1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_core.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 /* lock to memory controller's control array */ 44 static DEFINE_MUTEX(mem_ctls_mutex); 45 static LIST_HEAD(mc_devices); 46 47 /* 48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 49 * apei/ghes and i7core_edac to be used at the same time. 50 */ 51 static void const *edac_mc_owner; 52 53 static struct bus_type mc_bus[EDAC_MAX_MCS]; 54 55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 56 unsigned len) 57 { 58 struct mem_ctl_info *mci = dimm->mci; 59 int i, n, count = 0; 60 char *p = buf; 61 62 for (i = 0; i < mci->n_layers; i++) { 63 n = snprintf(p, len, "%s %d ", 64 edac_layer_name[mci->layers[i].type], 65 dimm->location[i]); 66 p += n; 67 len -= n; 68 count += n; 69 if (!len) 70 break; 71 } 72 73 return count; 74 } 75 76 #ifdef CONFIG_EDAC_DEBUG 77 78 static void edac_mc_dump_channel(struct rank_info *chan) 79 { 80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 81 edac_dbg(4, " channel = %p\n", chan); 82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 84 } 85 86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 87 { 88 char location[80]; 89 90 edac_dimm_info_location(dimm, location, sizeof(location)); 91 92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 93 dimm->mci->csbased ? "rank" : "dimm", 94 number, location, dimm->csrow, dimm->cschannel); 95 edac_dbg(4, " dimm = %p\n", dimm); 96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 100 } 101 102 static void edac_mc_dump_csrow(struct csrow_info *csrow) 103 { 104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 105 edac_dbg(4, " csrow = %p\n", csrow); 106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 112 } 113 114 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 115 { 116 edac_dbg(3, "\tmci = %p\n", mci); 117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 122 mci->nr_csrows, mci->csrows); 123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 124 mci->tot_dimms, mci->dimms); 125 edac_dbg(3, "\tdev = %p\n", mci->pdev); 126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 127 mci->mod_name, mci->ctl_name); 128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 129 } 130 131 #endif /* CONFIG_EDAC_DEBUG */ 132 133 const char * const edac_mem_types[] = { 134 [MEM_EMPTY] = "Empty csrow", 135 [MEM_RESERVED] = "Reserved csrow type", 136 [MEM_UNKNOWN] = "Unknown csrow type", 137 [MEM_FPM] = "Fast page mode RAM", 138 [MEM_EDO] = "Extended data out RAM", 139 [MEM_BEDO] = "Burst Extended data out RAM", 140 [MEM_SDR] = "Single data rate SDRAM", 141 [MEM_RDR] = "Registered single data rate SDRAM", 142 [MEM_DDR] = "Double data rate SDRAM", 143 [MEM_RDDR] = "Registered Double data rate SDRAM", 144 [MEM_RMBS] = "Rambus DRAM", 145 [MEM_DDR2] = "Unbuffered DDR2 RAM", 146 [MEM_FB_DDR2] = "Fully buffered DDR2", 147 [MEM_RDDR2] = "Registered DDR2 RAM", 148 [MEM_XDR] = "Rambus XDR", 149 [MEM_DDR3] = "Unbuffered DDR3 RAM", 150 [MEM_RDDR3] = "Registered DDR3 RAM", 151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", 152 [MEM_DDR4] = "Unbuffered DDR4 RAM", 153 [MEM_RDDR4] = "Registered DDR4 RAM", 154 }; 155 EXPORT_SYMBOL_GPL(edac_mem_types); 156 157 /** 158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 159 * @p: pointer to a pointer with the memory offset to be used. At 160 * return, this will be incremented to point to the next offset 161 * @size: Size of the data structure to be reserved 162 * @n_elems: Number of elements that should be reserved 163 * 164 * If 'size' is a constant, the compiler will optimize this whole function 165 * down to either a no-op or the addition of a constant to the value of '*p'. 166 * 167 * The 'p' pointer is absolutely needed to keep the proper advancing 168 * further in memory to the proper offsets when allocating the struct along 169 * with its embedded structs, as edac_device_alloc_ctl_info() does it 170 * above, for example. 171 * 172 * At return, the pointer 'p' will be incremented to be used on a next call 173 * to this function. 174 */ 175 void *edac_align_ptr(void **p, unsigned size, int n_elems) 176 { 177 unsigned align, r; 178 void *ptr = *p; 179 180 *p += size * n_elems; 181 182 /* 183 * 'p' can possibly be an unaligned item X such that sizeof(X) is 184 * 'size'. Adjust 'p' so that its alignment is at least as 185 * stringent as what the compiler would provide for X and return 186 * the aligned result. 187 * Here we assume that the alignment of a "long long" is the most 188 * stringent alignment that the compiler will ever provide by default. 189 * As far as I know, this is a reasonable assumption. 190 */ 191 if (size > sizeof(long)) 192 align = sizeof(long long); 193 else if (size > sizeof(int)) 194 align = sizeof(long); 195 else if (size > sizeof(short)) 196 align = sizeof(int); 197 else if (size > sizeof(char)) 198 align = sizeof(short); 199 else 200 return (char *)ptr; 201 202 r = (unsigned long)p % align; 203 204 if (r == 0) 205 return (char *)ptr; 206 207 *p += align - r; 208 209 return (void *)(((unsigned long)ptr) + align - r); 210 } 211 212 static void _edac_mc_free(struct mem_ctl_info *mci) 213 { 214 int i, chn, row; 215 struct csrow_info *csr; 216 const unsigned int tot_dimms = mci->tot_dimms; 217 const unsigned int tot_channels = mci->num_cschannel; 218 const unsigned int tot_csrows = mci->nr_csrows; 219 220 if (mci->dimms) { 221 for (i = 0; i < tot_dimms; i++) 222 kfree(mci->dimms[i]); 223 kfree(mci->dimms); 224 } 225 if (mci->csrows) { 226 for (row = 0; row < tot_csrows; row++) { 227 csr = mci->csrows[row]; 228 if (csr) { 229 if (csr->channels) { 230 for (chn = 0; chn < tot_channels; chn++) 231 kfree(csr->channels[chn]); 232 kfree(csr->channels); 233 } 234 kfree(csr); 235 } 236 } 237 kfree(mci->csrows); 238 } 239 kfree(mci); 240 } 241 242 /** 243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 244 * @mc_num: Memory controller number 245 * @n_layers: Number of MC hierarchy layers 246 * layers: Describes each layer as seen by the Memory Controller 247 * @size_pvt: size of private storage needed 248 * 249 * 250 * Everything is kmalloc'ed as one big chunk - more efficient. 251 * Only can be used if all structures have the same lifetime - otherwise 252 * you have to allocate and initialize your own structures. 253 * 254 * Use edac_mc_free() to free mc structures allocated by this function. 255 * 256 * NOTE: drivers handle multi-rank memories in different ways: in some 257 * drivers, one multi-rank memory stick is mapped as one entry, while, in 258 * others, a single multi-rank memory stick would be mapped into several 259 * entries. Currently, this function will allocate multiple struct dimm_info 260 * on such scenarios, as grouping the multiple ranks require drivers change. 261 * 262 * Returns: 263 * On failure: NULL 264 * On success: struct mem_ctl_info pointer 265 */ 266 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 267 unsigned n_layers, 268 struct edac_mc_layer *layers, 269 unsigned sz_pvt) 270 { 271 struct mem_ctl_info *mci; 272 struct edac_mc_layer *layer; 273 struct csrow_info *csr; 274 struct rank_info *chan; 275 struct dimm_info *dimm; 276 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 277 unsigned pos[EDAC_MAX_LAYERS]; 278 unsigned size, tot_dimms = 1, count = 1; 279 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 280 void *pvt, *p, *ptr = NULL; 281 int i, j, row, chn, n, len, off; 282 bool per_rank = false; 283 284 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 285 /* 286 * Calculate the total amount of dimms and csrows/cschannels while 287 * in the old API emulation mode 288 */ 289 for (i = 0; i < n_layers; i++) { 290 tot_dimms *= layers[i].size; 291 if (layers[i].is_virt_csrow) 292 tot_csrows *= layers[i].size; 293 else 294 tot_channels *= layers[i].size; 295 296 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 297 per_rank = true; 298 } 299 300 /* Figure out the offsets of the various items from the start of an mc 301 * structure. We want the alignment of each item to be at least as 302 * stringent as what the compiler would provide if we could simply 303 * hardcode everything into a single struct. 304 */ 305 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 306 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 307 for (i = 0; i < n_layers; i++) { 308 count *= layers[i].size; 309 edac_dbg(4, "errcount layer %d size %d\n", i, count); 310 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 311 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 312 tot_errcount += 2 * count; 313 } 314 315 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 316 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 317 size = ((unsigned long)pvt) + sz_pvt; 318 319 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 320 size, 321 tot_dimms, 322 per_rank ? "ranks" : "dimms", 323 tot_csrows * tot_channels); 324 325 mci = kzalloc(size, GFP_KERNEL); 326 if (mci == NULL) 327 return NULL; 328 329 /* Adjust pointers so they point within the memory we just allocated 330 * rather than an imaginary chunk of memory located at address 0. 331 */ 332 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 333 for (i = 0; i < n_layers; i++) { 334 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 335 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 336 } 337 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 338 339 /* setup index and various internal pointers */ 340 mci->mc_idx = mc_num; 341 mci->tot_dimms = tot_dimms; 342 mci->pvt_info = pvt; 343 mci->n_layers = n_layers; 344 mci->layers = layer; 345 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 346 mci->nr_csrows = tot_csrows; 347 mci->num_cschannel = tot_channels; 348 mci->csbased = per_rank; 349 350 /* 351 * Alocate and fill the csrow/channels structs 352 */ 353 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 354 if (!mci->csrows) 355 goto error; 356 for (row = 0; row < tot_csrows; row++) { 357 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 358 if (!csr) 359 goto error; 360 mci->csrows[row] = csr; 361 csr->csrow_idx = row; 362 csr->mci = mci; 363 csr->nr_channels = tot_channels; 364 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 365 GFP_KERNEL); 366 if (!csr->channels) 367 goto error; 368 369 for (chn = 0; chn < tot_channels; chn++) { 370 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 371 if (!chan) 372 goto error; 373 csr->channels[chn] = chan; 374 chan->chan_idx = chn; 375 chan->csrow = csr; 376 } 377 } 378 379 /* 380 * Allocate and fill the dimm structs 381 */ 382 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 383 if (!mci->dimms) 384 goto error; 385 386 memset(&pos, 0, sizeof(pos)); 387 row = 0; 388 chn = 0; 389 for (i = 0; i < tot_dimms; i++) { 390 chan = mci->csrows[row]->channels[chn]; 391 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 392 if (off < 0 || off >= tot_dimms) { 393 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 394 goto error; 395 } 396 397 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 398 if (!dimm) 399 goto error; 400 mci->dimms[off] = dimm; 401 dimm->mci = mci; 402 403 /* 404 * Copy DIMM location and initialize it. 405 */ 406 len = sizeof(dimm->label); 407 p = dimm->label; 408 n = snprintf(p, len, "mc#%u", mc_num); 409 p += n; 410 len -= n; 411 for (j = 0; j < n_layers; j++) { 412 n = snprintf(p, len, "%s#%u", 413 edac_layer_name[layers[j].type], 414 pos[j]); 415 p += n; 416 len -= n; 417 dimm->location[j] = pos[j]; 418 419 if (len <= 0) 420 break; 421 } 422 423 /* Link it to the csrows old API data */ 424 chan->dimm = dimm; 425 dimm->csrow = row; 426 dimm->cschannel = chn; 427 428 /* Increment csrow location */ 429 if (layers[0].is_virt_csrow) { 430 chn++; 431 if (chn == tot_channels) { 432 chn = 0; 433 row++; 434 } 435 } else { 436 row++; 437 if (row == tot_csrows) { 438 row = 0; 439 chn++; 440 } 441 } 442 443 /* Increment dimm location */ 444 for (j = n_layers - 1; j >= 0; j--) { 445 pos[j]++; 446 if (pos[j] < layers[j].size) 447 break; 448 pos[j] = 0; 449 } 450 } 451 452 mci->op_state = OP_ALLOC; 453 454 return mci; 455 456 error: 457 _edac_mc_free(mci); 458 459 return NULL; 460 } 461 EXPORT_SYMBOL_GPL(edac_mc_alloc); 462 463 /** 464 * edac_mc_free 465 * 'Free' a previously allocated 'mci' structure 466 * @mci: pointer to a struct mem_ctl_info structure 467 */ 468 void edac_mc_free(struct mem_ctl_info *mci) 469 { 470 edac_dbg(1, "\n"); 471 472 /* If we're not yet registered with sysfs free only what was allocated 473 * in edac_mc_alloc(). 474 */ 475 if (!device_is_registered(&mci->dev)) { 476 _edac_mc_free(mci); 477 return; 478 } 479 480 /* the mci instance is freed here, when the sysfs object is dropped */ 481 edac_unregister_sysfs(mci); 482 } 483 EXPORT_SYMBOL_GPL(edac_mc_free); 484 485 /* Caller must hold mem_ctls_mutex */ 486 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 487 { 488 struct mem_ctl_info *mci; 489 struct list_head *item; 490 491 edac_dbg(3, "\n"); 492 493 list_for_each(item, &mc_devices) { 494 mci = list_entry(item, struct mem_ctl_info, link); 495 496 if (mci->pdev == dev) 497 return mci; 498 } 499 500 return NULL; 501 } 502 503 /** 504 * find_mci_by_dev 505 * 506 * scan list of controllers looking for the one that manages 507 * the 'dev' device 508 * @dev: pointer to a struct device related with the MCI 509 */ 510 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 511 { 512 struct mem_ctl_info *ret; 513 514 mutex_lock(&mem_ctls_mutex); 515 ret = __find_mci_by_dev(dev); 516 mutex_unlock(&mem_ctls_mutex); 517 518 return ret; 519 } 520 EXPORT_SYMBOL_GPL(find_mci_by_dev); 521 522 /* 523 * handler for EDAC to check if NMI type handler has asserted interrupt 524 */ 525 static int edac_mc_assert_error_check_and_clear(void) 526 { 527 int old_state; 528 529 if (edac_op_state == EDAC_OPSTATE_POLL) 530 return 1; 531 532 old_state = edac_err_assert; 533 edac_err_assert = 0; 534 535 return old_state; 536 } 537 538 /* 539 * edac_mc_workq_function 540 * performs the operation scheduled by a workq request 541 */ 542 static void edac_mc_workq_function(struct work_struct *work_req) 543 { 544 struct delayed_work *d_work = to_delayed_work(work_req); 545 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 546 547 mutex_lock(&mem_ctls_mutex); 548 549 if (mci->op_state != OP_RUNNING_POLL) { 550 mutex_unlock(&mem_ctls_mutex); 551 return; 552 } 553 554 if (edac_mc_assert_error_check_and_clear()) 555 mci->edac_check(mci); 556 557 mutex_unlock(&mem_ctls_mutex); 558 559 /* Queue ourselves again. */ 560 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 561 } 562 563 /* 564 * edac_mc_reset_delay_period(unsigned long value) 565 * 566 * user space has updated our poll period value, need to 567 * reset our workq delays 568 */ 569 void edac_mc_reset_delay_period(unsigned long value) 570 { 571 struct mem_ctl_info *mci; 572 struct list_head *item; 573 574 mutex_lock(&mem_ctls_mutex); 575 576 list_for_each(item, &mc_devices) { 577 mci = list_entry(item, struct mem_ctl_info, link); 578 579 if (mci->op_state == OP_RUNNING_POLL) 580 edac_mod_work(&mci->work, value); 581 } 582 mutex_unlock(&mem_ctls_mutex); 583 } 584 585 586 587 /* Return 0 on success, 1 on failure. 588 * Before calling this function, caller must 589 * assign a unique value to mci->mc_idx. 590 * 591 * locking model: 592 * 593 * called with the mem_ctls_mutex lock held 594 */ 595 static int add_mc_to_global_list(struct mem_ctl_info *mci) 596 { 597 struct list_head *item, *insert_before; 598 struct mem_ctl_info *p; 599 600 insert_before = &mc_devices; 601 602 p = __find_mci_by_dev(mci->pdev); 603 if (unlikely(p != NULL)) 604 goto fail0; 605 606 list_for_each(item, &mc_devices) { 607 p = list_entry(item, struct mem_ctl_info, link); 608 609 if (p->mc_idx >= mci->mc_idx) { 610 if (unlikely(p->mc_idx == mci->mc_idx)) 611 goto fail1; 612 613 insert_before = item; 614 break; 615 } 616 } 617 618 list_add_tail_rcu(&mci->link, insert_before); 619 atomic_inc(&edac_handlers); 620 return 0; 621 622 fail0: 623 edac_printk(KERN_WARNING, EDAC_MC, 624 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 625 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 626 return 1; 627 628 fail1: 629 edac_printk(KERN_WARNING, EDAC_MC, 630 "bug in low-level driver: attempt to assign\n" 631 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 632 return 1; 633 } 634 635 static int del_mc_from_global_list(struct mem_ctl_info *mci) 636 { 637 int handlers = atomic_dec_return(&edac_handlers); 638 list_del_rcu(&mci->link); 639 640 /* these are for safe removal of devices from global list while 641 * NMI handlers may be traversing list 642 */ 643 synchronize_rcu(); 644 INIT_LIST_HEAD(&mci->link); 645 646 return handlers; 647 } 648 649 /** 650 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 651 * 652 * If found, return a pointer to the structure. 653 * Else return NULL. 654 */ 655 struct mem_ctl_info *edac_mc_find(int idx) 656 { 657 struct mem_ctl_info *mci = NULL; 658 struct list_head *item; 659 660 mutex_lock(&mem_ctls_mutex); 661 662 list_for_each(item, &mc_devices) { 663 mci = list_entry(item, struct mem_ctl_info, link); 664 665 if (mci->mc_idx >= idx) { 666 if (mci->mc_idx == idx) { 667 goto unlock; 668 } 669 break; 670 } 671 } 672 673 unlock: 674 mutex_unlock(&mem_ctls_mutex); 675 return mci; 676 } 677 EXPORT_SYMBOL(edac_mc_find); 678 679 /** 680 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci 681 * global list and create sysfs entries associated with mci structure 682 * @mci: pointer to the mci structure to be added to the list 683 * @groups: optional attribute groups for the driver-specific sysfs entries 684 * 685 * Return: 686 * 0 Success 687 * !0 Failure 688 */ 689 690 /* FIXME - should a warning be printed if no error detection? correction? */ 691 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 692 const struct attribute_group **groups) 693 { 694 int ret = -EINVAL; 695 edac_dbg(0, "\n"); 696 697 if (mci->mc_idx >= EDAC_MAX_MCS) { 698 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 699 return -ENODEV; 700 } 701 702 #ifdef CONFIG_EDAC_DEBUG 703 if (edac_debug_level >= 3) 704 edac_mc_dump_mci(mci); 705 706 if (edac_debug_level >= 4) { 707 int i; 708 709 for (i = 0; i < mci->nr_csrows; i++) { 710 struct csrow_info *csrow = mci->csrows[i]; 711 u32 nr_pages = 0; 712 int j; 713 714 for (j = 0; j < csrow->nr_channels; j++) 715 nr_pages += csrow->channels[j]->dimm->nr_pages; 716 if (!nr_pages) 717 continue; 718 edac_mc_dump_csrow(csrow); 719 for (j = 0; j < csrow->nr_channels; j++) 720 if (csrow->channels[j]->dimm->nr_pages) 721 edac_mc_dump_channel(csrow->channels[j]); 722 } 723 for (i = 0; i < mci->tot_dimms; i++) 724 if (mci->dimms[i]->nr_pages) 725 edac_mc_dump_dimm(mci->dimms[i], i); 726 } 727 #endif 728 mutex_lock(&mem_ctls_mutex); 729 730 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 731 ret = -EPERM; 732 goto fail0; 733 } 734 735 if (add_mc_to_global_list(mci)) 736 goto fail0; 737 738 /* set load time so that error rate can be tracked */ 739 mci->start_time = jiffies; 740 741 mci->bus = &mc_bus[mci->mc_idx]; 742 743 if (edac_create_sysfs_mci_device(mci, groups)) { 744 edac_mc_printk(mci, KERN_WARNING, 745 "failed to create sysfs device\n"); 746 goto fail1; 747 } 748 749 if (mci->edac_check) { 750 mci->op_state = OP_RUNNING_POLL; 751 752 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 753 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 754 755 } else { 756 mci->op_state = OP_RUNNING_INTERRUPT; 757 } 758 759 /* Report action taken */ 760 edac_mc_printk(mci, KERN_INFO, 761 "Giving out device to module %s controller %s: DEV %s (%s)\n", 762 mci->mod_name, mci->ctl_name, mci->dev_name, 763 edac_op_state_to_string(mci->op_state)); 764 765 edac_mc_owner = mci->mod_name; 766 767 mutex_unlock(&mem_ctls_mutex); 768 return 0; 769 770 fail1: 771 del_mc_from_global_list(mci); 772 773 fail0: 774 mutex_unlock(&mem_ctls_mutex); 775 return ret; 776 } 777 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 778 779 /** 780 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 781 * remove mci structure from global list 782 * @pdev: Pointer to 'struct device' representing mci structure to remove. 783 * 784 * Return pointer to removed mci structure, or NULL if device not found. 785 */ 786 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 787 { 788 struct mem_ctl_info *mci; 789 790 edac_dbg(0, "\n"); 791 792 mutex_lock(&mem_ctls_mutex); 793 794 /* find the requested mci struct in the global list */ 795 mci = __find_mci_by_dev(dev); 796 if (mci == NULL) { 797 mutex_unlock(&mem_ctls_mutex); 798 return NULL; 799 } 800 801 /* mark MCI offline: */ 802 mci->op_state = OP_OFFLINE; 803 804 if (!del_mc_from_global_list(mci)) 805 edac_mc_owner = NULL; 806 807 mutex_unlock(&mem_ctls_mutex); 808 809 if (mci->edac_check) 810 edac_stop_work(&mci->work); 811 812 /* remove from sysfs */ 813 edac_remove_sysfs_mci_device(mci); 814 815 edac_printk(KERN_INFO, EDAC_MC, 816 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 817 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 818 819 return mci; 820 } 821 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 822 823 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 824 u32 size) 825 { 826 struct page *pg; 827 void *virt_addr; 828 unsigned long flags = 0; 829 830 edac_dbg(3, "\n"); 831 832 /* ECC error page was not in our memory. Ignore it. */ 833 if (!pfn_valid(page)) 834 return; 835 836 /* Find the actual page structure then map it and fix */ 837 pg = pfn_to_page(page); 838 839 if (PageHighMem(pg)) 840 local_irq_save(flags); 841 842 virt_addr = kmap_atomic(pg); 843 844 /* Perform architecture specific atomic scrub operation */ 845 edac_atomic_scrub(virt_addr + offset, size); 846 847 /* Unmap and complete */ 848 kunmap_atomic(virt_addr); 849 850 if (PageHighMem(pg)) 851 local_irq_restore(flags); 852 } 853 854 /* FIXME - should return -1 */ 855 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 856 { 857 struct csrow_info **csrows = mci->csrows; 858 int row, i, j, n; 859 860 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 861 row = -1; 862 863 for (i = 0; i < mci->nr_csrows; i++) { 864 struct csrow_info *csrow = csrows[i]; 865 n = 0; 866 for (j = 0; j < csrow->nr_channels; j++) { 867 struct dimm_info *dimm = csrow->channels[j]->dimm; 868 n += dimm->nr_pages; 869 } 870 if (n == 0) 871 continue; 872 873 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 874 mci->mc_idx, 875 csrow->first_page, page, csrow->last_page, 876 csrow->page_mask); 877 878 if ((page >= csrow->first_page) && 879 (page <= csrow->last_page) && 880 ((page & csrow->page_mask) == 881 (csrow->first_page & csrow->page_mask))) { 882 row = i; 883 break; 884 } 885 } 886 887 if (row == -1) 888 edac_mc_printk(mci, KERN_ERR, 889 "could not look up page error address %lx\n", 890 (unsigned long)page); 891 892 return row; 893 } 894 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 895 896 const char *edac_layer_name[] = { 897 [EDAC_MC_LAYER_BRANCH] = "branch", 898 [EDAC_MC_LAYER_CHANNEL] = "channel", 899 [EDAC_MC_LAYER_SLOT] = "slot", 900 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 901 [EDAC_MC_LAYER_ALL_MEM] = "memory", 902 }; 903 EXPORT_SYMBOL_GPL(edac_layer_name); 904 905 static void edac_inc_ce_error(struct mem_ctl_info *mci, 906 bool enable_per_layer_report, 907 const int pos[EDAC_MAX_LAYERS], 908 const u16 count) 909 { 910 int i, index = 0; 911 912 mci->ce_mc += count; 913 914 if (!enable_per_layer_report) { 915 mci->ce_noinfo_count += count; 916 return; 917 } 918 919 for (i = 0; i < mci->n_layers; i++) { 920 if (pos[i] < 0) 921 break; 922 index += pos[i]; 923 mci->ce_per_layer[i][index] += count; 924 925 if (i < mci->n_layers - 1) 926 index *= mci->layers[i + 1].size; 927 } 928 } 929 930 static void edac_inc_ue_error(struct mem_ctl_info *mci, 931 bool enable_per_layer_report, 932 const int pos[EDAC_MAX_LAYERS], 933 const u16 count) 934 { 935 int i, index = 0; 936 937 mci->ue_mc += count; 938 939 if (!enable_per_layer_report) { 940 mci->ue_noinfo_count += count; 941 return; 942 } 943 944 for (i = 0; i < mci->n_layers; i++) { 945 if (pos[i] < 0) 946 break; 947 index += pos[i]; 948 mci->ue_per_layer[i][index] += count; 949 950 if (i < mci->n_layers - 1) 951 index *= mci->layers[i + 1].size; 952 } 953 } 954 955 static void edac_ce_error(struct mem_ctl_info *mci, 956 const u16 error_count, 957 const int pos[EDAC_MAX_LAYERS], 958 const char *msg, 959 const char *location, 960 const char *label, 961 const char *detail, 962 const char *other_detail, 963 const bool enable_per_layer_report, 964 const unsigned long page_frame_number, 965 const unsigned long offset_in_page, 966 long grain) 967 { 968 unsigned long remapped_page; 969 char *msg_aux = ""; 970 971 if (*msg) 972 msg_aux = " "; 973 974 if (edac_mc_get_log_ce()) { 975 if (other_detail && *other_detail) 976 edac_mc_printk(mci, KERN_WARNING, 977 "%d CE %s%son %s (%s %s - %s)\n", 978 error_count, msg, msg_aux, label, 979 location, detail, other_detail); 980 else 981 edac_mc_printk(mci, KERN_WARNING, 982 "%d CE %s%son %s (%s %s)\n", 983 error_count, msg, msg_aux, label, 984 location, detail); 985 } 986 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 987 988 if (mci->scrub_mode == SCRUB_SW_SRC) { 989 /* 990 * Some memory controllers (called MCs below) can remap 991 * memory so that it is still available at a different 992 * address when PCI devices map into memory. 993 * MC's that can't do this, lose the memory where PCI 994 * devices are mapped. This mapping is MC-dependent 995 * and so we call back into the MC driver for it to 996 * map the MC page to a physical (CPU) page which can 997 * then be mapped to a virtual page - which can then 998 * be scrubbed. 999 */ 1000 remapped_page = mci->ctl_page_to_phys ? 1001 mci->ctl_page_to_phys(mci, page_frame_number) : 1002 page_frame_number; 1003 1004 edac_mc_scrub_block(remapped_page, 1005 offset_in_page, grain); 1006 } 1007 } 1008 1009 static void edac_ue_error(struct mem_ctl_info *mci, 1010 const u16 error_count, 1011 const int pos[EDAC_MAX_LAYERS], 1012 const char *msg, 1013 const char *location, 1014 const char *label, 1015 const char *detail, 1016 const char *other_detail, 1017 const bool enable_per_layer_report) 1018 { 1019 char *msg_aux = ""; 1020 1021 if (*msg) 1022 msg_aux = " "; 1023 1024 if (edac_mc_get_log_ue()) { 1025 if (other_detail && *other_detail) 1026 edac_mc_printk(mci, KERN_WARNING, 1027 "%d UE %s%son %s (%s %s - %s)\n", 1028 error_count, msg, msg_aux, label, 1029 location, detail, other_detail); 1030 else 1031 edac_mc_printk(mci, KERN_WARNING, 1032 "%d UE %s%son %s (%s %s)\n", 1033 error_count, msg, msg_aux, label, 1034 location, detail); 1035 } 1036 1037 if (edac_mc_get_panic_on_ue()) { 1038 if (other_detail && *other_detail) 1039 panic("UE %s%son %s (%s%s - %s)\n", 1040 msg, msg_aux, label, location, detail, other_detail); 1041 else 1042 panic("UE %s%son %s (%s%s)\n", 1043 msg, msg_aux, label, location, detail); 1044 } 1045 1046 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1047 } 1048 1049 /** 1050 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1051 * anything to discover the error location 1052 * 1053 * @type: severity of the error (CE/UE/Fatal) 1054 * @mci: a struct mem_ctl_info pointer 1055 * @e: error description 1056 * 1057 * This raw function is used internally by edac_mc_handle_error(). It should 1058 * only be called directly when the hardware error come directly from BIOS, 1059 * like in the case of APEI GHES driver. 1060 */ 1061 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1062 struct mem_ctl_info *mci, 1063 struct edac_raw_error_desc *e) 1064 { 1065 char detail[80]; 1066 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1067 1068 /* Memory type dependent details about the error */ 1069 if (type == HW_EVENT_ERR_CORRECTED) { 1070 snprintf(detail, sizeof(detail), 1071 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1072 e->page_frame_number, e->offset_in_page, 1073 e->grain, e->syndrome); 1074 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1075 detail, e->other_detail, e->enable_per_layer_report, 1076 e->page_frame_number, e->offset_in_page, e->grain); 1077 } else { 1078 snprintf(detail, sizeof(detail), 1079 "page:0x%lx offset:0x%lx grain:%ld", 1080 e->page_frame_number, e->offset_in_page, e->grain); 1081 1082 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1083 detail, e->other_detail, e->enable_per_layer_report); 1084 } 1085 1086 1087 } 1088 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1089 1090 /** 1091 * edac_mc_handle_error - reports a memory event to userspace 1092 * 1093 * @type: severity of the error (CE/UE/Fatal) 1094 * @mci: a struct mem_ctl_info pointer 1095 * @error_count: Number of errors of the same type 1096 * @page_frame_number: mem page where the error occurred 1097 * @offset_in_page: offset of the error inside the page 1098 * @syndrome: ECC syndrome 1099 * @top_layer: Memory layer[0] position 1100 * @mid_layer: Memory layer[1] position 1101 * @low_layer: Memory layer[2] position 1102 * @msg: Message meaningful to the end users that 1103 * explains the event 1104 * @other_detail: Technical details about the event that 1105 * may help hardware manufacturers and 1106 * EDAC developers to analyse the event 1107 */ 1108 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1109 struct mem_ctl_info *mci, 1110 const u16 error_count, 1111 const unsigned long page_frame_number, 1112 const unsigned long offset_in_page, 1113 const unsigned long syndrome, 1114 const int top_layer, 1115 const int mid_layer, 1116 const int low_layer, 1117 const char *msg, 1118 const char *other_detail) 1119 { 1120 char *p; 1121 int row = -1, chan = -1; 1122 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1123 int i, n_labels = 0; 1124 u8 grain_bits; 1125 struct edac_raw_error_desc *e = &mci->error_desc; 1126 1127 edac_dbg(3, "MC%d\n", mci->mc_idx); 1128 1129 /* Fills the error report buffer */ 1130 memset(e, 0, sizeof (*e)); 1131 e->error_count = error_count; 1132 e->top_layer = top_layer; 1133 e->mid_layer = mid_layer; 1134 e->low_layer = low_layer; 1135 e->page_frame_number = page_frame_number; 1136 e->offset_in_page = offset_in_page; 1137 e->syndrome = syndrome; 1138 e->msg = msg; 1139 e->other_detail = other_detail; 1140 1141 /* 1142 * Check if the event report is consistent and if the memory 1143 * location is known. If it is known, enable_per_layer_report will be 1144 * true, the DIMM(s) label info will be filled and the per-layer 1145 * error counters will be incremented. 1146 */ 1147 for (i = 0; i < mci->n_layers; i++) { 1148 if (pos[i] >= (int)mci->layers[i].size) { 1149 1150 edac_mc_printk(mci, KERN_ERR, 1151 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1152 edac_layer_name[mci->layers[i].type], 1153 pos[i], mci->layers[i].size); 1154 /* 1155 * Instead of just returning it, let's use what's 1156 * known about the error. The increment routines and 1157 * the DIMM filter logic will do the right thing by 1158 * pointing the likely damaged DIMMs. 1159 */ 1160 pos[i] = -1; 1161 } 1162 if (pos[i] >= 0) 1163 e->enable_per_layer_report = true; 1164 } 1165 1166 /* 1167 * Get the dimm label/grain that applies to the match criteria. 1168 * As the error algorithm may not be able to point to just one memory 1169 * stick, the logic here will get all possible labels that could 1170 * pottentially be affected by the error. 1171 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1172 * to have only the MC channel and the MC dimm (also called "branch") 1173 * but the channel is not known, as the memory is arranged in pairs, 1174 * where each memory belongs to a separate channel within the same 1175 * branch. 1176 */ 1177 p = e->label; 1178 *p = '\0'; 1179 1180 for (i = 0; i < mci->tot_dimms; i++) { 1181 struct dimm_info *dimm = mci->dimms[i]; 1182 1183 if (top_layer >= 0 && top_layer != dimm->location[0]) 1184 continue; 1185 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1186 continue; 1187 if (low_layer >= 0 && low_layer != dimm->location[2]) 1188 continue; 1189 1190 /* get the max grain, over the error match range */ 1191 if (dimm->grain > e->grain) 1192 e->grain = dimm->grain; 1193 1194 /* 1195 * If the error is memory-controller wide, there's no need to 1196 * seek for the affected DIMMs because the whole 1197 * channel/memory controller/... may be affected. 1198 * Also, don't show errors for empty DIMM slots. 1199 */ 1200 if (e->enable_per_layer_report && dimm->nr_pages) { 1201 if (n_labels >= EDAC_MAX_LABELS) { 1202 e->enable_per_layer_report = false; 1203 break; 1204 } 1205 n_labels++; 1206 if (p != e->label) { 1207 strcpy(p, OTHER_LABEL); 1208 p += strlen(OTHER_LABEL); 1209 } 1210 strcpy(p, dimm->label); 1211 p += strlen(p); 1212 *p = '\0'; 1213 1214 /* 1215 * get csrow/channel of the DIMM, in order to allow 1216 * incrementing the compat API counters 1217 */ 1218 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1219 mci->csbased ? "rank" : "dimm", 1220 dimm->csrow, dimm->cschannel); 1221 if (row == -1) 1222 row = dimm->csrow; 1223 else if (row >= 0 && row != dimm->csrow) 1224 row = -2; 1225 1226 if (chan == -1) 1227 chan = dimm->cschannel; 1228 else if (chan >= 0 && chan != dimm->cschannel) 1229 chan = -2; 1230 } 1231 } 1232 1233 if (!e->enable_per_layer_report) { 1234 strcpy(e->label, "any memory"); 1235 } else { 1236 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1237 if (p == e->label) 1238 strcpy(e->label, "unknown memory"); 1239 if (type == HW_EVENT_ERR_CORRECTED) { 1240 if (row >= 0) { 1241 mci->csrows[row]->ce_count += error_count; 1242 if (chan >= 0) 1243 mci->csrows[row]->channels[chan]->ce_count += error_count; 1244 } 1245 } else 1246 if (row >= 0) 1247 mci->csrows[row]->ue_count += error_count; 1248 } 1249 1250 /* Fill the RAM location data */ 1251 p = e->location; 1252 1253 for (i = 0; i < mci->n_layers; i++) { 1254 if (pos[i] < 0) 1255 continue; 1256 1257 p += sprintf(p, "%s:%d ", 1258 edac_layer_name[mci->layers[i].type], 1259 pos[i]); 1260 } 1261 if (p > e->location) 1262 *(p - 1) = '\0'; 1263 1264 /* Report the error via the trace interface */ 1265 grain_bits = fls_long(e->grain) + 1; 1266 trace_mc_event(type, e->msg, e->label, e->error_count, 1267 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1268 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1269 grain_bits, e->syndrome, e->other_detail); 1270 1271 edac_raw_mc_handle_error(type, mci, e); 1272 } 1273 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1274