BO on accessing device 624 * 625 * An access request from the device that owns DOORBELL does not require DMA mapping. 626 * This is because the request doesn't go through PCIe root complex i.e. it instead 627 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 628 * 629 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 630 * device ownership. This is because access requests for MMIO go through PCIe root 631 * complex. 632 * 633 * This is accomplished in two steps: 634 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 635 * in updating requesting device's page table 636 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 637 * accessible. This allows an update of requesting device's page table 638 * with entries associated with DOOREBELL or MMIO memory 639 * 640 * This method is invoked in the following contexts: 641 * - Mapping of DOORBELL or MMIO BO of same or peer device 642 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 643 * 644 * Return: ZERO if successful, NON-ZERO otherwise 645 */ 646 static int 647 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 648 struct kfd_mem_attachment *attachment) 649 { 650 struct ttm_operation_ctx ctx = {.interruptible = true}; 651 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 652 struct amdgpu_device *adev = attachment->adev; 653 struct ttm_tt *ttm = bo->tbo.ttm; 654 enum dma_data_direction dir; 655 dma_addr_t dma_addr; 656 bool mmio; 657 int ret; 658 659 /* Expect SG Table of dmapmap BO to be NULL */ 660 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 661 if (unlikely(ttm->sg)) { 662 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 663 return -EINVAL; 664 } 665 666 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 667 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 668 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 669 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 670 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 671 dma_addr = dma_map_resource(adev->dev, dma_addr, 672 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 673 ret = dma_mapping_error(adev->dev, dma_addr); 674 if (unlikely(ret)) 675 return ret; 676 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 677 678 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 679 if (unlikely(!ttm->sg)) { 680 ret = -ENOMEM; 681 goto unmap_sg; 682 } 683 684 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 685 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 686 if (unlikely(ret)) 687 goto free_sg; 688 689 return ret; 690 691 free_sg: 692 sg_free_table(ttm->sg); 693 kfree(ttm->sg); 694 ttm->sg = NULL; 695 unmap_sg: 696 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 697 dir, DMA_ATTR_SKIP_CPU_SYNC); 698 return ret; 699 } 700 701 static int 702 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 703 struct kfd_mem_attachment *attachment) 704 { 705 switch (attachment->type) { 706 case KFD_MEM_ATT_SHARED: 707 return 0; 708 case KFD_MEM_ATT_USERPTR: 709 return kfd_mem_dmamap_userptr(mem, attachment); 710 case KFD_MEM_ATT_DMABUF: 711 return kfd_mem_dmamap_dmabuf(attachment); 712 case KFD_MEM_ATT_SG: 713 return kfd_mem_dmamap_sg_bo(mem, attachment); 714 default: 715 WARN_ON_ONCE(1); 716 } 717 return -EINVAL; 718 } 719 720 static void 721 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 722 struct kfd_mem_attachment *attachment) 723 { 724 enum dma_data_direction direction = 725 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 726 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 727 struct ttm_operation_ctx ctx = {.interruptible = false}; 728 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 729 struct amdgpu_device *adev = attachment->adev; 730 struct ttm_tt *ttm = bo->tbo.ttm; 731 732 if (unlikely(!ttm->sg)) 733 return; 734 735 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 736 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 737 738 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 739 sg_free_table(ttm->sg); 740 kfree(ttm->sg); 741 ttm->sg = NULL; 742 } 743 744 static void 745 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 746 { 747 /* This is a no-op. We don't want to trigger eviction fences when 748 * unmapping DMABufs. Therefore the invalidation (moving to system 749 * domain) is done in kfd_mem_dmamap_dmabuf. 750 */ 751 } 752 753 /** 754 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 755 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 756 * @attachment: Virtual address attachment of the BO on accessing device 757 * 758 * The method performs following steps: 759 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 760 * - Free SG Table that is used to encapsulate DMA mapped memory of 761 * peer device's DOORBELL or MMIO memory 762 * 763 * This method is invoked in the following contexts: 764 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 765 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 766 * 767 * Return: void 768 */ 769 static void 770 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 771 struct kfd_mem_attachment *attachment) 772 { 773 struct ttm_operation_ctx ctx = {.interruptible = true}; 774 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 775 struct amdgpu_device *adev = attachment->adev; 776 struct ttm_tt *ttm = bo->tbo.ttm; 777 enum dma_data_direction dir; 778 779 if (unlikely(!ttm->sg)) { 780 pr_debug("SG Table of BO is NULL"); 781 return; 782 } 783 784 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 785 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 786 787 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 788 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 789 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 790 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 791 sg_free_table(ttm->sg); 792 kfree(ttm->sg); 793 ttm->sg = NULL; 794 bo->tbo.sg = NULL; 795 } 796 797 static void 798 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 799 struct kfd_mem_attachment *attachment) 800 { 801 switch (attachment->type) { 802 case KFD_MEM_ATT_SHARED: 803 break; 804 case KFD_MEM_ATT_USERPTR: 805 kfd_mem_dmaunmap_userptr(mem, attachment); 806 break; 807 case KFD_MEM_ATT_DMABUF: 808 kfd_mem_dmaunmap_dmabuf(attachment); 809 break; 810 case KFD_MEM_ATT_SG: 811 kfd_mem_dmaunmap_sg_bo(mem, attachment); 812 break; 813 default: 814 WARN_ON_ONCE(1); 815 } 816 } 817 818 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 819 { 820 if (!mem->dmabuf) { 821 struct amdgpu_device *bo_adev; 822 struct dma_buf *dmabuf; 823 824 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 825 dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file, 826 mem->gem_handle, 827 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 828 DRM_RDWR : 0); 829 if (IS_ERR(dmabuf)) 830 return PTR_ERR(dmabuf); 831 mem->dmabuf = dmabuf; 832 } 833 834 return 0; 835 } 836 837 static int 838 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 839 struct amdgpu_bo **bo) 840 { 841 struct drm_gem_object *gobj; 842 int ret; 843 844 ret = kfd_mem_export_dmabuf(mem); 845 if (ret) 846 return ret; 847 848 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 849 if (IS_ERR(gobj)) 850 return PTR_ERR(gobj); 851 852 *bo = gem_to_amdgpu_bo(gobj); 853 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 854 855 return 0; 856 } 857 858 /* kfd_mem_attach - Add a BO to a VM 859 * 860 * Everything that needs to bo done only once when a BO is first added 861 * to a VM. It can later be mapped and unmapped many times without 862 * repeating these steps. 863 * 864 * 0. Create BO for DMA mapping, if needed 865 * 1. Allocate and initialize BO VA entry data structure 866 * 2. Add BO to the VM 867 * 3. Determine ASIC-specific PTE flags 868 * 4. Alloc page tables and directories if needed 869 * 4a. Validate new page tables and directories 870 */ 871 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 872 struct amdgpu_vm *vm, bool is_aql) 873 { 874 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 875 unsigned long bo_size = mem->bo->tbo.base.size; 876 uint64_t va = mem->va; 877 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 878 struct amdgpu_bo *bo[2] = {NULL, NULL}; 879 struct amdgpu_bo_va *bo_va; 880 bool same_hive = false; 881 int i, ret; 882 883 if (!va) { 884 pr_err("Invalid VA when adding BO to VM\n"); 885 return -EINVAL; 886 } 887 888 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 889 * 890 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 891 * In contrast the access path of VRAM BOs depens upon the type of 892 * link that connects the peer device. Access over PCIe is allowed 893 * if peer device has large BAR. In contrast, access over xGMI is 894 * allowed for both small and large BAR configurations of peer device 895 */ 896 if ((adev != bo_adev && !adev->apu_prefer_gtt) && 897 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 898 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 899 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 900 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 901 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 902 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 903 return -EINVAL; 904 } 905 906 for (i = 0; i <= is_aql; i++) { 907 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 908 if (unlikely(!attachment[i])) { 909 ret = -ENOMEM; 910 goto unwind; 911 } 912 913 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 914 va + bo_size, vm); 915 916 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 917 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 918 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 919 same_hive) { 920 /* Mappings on the local GPU, or VRAM mappings in the 921 * local hive, or userptr, or GTT mapping can reuse dma map 922 * address space share the original BO 923 */ 924 attachment[i]->type = KFD_MEM_ATT_SHARED; 925 bo[i] = mem->bo; 926 drm_gem_object_get(&bo[i]->tbo.base); 927 } else if (i > 0) { 928 /* Multiple mappings on the same GPU share the BO */ 929 attachment[i]->type = KFD_MEM_ATT_SHARED; 930 bo[i] = bo[0]; 931 drm_gem_object_get(&bo[i]->tbo.base); 932 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 933 /* Create an SG BO to DMA-map userptrs on other GPUs */ 934 attachment[i]->type = KFD_MEM_ATT_USERPTR; 935 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 936 if (ret) 937 goto unwind; 938 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 939 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 940 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 941 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 942 "Handing invalid SG BO in ATTACH request"); 943 attachment[i]->type = KFD_MEM_ATT_SG; 944 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 945 if (ret) 946 goto unwind; 947 /* Enable acces to GTT and VRAM BOs of peer devices */ 948 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 949 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 950 attachment[i]->type = KFD_MEM_ATT_DMABUF; 951 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 952 if (ret) 953 goto unwind; 954 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 955 } else { 956 WARN_ONCE(true, "Handling invalid ATTACH request"); 957 ret = -EINVAL; 958 goto unwind; 959 } 960 961 /* Add BO to VM internal data structures */ 962 ret = amdgpu_bo_reserve(bo[i], false); 963 if (ret) { 964 pr_debug("Unable to reserve BO during memory attach"); 965 goto unwind; 966 } 967 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 968 if (!bo_va) 969 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 970 else 971 ++bo_va->ref_count; 972 attachment[i]->bo_va = bo_va; 973 amdgpu_bo_unreserve(bo[i]); 974 if (unlikely(!attachment[i]->bo_va)) { 975 ret = -ENOMEM; 976 pr_err("Failed to add BO object to VM. ret == %d\n", 977 ret); 978 goto unwind; 979 } 980 attachment[i]->va = va; 981 attachment[i]->pte_flags = get_pte_flags(adev, vm, mem); 982 attachment[i]->adev = adev; 983 list_add(&attachment[i]->list, &mem->attachments); 984 985 va += bo_size; 986 } 987 988 return 0; 989 990 unwind: 991 for (; i >= 0; i--) { 992 if (!attachment[i]) 993 continue; 994 if (attachment[i]->bo_va) { 995 (void)amdgpu_bo_reserve(bo[i], true); 996 if (--attachment[i]->bo_va->ref_count == 0) 997 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 998 amdgpu_bo_unreserve(bo[i]); 999 list_del(&attachment[i]->list); 1000 } 1001 if (bo[i]) 1002 drm_gem_object_put(&bo[i]->tbo.base); 1003 kfree(attachment[i]); 1004 } 1005 return ret; 1006 } 1007 1008 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1009 { 1010 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1011 1012 pr_debug("\t remove VA 0x%llx in entry %p\n", 1013 attachment->va, attachment); 1014 if (--attachment->bo_va->ref_count == 0) 1015 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1016 drm_gem_object_put(&bo->tbo.base); 1017 list_del(&attachment->list); 1018 kfree(attachment); 1019 } 1020 1021 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1022 struct amdkfd_process_info *process_info, 1023 bool userptr) 1024 { 1025 mutex_lock(&process_info->lock); 1026 if (userptr) 1027 list_add_tail(&mem->validate_list, 1028 &process_info->userptr_valid_list); 1029 else 1030 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1031 mutex_unlock(&process_info->lock); 1032 } 1033 1034 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1035 struct amdkfd_process_info *process_info) 1036 { 1037 mutex_lock(&process_info->lock); 1038 list_del(&mem->validate_list); 1039 mutex_unlock(&process_info->lock); 1040 } 1041 1042 /* Initializes user pages. It registers the MMU notifier and validates 1043 * the userptr BO in the GTT domain. 1044 * 1045 * The BO must already be on the userptr_valid_list. Otherwise an 1046 * eviction and restore may happen that leaves the new BO unmapped 1047 * with the user mode queues running. 1048 * 1049 * Takes the process_info->lock to protect against concurrent restore 1050 * workers. 1051 * 1052 * Returns 0 for success, negative errno for errors. 1053 */ 1054 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1055 bool criu_resume) 1056 { 1057 struct amdkfd_process_info *process_info = mem->process_info; 1058 struct amdgpu_bo *bo = mem->bo; 1059 struct ttm_operation_ctx ctx = { true, false }; 1060 struct amdgpu_hmm_range *range; 1061 int ret = 0; 1062 1063 mutex_lock(&process_info->lock); 1064 1065 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1066 if (ret) { 1067 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1068 goto out; 1069 } 1070 1071 ret = amdgpu_hmm_register(bo, user_addr); 1072 if (ret) { 1073 pr_err("%s: Failed to register MMU notifier: %d\n", 1074 __func__, ret); 1075 goto out; 1076 } 1077 1078 if (criu_resume) { 1079 /* 1080 * During a CRIU restore operation, the userptr buffer objects 1081 * will be validated in the restore_userptr_work worker at a 1082 * later stage when it is scheduled by another ioctl called by 1083 * CRIU master process for the target pid for restore. 1084 */ 1085 mutex_lock(&process_info->notifier_lock); 1086 mem->invalid++; 1087 mutex_unlock(&process_info->notifier_lock); 1088 mutex_unlock(&process_info->lock); 1089 return 0; 1090 } 1091 1092 range = amdgpu_hmm_range_alloc(NULL); 1093 if (unlikely(!range)) { 1094 ret = -ENOMEM; 1095 goto unregister_out; 1096 } 1097 1098 ret = amdgpu_ttm_tt_get_user_pages(bo, range); 1099 if (ret) { 1100 amdgpu_hmm_range_free(range); 1101 if (ret == -EAGAIN) 1102 pr_debug("Failed to get user pages, try again\n"); 1103 else 1104 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1105 goto unregister_out; 1106 } 1107 1108 ret = amdgpu_bo_reserve(bo, true); 1109 if (ret) { 1110 pr_err("%s: Failed to reserve BO\n", __func__); 1111 goto release_out; 1112 } 1113 1114 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, range); 1115 1116 amdgpu_bo_placement_from_domain(bo, mem->domain); 1117 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1118 if (ret) 1119 pr_err("%s: failed to validate BO\n", __func__); 1120 amdgpu_bo_unreserve(bo); 1121 1122 release_out: 1123 amdgpu_hmm_range_free(range); 1124 unregister_out: 1125 if (ret) 1126 amdgpu_hmm_unregister(bo); 1127 out: 1128 mutex_unlock(&process_info->lock); 1129 return ret; 1130 } 1131 1132 /* Reserving a BO and its page table BOs must happen atomically to 1133 * avoid deadlocks. Some operations update multiple VMs at once. Track 1134 * all the reservation info in a context structure. Optionally a sync 1135 * object can track VM updates. 1136 */ 1137 struct bo_vm_reservation_context { 1138 /* DRM execution context for the reservation */ 1139 struct drm_exec exec; 1140 /* Number of VMs reserved */ 1141 unsigned int n_vms; 1142 /* Pointer to sync object */ 1143 struct amdgpu_sync *sync; 1144 }; 1145 1146 enum bo_vm_match { 1147 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1148 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1149 BO_VM_ALL, /* Match all VMs a BO was added to */ 1150 }; 1151 1152 /** 1153 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1154 * @mem: KFD BO structure. 1155 * @vm: the VM to reserve. 1156 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1157 */ 1158 static int reserve_bo_and_vm(struct kgd_mem *mem, 1159 struct amdgpu_vm *vm, 1160 struct bo_vm_reservation_context *ctx) 1161 { 1162 struct amdgpu_bo *bo = mem->bo; 1163 int ret; 1164 1165 WARN_ON(!vm); 1166 1167 ctx->n_vms = 1; 1168 ctx->sync = &mem->sync; 1169 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1170 drm_exec_until_all_locked(&ctx->exec) { 1171 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1172 drm_exec_retry_on_contention(&ctx->exec); 1173 if (unlikely(ret)) 1174 goto error; 1175 1176 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1177 drm_exec_retry_on_contention(&ctx->exec); 1178 if (unlikely(ret)) 1179 goto error; 1180 } 1181 return 0; 1182 1183 error: 1184 pr_err("Failed to reserve buffers in ttm.\n"); 1185 drm_exec_fini(&ctx->exec); 1186 return ret; 1187 } 1188 1189 /** 1190 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1191 * @mem: KFD BO structure. 1192 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1193 * is used. Otherwise, a single VM associated with the BO. 1194 * @map_type: the mapping status that will be used to filter the VMs. 1195 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1196 * 1197 * Returns 0 for success, negative for failure. 1198 */ 1199 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1200 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1201 struct bo_vm_reservation_context *ctx) 1202 { 1203 struct kfd_mem_attachment *entry; 1204 struct amdgpu_bo *bo = mem->bo; 1205 int ret; 1206 1207 ctx->sync = &mem->sync; 1208 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1209 DRM_EXEC_IGNORE_DUPLICATES, 0); 1210 drm_exec_until_all_locked(&ctx->exec) { 1211 ctx->n_vms = 0; 1212 list_for_each_entry(entry, &mem->attachments, list) { 1213 if ((vm && vm != entry->bo_va->base.vm) || 1214 (entry->is_mapped != map_type 1215 && map_type != BO_VM_ALL)) 1216 continue; 1217 1218 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1219 &ctx->exec, 2); 1220 drm_exec_retry_on_contention(&ctx->exec); 1221 if (unlikely(ret)) 1222 goto error; 1223 ++ctx->n_vms; 1224 } 1225 1226 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1227 drm_exec_retry_on_contention(&ctx->exec); 1228 if (unlikely(ret)) 1229 goto error; 1230 } 1231 return 0; 1232 1233 error: 1234 pr_err("Failed to reserve buffers in ttm.\n"); 1235 drm_exec_fini(&ctx->exec); 1236 return ret; 1237 } 1238 1239 /** 1240 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1241 * @ctx: Reservation context to unreserve 1242 * @wait: Optionally wait for a sync object representing pending VM updates 1243 * @intr: Whether the wait is interruptible 1244 * 1245 * Also frees any resources allocated in 1246 * reserve_bo_and_(cond_)vm(s). Returns the status from 1247 * amdgpu_sync_wait. 1248 */ 1249 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1250 bool wait, bool intr) 1251 { 1252 int ret = 0; 1253 1254 if (wait) 1255 ret = amdgpu_sync_wait(ctx->sync, intr); 1256 1257 drm_exec_fini(&ctx->exec); 1258 ctx->sync = NULL; 1259 return ret; 1260 } 1261 1262 static int unmap_bo_from_gpuvm(struct kgd_mem *mem, 1263 struct kfd_mem_attachment *entry, 1264 struct amdgpu_sync *sync) 1265 { 1266 struct amdgpu_bo_va *bo_va = entry->bo_va; 1267 struct amdgpu_device *adev = entry->adev; 1268 struct amdgpu_vm *vm = bo_va->base.vm; 1269 1270 if (bo_va->queue_refcount) { 1271 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); 1272 return -EBUSY; 1273 } 1274 1275 (void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1276 1277 (void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1278 1279 (void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1280 1281 return 0; 1282 } 1283 1284 static int update_gpuvm_pte(struct kgd_mem *mem, 1285 struct kfd_mem_attachment *entry, 1286 struct amdgpu_sync *sync) 1287 { 1288 struct amdgpu_bo_va *bo_va = entry->bo_va; 1289 struct amdgpu_device *adev = entry->adev; 1290 int ret; 1291 1292 ret = kfd_mem_dmamap_attachment(mem, entry); 1293 if (ret) 1294 return ret; 1295 1296 /* Update the page tables */ 1297 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1298 if (ret) { 1299 pr_err("amdgpu_vm_bo_update failed\n"); 1300 return ret; 1301 } 1302 1303 return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1304 } 1305 1306 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1307 struct kfd_mem_attachment *entry, 1308 struct amdgpu_sync *sync, 1309 bool no_update_pte) 1310 { 1311 int ret; 1312 1313 /* Set virtual address for the allocation */ 1314 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1315 amdgpu_bo_size(entry->bo_va->base.bo), 1316 entry->pte_flags); 1317 if (ret) { 1318 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1319 entry->va, ret); 1320 return ret; 1321 } 1322 1323 if (no_update_pte) 1324 return 0; 1325 1326 ret = update_gpuvm_pte(mem, entry, sync); 1327 if (ret) { 1328 pr_err("update_gpuvm_pte() failed\n"); 1329 goto update_gpuvm_pte_failed; 1330 } 1331 1332 return 0; 1333 1334 update_gpuvm_pte_failed: 1335 unmap_bo_from_gpuvm(mem, entry, sync); 1336 kfd_mem_dmaunmap_attachment(mem, entry); 1337 return ret; 1338 } 1339 1340 static int process_validate_vms(struct amdkfd_process_info *process_info, 1341 struct ww_acquire_ctx *ticket) 1342 { 1343 struct amdgpu_vm *peer_vm; 1344 int ret; 1345 1346 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1347 vm_list_node) { 1348 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1349 if (ret) 1350 return ret; 1351 } 1352 1353 return 0; 1354 } 1355 1356 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1357 struct amdgpu_sync *sync) 1358 { 1359 struct amdgpu_vm *peer_vm; 1360 int ret; 1361 1362 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1363 vm_list_node) { 1364 struct amdgpu_bo *pd = peer_vm->root.bo; 1365 1366 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1367 AMDGPU_SYNC_NE_OWNER, 1368 AMDGPU_FENCE_OWNER_KFD); 1369 if (ret) 1370 return ret; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int process_update_pds(struct amdkfd_process_info *process_info, 1377 struct amdgpu_sync *sync) 1378 { 1379 struct amdgpu_vm *peer_vm; 1380 int ret; 1381 1382 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1383 vm_list_node) { 1384 ret = vm_update_pds(peer_vm, sync); 1385 if (ret) 1386 return ret; 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1393 struct dma_fence **ef) 1394 { 1395 struct amdkfd_process_info *info = NULL; 1396 int ret; 1397 1398 if (!*process_info) { 1399 info = kzalloc(sizeof(*info), GFP_KERNEL); 1400 if (!info) 1401 return -ENOMEM; 1402 1403 mutex_init(&info->lock); 1404 mutex_init(&info->notifier_lock); 1405 INIT_LIST_HEAD(&info->vm_list_head); 1406 INIT_LIST_HEAD(&info->kfd_bo_list); 1407 INIT_LIST_HEAD(&info->userptr_valid_list); 1408 INIT_LIST_HEAD(&info->userptr_inval_list); 1409 1410 info->eviction_fence = 1411 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1412 current->mm, 1413 NULL); 1414 if (!info->eviction_fence) { 1415 pr_err("Failed to create eviction fence\n"); 1416 ret = -ENOMEM; 1417 goto create_evict_fence_fail; 1418 } 1419 1420 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1421 INIT_DELAYED_WORK(&info->restore_userptr_work, 1422 amdgpu_amdkfd_restore_userptr_worker); 1423 1424 *process_info = info; 1425 } 1426 1427 vm->process_info = *process_info; 1428 1429 /* Validate page directory and attach eviction fence */ 1430 ret = amdgpu_bo_reserve(vm->root.bo, true); 1431 if (ret) 1432 goto reserve_pd_fail; 1433 ret = vm_validate_pt_pd_bos(vm, NULL); 1434 if (ret) { 1435 pr_err("validate_pt_pd_bos() failed\n"); 1436 goto validate_pd_fail; 1437 } 1438 ret = amdgpu_bo_sync_wait(vm->root.bo, 1439 AMDGPU_FENCE_OWNER_KFD, false); 1440 if (ret) 1441 goto wait_pd_fail; 1442 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1443 if (ret) 1444 goto reserve_shared_fail; 1445 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1446 &vm->process_info->eviction_fence->base, 1447 DMA_RESV_USAGE_BOOKKEEP); 1448 amdgpu_bo_unreserve(vm->root.bo); 1449 1450 /* Update process info */ 1451 mutex_lock(&vm->process_info->lock); 1452 list_add_tail(&vm->vm_list_node, 1453 &(vm->process_info->vm_list_head)); 1454 vm->process_info->n_vms++; 1455 if (ef) 1456 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1457 mutex_unlock(&vm->process_info->lock); 1458 1459 return 0; 1460 1461 reserve_shared_fail: 1462 wait_pd_fail: 1463 validate_pd_fail: 1464 amdgpu_bo_unreserve(vm->root.bo); 1465 reserve_pd_fail: 1466 vm->process_info = NULL; 1467 if (info) { 1468 dma_fence_put(&info->eviction_fence->base); 1469 *process_info = NULL; 1470 put_pid(info->pid); 1471 create_evict_fence_fail: 1472 mutex_destroy(&info->lock); 1473 mutex_destroy(&info->notifier_lock); 1474 kfree(info); 1475 } 1476 return ret; 1477 } 1478 1479 /** 1480 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1481 * @bo: Handle of buffer object being pinned 1482 * @domain: Domain into which BO should be pinned 1483 * 1484 * - USERPTR BOs are UNPINNABLE and will return error 1485 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1486 * PIN count incremented. It is valid to PIN a BO multiple times 1487 * 1488 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1489 */ 1490 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1491 { 1492 int ret = 0; 1493 1494 ret = amdgpu_bo_reserve(bo, false); 1495 if (unlikely(ret)) 1496 return ret; 1497 1498 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1499 /* 1500 * If bo is not contiguous on VRAM, move to system memory first to ensure 1501 * we can get contiguous VRAM space after evicting other BOs. 1502 */ 1503 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1504 struct ttm_operation_ctx ctx = { true, false }; 1505 1506 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1507 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1508 if (unlikely(ret)) { 1509 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1510 goto out; 1511 } 1512 } 1513 } 1514 1515 ret = amdgpu_bo_pin(bo, domain); 1516 if (ret) 1517 pr_err("Error in Pinning BO to domain: %d\n", domain); 1518 1519 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1520 out: 1521 amdgpu_bo_unreserve(bo); 1522 return ret; 1523 } 1524 1525 /** 1526 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1527 * @bo: Handle of buffer object being unpinned 1528 * 1529 * - Is a illegal request for USERPTR BOs and is ignored 1530 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1531 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1532 */ 1533 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1534 { 1535 int ret = 0; 1536 1537 ret = amdgpu_bo_reserve(bo, false); 1538 if (unlikely(ret)) 1539 return; 1540 1541 amdgpu_bo_unpin(bo); 1542 amdgpu_bo_unreserve(bo); 1543 } 1544 1545 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1546 struct amdgpu_vm *avm, 1547 void **process_info, 1548 struct dma_fence **ef) 1549 { 1550 int ret; 1551 1552 /* Already a compute VM? */ 1553 if (avm->process_info) 1554 return -EINVAL; 1555 1556 /* Convert VM into a compute VM */ 1557 ret = amdgpu_vm_make_compute(adev, avm); 1558 if (ret) 1559 return ret; 1560 1561 /* Initialize KFD part of the VM and process info */ 1562 ret = init_kfd_vm(avm, process_info, ef); 1563 if (ret) 1564 return ret; 1565 1566 amdgpu_vm_set_task_info(avm); 1567 1568 return 0; 1569 } 1570 1571 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1572 struct amdgpu_vm *vm) 1573 { 1574 struct amdkfd_process_info *process_info = vm->process_info; 1575 1576 if (!process_info) 1577 return; 1578 1579 /* Update process info */ 1580 mutex_lock(&process_info->lock); 1581 process_info->n_vms--; 1582 list_del(&vm->vm_list_node); 1583 mutex_unlock(&process_info->lock); 1584 1585 vm->process_info = NULL; 1586 1587 /* Release per-process resources when last compute VM is destroyed */ 1588 if (!process_info->n_vms) { 1589 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1590 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1591 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1592 1593 dma_fence_put(&process_info->eviction_fence->base); 1594 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1595 put_pid(process_info->pid); 1596 mutex_destroy(&process_info->lock); 1597 mutex_destroy(&process_info->notifier_lock); 1598 kfree(process_info); 1599 } 1600 } 1601 1602 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1603 { 1604 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1605 struct amdgpu_bo *pd = avm->root.bo; 1606 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1607 1608 if (adev->asic_type < CHIP_VEGA10) 1609 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1610 return avm->pd_phys_addr; 1611 } 1612 1613 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1614 { 1615 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1616 1617 mutex_lock(&pinfo->lock); 1618 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1619 mutex_unlock(&pinfo->lock); 1620 } 1621 1622 int amdgpu_amdkfd_criu_resume(void *p) 1623 { 1624 int ret = 0; 1625 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1626 1627 mutex_lock(&pinfo->lock); 1628 pr_debug("scheduling work\n"); 1629 mutex_lock(&pinfo->notifier_lock); 1630 pinfo->evicted_bos++; 1631 mutex_unlock(&pinfo->notifier_lock); 1632 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1633 ret = -EINVAL; 1634 goto out_unlock; 1635 } 1636 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1637 queue_delayed_work(system_freezable_wq, 1638 &pinfo->restore_userptr_work, 0); 1639 1640 out_unlock: 1641 mutex_unlock(&pinfo->lock); 1642 return ret; 1643 } 1644 1645 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1646 uint8_t xcp_id) 1647 { 1648 uint64_t reserved_for_pt = 1649 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1650 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 1651 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 1652 ssize_t available; 1653 uint64_t vram_available, system_mem_available, ttm_mem_available; 1654 1655 spin_lock(&kfd_mem_limit.mem_limit_lock); 1656 if (adev->apu_prefer_gtt && !adev->gmc.is_app_apu) 1657 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1658 - adev->kfd.vram_used_aligned[xcp_id]; 1659 else 1660 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1661 - adev->kfd.vram_used_aligned[xcp_id] 1662 - atomic64_read(&adev->vram_pin_size) 1663 - reserved_for_pt 1664 - reserved_for_ras; 1665 1666 if (adev->apu_prefer_gtt) { 1667 system_mem_available = no_system_mem_limit ? 1668 kfd_mem_limit.max_system_mem_limit : 1669 kfd_mem_limit.max_system_mem_limit - 1670 kfd_mem_limit.system_mem_used; 1671 1672 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1673 kfd_mem_limit.ttm_mem_used; 1674 1675 available = min3(system_mem_available, ttm_mem_available, 1676 vram_available); 1677 available = ALIGN_DOWN(available, PAGE_SIZE); 1678 } else { 1679 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1680 } 1681 1682 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1683 1684 if (available < 0) 1685 available = 0; 1686 1687 return available; 1688 } 1689 1690 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1691 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1692 void *drm_priv, struct kgd_mem **mem, 1693 uint64_t *offset, uint32_t flags, bool criu_resume) 1694 { 1695 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1696 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1697 enum ttm_bo_type bo_type = ttm_bo_type_device; 1698 struct sg_table *sg = NULL; 1699 uint64_t user_addr = 0; 1700 struct amdgpu_bo *bo; 1701 struct drm_gem_object *gobj = NULL; 1702 u32 domain, alloc_domain; 1703 uint64_t aligned_size; 1704 int8_t xcp_id = -1; 1705 u64 alloc_flags; 1706 int ret; 1707 1708 /* 1709 * Check on which domain to allocate BO 1710 */ 1711 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1712 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1713 1714 if (adev->apu_prefer_gtt) { 1715 domain = AMDGPU_GEM_DOMAIN_GTT; 1716 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1717 alloc_flags = 0; 1718 } else { 1719 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1720 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1721 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1722 1723 /* For contiguous VRAM allocation */ 1724 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1725 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1726 } 1727 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1728 0 : fpriv->xcp_id; 1729 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1730 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1731 alloc_flags = 0; 1732 } else { 1733 domain = AMDGPU_GEM_DOMAIN_GTT; 1734 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1735 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1736 1737 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1738 if (!offset || !*offset) 1739 return -EINVAL; 1740 user_addr = untagged_addr(*offset); 1741 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1742 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1743 bo_type = ttm_bo_type_sg; 1744 if (size > UINT_MAX) 1745 return -EINVAL; 1746 sg = create_sg_table(*offset, size); 1747 if (!sg) 1748 return -ENOMEM; 1749 } else { 1750 return -EINVAL; 1751 } 1752 } 1753 1754 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1755 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1756 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1757 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1758 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1759 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1760 1761 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1762 if (!*mem) { 1763 ret = -ENOMEM; 1764 goto err; 1765 } 1766 INIT_LIST_HEAD(&(*mem)->attachments); 1767 mutex_init(&(*mem)->lock); 1768 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1769 1770 /* Workaround for AQL queue wraparound bug. Map the same 1771 * memory twice. That means we only actually allocate half 1772 * the memory. 1773 */ 1774 if ((*mem)->aql_queue) 1775 size >>= 1; 1776 aligned_size = PAGE_ALIGN(size); 1777 1778 (*mem)->alloc_flags = flags; 1779 1780 amdgpu_sync_create(&(*mem)->sync); 1781 1782 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1783 xcp_id); 1784 if (ret) { 1785 pr_debug("Insufficient memory\n"); 1786 goto err_reserve_limit; 1787 } 1788 1789 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1790 va, (*mem)->aql_queue ? size << 1 : size, 1791 domain_string(alloc_domain), xcp_id); 1792 1793 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1794 bo_type, NULL, &gobj, xcp_id + 1); 1795 if (ret) { 1796 pr_debug("Failed to create BO on domain %s. ret %d\n", 1797 domain_string(alloc_domain), ret); 1798 goto err_bo_create; 1799 } 1800 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1801 if (ret) { 1802 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1803 goto err_node_allow; 1804 } 1805 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1806 if (ret) 1807 goto err_gem_handle_create; 1808 bo = gem_to_amdgpu_bo(gobj); 1809 if (bo_type == ttm_bo_type_sg) { 1810 bo->tbo.sg = sg; 1811 bo->tbo.ttm->sg = sg; 1812 } 1813 bo->kfd_bo = *mem; 1814 (*mem)->bo = bo; 1815 if (user_addr) 1816 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1817 1818 (*mem)->va = va; 1819 (*mem)->domain = domain; 1820 (*mem)->mapped_to_gpu_memory = 0; 1821 (*mem)->process_info = avm->process_info; 1822 1823 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1824 1825 if (user_addr) { 1826 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1827 ret = init_user_pages(*mem, user_addr, criu_resume); 1828 if (ret) 1829 goto allocate_init_user_pages_failed; 1830 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1831 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1832 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1833 if (ret) { 1834 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1835 goto err_pin_bo; 1836 } 1837 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1838 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1839 } else { 1840 mutex_lock(&avm->process_info->lock); 1841 if (avm->process_info->eviction_fence && 1842 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1843 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1844 &avm->process_info->eviction_fence->base); 1845 mutex_unlock(&avm->process_info->lock); 1846 if (ret) 1847 goto err_validate_bo; 1848 } 1849 1850 if (offset) 1851 *offset = amdgpu_bo_mmap_offset(bo); 1852 1853 return 0; 1854 1855 allocate_init_user_pages_failed: 1856 err_pin_bo: 1857 err_validate_bo: 1858 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1859 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1860 err_gem_handle_create: 1861 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1862 err_node_allow: 1863 /* Don't unreserve system mem limit twice */ 1864 goto err_reserve_limit; 1865 err_bo_create: 1866 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1867 err_reserve_limit: 1868 amdgpu_sync_free(&(*mem)->sync); 1869 mutex_destroy(&(*mem)->lock); 1870 if (gobj) 1871 drm_gem_object_put(gobj); 1872 else 1873 kfree(*mem); 1874 err: 1875 if (sg) { 1876 sg_free_table(sg); 1877 kfree(sg); 1878 } 1879 return ret; 1880 } 1881 1882 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1883 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1884 uint64_t *size) 1885 { 1886 struct amdkfd_process_info *process_info = mem->process_info; 1887 unsigned long bo_size = mem->bo->tbo.base.size; 1888 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1889 struct kfd_mem_attachment *entry, *tmp; 1890 struct bo_vm_reservation_context ctx; 1891 unsigned int mapped_to_gpu_memory; 1892 int ret; 1893 bool is_imported = false; 1894 1895 mutex_lock(&mem->lock); 1896 1897 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1898 if (mem->alloc_flags & 1899 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1900 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1901 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1902 } 1903 1904 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1905 is_imported = mem->is_imported; 1906 mutex_unlock(&mem->lock); 1907 /* lock is not needed after this, since mem is unused and will 1908 * be freed anyway 1909 */ 1910 1911 if (mapped_to_gpu_memory > 0) { 1912 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1913 mem->va, bo_size); 1914 return -EBUSY; 1915 } 1916 1917 /* Make sure restore workers don't access the BO any more */ 1918 mutex_lock(&process_info->lock); 1919 list_del(&mem->validate_list); 1920 mutex_unlock(&process_info->lock); 1921 1922 /* Cleanup user pages and MMU notifiers */ 1923 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1924 amdgpu_hmm_unregister(mem->bo); 1925 mutex_lock(&process_info->notifier_lock); 1926 amdgpu_hmm_range_free(mem->range); 1927 mutex_unlock(&process_info->notifier_lock); 1928 } 1929 1930 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1931 if (unlikely(ret)) 1932 return ret; 1933 1934 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1935 process_info->eviction_fence); 1936 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1937 mem->va + bo_size * (1 + mem->aql_queue)); 1938 1939 /* Remove from VM internal data structures */ 1940 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1941 kfd_mem_dmaunmap_attachment(mem, entry); 1942 kfd_mem_detach(entry); 1943 } 1944 1945 ret = unreserve_bo_and_vms(&ctx, false, false); 1946 1947 /* Free the sync object */ 1948 amdgpu_sync_free(&mem->sync); 1949 1950 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1951 * remap BO. We need to free it. 1952 */ 1953 if (mem->bo->tbo.sg) { 1954 sg_free_table(mem->bo->tbo.sg); 1955 kfree(mem->bo->tbo.sg); 1956 } 1957 1958 /* Update the size of the BO being freed if it was allocated from 1959 * VRAM and is not imported. For APP APU VRAM allocations are done 1960 * in GTT domain 1961 */ 1962 if (size) { 1963 if (!is_imported && 1964 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1965 *size = bo_size; 1966 else 1967 *size = 0; 1968 } 1969 1970 /* Free the BO*/ 1971 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1972 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1973 if (mem->dmabuf) { 1974 dma_buf_put(mem->dmabuf); 1975 mem->dmabuf = NULL; 1976 } 1977 mutex_destroy(&mem->lock); 1978 1979 /* If this releases the last reference, it will end up calling 1980 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1981 * this needs to be the last call here. 1982 */ 1983 drm_gem_object_put(&mem->bo->tbo.base); 1984 1985 /* 1986 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1987 * explicitly free it here. 1988 */ 1989 if (!use_release_notifier) 1990 kfree(mem); 1991 1992 return ret; 1993 } 1994 1995 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1996 struct amdgpu_device *adev, struct kgd_mem *mem, 1997 void *drm_priv) 1998 { 1999 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2000 int ret; 2001 struct amdgpu_bo *bo; 2002 uint32_t domain; 2003 struct kfd_mem_attachment *entry; 2004 struct bo_vm_reservation_context ctx; 2005 unsigned long bo_size; 2006 bool is_invalid_userptr = false; 2007 2008 bo = mem->bo; 2009 if (!bo) { 2010 pr_err("Invalid BO when mapping memory to GPU\n"); 2011 return -EINVAL; 2012 } 2013 2014 /* Make sure restore is not running concurrently. Since we 2015 * don't map invalid userptr BOs, we rely on the next restore 2016 * worker to do the mapping 2017 */ 2018 mutex_lock(&mem->process_info->lock); 2019 2020 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2021 * sure that the MMU notifier is no longer running 2022 * concurrently and the queues are actually stopped 2023 */ 2024 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2025 mutex_lock(&mem->process_info->notifier_lock); 2026 is_invalid_userptr = !!mem->invalid; 2027 mutex_unlock(&mem->process_info->notifier_lock); 2028 } 2029 2030 mutex_lock(&mem->lock); 2031 2032 domain = mem->domain; 2033 bo_size = bo->tbo.base.size; 2034 2035 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2036 mem->va, 2037 mem->va + bo_size * (1 + mem->aql_queue), 2038 avm, domain_string(domain)); 2039 2040 if (!kfd_mem_is_attached(avm, mem)) { 2041 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2042 if (ret) 2043 goto out; 2044 } 2045 2046 ret = reserve_bo_and_vm(mem, avm, &ctx); 2047 if (unlikely(ret)) 2048 goto out; 2049 2050 /* Userptr can be marked as "not invalid", but not actually be 2051 * validated yet (still in the system domain). In that case 2052 * the queues are still stopped and we can leave mapping for 2053 * the next restore worker 2054 */ 2055 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2056 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2057 is_invalid_userptr = true; 2058 2059 ret = vm_validate_pt_pd_bos(avm, NULL); 2060 if (unlikely(ret)) 2061 goto out_unreserve; 2062 2063 list_for_each_entry(entry, &mem->attachments, list) { 2064 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2065 continue; 2066 2067 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2068 entry->va, entry->va + bo_size, entry); 2069 2070 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2071 is_invalid_userptr); 2072 if (ret) { 2073 pr_err("Failed to map bo to gpuvm\n"); 2074 goto out_unreserve; 2075 } 2076 2077 ret = vm_update_pds(avm, ctx.sync); 2078 if (ret) { 2079 pr_err("Failed to update page directories\n"); 2080 goto out_unreserve; 2081 } 2082 2083 entry->is_mapped = true; 2084 mem->mapped_to_gpu_memory++; 2085 pr_debug("\t INC mapping count %d\n", 2086 mem->mapped_to_gpu_memory); 2087 } 2088 2089 ret = unreserve_bo_and_vms(&ctx, false, false); 2090 2091 goto out; 2092 2093 out_unreserve: 2094 unreserve_bo_and_vms(&ctx, false, false); 2095 out: 2096 mutex_unlock(&mem->process_info->lock); 2097 mutex_unlock(&mem->lock); 2098 return ret; 2099 } 2100 2101 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2102 { 2103 struct kfd_mem_attachment *entry; 2104 struct amdgpu_vm *vm; 2105 int ret; 2106 2107 vm = drm_priv_to_vm(drm_priv); 2108 2109 mutex_lock(&mem->lock); 2110 2111 ret = amdgpu_bo_reserve(mem->bo, true); 2112 if (ret) 2113 goto out; 2114 2115 list_for_each_entry(entry, &mem->attachments, list) { 2116 if (entry->bo_va->base.vm != vm) 2117 continue; 2118 if (entry->bo_va->base.bo->tbo.ttm && 2119 !entry->bo_va->base.bo->tbo.ttm->sg) 2120 continue; 2121 2122 kfd_mem_dmaunmap_attachment(mem, entry); 2123 } 2124 2125 amdgpu_bo_unreserve(mem->bo); 2126 out: 2127 mutex_unlock(&mem->lock); 2128 2129 return ret; 2130 } 2131 2132 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2133 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2134 { 2135 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2136 unsigned long bo_size = mem->bo->tbo.base.size; 2137 struct kfd_mem_attachment *entry; 2138 struct bo_vm_reservation_context ctx; 2139 int ret; 2140 2141 mutex_lock(&mem->lock); 2142 2143 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2144 if (unlikely(ret)) 2145 goto out; 2146 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2147 if (ctx.n_vms == 0) { 2148 ret = -EINVAL; 2149 goto unreserve_out; 2150 } 2151 2152 ret = vm_validate_pt_pd_bos(avm, NULL); 2153 if (unlikely(ret)) 2154 goto unreserve_out; 2155 2156 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2157 mem->va, 2158 mem->va + bo_size * (1 + mem->aql_queue), 2159 avm); 2160 2161 list_for_each_entry(entry, &mem->attachments, list) { 2162 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2163 continue; 2164 2165 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2166 entry->va, entry->va + bo_size, entry); 2167 2168 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2169 if (ret) 2170 goto unreserve_out; 2171 2172 entry->is_mapped = false; 2173 2174 mem->mapped_to_gpu_memory--; 2175 pr_debug("\t DEC mapping count %d\n", 2176 mem->mapped_to_gpu_memory); 2177 } 2178 2179 unreserve_out: 2180 unreserve_bo_and_vms(&ctx, false, false); 2181 out: 2182 mutex_unlock(&mem->lock); 2183 return ret; 2184 } 2185 2186 int amdgpu_amdkfd_gpuvm_sync_memory( 2187 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2188 { 2189 struct amdgpu_sync sync; 2190 int ret; 2191 2192 amdgpu_sync_create(&sync); 2193 2194 mutex_lock(&mem->lock); 2195 amdgpu_sync_clone(&mem->sync, &sync); 2196 mutex_unlock(&mem->lock); 2197 2198 ret = amdgpu_sync_wait(&sync, intr); 2199 amdgpu_sync_free(&sync); 2200 return ret; 2201 } 2202 2203 /** 2204 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2205 * @bo: Buffer object to be mapped 2206 * @bo_gart: Return bo reference 2207 * 2208 * Before return, bo reference count is incremented. To release the reference and unpin/ 2209 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2210 */ 2211 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) 2212 { 2213 int ret; 2214 2215 ret = amdgpu_bo_reserve(bo, true); 2216 if (ret) { 2217 pr_err("Failed to reserve bo. ret %d\n", ret); 2218 goto err_reserve_bo_failed; 2219 } 2220 2221 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2222 if (ret) { 2223 pr_err("Failed to pin bo. ret %d\n", ret); 2224 goto err_pin_bo_failed; 2225 } 2226 2227 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2228 if (ret) { 2229 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2230 goto err_map_bo_gart_failed; 2231 } 2232 2233 amdgpu_amdkfd_remove_eviction_fence( 2234 bo, bo->vm_bo->vm->process_info->eviction_fence); 2235 2236 amdgpu_bo_unreserve(bo); 2237 2238 *bo_gart = amdgpu_bo_ref(bo); 2239 2240 return 0; 2241 2242 err_map_bo_gart_failed: 2243 amdgpu_bo_unpin(bo); 2244 err_pin_bo_failed: 2245 amdgpu_bo_unreserve(bo); 2246 err_reserve_bo_failed: 2247 2248 return ret; 2249 } 2250 2251 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2252 * 2253 * @mem: Buffer object to be mapped for CPU access 2254 * @kptr[out]: pointer in kernel CPU address space 2255 * @size[out]: size of the buffer 2256 * 2257 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2258 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2259 * validate_list, so the GPU mapping can be restored after a page table was 2260 * evicted. 2261 * 2262 * Return: 0 on success, error code on failure 2263 */ 2264 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2265 void **kptr, uint64_t *size) 2266 { 2267 int ret; 2268 struct amdgpu_bo *bo = mem->bo; 2269 2270 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2271 pr_err("userptr can't be mapped to kernel\n"); 2272 return -EINVAL; 2273 } 2274 2275 mutex_lock(&mem->process_info->lock); 2276 2277 ret = amdgpu_bo_reserve(bo, true); 2278 if (ret) { 2279 pr_err("Failed to reserve bo. ret %d\n", ret); 2280 goto bo_reserve_failed; 2281 } 2282 2283 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2284 if (ret) { 2285 pr_err("Failed to pin bo. ret %d\n", ret); 2286 goto pin_failed; 2287 } 2288 2289 ret = amdgpu_bo_kmap(bo, kptr); 2290 if (ret) { 2291 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2292 goto kmap_failed; 2293 } 2294 2295 amdgpu_amdkfd_remove_eviction_fence( 2296 bo, mem->process_info->eviction_fence); 2297 2298 if (size) 2299 *size = amdgpu_bo_size(bo); 2300 2301 amdgpu_bo_unreserve(bo); 2302 2303 mutex_unlock(&mem->process_info->lock); 2304 return 0; 2305 2306 kmap_failed: 2307 amdgpu_bo_unpin(bo); 2308 pin_failed: 2309 amdgpu_bo_unreserve(bo); 2310 bo_reserve_failed: 2311 mutex_unlock(&mem->process_info->lock); 2312 2313 return ret; 2314 } 2315 2316 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2317 * 2318 * @mem: Buffer object to be unmapped for CPU access 2319 * 2320 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2321 * eviction fence, so this function should only be used for cleanup before the 2322 * BO is destroyed. 2323 */ 2324 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2325 { 2326 struct amdgpu_bo *bo = mem->bo; 2327 2328 (void)amdgpu_bo_reserve(bo, true); 2329 amdgpu_bo_kunmap(bo); 2330 amdgpu_bo_unpin(bo); 2331 amdgpu_bo_unreserve(bo); 2332 } 2333 2334 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2335 struct kfd_vm_fault_info *mem) 2336 { 2337 if (atomic_read_acquire(&adev->gmc.vm_fault_info_updated) == 1) { 2338 *mem = *adev->gmc.vm_fault_info; 2339 atomic_set_release(&adev->gmc.vm_fault_info_updated, 0); 2340 } 2341 return 0; 2342 } 2343 2344 static int import_obj_create(struct amdgpu_device *adev, 2345 struct dma_buf *dma_buf, 2346 struct drm_gem_object *obj, 2347 uint64_t va, void *drm_priv, 2348 struct kgd_mem **mem, uint64_t *size, 2349 uint64_t *mmap_offset) 2350 { 2351 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2352 struct amdgpu_bo *bo; 2353 int ret; 2354 2355 bo = gem_to_amdgpu_bo(obj); 2356 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2357 AMDGPU_GEM_DOMAIN_GTT))) 2358 /* Only VRAM and GTT BOs are supported */ 2359 return -EINVAL; 2360 2361 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2362 if (!*mem) 2363 return -ENOMEM; 2364 2365 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2366 if (ret) 2367 goto err_free_mem; 2368 2369 if (size) 2370 *size = amdgpu_bo_size(bo); 2371 2372 if (mmap_offset) 2373 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2374 2375 INIT_LIST_HEAD(&(*mem)->attachments); 2376 mutex_init(&(*mem)->lock); 2377 2378 (*mem)->alloc_flags = 2379 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2380 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2381 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2382 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2383 2384 get_dma_buf(dma_buf); 2385 (*mem)->dmabuf = dma_buf; 2386 (*mem)->bo = bo; 2387 (*mem)->va = va; 2388 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2389 !adev->apu_prefer_gtt ? 2390 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2391 2392 (*mem)->mapped_to_gpu_memory = 0; 2393 (*mem)->process_info = avm->process_info; 2394 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2395 amdgpu_sync_create(&(*mem)->sync); 2396 (*mem)->is_imported = true; 2397 2398 mutex_lock(&avm->process_info->lock); 2399 if (avm->process_info->eviction_fence && 2400 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2401 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2402 &avm->process_info->eviction_fence->base); 2403 mutex_unlock(&avm->process_info->lock); 2404 if (ret) 2405 goto err_remove_mem; 2406 2407 return 0; 2408 2409 err_remove_mem: 2410 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2411 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2412 err_free_mem: 2413 kfree(*mem); 2414 return ret; 2415 } 2416 2417 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2418 uint64_t va, void *drm_priv, 2419 struct kgd_mem **mem, uint64_t *size, 2420 uint64_t *mmap_offset) 2421 { 2422 struct drm_gem_object *obj; 2423 uint32_t handle; 2424 int ret; 2425 2426 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2427 &handle); 2428 if (ret) 2429 return ret; 2430 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2431 if (!obj) { 2432 ret = -EINVAL; 2433 goto err_release_handle; 2434 } 2435 2436 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2437 mmap_offset); 2438 if (ret) 2439 goto err_put_obj; 2440 2441 (*mem)->gem_handle = handle; 2442 2443 return 0; 2444 2445 err_put_obj: 2446 drm_gem_object_put(obj); 2447 err_release_handle: 2448 drm_gem_handle_delete(adev->kfd.client.file, handle); 2449 return ret; 2450 } 2451 2452 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2453 struct dma_buf **dma_buf) 2454 { 2455 int ret; 2456 2457 mutex_lock(&mem->lock); 2458 ret = kfd_mem_export_dmabuf(mem); 2459 if (ret) 2460 goto out; 2461 2462 get_dma_buf(mem->dmabuf); 2463 *dma_buf = mem->dmabuf; 2464 out: 2465 mutex_unlock(&mem->lock); 2466 return ret; 2467 } 2468 2469 /* Evict a userptr BO by stopping the queues if necessary 2470 * 2471 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2472 * cannot do any memory allocations, and cannot take any locks that 2473 * are held elsewhere while allocating memory. 2474 * 2475 * It doesn't do anything to the BO itself. The real work happens in 2476 * restore, where we get updated page addresses. This function only 2477 * ensures that GPU access to the BO is stopped. 2478 */ 2479 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2480 unsigned long cur_seq, struct kgd_mem *mem) 2481 { 2482 struct amdkfd_process_info *process_info = mem->process_info; 2483 int r = 0; 2484 2485 /* Do not process MMU notifications during CRIU restore until 2486 * KFD_CRIU_OP_RESUME IOCTL is received 2487 */ 2488 if (READ_ONCE(process_info->block_mmu_notifications)) 2489 return 0; 2490 2491 mutex_lock(&process_info->notifier_lock); 2492 mmu_interval_set_seq(mni, cur_seq); 2493 2494 mem->invalid++; 2495 if (++process_info->evicted_bos == 1) { 2496 /* First eviction, stop the queues */ 2497 r = kgd2kfd_quiesce_mm(mni->mm, 2498 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2499 2500 if (r && r != -ESRCH) 2501 pr_err("Failed to quiesce KFD\n"); 2502 2503 if (r != -ESRCH) 2504 queue_delayed_work(system_freezable_wq, 2505 &process_info->restore_userptr_work, 2506 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2507 } 2508 mutex_unlock(&process_info->notifier_lock); 2509 2510 return r; 2511 } 2512 2513 /* Update invalid userptr BOs 2514 * 2515 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2516 * userptr_inval_list and updates user pages for all BOs that have 2517 * been invalidated since their last update. 2518 */ 2519 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2520 struct mm_struct *mm) 2521 { 2522 struct kgd_mem *mem, *tmp_mem; 2523 struct amdgpu_bo *bo; 2524 struct ttm_operation_ctx ctx = { false, false }; 2525 uint32_t invalid; 2526 int ret = 0; 2527 2528 mutex_lock(&process_info->notifier_lock); 2529 2530 /* Move all invalidated BOs to the userptr_inval_list */ 2531 list_for_each_entry_safe(mem, tmp_mem, 2532 &process_info->userptr_valid_list, 2533 validate_list) 2534 if (mem->invalid) 2535 list_move_tail(&mem->validate_list, 2536 &process_info->userptr_inval_list); 2537 2538 /* Go through userptr_inval_list and update any invalid user_pages */ 2539 list_for_each_entry(mem, &process_info->userptr_inval_list, 2540 validate_list) { 2541 invalid = mem->invalid; 2542 if (!invalid) 2543 /* BO hasn't been invalidated since the last 2544 * revalidation attempt. Keep its page list. 2545 */ 2546 continue; 2547 2548 bo = mem->bo; 2549 2550 amdgpu_hmm_range_free(mem->range); 2551 mem->range = NULL; 2552 2553 /* BO reservations and getting user pages (hmm_range_fault) 2554 * must happen outside the notifier lock 2555 */ 2556 mutex_unlock(&process_info->notifier_lock); 2557 2558 /* Move the BO to system (CPU) domain if necessary to unmap 2559 * and free the SG table 2560 */ 2561 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2562 if (amdgpu_bo_reserve(bo, true)) 2563 return -EAGAIN; 2564 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2565 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2566 amdgpu_bo_unreserve(bo); 2567 if (ret) { 2568 pr_err("%s: Failed to invalidate userptr BO\n", 2569 __func__); 2570 return -EAGAIN; 2571 } 2572 } 2573 2574 mem->range = amdgpu_hmm_range_alloc(NULL); 2575 if (unlikely(!mem->range)) 2576 return -ENOMEM; 2577 /* Get updated user pages */ 2578 ret = amdgpu_ttm_tt_get_user_pages(bo, mem->range); 2579 if (ret) { 2580 amdgpu_hmm_range_free(mem->range); 2581 mem->range = NULL; 2582 pr_debug("Failed %d to get user pages\n", ret); 2583 2584 /* Return -EFAULT bad address error as success. It will 2585 * fail later with a VM fault if the GPU tries to access 2586 * it. Better than hanging indefinitely with stalled 2587 * user mode queues. 2588 * 2589 * Return other error -EBUSY or -ENOMEM to retry restore 2590 */ 2591 if (ret != -EFAULT) 2592 return ret; 2593 2594 /* If applications unmap memory before destroying the userptr 2595 * from the KFD, trigger a segmentation fault in VM debug mode. 2596 */ 2597 if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) { 2598 struct kfd_process *p; 2599 2600 pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n", 2601 pid_nr(process_info->pid), mem->va); 2602 2603 // Send GPU VM fault to user space 2604 p = kfd_lookup_process_by_pid(process_info->pid); 2605 if (p) { 2606 kfd_signal_vm_fault_event_with_userptr(p, mem->va); 2607 kfd_unref_process(p); 2608 } 2609 } 2610 2611 ret = 0; 2612 } 2613 2614 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->range); 2615 2616 mutex_lock(&process_info->notifier_lock); 2617 2618 /* Mark the BO as valid unless it was invalidated 2619 * again concurrently. 2620 */ 2621 if (mem->invalid != invalid) { 2622 ret = -EAGAIN; 2623 goto unlock_out; 2624 } 2625 /* set mem valid if mem has hmm range associated */ 2626 if (mem->range) 2627 mem->invalid = 0; 2628 } 2629 2630 unlock_out: 2631 mutex_unlock(&process_info->notifier_lock); 2632 2633 return ret; 2634 } 2635 2636 /* Validate invalid userptr BOs 2637 * 2638 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2639 * with new page addresses and waits for the page table updates to complete. 2640 */ 2641 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2642 { 2643 struct ttm_operation_ctx ctx = { false, false }; 2644 struct amdgpu_sync sync; 2645 struct drm_exec exec; 2646 2647 struct amdgpu_vm *peer_vm; 2648 struct kgd_mem *mem, *tmp_mem; 2649 struct amdgpu_bo *bo; 2650 int ret; 2651 2652 amdgpu_sync_create(&sync); 2653 2654 drm_exec_init(&exec, 0, 0); 2655 /* Reserve all BOs and page tables for validation */ 2656 drm_exec_until_all_locked(&exec) { 2657 /* Reserve all the page directories */ 2658 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2659 vm_list_node) { 2660 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2661 drm_exec_retry_on_contention(&exec); 2662 if (unlikely(ret)) 2663 goto unreserve_out; 2664 } 2665 2666 /* Reserve the userptr_inval_list entries to resv_list */ 2667 list_for_each_entry(mem, &process_info->userptr_inval_list, 2668 validate_list) { 2669 struct drm_gem_object *gobj; 2670 2671 gobj = &mem->bo->tbo.base; 2672 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2673 drm_exec_retry_on_contention(&exec); 2674 if (unlikely(ret)) 2675 goto unreserve_out; 2676 } 2677 } 2678 2679 ret = process_validate_vms(process_info, NULL); 2680 if (ret) 2681 goto unreserve_out; 2682 2683 /* Validate BOs and update GPUVM page tables */ 2684 list_for_each_entry_safe(mem, tmp_mem, 2685 &process_info->userptr_inval_list, 2686 validate_list) { 2687 struct kfd_mem_attachment *attachment; 2688 2689 bo = mem->bo; 2690 2691 /* Validate the BO if we got user pages */ 2692 if (bo->tbo.ttm->pages[0]) { 2693 amdgpu_bo_placement_from_domain(bo, mem->domain); 2694 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2695 if (ret) { 2696 pr_err("%s: failed to validate BO\n", __func__); 2697 goto unreserve_out; 2698 } 2699 } 2700 2701 /* Update mapping. If the BO was not validated 2702 * (because we couldn't get user pages), this will 2703 * clear the page table entries, which will result in 2704 * VM faults if the GPU tries to access the invalid 2705 * memory. 2706 */ 2707 list_for_each_entry(attachment, &mem->attachments, list) { 2708 if (!attachment->is_mapped) 2709 continue; 2710 2711 kfd_mem_dmaunmap_attachment(mem, attachment); 2712 ret = update_gpuvm_pte(mem, attachment, &sync); 2713 if (ret) { 2714 pr_err("%s: update PTE failed\n", __func__); 2715 /* make sure this gets validated again */ 2716 mutex_lock(&process_info->notifier_lock); 2717 mem->invalid++; 2718 mutex_unlock(&process_info->notifier_lock); 2719 goto unreserve_out; 2720 } 2721 } 2722 } 2723 2724 /* Update page directories */ 2725 ret = process_update_pds(process_info, &sync); 2726 2727 unreserve_out: 2728 drm_exec_fini(&exec); 2729 amdgpu_sync_wait(&sync, false); 2730 amdgpu_sync_free(&sync); 2731 2732 return ret; 2733 } 2734 2735 /* Confirm that all user pages are valid while holding the notifier lock 2736 * 2737 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2738 */ 2739 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2740 { 2741 struct kgd_mem *mem, *tmp_mem; 2742 int ret = 0; 2743 2744 list_for_each_entry_safe(mem, tmp_mem, 2745 &process_info->userptr_inval_list, 2746 validate_list) { 2747 bool valid; 2748 2749 /* keep mem without hmm range at userptr_inval_list */ 2750 if (!mem->range) 2751 continue; 2752 2753 /* Only check mem with hmm range associated */ 2754 valid = amdgpu_hmm_range_valid(mem->range); 2755 amdgpu_hmm_range_free(mem->range); 2756 2757 mem->range = NULL; 2758 if (!valid) { 2759 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2760 ret = -EAGAIN; 2761 continue; 2762 } 2763 2764 if (mem->invalid) { 2765 WARN(1, "Valid BO is marked invalid"); 2766 ret = -EAGAIN; 2767 continue; 2768 } 2769 2770 list_move_tail(&mem->validate_list, 2771 &process_info->userptr_valid_list); 2772 } 2773 2774 return ret; 2775 } 2776 2777 /* Worker callback to restore evicted userptr BOs 2778 * 2779 * Tries to update and validate all userptr BOs. If successful and no 2780 * concurrent evictions happened, the queues are restarted. Otherwise, 2781 * reschedule for another attempt later. 2782 */ 2783 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2784 { 2785 struct delayed_work *dwork = to_delayed_work(work); 2786 struct amdkfd_process_info *process_info = 2787 container_of(dwork, struct amdkfd_process_info, 2788 restore_userptr_work); 2789 struct task_struct *usertask; 2790 struct mm_struct *mm; 2791 uint32_t evicted_bos; 2792 2793 mutex_lock(&process_info->notifier_lock); 2794 evicted_bos = process_info->evicted_bos; 2795 mutex_unlock(&process_info->notifier_lock); 2796 if (!evicted_bos) 2797 return; 2798 2799 /* Reference task and mm in case of concurrent process termination */ 2800 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2801 if (!usertask) 2802 return; 2803 mm = get_task_mm(usertask); 2804 if (!mm) { 2805 put_task_struct(usertask); 2806 return; 2807 } 2808 2809 mutex_lock(&process_info->lock); 2810 2811 if (update_invalid_user_pages(process_info, mm)) 2812 goto unlock_out; 2813 /* userptr_inval_list can be empty if all evicted userptr BOs 2814 * have been freed. In that case there is nothing to validate 2815 * and we can just restart the queues. 2816 */ 2817 if (!list_empty(&process_info->userptr_inval_list)) { 2818 if (validate_invalid_user_pages(process_info)) 2819 goto unlock_out; 2820 } 2821 /* Final check for concurrent evicton and atomic update. If 2822 * another eviction happens after successful update, it will 2823 * be a first eviction that calls quiesce_mm. The eviction 2824 * reference counting inside KFD will handle this case. 2825 */ 2826 mutex_lock(&process_info->notifier_lock); 2827 if (process_info->evicted_bos != evicted_bos) 2828 goto unlock_notifier_out; 2829 2830 if (confirm_valid_user_pages_locked(process_info)) { 2831 WARN(1, "User pages unexpectedly invalid"); 2832 goto unlock_notifier_out; 2833 } 2834 2835 process_info->evicted_bos = evicted_bos = 0; 2836 2837 if (kgd2kfd_resume_mm(mm)) { 2838 pr_err("%s: Failed to resume KFD\n", __func__); 2839 /* No recovery from this failure. Probably the CP is 2840 * hanging. No point trying again. 2841 */ 2842 } 2843 2844 unlock_notifier_out: 2845 mutex_unlock(&process_info->notifier_lock); 2846 unlock_out: 2847 mutex_unlock(&process_info->lock); 2848 2849 /* If validation failed, reschedule another attempt */ 2850 if (evicted_bos) { 2851 queue_delayed_work(system_freezable_wq, 2852 &process_info->restore_userptr_work, 2853 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2854 2855 kfd_smi_event_queue_restore_rescheduled(mm); 2856 } 2857 mmput(mm); 2858 put_task_struct(usertask); 2859 } 2860 2861 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2862 struct dma_fence *new_ef) 2863 { 2864 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2865 /* protected by process_info->lock */); 2866 2867 /* If we're replacing an unsignaled eviction fence, that fence will 2868 * never be signaled, and if anyone is still waiting on that fence, 2869 * they will hang forever. This should never happen. We should only 2870 * replace the fence in restore_work that only gets scheduled after 2871 * eviction work signaled the fence. 2872 */ 2873 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2874 "Replacing unsignaled eviction fence"); 2875 dma_fence_put(old_ef); 2876 } 2877 2878 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2879 * KFD process identified by process_info 2880 * 2881 * @process_info: amdkfd_process_info of the KFD process 2882 * 2883 * After memory eviction, restore thread calls this function. The function 2884 * should be called when the Process is still valid. BO restore involves - 2885 * 2886 * 1. Release old eviction fence and create new one 2887 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2888 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2889 * BOs that need to be reserved. 2890 * 4. Reserve all the BOs 2891 * 5. Validate of PD and PT BOs. 2892 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2893 * 7. Add fence to all PD and PT BOs. 2894 * 8. Unreserve all BOs 2895 */ 2896 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2897 { 2898 struct amdkfd_process_info *process_info = info; 2899 struct amdgpu_vm *peer_vm; 2900 struct kgd_mem *mem; 2901 struct list_head duplicate_save; 2902 struct amdgpu_sync sync_obj; 2903 unsigned long failed_size = 0; 2904 unsigned long total_size = 0; 2905 struct drm_exec exec; 2906 int ret; 2907 2908 INIT_LIST_HEAD(&duplicate_save); 2909 2910 mutex_lock(&process_info->lock); 2911 2912 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2913 drm_exec_until_all_locked(&exec) { 2914 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2915 vm_list_node) { 2916 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2917 drm_exec_retry_on_contention(&exec); 2918 if (unlikely(ret)) { 2919 pr_err("Locking VM PD failed, ret: %d\n", ret); 2920 goto ttm_reserve_fail; 2921 } 2922 } 2923 2924 /* Reserve all BOs and page tables/directory. Add all BOs from 2925 * kfd_bo_list to ctx.list 2926 */ 2927 list_for_each_entry(mem, &process_info->kfd_bo_list, 2928 validate_list) { 2929 struct drm_gem_object *gobj; 2930 2931 gobj = &mem->bo->tbo.base; 2932 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2933 drm_exec_retry_on_contention(&exec); 2934 if (unlikely(ret)) { 2935 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2936 goto ttm_reserve_fail; 2937 } 2938 } 2939 } 2940 2941 amdgpu_sync_create(&sync_obj); 2942 2943 /* Validate BOs managed by KFD */ 2944 list_for_each_entry(mem, &process_info->kfd_bo_list, 2945 validate_list) { 2946 2947 struct amdgpu_bo *bo = mem->bo; 2948 uint32_t domain = mem->domain; 2949 struct dma_resv_iter cursor; 2950 struct dma_fence *fence; 2951 2952 total_size += amdgpu_bo_size(bo); 2953 2954 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2955 if (ret) { 2956 pr_debug("Memory eviction: Validate BOs failed\n"); 2957 failed_size += amdgpu_bo_size(bo); 2958 ret = amdgpu_amdkfd_bo_validate(bo, 2959 AMDGPU_GEM_DOMAIN_GTT, false); 2960 if (ret) { 2961 pr_debug("Memory eviction: Try again\n"); 2962 goto validate_map_fail; 2963 } 2964 } 2965 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2966 DMA_RESV_USAGE_KERNEL, fence) { 2967 ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL); 2968 if (ret) { 2969 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2970 goto validate_map_fail; 2971 } 2972 } 2973 } 2974 2975 if (failed_size) 2976 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2977 2978 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2979 * validations above would invalidate DMABuf imports again. 2980 */ 2981 ret = process_validate_vms(process_info, &exec.ticket); 2982 if (ret) { 2983 pr_debug("Validating VMs failed, ret: %d\n", ret); 2984 goto validate_map_fail; 2985 } 2986 2987 /* Update mappings managed by KFD. */ 2988 list_for_each_entry(mem, &process_info->kfd_bo_list, 2989 validate_list) { 2990 struct kfd_mem_attachment *attachment; 2991 2992 list_for_each_entry(attachment, &mem->attachments, list) { 2993 if (!attachment->is_mapped) 2994 continue; 2995 2996 kfd_mem_dmaunmap_attachment(mem, attachment); 2997 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2998 if (ret) { 2999 pr_debug("Memory eviction: update PTE failed. Try again\n"); 3000 goto validate_map_fail; 3001 } 3002 } 3003 } 3004 3005 /* Update mappings not managed by KFD */ 3006 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3007 vm_list_node) { 3008 struct amdgpu_device *adev = amdgpu_ttm_adev( 3009 peer_vm->root.bo->tbo.bdev); 3010 3011 struct amdgpu_fpriv *fpriv = 3012 container_of(peer_vm, struct amdgpu_fpriv, vm); 3013 3014 ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 3015 if (ret) { 3016 dev_dbg(adev->dev, 3017 "Memory eviction: handle PRT moved failed, pid %8d. Try again.\n", 3018 pid_nr(process_info->pid)); 3019 goto validate_map_fail; 3020 } 3021 3022 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 3023 if (ret) { 3024 dev_dbg(adev->dev, 3025 "Memory eviction: handle moved failed, pid %8d. Try again.\n", 3026 pid_nr(process_info->pid)); 3027 goto validate_map_fail; 3028 } 3029 } 3030 3031 /* Update page directories */ 3032 ret = process_update_pds(process_info, &sync_obj); 3033 if (ret) { 3034 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3035 goto validate_map_fail; 3036 } 3037 3038 /* Sync with fences on all the page tables. They implicitly depend on any 3039 * move fences from amdgpu_vm_handle_moved above. 3040 */ 3041 ret = process_sync_pds_resv(process_info, &sync_obj); 3042 if (ret) { 3043 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3044 goto validate_map_fail; 3045 } 3046 3047 /* Wait for validate and PT updates to finish */ 3048 amdgpu_sync_wait(&sync_obj, false); 3049 3050 /* The old eviction fence may be unsignaled if restore happens 3051 * after a GPU reset or suspend/resume. Keep the old fence in that 3052 * case. Otherwise release the old eviction fence and create new 3053 * one, because fence only goes from unsignaled to signaled once 3054 * and cannot be reused. Use context and mm from the old fence. 3055 * 3056 * If an old eviction fence signals after this check, that's OK. 3057 * Anyone signaling an eviction fence must stop the queues first 3058 * and schedule another restore worker. 3059 */ 3060 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3061 struct amdgpu_amdkfd_fence *new_fence = 3062 amdgpu_amdkfd_fence_create( 3063 process_info->eviction_fence->base.context, 3064 process_info->eviction_fence->mm, 3065 NULL); 3066 3067 if (!new_fence) { 3068 pr_err("Failed to create eviction fence\n"); 3069 ret = -ENOMEM; 3070 goto validate_map_fail; 3071 } 3072 dma_fence_put(&process_info->eviction_fence->base); 3073 process_info->eviction_fence = new_fence; 3074 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3075 } else { 3076 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3077 "KFD eviction fence doesn't match KGD process_info"); 3078 } 3079 3080 /* Attach new eviction fence to all BOs except pinned ones */ 3081 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3082 if (mem->bo->tbo.pin_count) 3083 continue; 3084 3085 dma_resv_add_fence(mem->bo->tbo.base.resv, 3086 &process_info->eviction_fence->base, 3087 DMA_RESV_USAGE_BOOKKEEP); 3088 } 3089 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3090 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3091 vm_list_node) { 3092 struct amdgpu_bo *bo = peer_vm->root.bo; 3093 3094 dma_resv_add_fence(bo->tbo.base.resv, 3095 &process_info->eviction_fence->base, 3096 DMA_RESV_USAGE_BOOKKEEP); 3097 } 3098 3099 validate_map_fail: 3100 amdgpu_sync_free(&sync_obj); 3101 ttm_reserve_fail: 3102 drm_exec_fini(&exec); 3103 mutex_unlock(&process_info->lock); 3104 return ret; 3105 } 3106 3107 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3108 { 3109 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3110 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3111 int ret; 3112 3113 if (!info || !gws) 3114 return -EINVAL; 3115 3116 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3117 if (!*mem) 3118 return -ENOMEM; 3119 3120 mutex_init(&(*mem)->lock); 3121 INIT_LIST_HEAD(&(*mem)->attachments); 3122 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3123 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3124 (*mem)->process_info = process_info; 3125 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3126 amdgpu_sync_create(&(*mem)->sync); 3127 3128 3129 /* Validate gws bo the first time it is added to process */ 3130 mutex_lock(&(*mem)->process_info->lock); 3131 ret = amdgpu_bo_reserve(gws_bo, false); 3132 if (unlikely(ret)) { 3133 pr_err("Reserve gws bo failed %d\n", ret); 3134 goto bo_reservation_failure; 3135 } 3136 3137 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3138 if (ret) { 3139 pr_err("GWS BO validate failed %d\n", ret); 3140 goto bo_validation_failure; 3141 } 3142 /* GWS resource is shared b/t amdgpu and amdkfd 3143 * Add process eviction fence to bo so they can 3144 * evict each other. 3145 */ 3146 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3147 if (ret) 3148 goto reserve_shared_fail; 3149 dma_resv_add_fence(gws_bo->tbo.base.resv, 3150 &process_info->eviction_fence->base, 3151 DMA_RESV_USAGE_BOOKKEEP); 3152 amdgpu_bo_unreserve(gws_bo); 3153 mutex_unlock(&(*mem)->process_info->lock); 3154 3155 return ret; 3156 3157 reserve_shared_fail: 3158 bo_validation_failure: 3159 amdgpu_bo_unreserve(gws_bo); 3160 bo_reservation_failure: 3161 mutex_unlock(&(*mem)->process_info->lock); 3162 amdgpu_sync_free(&(*mem)->sync); 3163 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3164 amdgpu_bo_unref(&gws_bo); 3165 mutex_destroy(&(*mem)->lock); 3166 kfree(*mem); 3167 *mem = NULL; 3168 return ret; 3169 } 3170 3171 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3172 { 3173 int ret; 3174 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3175 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3176 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3177 3178 /* Remove BO from process's validate list so restore worker won't touch 3179 * it anymore 3180 */ 3181 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3182 3183 ret = amdgpu_bo_reserve(gws_bo, false); 3184 if (unlikely(ret)) { 3185 pr_err("Reserve gws bo failed %d\n", ret); 3186 //TODO add BO back to validate_list? 3187 return ret; 3188 } 3189 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3190 process_info->eviction_fence); 3191 amdgpu_bo_unreserve(gws_bo); 3192 amdgpu_sync_free(&kgd_mem->sync); 3193 amdgpu_bo_unref(&gws_bo); 3194 mutex_destroy(&kgd_mem->lock); 3195 kfree(mem); 3196 return 0; 3197 } 3198 3199 /* Returns GPU-specific tiling mode information */ 3200 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3201 struct tile_config *config) 3202 { 3203 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3204 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3205 config->num_tile_configs = 3206 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3207 config->macro_tile_config_ptr = 3208 adev->gfx.config.macrotile_mode_array; 3209 config->num_macro_tile_configs = 3210 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3211 3212 /* Those values are not set from GFX9 onwards */ 3213 config->num_banks = adev->gfx.config.num_banks; 3214 config->num_ranks = adev->gfx.config.num_ranks; 3215 3216 return 0; 3217 } 3218 3219 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) 3220 { 3221 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); 3222 struct kfd_mem_attachment *entry; 3223 3224 list_for_each_entry(entry, &mem->attachments, list) { 3225 if (entry->is_mapped && entry->bo_va->base.vm == vm) 3226 return true; 3227 } 3228 return false; 3229 } 3230 3231 #if defined(CONFIG_DEBUG_FS) 3232 3233 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3234 { 3235 3236 spin_lock(&kfd_mem_limit.mem_limit_lock); 3237 seq_printf(m, "System mem used %lldM out of %lluM\n", 3238 (kfd_mem_limit.system_mem_used >> 20), 3239 (kfd_mem_limit.max_system_mem_limit >> 20)); 3240 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3241 (kfd_mem_limit.ttm_mem_used >> 20), 3242 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3243 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3244 3245 return 0; 3246 } 3247 3248 #endif 3249