1 /* 2 * Originally from efivars.c 3 * 4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> 5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/capability.h> 23 #include <linux/types.h> 24 #include <linux/errno.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/smp.h> 30 #include <linux/efi.h> 31 #include <linux/sysfs.h> 32 #include <linux/device.h> 33 #include <linux/slab.h> 34 #include <linux/ctype.h> 35 #include <linux/ucs2_string.h> 36 37 /* Private pointer to registered efivars */ 38 static struct efivars *__efivars; 39 40 static bool efivar_wq_enabled = true; 41 DECLARE_WORK(efivar_work, NULL); 42 EXPORT_SYMBOL_GPL(efivar_work); 43 44 static bool 45 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer, 46 unsigned long len) 47 { 48 struct efi_generic_dev_path *node; 49 int offset = 0; 50 51 node = (struct efi_generic_dev_path *)buffer; 52 53 if (len < sizeof(*node)) 54 return false; 55 56 while (offset <= len - sizeof(*node) && 57 node->length >= sizeof(*node) && 58 node->length <= len - offset) { 59 offset += node->length; 60 61 if ((node->type == EFI_DEV_END_PATH || 62 node->type == EFI_DEV_END_PATH2) && 63 node->sub_type == EFI_DEV_END_ENTIRE) 64 return true; 65 66 node = (struct efi_generic_dev_path *)(buffer + offset); 67 } 68 69 /* 70 * If we're here then either node->length pointed past the end 71 * of the buffer or we reached the end of the buffer without 72 * finding a device path end node. 73 */ 74 return false; 75 } 76 77 static bool 78 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer, 79 unsigned long len) 80 { 81 /* An array of 16-bit integers */ 82 if ((len % 2) != 0) 83 return false; 84 85 return true; 86 } 87 88 static bool 89 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer, 90 unsigned long len) 91 { 92 u16 filepathlength; 93 int i, desclength = 0, namelen; 94 95 namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN); 96 97 /* Either "Boot" or "Driver" followed by four digits of hex */ 98 for (i = match; i < match+4; i++) { 99 if (var_name[i] > 127 || 100 hex_to_bin(var_name[i] & 0xff) < 0) 101 return true; 102 } 103 104 /* Reject it if there's 4 digits of hex and then further content */ 105 if (namelen > match + 4) 106 return false; 107 108 /* A valid entry must be at least 8 bytes */ 109 if (len < 8) 110 return false; 111 112 filepathlength = buffer[4] | buffer[5] << 8; 113 114 /* 115 * There's no stored length for the description, so it has to be 116 * found by hand 117 */ 118 desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2; 119 120 /* Each boot entry must have a descriptor */ 121 if (!desclength) 122 return false; 123 124 /* 125 * If the sum of the length of the description, the claimed filepath 126 * length and the original header are greater than the length of the 127 * variable, it's malformed 128 */ 129 if ((desclength + filepathlength + 6) > len) 130 return false; 131 132 /* 133 * And, finally, check the filepath 134 */ 135 return validate_device_path(var_name, match, buffer + desclength + 6, 136 filepathlength); 137 } 138 139 static bool 140 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer, 141 unsigned long len) 142 { 143 /* A single 16-bit integer */ 144 if (len != 2) 145 return false; 146 147 return true; 148 } 149 150 static bool 151 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer, 152 unsigned long len) 153 { 154 int i; 155 156 for (i = 0; i < len; i++) { 157 if (buffer[i] > 127) 158 return false; 159 160 if (buffer[i] == 0) 161 return true; 162 } 163 164 return false; 165 } 166 167 struct variable_validate { 168 efi_guid_t vendor; 169 char *name; 170 bool (*validate)(efi_char16_t *var_name, int match, u8 *data, 171 unsigned long len); 172 }; 173 174 /* 175 * This is the list of variables we need to validate, as well as the 176 * whitelist for what we think is safe not to default to immutable. 177 * 178 * If it has a validate() method that's not NULL, it'll go into the 179 * validation routine. If not, it is assumed valid, but still used for 180 * whitelisting. 181 * 182 * Note that it's sorted by {vendor,name}, but globbed names must come after 183 * any other name with the same prefix. 184 */ 185 static const struct variable_validate variable_validate[] = { 186 { EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 }, 187 { EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order }, 188 { EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option }, 189 { EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order }, 190 { EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option }, 191 { EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path }, 192 { EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path }, 193 { EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path }, 194 { EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path }, 195 { EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path }, 196 { EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path }, 197 { EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string }, 198 { EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL }, 199 { EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string }, 200 { EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 }, 201 { LINUX_EFI_CRASH_GUID, "*", NULL }, 202 { NULL_GUID, "", NULL }, 203 }; 204 205 static bool 206 variable_matches(const char *var_name, size_t len, const char *match_name, 207 int *match) 208 { 209 for (*match = 0; ; (*match)++) { 210 char c = match_name[*match]; 211 char u = var_name[*match]; 212 213 /* Wildcard in the matching name means we've matched */ 214 if (c == '*') 215 return true; 216 217 /* Case sensitive match */ 218 if (!c && *match == len) 219 return true; 220 221 if (c != u) 222 return false; 223 224 if (!c) 225 return true; 226 } 227 return true; 228 } 229 230 bool 231 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data, 232 unsigned long data_size) 233 { 234 int i; 235 unsigned long utf8_size; 236 u8 *utf8_name; 237 238 utf8_size = ucs2_utf8size(var_name); 239 utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL); 240 if (!utf8_name) 241 return false; 242 243 ucs2_as_utf8(utf8_name, var_name, utf8_size); 244 utf8_name[utf8_size] = '\0'; 245 246 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 247 const char *name = variable_validate[i].name; 248 int match = 0; 249 250 if (efi_guidcmp(vendor, variable_validate[i].vendor)) 251 continue; 252 253 if (variable_matches(utf8_name, utf8_size+1, name, &match)) { 254 if (variable_validate[i].validate == NULL) 255 break; 256 kfree(utf8_name); 257 return variable_validate[i].validate(var_name, match, 258 data, data_size); 259 } 260 } 261 kfree(utf8_name); 262 return true; 263 } 264 EXPORT_SYMBOL_GPL(efivar_validate); 265 266 bool 267 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name, 268 size_t len) 269 { 270 int i; 271 bool found = false; 272 int match = 0; 273 274 /* 275 * Check if our variable is in the validated variables list 276 */ 277 for (i = 0; variable_validate[i].name[0] != '\0'; i++) { 278 if (efi_guidcmp(variable_validate[i].vendor, vendor)) 279 continue; 280 281 if (variable_matches(var_name, len, 282 variable_validate[i].name, &match)) { 283 found = true; 284 break; 285 } 286 } 287 288 /* 289 * If it's in our list, it is removable. 290 */ 291 return found; 292 } 293 EXPORT_SYMBOL_GPL(efivar_variable_is_removable); 294 295 static efi_status_t 296 check_var_size(u32 attributes, unsigned long size) 297 { 298 const struct efivar_operations *fops = __efivars->ops; 299 300 if (!fops->query_variable_store) 301 return EFI_UNSUPPORTED; 302 303 return fops->query_variable_store(attributes, size); 304 } 305 306 static int efi_status_to_err(efi_status_t status) 307 { 308 int err; 309 310 switch (status) { 311 case EFI_SUCCESS: 312 err = 0; 313 break; 314 case EFI_INVALID_PARAMETER: 315 err = -EINVAL; 316 break; 317 case EFI_OUT_OF_RESOURCES: 318 err = -ENOSPC; 319 break; 320 case EFI_DEVICE_ERROR: 321 err = -EIO; 322 break; 323 case EFI_WRITE_PROTECTED: 324 err = -EROFS; 325 break; 326 case EFI_SECURITY_VIOLATION: 327 err = -EACCES; 328 break; 329 case EFI_NOT_FOUND: 330 err = -ENOENT; 331 break; 332 default: 333 err = -EINVAL; 334 } 335 336 return err; 337 } 338 339 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor, 340 struct list_head *head) 341 { 342 struct efivar_entry *entry, *n; 343 unsigned long strsize1, strsize2; 344 bool found = false; 345 346 strsize1 = ucs2_strsize(variable_name, 1024); 347 list_for_each_entry_safe(entry, n, head, list) { 348 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 349 if (strsize1 == strsize2 && 350 !memcmp(variable_name, &(entry->var.VariableName), 351 strsize2) && 352 !efi_guidcmp(entry->var.VendorGuid, 353 *vendor)) { 354 found = true; 355 break; 356 } 357 } 358 return found; 359 } 360 361 /* 362 * Returns the size of variable_name, in bytes, including the 363 * terminating NULL character, or variable_name_size if no NULL 364 * character is found among the first variable_name_size bytes. 365 */ 366 static unsigned long var_name_strnsize(efi_char16_t *variable_name, 367 unsigned long variable_name_size) 368 { 369 unsigned long len; 370 efi_char16_t c; 371 372 /* 373 * The variable name is, by definition, a NULL-terminated 374 * string, so make absolutely sure that variable_name_size is 375 * the value we expect it to be. If not, return the real size. 376 */ 377 for (len = 2; len <= variable_name_size; len += sizeof(c)) { 378 c = variable_name[(len / sizeof(c)) - 1]; 379 if (!c) 380 break; 381 } 382 383 return min(len, variable_name_size); 384 } 385 386 /* 387 * Print a warning when duplicate EFI variables are encountered and 388 * disable the sysfs workqueue since the firmware is buggy. 389 */ 390 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid, 391 unsigned long len16) 392 { 393 size_t i, len8 = len16 / sizeof(efi_char16_t); 394 char *str8; 395 396 /* 397 * Disable the workqueue since the algorithm it uses for 398 * detecting new variables won't work with this buggy 399 * implementation of GetNextVariableName(). 400 */ 401 efivar_wq_enabled = false; 402 403 str8 = kzalloc(len8, GFP_KERNEL); 404 if (!str8) 405 return; 406 407 for (i = 0; i < len8; i++) 408 str8[i] = str16[i]; 409 410 printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n", 411 str8, vendor_guid); 412 kfree(str8); 413 } 414 415 /** 416 * efivar_init - build the initial list of EFI variables 417 * @func: callback function to invoke for every variable 418 * @data: function-specific data to pass to @func 419 * @atomic: do we need to execute the @func-loop atomically? 420 * @duplicates: error if we encounter duplicates on @head? 421 * @head: initialised head of variable list 422 * 423 * Get every EFI variable from the firmware and invoke @func. @func 424 * should call efivar_entry_add() to build the list of variables. 425 * 426 * Returns 0 on success, or a kernel error code on failure. 427 */ 428 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *), 429 void *data, bool atomic, bool duplicates, 430 struct list_head *head) 431 { 432 const struct efivar_operations *ops = __efivars->ops; 433 unsigned long variable_name_size = 1024; 434 efi_char16_t *variable_name; 435 efi_status_t status; 436 efi_guid_t vendor_guid; 437 int err = 0; 438 439 variable_name = kzalloc(variable_name_size, GFP_KERNEL); 440 if (!variable_name) { 441 printk(KERN_ERR "efivars: Memory allocation failed.\n"); 442 return -ENOMEM; 443 } 444 445 spin_lock_irq(&__efivars->lock); 446 447 /* 448 * Per EFI spec, the maximum storage allocated for both 449 * the variable name and variable data is 1024 bytes. 450 */ 451 452 do { 453 variable_name_size = 1024; 454 455 status = ops->get_next_variable(&variable_name_size, 456 variable_name, 457 &vendor_guid); 458 switch (status) { 459 case EFI_SUCCESS: 460 if (!atomic) 461 spin_unlock_irq(&__efivars->lock); 462 463 variable_name_size = var_name_strnsize(variable_name, 464 variable_name_size); 465 466 /* 467 * Some firmware implementations return the 468 * same variable name on multiple calls to 469 * get_next_variable(). Terminate the loop 470 * immediately as there is no guarantee that 471 * we'll ever see a different variable name, 472 * and may end up looping here forever. 473 */ 474 if (duplicates && 475 variable_is_present(variable_name, &vendor_guid, head)) { 476 dup_variable_bug(variable_name, &vendor_guid, 477 variable_name_size); 478 if (!atomic) 479 spin_lock_irq(&__efivars->lock); 480 481 status = EFI_NOT_FOUND; 482 break; 483 } 484 485 err = func(variable_name, vendor_guid, variable_name_size, data); 486 if (err) 487 status = EFI_NOT_FOUND; 488 489 if (!atomic) 490 spin_lock_irq(&__efivars->lock); 491 492 break; 493 case EFI_NOT_FOUND: 494 break; 495 default: 496 printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n", 497 status); 498 status = EFI_NOT_FOUND; 499 break; 500 } 501 502 } while (status != EFI_NOT_FOUND); 503 504 spin_unlock_irq(&__efivars->lock); 505 506 kfree(variable_name); 507 508 return err; 509 } 510 EXPORT_SYMBOL_GPL(efivar_init); 511 512 /** 513 * efivar_entry_add - add entry to variable list 514 * @entry: entry to add to list 515 * @head: list head 516 */ 517 void efivar_entry_add(struct efivar_entry *entry, struct list_head *head) 518 { 519 spin_lock_irq(&__efivars->lock); 520 list_add(&entry->list, head); 521 spin_unlock_irq(&__efivars->lock); 522 } 523 EXPORT_SYMBOL_GPL(efivar_entry_add); 524 525 /** 526 * efivar_entry_remove - remove entry from variable list 527 * @entry: entry to remove from list 528 */ 529 void efivar_entry_remove(struct efivar_entry *entry) 530 { 531 spin_lock_irq(&__efivars->lock); 532 list_del(&entry->list); 533 spin_unlock_irq(&__efivars->lock); 534 } 535 EXPORT_SYMBOL_GPL(efivar_entry_remove); 536 537 /* 538 * efivar_entry_list_del_unlock - remove entry from variable list 539 * @entry: entry to remove 540 * 541 * Remove @entry from the variable list and release the list lock. 542 * 543 * NOTE: slightly weird locking semantics here - we expect to be 544 * called with the efivars lock already held, and we release it before 545 * returning. This is because this function is usually called after 546 * set_variable() while the lock is still held. 547 */ 548 static void efivar_entry_list_del_unlock(struct efivar_entry *entry) 549 { 550 lockdep_assert_held(&__efivars->lock); 551 552 list_del(&entry->list); 553 spin_unlock_irq(&__efivars->lock); 554 } 555 556 /** 557 * __efivar_entry_delete - delete an EFI variable 558 * @entry: entry containing EFI variable to delete 559 * 560 * Delete the variable from the firmware but leave @entry on the 561 * variable list. 562 * 563 * This function differs from efivar_entry_delete() because it does 564 * not remove @entry from the variable list. Also, it is safe to be 565 * called from within a efivar_entry_iter_begin() and 566 * efivar_entry_iter_end() region, unlike efivar_entry_delete(). 567 * 568 * Returns 0 on success, or a converted EFI status code if 569 * set_variable() fails. 570 */ 571 int __efivar_entry_delete(struct efivar_entry *entry) 572 { 573 const struct efivar_operations *ops = __efivars->ops; 574 efi_status_t status; 575 576 lockdep_assert_held(&__efivars->lock); 577 578 status = ops->set_variable(entry->var.VariableName, 579 &entry->var.VendorGuid, 580 0, 0, NULL); 581 582 return efi_status_to_err(status); 583 } 584 EXPORT_SYMBOL_GPL(__efivar_entry_delete); 585 586 /** 587 * efivar_entry_delete - delete variable and remove entry from list 588 * @entry: entry containing variable to delete 589 * 590 * Delete the variable from the firmware and remove @entry from the 591 * variable list. It is the caller's responsibility to free @entry 592 * once we return. 593 * 594 * Returns 0 on success, or a converted EFI status code if 595 * set_variable() fails. 596 */ 597 int efivar_entry_delete(struct efivar_entry *entry) 598 { 599 const struct efivar_operations *ops = __efivars->ops; 600 efi_status_t status; 601 602 spin_lock_irq(&__efivars->lock); 603 status = ops->set_variable(entry->var.VariableName, 604 &entry->var.VendorGuid, 605 0, 0, NULL); 606 if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) { 607 spin_unlock_irq(&__efivars->lock); 608 return efi_status_to_err(status); 609 } 610 611 efivar_entry_list_del_unlock(entry); 612 return 0; 613 } 614 EXPORT_SYMBOL_GPL(efivar_entry_delete); 615 616 /** 617 * efivar_entry_set - call set_variable() 618 * @entry: entry containing the EFI variable to write 619 * @attributes: variable attributes 620 * @size: size of @data buffer 621 * @data: buffer containing variable data 622 * @head: head of variable list 623 * 624 * Calls set_variable() for an EFI variable. If creating a new EFI 625 * variable, this function is usually followed by efivar_entry_add(). 626 * 627 * Before writing the variable, the remaining EFI variable storage 628 * space is checked to ensure there is enough room available. 629 * 630 * If @head is not NULL a lookup is performed to determine whether 631 * the entry is already on the list. 632 * 633 * Returns 0 on success, -EEXIST if a lookup is performed and the entry 634 * already exists on the list, or a converted EFI status code if 635 * set_variable() fails. 636 */ 637 int efivar_entry_set(struct efivar_entry *entry, u32 attributes, 638 unsigned long size, void *data, struct list_head *head) 639 { 640 const struct efivar_operations *ops = __efivars->ops; 641 efi_status_t status; 642 efi_char16_t *name = entry->var.VariableName; 643 efi_guid_t vendor = entry->var.VendorGuid; 644 645 spin_lock_irq(&__efivars->lock); 646 647 if (head && efivar_entry_find(name, vendor, head, false)) { 648 spin_unlock_irq(&__efivars->lock); 649 return -EEXIST; 650 } 651 652 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 653 if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED) 654 status = ops->set_variable(name, &vendor, 655 attributes, size, data); 656 657 spin_unlock_irq(&__efivars->lock); 658 659 return efi_status_to_err(status); 660 661 } 662 EXPORT_SYMBOL_GPL(efivar_entry_set); 663 664 /* 665 * efivar_entry_set_nonblocking - call set_variable_nonblocking() 666 * 667 * This function is guaranteed to not block and is suitable for calling 668 * from crash/panic handlers. 669 * 670 * Crucially, this function will not block if it cannot acquire 671 * __efivars->lock. Instead, it returns -EBUSY. 672 */ 673 static int 674 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor, 675 u32 attributes, unsigned long size, void *data) 676 { 677 const struct efivar_operations *ops = __efivars->ops; 678 unsigned long flags; 679 efi_status_t status; 680 681 if (!spin_trylock_irqsave(&__efivars->lock, flags)) 682 return -EBUSY; 683 684 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 685 if (status != EFI_SUCCESS) { 686 spin_unlock_irqrestore(&__efivars->lock, flags); 687 return -ENOSPC; 688 } 689 690 status = ops->set_variable_nonblocking(name, &vendor, attributes, 691 size, data); 692 693 spin_unlock_irqrestore(&__efivars->lock, flags); 694 return efi_status_to_err(status); 695 } 696 697 /** 698 * efivar_entry_set_safe - call set_variable() if enough space in firmware 699 * @name: buffer containing the variable name 700 * @vendor: variable vendor guid 701 * @attributes: variable attributes 702 * @block: can we block in this context? 703 * @size: size of @data buffer 704 * @data: buffer containing variable data 705 * 706 * Ensures there is enough free storage in the firmware for this variable, and 707 * if so, calls set_variable(). If creating a new EFI variable, this function 708 * is usually followed by efivar_entry_add(). 709 * 710 * Returns 0 on success, -ENOSPC if the firmware does not have enough 711 * space for set_variable() to succeed, or a converted EFI status code 712 * if set_variable() fails. 713 */ 714 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes, 715 bool block, unsigned long size, void *data) 716 { 717 const struct efivar_operations *ops = __efivars->ops; 718 unsigned long flags; 719 efi_status_t status; 720 721 if (!ops->query_variable_store) 722 return -ENOSYS; 723 724 /* 725 * If the EFI variable backend provides a non-blocking 726 * ->set_variable() operation and we're in a context where we 727 * cannot block, then we need to use it to avoid live-locks, 728 * since the implication is that the regular ->set_variable() 729 * will block. 730 * 731 * If no ->set_variable_nonblocking() is provided then 732 * ->set_variable() is assumed to be non-blocking. 733 */ 734 if (!block && ops->set_variable_nonblocking) 735 return efivar_entry_set_nonblocking(name, vendor, attributes, 736 size, data); 737 738 if (!block) { 739 if (!spin_trylock_irqsave(&__efivars->lock, flags)) 740 return -EBUSY; 741 } else { 742 spin_lock_irqsave(&__efivars->lock, flags); 743 } 744 745 status = check_var_size(attributes, size + ucs2_strsize(name, 1024)); 746 if (status != EFI_SUCCESS) { 747 spin_unlock_irqrestore(&__efivars->lock, flags); 748 return -ENOSPC; 749 } 750 751 status = ops->set_variable(name, &vendor, attributes, size, data); 752 753 spin_unlock_irqrestore(&__efivars->lock, flags); 754 755 return efi_status_to_err(status); 756 } 757 EXPORT_SYMBOL_GPL(efivar_entry_set_safe); 758 759 /** 760 * efivar_entry_find - search for an entry 761 * @name: the EFI variable name 762 * @guid: the EFI variable vendor's guid 763 * @head: head of the variable list 764 * @remove: should we remove the entry from the list? 765 * 766 * Search for an entry on the variable list that has the EFI variable 767 * name @name and vendor guid @guid. If an entry is found on the list 768 * and @remove is true, the entry is removed from the list. 769 * 770 * The caller MUST call efivar_entry_iter_begin() and 771 * efivar_entry_iter_end() before and after the invocation of this 772 * function, respectively. 773 * 774 * Returns the entry if found on the list, %NULL otherwise. 775 */ 776 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid, 777 struct list_head *head, bool remove) 778 { 779 struct efivar_entry *entry, *n; 780 int strsize1, strsize2; 781 bool found = false; 782 783 lockdep_assert_held(&__efivars->lock); 784 785 list_for_each_entry_safe(entry, n, head, list) { 786 strsize1 = ucs2_strsize(name, 1024); 787 strsize2 = ucs2_strsize(entry->var.VariableName, 1024); 788 if (strsize1 == strsize2 && 789 !memcmp(name, &(entry->var.VariableName), strsize1) && 790 !efi_guidcmp(guid, entry->var.VendorGuid)) { 791 found = true; 792 break; 793 } 794 } 795 796 if (!found) 797 return NULL; 798 799 if (remove) { 800 if (entry->scanning) { 801 /* 802 * The entry will be deleted 803 * after scanning is completed. 804 */ 805 entry->deleting = true; 806 } else 807 list_del(&entry->list); 808 } 809 810 return entry; 811 } 812 EXPORT_SYMBOL_GPL(efivar_entry_find); 813 814 /** 815 * efivar_entry_size - obtain the size of a variable 816 * @entry: entry for this variable 817 * @size: location to store the variable's size 818 */ 819 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size) 820 { 821 const struct efivar_operations *ops = __efivars->ops; 822 efi_status_t status; 823 824 *size = 0; 825 826 spin_lock_irq(&__efivars->lock); 827 status = ops->get_variable(entry->var.VariableName, 828 &entry->var.VendorGuid, NULL, size, NULL); 829 spin_unlock_irq(&__efivars->lock); 830 831 if (status != EFI_BUFFER_TOO_SMALL) 832 return efi_status_to_err(status); 833 834 return 0; 835 } 836 EXPORT_SYMBOL_GPL(efivar_entry_size); 837 838 /** 839 * __efivar_entry_get - call get_variable() 840 * @entry: read data for this variable 841 * @attributes: variable attributes 842 * @size: size of @data buffer 843 * @data: buffer to store variable data 844 * 845 * The caller MUST call efivar_entry_iter_begin() and 846 * efivar_entry_iter_end() before and after the invocation of this 847 * function, respectively. 848 */ 849 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 850 unsigned long *size, void *data) 851 { 852 const struct efivar_operations *ops = __efivars->ops; 853 efi_status_t status; 854 855 lockdep_assert_held(&__efivars->lock); 856 857 status = ops->get_variable(entry->var.VariableName, 858 &entry->var.VendorGuid, 859 attributes, size, data); 860 861 return efi_status_to_err(status); 862 } 863 EXPORT_SYMBOL_GPL(__efivar_entry_get); 864 865 /** 866 * efivar_entry_get - call get_variable() 867 * @entry: read data for this variable 868 * @attributes: variable attributes 869 * @size: size of @data buffer 870 * @data: buffer to store variable data 871 */ 872 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes, 873 unsigned long *size, void *data) 874 { 875 const struct efivar_operations *ops = __efivars->ops; 876 efi_status_t status; 877 878 spin_lock_irq(&__efivars->lock); 879 status = ops->get_variable(entry->var.VariableName, 880 &entry->var.VendorGuid, 881 attributes, size, data); 882 spin_unlock_irq(&__efivars->lock); 883 884 return efi_status_to_err(status); 885 } 886 EXPORT_SYMBOL_GPL(efivar_entry_get); 887 888 /** 889 * efivar_entry_set_get_size - call set_variable() and get new size (atomic) 890 * @entry: entry containing variable to set and get 891 * @attributes: attributes of variable to be written 892 * @size: size of data buffer 893 * @data: buffer containing data to write 894 * @set: did the set_variable() call succeed? 895 * 896 * This is a pretty special (complex) function. See efivarfs_file_write(). 897 * 898 * Atomically call set_variable() for @entry and if the call is 899 * successful, return the new size of the variable from get_variable() 900 * in @size. The success of set_variable() is indicated by @set. 901 * 902 * Returns 0 on success, -EINVAL if the variable data is invalid, 903 * -ENOSPC if the firmware does not have enough available space, or a 904 * converted EFI status code if either of set_variable() or 905 * get_variable() fail. 906 * 907 * If the EFI variable does not exist when calling set_variable() 908 * (EFI_NOT_FOUND), @entry is removed from the variable list. 909 */ 910 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes, 911 unsigned long *size, void *data, bool *set) 912 { 913 const struct efivar_operations *ops = __efivars->ops; 914 efi_char16_t *name = entry->var.VariableName; 915 efi_guid_t *vendor = &entry->var.VendorGuid; 916 efi_status_t status; 917 int err; 918 919 *set = false; 920 921 if (efivar_validate(*vendor, name, data, *size) == false) 922 return -EINVAL; 923 924 /* 925 * The lock here protects the get_variable call, the conditional 926 * set_variable call, and removal of the variable from the efivars 927 * list (in the case of an authenticated delete). 928 */ 929 spin_lock_irq(&__efivars->lock); 930 931 /* 932 * Ensure that the available space hasn't shrunk below the safe level 933 */ 934 status = check_var_size(attributes, *size + ucs2_strsize(name, 1024)); 935 if (status != EFI_SUCCESS) { 936 if (status != EFI_UNSUPPORTED) { 937 err = efi_status_to_err(status); 938 goto out; 939 } 940 941 if (*size > 65536) { 942 err = -ENOSPC; 943 goto out; 944 } 945 } 946 947 status = ops->set_variable(name, vendor, attributes, *size, data); 948 if (status != EFI_SUCCESS) { 949 err = efi_status_to_err(status); 950 goto out; 951 } 952 953 *set = true; 954 955 /* 956 * Writing to the variable may have caused a change in size (which 957 * could either be an append or an overwrite), or the variable to be 958 * deleted. Perform a GetVariable() so we can tell what actually 959 * happened. 960 */ 961 *size = 0; 962 status = ops->get_variable(entry->var.VariableName, 963 &entry->var.VendorGuid, 964 NULL, size, NULL); 965 966 if (status == EFI_NOT_FOUND) 967 efivar_entry_list_del_unlock(entry); 968 else 969 spin_unlock_irq(&__efivars->lock); 970 971 if (status && status != EFI_BUFFER_TOO_SMALL) 972 return efi_status_to_err(status); 973 974 return 0; 975 976 out: 977 spin_unlock_irq(&__efivars->lock); 978 return err; 979 980 } 981 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size); 982 983 /** 984 * efivar_entry_iter_begin - begin iterating the variable list 985 * 986 * Lock the variable list to prevent entry insertion and removal until 987 * efivar_entry_iter_end() is called. This function is usually used in 988 * conjunction with __efivar_entry_iter() or efivar_entry_iter(). 989 */ 990 void efivar_entry_iter_begin(void) 991 { 992 spin_lock_irq(&__efivars->lock); 993 } 994 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin); 995 996 /** 997 * efivar_entry_iter_end - finish iterating the variable list 998 * 999 * Unlock the variable list and allow modifications to the list again. 1000 */ 1001 void efivar_entry_iter_end(void) 1002 { 1003 spin_unlock_irq(&__efivars->lock); 1004 } 1005 EXPORT_SYMBOL_GPL(efivar_entry_iter_end); 1006 1007 /** 1008 * __efivar_entry_iter - iterate over variable list 1009 * @func: callback function 1010 * @head: head of the variable list 1011 * @data: function-specific data to pass to callback 1012 * @prev: entry to begin iterating from 1013 * 1014 * Iterate over the list of EFI variables and call @func with every 1015 * entry on the list. It is safe for @func to remove entries in the 1016 * list via efivar_entry_delete(). 1017 * 1018 * You MUST call efivar_enter_iter_begin() before this function, and 1019 * efivar_entry_iter_end() afterwards. 1020 * 1021 * It is possible to begin iteration from an arbitrary entry within 1022 * the list by passing @prev. @prev is updated on return to point to 1023 * the last entry passed to @func. To begin iterating from the 1024 * beginning of the list @prev must be %NULL. 1025 * 1026 * The restrictions for @func are the same as documented for 1027 * efivar_entry_iter(). 1028 */ 1029 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1030 struct list_head *head, void *data, 1031 struct efivar_entry **prev) 1032 { 1033 struct efivar_entry *entry, *n; 1034 int err = 0; 1035 1036 if (!prev || !*prev) { 1037 list_for_each_entry_safe(entry, n, head, list) { 1038 err = func(entry, data); 1039 if (err) 1040 break; 1041 } 1042 1043 if (prev) 1044 *prev = entry; 1045 1046 return err; 1047 } 1048 1049 1050 list_for_each_entry_safe_continue((*prev), n, head, list) { 1051 err = func(*prev, data); 1052 if (err) 1053 break; 1054 } 1055 1056 return err; 1057 } 1058 EXPORT_SYMBOL_GPL(__efivar_entry_iter); 1059 1060 /** 1061 * efivar_entry_iter - iterate over variable list 1062 * @func: callback function 1063 * @head: head of variable list 1064 * @data: function-specific data to pass to callback 1065 * 1066 * Iterate over the list of EFI variables and call @func with every 1067 * entry on the list. It is safe for @func to remove entries in the 1068 * list via efivar_entry_delete() while iterating. 1069 * 1070 * Some notes for the callback function: 1071 * - a non-zero return value indicates an error and terminates the loop 1072 * - @func is called from atomic context 1073 */ 1074 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *), 1075 struct list_head *head, void *data) 1076 { 1077 int err = 0; 1078 1079 efivar_entry_iter_begin(); 1080 err = __efivar_entry_iter(func, head, data, NULL); 1081 efivar_entry_iter_end(); 1082 1083 return err; 1084 } 1085 EXPORT_SYMBOL_GPL(efivar_entry_iter); 1086 1087 /** 1088 * efivars_kobject - get the kobject for the registered efivars 1089 * 1090 * If efivars_register() has not been called we return NULL, 1091 * otherwise return the kobject used at registration time. 1092 */ 1093 struct kobject *efivars_kobject(void) 1094 { 1095 if (!__efivars) 1096 return NULL; 1097 1098 return __efivars->kobject; 1099 } 1100 EXPORT_SYMBOL_GPL(efivars_kobject); 1101 1102 /** 1103 * efivar_run_worker - schedule the efivar worker thread 1104 */ 1105 void efivar_run_worker(void) 1106 { 1107 if (efivar_wq_enabled) 1108 schedule_work(&efivar_work); 1109 } 1110 EXPORT_SYMBOL_GPL(efivar_run_worker); 1111 1112 /** 1113 * efivars_register - register an efivars 1114 * @efivars: efivars to register 1115 * @ops: efivars operations 1116 * @kobject: @efivars-specific kobject 1117 * 1118 * Only a single efivars can be registered at any time. 1119 */ 1120 int efivars_register(struct efivars *efivars, 1121 const struct efivar_operations *ops, 1122 struct kobject *kobject) 1123 { 1124 spin_lock_init(&efivars->lock); 1125 efivars->ops = ops; 1126 efivars->kobject = kobject; 1127 1128 __efivars = efivars; 1129 1130 return 0; 1131 } 1132 EXPORT_SYMBOL_GPL(efivars_register); 1133 1134 /** 1135 * efivars_unregister - unregister an efivars 1136 * @efivars: efivars to unregister 1137 * 1138 * The caller must have already removed every entry from the list, 1139 * failure to do so is an error. 1140 */ 1141 int efivars_unregister(struct efivars *efivars) 1142 { 1143 int rv; 1144 1145 if (!__efivars) { 1146 printk(KERN_ERR "efivars not registered\n"); 1147 rv = -EINVAL; 1148 goto out; 1149 } 1150 1151 if (__efivars != efivars) { 1152 rv = -EINVAL; 1153 goto out; 1154 } 1155 1156 __efivars = NULL; 1157 1158 rv = 0; 1159 out: 1160 return rv; 1161 } 1162 EXPORT_SYMBOL_GPL(efivars_unregister); 1163