xref: /linux/drivers/crypto/hisilicon/qm.c (revision 80b61046b6899c6e881ff191aa99256d8e43cd58)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
34 
35 /* sqc shift */
36 #define QM_SQ_HOP_NUM_SHIFT		0
37 #define QM_SQ_PAGE_SIZE_SHIFT		4
38 #define QM_SQ_BUF_SIZE_SHIFT		8
39 #define QM_SQ_SQE_SIZE_SHIFT		12
40 #define QM_SQ_PRIORITY_SHIFT		0
41 #define QM_SQ_ORDERS_SHIFT		4
42 #define QM_SQ_TYPE_SHIFT		8
43 #define QM_QC_PASID_ENABLE		0x1
44 #define QM_QC_PASID_ENABLE_SHIFT	7
45 
46 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
47 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
48 #define QM_SQC_DISABLE_QP		(1U << 6)
49 #define QM_XQC_RANDOM_DATA		0xaaaa
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(dw0)		(((dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(dw0)		(((dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_SUB_VERSION_ID		0x210
106 
107 #define QM_VFT_CFG_DATA_L		0x100064
108 #define QM_VFT_CFG_DATA_H		0x100068
109 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
110 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
111 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
112 #define QM_SQC_VFT_START_SQN_SHIFT	28
113 #define QM_SQC_VFT_VALID		(1ULL << 44)
114 #define QM_SQC_VFT_SQN_SHIFT		45
115 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
116 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
117 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
118 #define QM_CQC_VFT_VALID		(1ULL << 28)
119 
120 #define QM_SQC_VFT_BASE_SHIFT_V2	28
121 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
122 #define QM_SQC_VFT_NUM_SHIFT_V2		45
123 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
124 #define QM_MAX_QC_TYPE                  2
125 
126 #define QM_ABNORMAL_INT_SOURCE		0x100000
127 #define QM_ABNORMAL_INT_MASK		0x100004
128 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
129 #define QM_ABNORMAL_INT_STATUS		0x100008
130 #define QM_ABNORMAL_INT_SET		0x10000c
131 #define QM_ABNORMAL_INF00		0x100010
132 #define QM_FIFO_OVERFLOW_TYPE		0xc0
133 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
134 #define QM_FIFO_OVERFLOW_VF		0x3f
135 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
136 #define QM_ABNORMAL_INF01		0x100014
137 #define QM_DB_TIMEOUT_TYPE		0xc0
138 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
139 #define QM_DB_TIMEOUT_VF		0x3f
140 #define QM_DB_TIMEOUT_QP_SHIFT		16
141 #define QM_ABNORMAL_INF02		0x100018
142 #define QM_AXI_POISON_ERR		BIT(22)
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
149 #define QM_AXI_RRESP_ERR		BIT(0)
150 #define QM_DB_TIMEOUT			BIT(10)
151 #define QM_OF_FIFO_OF			BIT(11)
152 #define QM_RAS_AXI_ERROR		(BIT(0) | BIT(1) | BIT(12))
153 
154 #define QM_RESET_WAIT_TIMEOUT		400
155 #define QM_PEH_VENDOR_ID		0x1000d8
156 #define ACC_VENDOR_ID_VALUE		0x5a5a
157 #define QM_PEH_DFX_INFO0		0x1000fc
158 #define QM_PEH_DFX_INFO1		0x100100
159 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
160 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
161 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
162 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
163 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
164 #define ACC_MASTER_TRANS_RETURN_RW	3
165 #define ACC_MASTER_TRANS_RETURN		0x300150
166 #define ACC_MASTER_GLOBAL_CTRL		0x300000
167 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
168 #define ACC_AM_ROB_ECC_INT_STS		0x300104
169 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
170 #define QM_MSI_CAP_ENABLE		BIT(16)
171 
172 /* interfunction communication */
173 #define QM_IFC_READY_STATUS		0x100128
174 #define QM_IFC_INT_SET_P		0x100130
175 #define QM_IFC_INT_CFG			0x100134
176 #define QM_IFC_INT_SOURCE_P		0x100138
177 #define QM_IFC_INT_SOURCE_V		0x0020
178 #define QM_IFC_INT_MASK			0x0024
179 #define QM_IFC_INT_STATUS		0x0028
180 #define QM_IFC_INT_SET_V		0x002C
181 #define QM_PF2VF_PF_W			0x104700
182 #define QM_VF2PF_PF_R			0x104800
183 #define QM_VF2PF_VF_W			0x320
184 #define QM_PF2VF_VF_R			0x380
185 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
186 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
187 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
188 #define QM_IFC_INT_DISABLE		BIT(0)
189 #define QM_IFC_INT_STATUS_MASK		BIT(0)
190 #define QM_IFC_INT_SET_MASK		BIT(0)
191 #define QM_WAIT_DST_ACK			10
192 #define QM_MAX_PF_WAIT_COUNT		10
193 #define QM_MAX_VF_WAIT_COUNT		40
194 #define QM_VF_RESET_WAIT_US		20000
195 #define QM_VF_RESET_WAIT_CNT		3000
196 #define QM_VF2PF_REG_SIZE		4
197 #define QM_IFC_CMD_MASK			GENMASK(31, 0)
198 #define QM_IFC_DATA_SHIFT		32
199 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
200 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
201 
202 #define POLL_PERIOD			10
203 #define POLL_TIMEOUT			1000
204 #define WAIT_PERIOD_US_MAX		200
205 #define WAIT_PERIOD_US_MIN		100
206 #define MAX_WAIT_COUNTS			1000
207 #define QM_CACHE_WB_START		0x204
208 #define QM_CACHE_WB_DONE		0x208
209 #define QM_FUNC_CAPS_REG		0x3100
210 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
211 
212 #define PCI_BAR_2			2
213 #define PCI_BAR_4			4
214 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
215 
216 #define QM_DBG_READ_LEN		256
217 #define QM_PCI_COMMAND_INVALID		~0
218 #define QM_RESET_STOP_TX_OFFSET		1
219 #define QM_RESET_STOP_RX_OFFSET		2
220 
221 #define WAIT_PERIOD			20
222 #define REMOVE_WAIT_DELAY		10
223 
224 #define QM_QOS_PARAM_NUM		2
225 #define QM_QOS_MAX_VAL			1000
226 #define QM_QOS_RATE			100
227 #define QM_QOS_EXPAND_RATE		1000
228 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
229 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
230 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
231 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
232 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
233 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
234 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
235 #define QM_SHAPER_CBS_B			1
236 #define QM_SHAPER_VFT_OFFSET		6
237 #define QM_QOS_MIN_ERROR_RATE		5
238 #define QM_SHAPER_MIN_CBS_S		8
239 #define QM_QOS_TICK			0x300U
240 #define QM_QOS_DIVISOR_CLK		0x1f40U
241 #define QM_QOS_MAX_CIR_B		200
242 #define QM_QOS_MIN_CIR_B		100
243 #define QM_QOS_MAX_CIR_U		6
244 #define QM_AUTOSUSPEND_DELAY		3000
245 
246  /* abnormal status value for stopping queue */
247 #define QM_STOP_QUEUE_FAIL		1
248 #define	QM_DUMP_SQC_FAIL		3
249 #define	QM_DUMP_CQC_FAIL		4
250 #define	QM_FINISH_WAIT			5
251 
252 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
253 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
254 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
255 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
256 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
257 
258 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
259 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
260 
261 #define QM_MK_SQC_W13(priority, orders, alg_type) \
262 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
263 	((orders) << QM_SQ_ORDERS_SHIFT) | \
264 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
265 
266 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
267 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
268 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
269 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
270 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
271 
272 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
273 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
274 
275 enum vft_type {
276 	SQC_VFT = 0,
277 	CQC_VFT,
278 	SHAPER_VFT,
279 };
280 
281 enum qm_alg_type {
282 	ALG_TYPE_0,
283 	ALG_TYPE_1,
284 };
285 
286 enum qm_ifc_cmd {
287 	QM_PF_FLR_PREPARE = 0x01,
288 	QM_PF_SRST_PREPARE,
289 	QM_PF_RESET_DONE,
290 	QM_VF_PREPARE_DONE,
291 	QM_VF_PREPARE_FAIL,
292 	QM_VF_START_DONE,
293 	QM_VF_START_FAIL,
294 	QM_PF_SET_QOS,
295 	QM_VF_GET_QOS,
296 };
297 
298 enum qm_basic_type {
299 	QM_TOTAL_QP_NUM_CAP = 0x0,
300 	QM_FUNC_MAX_QP_CAP,
301 	QM_XEQ_DEPTH_CAP,
302 	QM_QP_DEPTH_CAP,
303 	QM_EQ_IRQ_TYPE_CAP,
304 	QM_AEQ_IRQ_TYPE_CAP,
305 	QM_ABN_IRQ_TYPE_CAP,
306 	QM_PF2VF_IRQ_TYPE_CAP,
307 	QM_PF_IRQ_NUM_CAP,
308 	QM_VF_IRQ_NUM_CAP,
309 };
310 
311 enum qm_cap_table_type {
312 	QM_CAP_VF  = 0x0,
313 	QM_AEQE_NUM,
314 	QM_SCQE_NUM,
315 	QM_EQ_IRQ,
316 	QM_AEQ_IRQ,
317 	QM_ABNORMAL_IRQ,
318 	QM_MB_IRQ,
319 	MAX_IRQ_NUM,
320 	EXT_BAR_INDEX,
321 };
322 
323 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = {
324 	{QM_CAP_VF, "QM_CAP_VF                   ", 0x3100, 0x0, 0x0, 0x6F01},
325 	{QM_AEQE_NUM, "QM_AEQE_NUM                 ", 0x3104, 0x800, 0x4000800, 0x4000800},
326 	{QM_SCQE_NUM, "QM_SCQE_NUM                 ",
327 						0x3108, 0x4000400, 0x4000400, 0x4000400},
328 	{QM_EQ_IRQ, "QM_EQ_IRQ                   ", 0x310c, 0x10000, 0x10000, 0x10000},
329 	{QM_AEQ_IRQ, "QM_AEQ_IRQ                  ", 0x3110, 0x0, 0x10001, 0x10001},
330 	{QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ             ", 0x3114, 0x0, 0x10003, 0x10003},
331 	{QM_MB_IRQ, "QM_MB_IRQ                   ", 0x3118, 0x0, 0x0, 0x10002},
332 	{MAX_IRQ_NUM, "MAX_IRQ_NUM                 ", 0x311c, 0x10001, 0x40002, 0x40003},
333 	{EXT_BAR_INDEX, "EXT_BAR_INDEX               ", 0x3120, 0x0, 0x0, 0x14},
334 };
335 
336 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
337 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
338 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
339 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
340 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
341 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
342 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
343 	{QM_SUPPORT_DAE,          0x3100, 0, BIT(15), 0x0, 0x0, 0x0},
344 };
345 
346 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
347 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
348 };
349 
350 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
351 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
352 };
353 
354 static const struct hisi_qm_cap_info qm_basic_info[] = {
355 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
356 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
357 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
358 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
359 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
360 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
361 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
362 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
363 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
364 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
365 };
366 
367 struct qm_mailbox {
368 	__le16 w0;
369 	__le16 queue_num;
370 	__le32 base_l;
371 	__le32 base_h;
372 	__le32 rsvd;
373 };
374 
375 struct qm_doorbell {
376 	__le16 queue_num;
377 	__le16 cmd;
378 	__le16 index;
379 	__le16 priority;
380 };
381 
382 struct hisi_qm_resource {
383 	struct hisi_qm *qm;
384 	int distance;
385 	struct list_head list;
386 };
387 
388 /**
389  * struct qm_hw_err - Structure describing the device errors
390  * @list: hardware error list
391  * @timestamp: timestamp when the error occurred
392  */
393 struct qm_hw_err {
394 	struct list_head list;
395 	unsigned long long timestamp;
396 };
397 
398 struct hisi_qm_hw_ops {
399 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
400 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
401 		      u8 cmd, u16 index, u8 priority);
402 	int (*debug_init)(struct hisi_qm *qm);
403 	void (*hw_error_init)(struct hisi_qm *qm);
404 	void (*hw_error_uninit)(struct hisi_qm *qm);
405 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
406 	int (*set_msi)(struct hisi_qm *qm, bool set);
407 
408 	/* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */
409 	int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num);
410 	void (*set_ifc_end)(struct hisi_qm *qm);
411 	int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num);
412 };
413 
414 struct hisi_qm_hw_error {
415 	u32 int_msk;
416 	const char *msg;
417 };
418 
419 static const struct hisi_qm_hw_error qm_hw_error[] = {
420 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
421 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
422 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
423 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
424 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
425 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
426 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
427 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
428 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
429 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
430 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
431 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
432 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
433 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
434 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
435 };
436 
437 static const char * const qm_db_timeout[] = {
438 	"sq", "cq", "eq", "aeq",
439 };
440 
441 static const char * const qm_fifo_overflow[] = {
442 	"cq", "eq", "aeq",
443 };
444 
445 struct qm_typical_qos_table {
446 	u32 start;
447 	u32 end;
448 	u32 val;
449 };
450 
451 /* the qos step is 100 */
452 static struct qm_typical_qos_table shaper_cir_s[] = {
453 	{100, 100, 4},
454 	{200, 200, 3},
455 	{300, 500, 2},
456 	{600, 1000, 1},
457 	{1100, 100000, 0},
458 };
459 
460 static struct qm_typical_qos_table shaper_cbs_s[] = {
461 	{100, 200, 9},
462 	{300, 500, 11},
463 	{600, 1000, 12},
464 	{1100, 10000, 16},
465 	{10100, 25000, 17},
466 	{25100, 50000, 18},
467 	{50100, 100000, 19}
468 };
469 
470 static void qm_irqs_unregister(struct hisi_qm *qm);
471 static int qm_reset_device(struct hisi_qm *qm);
472 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
473 		      unsigned int device)
474 {
475 	struct pci_dev *pdev;
476 	u32 n, q_num;
477 	int ret;
478 
479 	if (!val)
480 		return -EINVAL;
481 
482 	pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
483 	if (!pdev) {
484 		q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
485 		pr_info("No device found currently, suppose queue number is %u\n",
486 			q_num);
487 	} else {
488 		if (pdev->revision == QM_HW_V1)
489 			q_num = QM_QNUM_V1;
490 		else
491 			q_num = QM_QNUM_V2;
492 
493 		pci_dev_put(pdev);
494 	}
495 
496 	ret = kstrtou32(val, 10, &n);
497 	if (ret || n < QM_MIN_QNUM || n > q_num)
498 		return -EINVAL;
499 
500 	return param_set_int(val, kp);
501 }
502 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
503 
504 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
505 {
506 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
507 }
508 
509 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
510 {
511 	return qm->err_ini->get_dev_hw_err_status(qm);
512 }
513 
514 /* Check if the error causes the master ooo block */
515 static bool qm_check_dev_error(struct hisi_qm *qm)
516 {
517 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
518 	u32 err_status;
519 
520 	if (pf_qm->fun_type == QM_HW_VF)
521 		return false;
522 
523 	err_status = qm_get_hw_error_status(pf_qm);
524 	if (err_status & pf_qm->err_info.qm_err.shutdown_mask)
525 		return true;
526 
527 	if (pf_qm->err_ini->dev_is_abnormal)
528 		return pf_qm->err_ini->dev_is_abnormal(pf_qm);
529 
530 	return false;
531 }
532 
533 static int qm_wait_reset_finish(struct hisi_qm *qm)
534 {
535 	int delay = 0;
536 
537 	/* All reset requests need to be queued for processing */
538 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
539 		msleep(++delay);
540 		if (delay > QM_RESET_WAIT_TIMEOUT)
541 			return -EBUSY;
542 	}
543 
544 	return 0;
545 }
546 
547 static int qm_reset_prepare_ready(struct hisi_qm *qm)
548 {
549 	struct pci_dev *pdev = qm->pdev;
550 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
551 
552 	/*
553 	 * PF and VF on host doesnot support resetting at the
554 	 * same time on Kunpeng920.
555 	 */
556 	if (qm->ver < QM_HW_V3)
557 		return qm_wait_reset_finish(pf_qm);
558 
559 	return qm_wait_reset_finish(qm);
560 }
561 
562 static void qm_reset_bit_clear(struct hisi_qm *qm)
563 {
564 	struct pci_dev *pdev = qm->pdev;
565 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
566 
567 	if (qm->ver < QM_HW_V3)
568 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
569 
570 	clear_bit(QM_RESETTING, &qm->misc_ctl);
571 }
572 
573 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
574 			   u64 base, u16 queue, bool op)
575 {
576 	mailbox->w0 = cpu_to_le16((cmd) |
577 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
578 		(0x1 << QM_MB_BUSY_SHIFT));
579 	mailbox->queue_num = cpu_to_le16(queue);
580 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
581 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
582 	mailbox->rsvd = 0;
583 }
584 
585 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
586 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
587 {
588 	u32 val;
589 
590 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
591 					  val, !((val >> QM_MB_BUSY_SHIFT) &
592 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
593 }
594 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
595 
596 /* 128 bit should be written to hardware at one time to trigger a mailbox */
597 static void qm_mb_write(struct hisi_qm *qm, const void *src)
598 {
599 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
600 
601 #if IS_ENABLED(CONFIG_ARM64)
602 	unsigned long tmp0 = 0, tmp1 = 0;
603 #endif
604 
605 	if (!IS_ENABLED(CONFIG_ARM64)) {
606 		memcpy_toio(fun_base, src, 16);
607 		dma_wmb();
608 		return;
609 	}
610 
611 #if IS_ENABLED(CONFIG_ARM64)
612 	asm volatile("ldp %0, %1, %3\n"
613 		     "stp %0, %1, %2\n"
614 		     "dmb oshst\n"
615 		     : "=&r" (tmp0),
616 		       "=&r" (tmp1),
617 		       "+Q" (*((char __iomem *)fun_base))
618 		     : "Q" (*((char *)src))
619 		     : "memory");
620 #endif
621 }
622 
623 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
624 {
625 	int ret;
626 	u32 val;
627 
628 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
629 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
630 		ret = -EBUSY;
631 		goto mb_busy;
632 	}
633 
634 	qm_mb_write(qm, mailbox);
635 
636 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
637 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
638 		ret = -ETIMEDOUT;
639 		goto mb_busy;
640 	}
641 
642 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
643 	if (val & QM_MB_STATUS_MASK) {
644 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
645 		ret = -EIO;
646 		goto mb_busy;
647 	}
648 
649 	return 0;
650 
651 mb_busy:
652 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
653 	return ret;
654 }
655 
656 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
657 	       bool op)
658 {
659 	struct qm_mailbox mailbox;
660 	int ret;
661 
662 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
663 
664 	mutex_lock(&qm->mailbox_lock);
665 	ret = qm_mb_nolock(qm, &mailbox);
666 	mutex_unlock(&qm->mailbox_lock);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(hisi_qm_mb);
671 
672 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
673 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
674 {
675 	struct qm_mailbox mailbox;
676 	dma_addr_t xqc_dma;
677 	void *tmp_xqc;
678 	size_t size;
679 	int ret;
680 
681 	switch (cmd) {
682 	case QM_MB_CMD_SQC:
683 		size = sizeof(struct qm_sqc);
684 		tmp_xqc = qm->xqc_buf.sqc;
685 		xqc_dma = qm->xqc_buf.sqc_dma;
686 		break;
687 	case QM_MB_CMD_CQC:
688 		size = sizeof(struct qm_cqc);
689 		tmp_xqc = qm->xqc_buf.cqc;
690 		xqc_dma = qm->xqc_buf.cqc_dma;
691 		break;
692 	case QM_MB_CMD_EQC:
693 		size = sizeof(struct qm_eqc);
694 		tmp_xqc = qm->xqc_buf.eqc;
695 		xqc_dma = qm->xqc_buf.eqc_dma;
696 		break;
697 	case QM_MB_CMD_AEQC:
698 		size = sizeof(struct qm_aeqc);
699 		tmp_xqc = qm->xqc_buf.aeqc;
700 		xqc_dma = qm->xqc_buf.aeqc_dma;
701 		break;
702 	default:
703 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
704 		return -EINVAL;
705 	}
706 
707 	/* Setting xqc will fail if master OOO is blocked. */
708 	if (qm_check_dev_error(qm)) {
709 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
710 		return -EIO;
711 	}
712 
713 	mutex_lock(&qm->mailbox_lock);
714 	if (!op)
715 		memcpy(tmp_xqc, xqc, size);
716 
717 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
718 	ret = qm_mb_nolock(qm, &mailbox);
719 	if (!ret && op)
720 		memcpy(xqc, tmp_xqc, size);
721 
722 	mutex_unlock(&qm->mailbox_lock);
723 
724 	return ret;
725 }
726 
727 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
728 {
729 	u64 doorbell;
730 
731 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
732 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
733 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
734 
735 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
736 }
737 
738 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
739 {
740 	void __iomem *io_base = qm->io_base;
741 	u16 randata = 0;
742 	u64 doorbell;
743 
744 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
745 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
746 			  QM_DOORBELL_SQ_CQ_BASE_V2;
747 	else
748 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
749 
750 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
751 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
752 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
753 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
754 
755 	writeq(doorbell, io_base);
756 }
757 
758 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
759 {
760 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
761 		qn, cmd, index);
762 
763 	qm->ops->qm_db(qm, qn, cmd, index, priority);
764 }
765 
766 static void qm_disable_clock_gate(struct hisi_qm *qm)
767 {
768 	u32 val;
769 
770 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
771 	if (qm->ver < QM_HW_V3)
772 		return;
773 
774 	val = readl(qm->io_base + QM_PM_CTRL);
775 	val |= QM_IDLE_DISABLE;
776 	writel(val, qm->io_base +  QM_PM_CTRL);
777 }
778 
779 static int qm_dev_mem_reset(struct hisi_qm *qm)
780 {
781 	u32 val;
782 
783 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
784 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
785 					  val & BIT(0), POLL_PERIOD,
786 					  POLL_TIMEOUT);
787 }
788 
789 /**
790  * hisi_qm_get_hw_info() - Get device information.
791  * @qm: The qm which want to get information.
792  * @info_table: Array for storing device information.
793  * @index: Index in info_table.
794  * @is_read: Whether read from reg, 0: not support read from reg.
795  *
796  * This function returns device information the caller needs.
797  */
798 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
799 			const struct hisi_qm_cap_info *info_table,
800 			u32 index, bool is_read)
801 {
802 	u32 val;
803 
804 	switch (qm->ver) {
805 	case QM_HW_V1:
806 		return info_table[index].v1_val;
807 	case QM_HW_V2:
808 		return info_table[index].v2_val;
809 	default:
810 		if (!is_read)
811 			return info_table[index].v3_val;
812 
813 		val = readl(qm->io_base + info_table[index].offset);
814 		return (val >> info_table[index].shift) & info_table[index].mask;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
818 
819 u32 hisi_qm_get_cap_value(struct hisi_qm *qm,
820 			const struct hisi_qm_cap_query_info *info_table,
821 			u32 index, bool is_read)
822 {
823 	u32 val;
824 
825 	switch (qm->ver) {
826 	case QM_HW_V1:
827 		return info_table[index].v1_val;
828 	case QM_HW_V2:
829 		return info_table[index].v2_val;
830 	default:
831 		if (!is_read)
832 			return info_table[index].v3_val;
833 
834 		val = readl(qm->io_base + info_table[index].offset);
835 		return val;
836 	}
837 }
838 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value);
839 
840 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
841 			     u16 *high_bits, enum qm_basic_type type)
842 {
843 	u32 depth;
844 
845 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
846 	*low_bits = depth & QM_XQ_DEPTH_MASK;
847 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
848 }
849 
850 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
851 		     u32 dev_algs_size)
852 {
853 	struct device *dev = &qm->pdev->dev;
854 	char *algs, *ptr;
855 	int i;
856 
857 	if (!qm->uacce)
858 		return 0;
859 
860 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
861 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
862 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
863 		return -EINVAL;
864 	}
865 
866 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL);
867 	if (!algs)
868 		return -ENOMEM;
869 
870 	for (i = 0; i < dev_algs_size; i++)
871 		if (alg_msk & dev_algs[i].alg_msk)
872 			strcat(algs, dev_algs[i].alg);
873 
874 	ptr = strrchr(algs, '\n');
875 	if (ptr)
876 		*ptr = '\0';
877 
878 	qm->uacce->algs = algs;
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
883 
884 static u32 qm_get_irq_num(struct hisi_qm *qm)
885 {
886 	if (qm->fun_type == QM_HW_PF)
887 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
888 
889 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
890 }
891 
892 static int qm_pm_get_sync(struct hisi_qm *qm)
893 {
894 	struct device *dev = &qm->pdev->dev;
895 	int ret;
896 
897 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
898 		return 0;
899 
900 	ret = pm_runtime_resume_and_get(dev);
901 	if (ret < 0) {
902 		dev_err(dev, "failed to get_sync(%d).\n", ret);
903 		return ret;
904 	}
905 
906 	return 0;
907 }
908 
909 static void qm_pm_put_sync(struct hisi_qm *qm)
910 {
911 	struct device *dev = &qm->pdev->dev;
912 
913 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
914 		return;
915 
916 	pm_runtime_put_autosuspend(dev);
917 }
918 
919 static void qm_cq_head_update(struct hisi_qp *qp)
920 {
921 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
922 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
923 		qp->qp_status.cq_head = 0;
924 	} else {
925 		qp->qp_status.cq_head++;
926 	}
927 }
928 
929 static void qm_poll_req_cb(struct hisi_qp *qp)
930 {
931 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
932 	struct hisi_qm *qm = qp->qm;
933 
934 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
935 		dma_rmb();
936 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
937 			   le16_to_cpu(cqe->sq_head));
938 		qm_cq_head_update(qp);
939 		cqe = qp->cqe + qp->qp_status.cq_head;
940 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
941 		      qp->qp_status.cq_head, 0);
942 		atomic_dec(&qp->qp_status.used);
943 
944 		cond_resched();
945 	}
946 
947 	/* set c_flag */
948 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
949 }
950 
951 static void qm_work_process(struct work_struct *work)
952 {
953 	struct hisi_qm_poll_data *poll_data =
954 		container_of(work, struct hisi_qm_poll_data, work);
955 	struct hisi_qm *qm = poll_data->qm;
956 	u16 eqe_num = poll_data->eqe_num;
957 	struct hisi_qp *qp;
958 	int i;
959 
960 	for (i = eqe_num - 1; i >= 0; i--) {
961 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
962 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
963 			continue;
964 
965 		if (qp->event_cb) {
966 			qp->event_cb(qp);
967 			continue;
968 		}
969 
970 		if (likely(qp->req_cb))
971 			qm_poll_req_cb(qp);
972 	}
973 }
974 
975 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
976 {
977 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
978 	struct hisi_qm_poll_data *poll_data = NULL;
979 	u32 dw0 = le32_to_cpu(eqe->dw0);
980 	u16 eq_depth = qm->eq_depth;
981 	u16 cqn, eqe_num = 0;
982 
983 	if (QM_EQE_PHASE(dw0) != qm->status.eqc_phase) {
984 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
985 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
986 		return;
987 	}
988 
989 	cqn = dw0 & QM_EQE_CQN_MASK;
990 	if (unlikely(cqn >= qm->qp_num))
991 		return;
992 	poll_data = &qm->poll_data[cqn];
993 
994 	while (QM_EQE_PHASE(dw0) != qm->status.eqc_phase) {
995 		poll_data->qp_finish_id[eqe_num] = dw0 & QM_EQE_CQN_MASK;
996 		eqe_num++;
997 
998 		if (qm->status.eq_head == eq_depth - 1) {
999 			qm->status.eqc_phase = !qm->status.eqc_phase;
1000 			eqe = qm->eqe;
1001 			qm->status.eq_head = 0;
1002 		} else {
1003 			eqe++;
1004 			qm->status.eq_head++;
1005 		}
1006 
1007 		if (eqe_num == (eq_depth >> 1) - 1)
1008 			break;
1009 
1010 		dw0 = le32_to_cpu(eqe->dw0);
1011 	}
1012 
1013 	poll_data->eqe_num = eqe_num;
1014 	queue_work(qm->wq, &poll_data->work);
1015 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1016 }
1017 
1018 static irqreturn_t qm_eq_irq(int irq, void *data)
1019 {
1020 	struct hisi_qm *qm = data;
1021 
1022 	/* Get qp id of completed tasks and re-enable the interrupt */
1023 	qm_get_complete_eqe_num(qm);
1024 
1025 	return IRQ_HANDLED;
1026 }
1027 
1028 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1029 {
1030 	struct hisi_qm *qm = data;
1031 	u32 val;
1032 
1033 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1034 	val &= QM_IFC_INT_STATUS_MASK;
1035 	if (!val)
1036 		return IRQ_NONE;
1037 
1038 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
1039 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
1040 		return IRQ_HANDLED;
1041 	}
1042 
1043 	schedule_work(&qm->cmd_process);
1044 
1045 	return IRQ_HANDLED;
1046 }
1047 
1048 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1049 {
1050 	u32 *addr;
1051 
1052 	if (qp->is_in_kernel)
1053 		return;
1054 
1055 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1056 	*addr = 1;
1057 
1058 	/* make sure setup is completed */
1059 	smp_wmb();
1060 }
1061 
1062 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1063 {
1064 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1065 
1066 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1067 	hisi_qm_stop_qp(qp);
1068 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1069 }
1070 
1071 static void qm_reset_function(struct hisi_qm *qm)
1072 {
1073 	struct device *dev = &qm->pdev->dev;
1074 	int ret;
1075 
1076 	if (qm_check_dev_error(qm))
1077 		return;
1078 
1079 	ret = qm_reset_prepare_ready(qm);
1080 	if (ret) {
1081 		dev_err(dev, "reset function not ready\n");
1082 		return;
1083 	}
1084 
1085 	ret = hisi_qm_stop(qm, QM_DOWN);
1086 	if (ret) {
1087 		dev_err(dev, "failed to stop qm when reset function\n");
1088 		goto clear_bit;
1089 	}
1090 
1091 	ret = hisi_qm_start(qm);
1092 	if (ret)
1093 		dev_err(dev, "failed to start qm when reset function\n");
1094 
1095 clear_bit:
1096 	qm_reset_bit_clear(qm);
1097 }
1098 
1099 static irqreturn_t qm_aeq_thread(int irq, void *data)
1100 {
1101 	struct hisi_qm *qm = data;
1102 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1103 	u32 dw0 = le32_to_cpu(aeqe->dw0);
1104 	u16 aeq_depth = qm->aeq_depth;
1105 	u32 type, qp_id;
1106 
1107 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1108 
1109 	while (QM_AEQE_PHASE(dw0) == qm->status.aeqc_phase) {
1110 		type = (dw0 >> QM_AEQE_TYPE_SHIFT) & QM_AEQE_TYPE_MASK;
1111 		qp_id = dw0 & QM_AEQE_CQN_MASK;
1112 
1113 		switch (type) {
1114 		case QM_EQ_OVERFLOW:
1115 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1116 			qm_reset_function(qm);
1117 			return IRQ_HANDLED;
1118 		case QM_CQ_OVERFLOW:
1119 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1120 				qp_id);
1121 			fallthrough;
1122 		case QM_CQE_ERROR:
1123 			qm_disable_qp(qm, qp_id);
1124 			break;
1125 		default:
1126 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1127 				type);
1128 			break;
1129 		}
1130 
1131 		if (qm->status.aeq_head == aeq_depth - 1) {
1132 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1133 			aeqe = qm->aeqe;
1134 			qm->status.aeq_head = 0;
1135 		} else {
1136 			aeqe++;
1137 			qm->status.aeq_head++;
1138 		}
1139 		dw0 = le32_to_cpu(aeqe->dw0);
1140 	}
1141 
1142 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1143 
1144 	return IRQ_HANDLED;
1145 }
1146 
1147 static void qm_init_qp_status(struct hisi_qp *qp)
1148 {
1149 	struct hisi_qp_status *qp_status = &qp->qp_status;
1150 
1151 	qp_status->sq_tail = 0;
1152 	qp_status->cq_head = 0;
1153 	qp_status->cqc_phase = true;
1154 	atomic_set(&qp_status->used, 0);
1155 }
1156 
1157 static void qm_init_prefetch(struct hisi_qm *qm)
1158 {
1159 	struct device *dev = &qm->pdev->dev;
1160 	u32 page_type = 0x0;
1161 
1162 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1163 		return;
1164 
1165 	switch (PAGE_SIZE) {
1166 	case SZ_4K:
1167 		page_type = 0x0;
1168 		break;
1169 	case SZ_16K:
1170 		page_type = 0x1;
1171 		break;
1172 	case SZ_64K:
1173 		page_type = 0x2;
1174 		break;
1175 	default:
1176 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1177 			PAGE_SIZE);
1178 	}
1179 
1180 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1181 }
1182 
1183 /*
1184  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1185  * is the expected qos calculated.
1186  * the formula:
1187  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1188  *
1189  *		IR_b * (2 ^ IR_u) * 8000
1190  * IR(Mbps) = -------------------------
1191  *		  Tick * (2 ^ IR_s)
1192  */
1193 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1194 {
1195 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1196 					(QM_QOS_TICK * (1 << cir_s));
1197 }
1198 
1199 static u32 acc_shaper_calc_cbs_s(u32 ir)
1200 {
1201 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1202 	int i;
1203 
1204 	for (i = 0; i < table_size; i++) {
1205 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1206 			return shaper_cbs_s[i].val;
1207 	}
1208 
1209 	return QM_SHAPER_MIN_CBS_S;
1210 }
1211 
1212 static u32 acc_shaper_calc_cir_s(u32 ir)
1213 {
1214 	int table_size = ARRAY_SIZE(shaper_cir_s);
1215 	int i;
1216 
1217 	for (i = 0; i < table_size; i++) {
1218 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1219 			return shaper_cir_s[i].val;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1226 {
1227 	u32 cir_b, cir_u, cir_s, ir_calc;
1228 	u32 error_rate;
1229 
1230 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1231 	cir_s = acc_shaper_calc_cir_s(ir);
1232 
1233 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1234 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1235 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1236 
1237 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1238 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1239 				factor->cir_b = cir_b;
1240 				factor->cir_u = cir_u;
1241 				factor->cir_s = cir_s;
1242 				return 0;
1243 			}
1244 		}
1245 	}
1246 
1247 	return -EINVAL;
1248 }
1249 
1250 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1251 			    u32 number, struct qm_shaper_factor *factor)
1252 {
1253 	u64 tmp = 0;
1254 
1255 	if (number > 0) {
1256 		switch (type) {
1257 		case SQC_VFT:
1258 			if (qm->ver == QM_HW_V1) {
1259 				tmp = QM_SQC_VFT_BUF_SIZE	|
1260 				      QM_SQC_VFT_SQC_SIZE	|
1261 				      QM_SQC_VFT_INDEX_NUMBER	|
1262 				      QM_SQC_VFT_VALID		|
1263 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1264 			} else {
1265 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1266 				      QM_SQC_VFT_VALID |
1267 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1268 			}
1269 			break;
1270 		case CQC_VFT:
1271 			if (qm->ver == QM_HW_V1) {
1272 				tmp = QM_CQC_VFT_BUF_SIZE	|
1273 				      QM_CQC_VFT_SQC_SIZE	|
1274 				      QM_CQC_VFT_INDEX_NUMBER	|
1275 				      QM_CQC_VFT_VALID;
1276 			} else {
1277 				tmp = QM_CQC_VFT_VALID;
1278 			}
1279 			break;
1280 		case SHAPER_VFT:
1281 			if (factor) {
1282 				tmp = factor->cir_b |
1283 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1284 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1285 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1286 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1287 			}
1288 			break;
1289 		/*
1290 		 * Note: The current logic only needs to handle the above three types
1291 		 * If new types are added, they need to be supplemented here,
1292 		 * otherwise undefined behavior may occur.
1293 		 */
1294 		default:
1295 			break;
1296 		}
1297 	}
1298 
1299 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1300 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1301 }
1302 
1303 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1304 			     u32 fun_num, u32 base, u32 number)
1305 {
1306 	struct qm_shaper_factor *factor = NULL;
1307 	unsigned int val;
1308 	int ret;
1309 
1310 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1311 		factor = &qm->factor[fun_num];
1312 
1313 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1314 					 val & BIT(0), POLL_PERIOD,
1315 					 POLL_TIMEOUT);
1316 	if (ret)
1317 		return ret;
1318 
1319 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1320 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1321 	if (type == SHAPER_VFT)
1322 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1323 
1324 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1325 
1326 	qm_vft_data_cfg(qm, type, base, number, factor);
1327 
1328 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1329 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1330 
1331 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1332 					  val & BIT(0), POLL_PERIOD,
1333 					  POLL_TIMEOUT);
1334 }
1335 
1336 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1337 {
1338 	u32 qos = qm->factor[fun_num].func_qos;
1339 	int ret, i;
1340 
1341 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1342 	if (ret) {
1343 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1344 		return ret;
1345 	}
1346 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1347 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1348 		/* The base number of queue reuse for different alg type */
1349 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1350 		if (ret)
1351 			return ret;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /* The config should be conducted after qm_dev_mem_reset() */
1358 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1359 			      u32 number)
1360 {
1361 	int ret, i;
1362 
1363 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1364 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1365 		if (ret)
1366 			return ret;
1367 	}
1368 
1369 	/* init default shaper qos val */
1370 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1371 		ret = qm_shaper_init_vft(qm, fun_num);
1372 		if (ret)
1373 			goto back_sqc_cqc;
1374 	}
1375 
1376 	return 0;
1377 back_sqc_cqc:
1378 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1379 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1380 
1381 	return ret;
1382 }
1383 
1384 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1385 {
1386 	u64 sqc_vft;
1387 	int ret;
1388 
1389 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1390 	if (ret)
1391 		return ret;
1392 
1393 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1394 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1395 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1396 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1397 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1398 
1399 	return 0;
1400 }
1401 
1402 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1403 {
1404 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1405 }
1406 
1407 static void qm_hw_error_cfg(struct hisi_qm *qm)
1408 {
1409 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1410 
1411 	qm->error_mask = qm_err->nfe | qm_err->ce | qm_err->fe;
1412 	/* clear QM hw residual error source */
1413 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1414 
1415 	/* configure error type */
1416 	writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1417 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1418 	writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1419 	writel(qm_err->fe, qm->io_base + QM_RAS_FE_ENABLE);
1420 }
1421 
1422 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1423 {
1424 	u32 irq_unmask;
1425 
1426 	qm_hw_error_cfg(qm);
1427 
1428 	irq_unmask = ~qm->error_mask;
1429 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1430 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1431 }
1432 
1433 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1434 {
1435 	u32 irq_mask = qm->error_mask;
1436 
1437 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1438 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1439 }
1440 
1441 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1442 {
1443 	u32 irq_unmask;
1444 
1445 	qm_hw_error_cfg(qm);
1446 
1447 	/* enable close master ooo when hardware error happened */
1448 	writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1449 
1450 	irq_unmask = ~qm->error_mask;
1451 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1452 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1453 }
1454 
1455 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1456 {
1457 	u32 irq_mask = qm->error_mask;
1458 
1459 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1460 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1461 
1462 	/* disable close master ooo when hardware error happened */
1463 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1464 }
1465 
1466 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1467 {
1468 	const struct hisi_qm_hw_error *err;
1469 	struct device *dev = &qm->pdev->dev;
1470 	u32 reg_val, type, vf_num, qp_id;
1471 	int i;
1472 
1473 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1474 		err = &qm_hw_error[i];
1475 		if (!(err->int_msk & error_status))
1476 			continue;
1477 
1478 		dev_err(dev, "%s [error status=0x%x] found\n",
1479 			err->msg, err->int_msk);
1480 
1481 		if (err->int_msk & QM_DB_TIMEOUT) {
1482 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1483 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1484 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1485 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1486 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1487 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1488 				qm_db_timeout[type], vf_num, qp_id);
1489 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1490 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1491 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1492 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1493 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1494 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1495 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1496 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1497 					qm_fifo_overflow[type], vf_num, qp_id);
1498 			else
1499 				dev_err(dev, "unknown error type\n");
1500 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1501 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1502 			if (reg_val & QM_AXI_POISON_ERR)
1503 				dev_err(dev, "qm axi poison error happened\n");
1504 		}
1505 	}
1506 }
1507 
1508 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1509 {
1510 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1511 	u32 error_status;
1512 
1513 	error_status = qm_get_hw_error_status(qm);
1514 	if (error_status & qm->error_mask) {
1515 		if (error_status & QM_ECC_MBIT)
1516 			qm->err_status.is_qm_ecc_mbit = true;
1517 
1518 		qm_log_hw_error(qm, error_status);
1519 		if (error_status & qm_err->reset_mask) {
1520 			/* Disable the same error reporting until device is recovered. */
1521 			writel(qm_err->nfe & (~error_status), qm->io_base + QM_RAS_NFE_ENABLE);
1522 			return ACC_ERR_NEED_RESET;
1523 		}
1524 
1525 		/* Clear error source if not need reset. */
1526 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1527 		writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1528 		writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1529 	}
1530 
1531 	return ACC_ERR_RECOVERED;
1532 }
1533 
1534 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1535 {
1536 	struct qm_mailbox mailbox;
1537 	int ret;
1538 
1539 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1540 	mutex_lock(&qm->mailbox_lock);
1541 	ret = qm_mb_nolock(qm, &mailbox);
1542 	if (ret)
1543 		goto err_unlock;
1544 
1545 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1546 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1547 
1548 err_unlock:
1549 	mutex_unlock(&qm->mailbox_lock);
1550 	return ret;
1551 }
1552 
1553 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1554 {
1555 	u32 val;
1556 
1557 	if (qm->fun_type == QM_HW_PF)
1558 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1559 
1560 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1561 	val |= QM_IFC_INT_SOURCE_MASK;
1562 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1563 }
1564 
1565 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1566 {
1567 	struct device *dev = &qm->pdev->dev;
1568 	enum qm_ifc_cmd cmd;
1569 	int ret;
1570 
1571 	ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id);
1572 	if (ret) {
1573 		dev_err(dev, "failed to get command from VF(%u)!\n", vf_id);
1574 		return;
1575 	}
1576 
1577 	switch (cmd) {
1578 	case QM_VF_PREPARE_FAIL:
1579 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1580 		break;
1581 	case QM_VF_START_FAIL:
1582 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1583 		break;
1584 	case QM_VF_PREPARE_DONE:
1585 	case QM_VF_START_DONE:
1586 		break;
1587 	default:
1588 		dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id);
1589 		break;
1590 	}
1591 }
1592 
1593 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1594 {
1595 	struct device *dev = &qm->pdev->dev;
1596 	u32 vfs_num = qm->vfs_num;
1597 	int cnt = 0;
1598 	int ret = 0;
1599 	u64 val;
1600 	u32 i;
1601 
1602 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1603 		return 0;
1604 
1605 	while (true) {
1606 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1607 		/* All VFs send command to PF, break */
1608 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1609 			break;
1610 
1611 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1612 			ret = -EBUSY;
1613 			break;
1614 		}
1615 
1616 		msleep(QM_WAIT_DST_ACK);
1617 	}
1618 
1619 	/* PF check VFs msg */
1620 	for (i = 1; i <= vfs_num; i++) {
1621 		if (val & BIT(i))
1622 			qm_handle_vf_msg(qm, i);
1623 		else
1624 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1625 	}
1626 
1627 	/* PF clear interrupt to ack VFs */
1628 	qm_clear_cmd_interrupt(qm, val);
1629 
1630 	return ret;
1631 }
1632 
1633 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1634 {
1635 	u32 val;
1636 
1637 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1638 	val &= ~QM_IFC_SEND_ALL_VFS;
1639 	val |= fun_num;
1640 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1641 
1642 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1643 	val |= QM_IFC_INT_SET_MASK;
1644 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1645 }
1646 
1647 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1648 {
1649 	u32 val;
1650 
1651 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1652 	val |= QM_IFC_INT_SET_MASK;
1653 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1654 }
1655 
1656 static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1657 {
1658 	struct device *dev = &qm->pdev->dev;
1659 	int cnt = 0;
1660 	u64 val;
1661 	int ret;
1662 
1663 	ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num);
1664 	if (ret) {
1665 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1666 		goto err_unlock;
1667 	}
1668 
1669 	qm_trigger_vf_interrupt(qm, fun_num);
1670 	while (true) {
1671 		msleep(QM_WAIT_DST_ACK);
1672 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1673 		/* if VF respond, PF notifies VF successfully. */
1674 		if (!(val & BIT(fun_num)))
1675 			goto err_unlock;
1676 
1677 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1678 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1679 			ret = -ETIMEDOUT;
1680 			break;
1681 		}
1682 	}
1683 
1684 err_unlock:
1685 	qm->ops->set_ifc_end(qm);
1686 	return ret;
1687 }
1688 
1689 static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1690 {
1691 	struct device *dev = &qm->pdev->dev;
1692 	u32 vfs_num = qm->vfs_num;
1693 	u64 val = 0;
1694 	int cnt = 0;
1695 	int ret;
1696 	u32 i;
1697 
1698 	ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS);
1699 	if (ret) {
1700 		dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd);
1701 		qm->ops->set_ifc_end(qm);
1702 		return ret;
1703 	}
1704 
1705 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1706 	while (true) {
1707 		msleep(QM_WAIT_DST_ACK);
1708 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1709 		/* If all VFs acked, PF notifies VFs successfully. */
1710 		if (!(val & GENMASK(vfs_num, 1))) {
1711 			qm->ops->set_ifc_end(qm);
1712 			return 0;
1713 		}
1714 
1715 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1716 			break;
1717 	}
1718 
1719 	qm->ops->set_ifc_end(qm);
1720 
1721 	/* Check which vf respond timeout. */
1722 	for (i = 1; i <= vfs_num; i++) {
1723 		if (val & BIT(i))
1724 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1725 	}
1726 
1727 	return -ETIMEDOUT;
1728 }
1729 
1730 static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1731 {
1732 	int cnt = 0;
1733 	u32 val;
1734 	int ret;
1735 
1736 	ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0);
1737 	if (ret) {
1738 		dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd);
1739 		goto unlock;
1740 	}
1741 
1742 	qm_trigger_pf_interrupt(qm);
1743 	/* Waiting for PF response */
1744 	while (true) {
1745 		msleep(QM_WAIT_DST_ACK);
1746 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1747 		if (!(val & QM_IFC_INT_STATUS_MASK))
1748 			break;
1749 
1750 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1751 			ret = -ETIMEDOUT;
1752 			break;
1753 		}
1754 	}
1755 
1756 unlock:
1757 	qm->ops->set_ifc_end(qm);
1758 
1759 	return ret;
1760 }
1761 
1762 static int qm_drain_qm(struct hisi_qm *qm)
1763 {
1764 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1765 }
1766 
1767 static int qm_stop_qp(struct hisi_qp *qp)
1768 {
1769 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1770 }
1771 
1772 static int qm_set_msi(struct hisi_qm *qm, bool set)
1773 {
1774 	struct pci_dev *pdev = qm->pdev;
1775 
1776 	if (set) {
1777 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1778 				       0);
1779 	} else {
1780 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1781 				       ACC_PEH_MSI_DISABLE);
1782 		if (qm->err_status.is_qm_ecc_mbit ||
1783 		    qm->err_status.is_dev_ecc_mbit)
1784 			return 0;
1785 
1786 		mdelay(1);
1787 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1788 			return -EFAULT;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static void qm_wait_msi_finish(struct hisi_qm *qm)
1795 {
1796 	struct pci_dev *pdev = qm->pdev;
1797 	u32 cmd = ~0;
1798 	int cnt = 0;
1799 	u32 val;
1800 	int ret;
1801 
1802 	while (true) {
1803 		pci_read_config_dword(pdev, pdev->msi_cap +
1804 				      PCI_MSI_PENDING_64, &cmd);
1805 		if (!cmd)
1806 			break;
1807 
1808 		if (++cnt > MAX_WAIT_COUNTS) {
1809 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1810 			break;
1811 		}
1812 
1813 		udelay(1);
1814 	}
1815 
1816 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1817 					 val, !(val & QM_PEH_DFX_MASK),
1818 					 POLL_PERIOD, POLL_TIMEOUT);
1819 	if (ret)
1820 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1821 
1822 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1823 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1824 					 POLL_PERIOD, POLL_TIMEOUT);
1825 	if (ret)
1826 		pci_warn(pdev, "failed to finish MSI operation!\n");
1827 }
1828 
1829 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1830 {
1831 	struct pci_dev *pdev = qm->pdev;
1832 	int ret = -ETIMEDOUT;
1833 	u32 cmd, i;
1834 
1835 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1836 	if (set)
1837 		cmd |= QM_MSI_CAP_ENABLE;
1838 	else
1839 		cmd &= ~QM_MSI_CAP_ENABLE;
1840 
1841 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1842 	if (set) {
1843 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1844 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1845 			if (cmd & QM_MSI_CAP_ENABLE)
1846 				return 0;
1847 
1848 			udelay(1);
1849 		}
1850 	} else {
1851 		udelay(WAIT_PERIOD_US_MIN);
1852 		qm_wait_msi_finish(qm);
1853 		ret = 0;
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1860 {
1861 	struct qm_mailbox mailbox;
1862 	u64 msg;
1863 
1864 	msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1865 
1866 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0);
1867 	mutex_lock(&qm->mailbox_lock);
1868 	return qm_mb_nolock(qm, &mailbox);
1869 }
1870 
1871 static void qm_set_ifc_end_v3(struct hisi_qm *qm)
1872 {
1873 	mutex_unlock(&qm->mailbox_lock);
1874 }
1875 
1876 static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1877 {
1878 	u64 msg;
1879 	int ret;
1880 
1881 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
1882 	if (ret)
1883 		return ret;
1884 
1885 	*cmd = msg & QM_IFC_CMD_MASK;
1886 
1887 	if (data)
1888 		*data = msg >> QM_IFC_DATA_SHIFT;
1889 
1890 	return 0;
1891 }
1892 
1893 static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1894 {
1895 	uintptr_t offset;
1896 	u64 msg;
1897 
1898 	if (qm->fun_type == QM_HW_PF)
1899 		offset = QM_PF2VF_PF_W;
1900 	else
1901 		offset = QM_VF2PF_VF_W;
1902 
1903 	msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1904 
1905 	mutex_lock(&qm->ifc_lock);
1906 	writeq(msg, qm->io_base + offset);
1907 
1908 	return 0;
1909 }
1910 
1911 static void qm_set_ifc_end_v4(struct hisi_qm *qm)
1912 {
1913 	mutex_unlock(&qm->ifc_lock);
1914 }
1915 
1916 static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num)
1917 {
1918 	uintptr_t offset;
1919 
1920 	offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num;
1921 
1922 	return (u64)readl(qm->io_base + offset);
1923 }
1924 
1925 static u64 qm_get_ifc_vf(struct hisi_qm *qm)
1926 {
1927 	return readq(qm->io_base + QM_PF2VF_VF_R);
1928 }
1929 
1930 static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1931 {
1932 	u64 msg;
1933 
1934 	if (qm->fun_type == QM_HW_PF)
1935 		msg = qm_get_ifc_pf(qm, fun_num);
1936 	else
1937 		msg = qm_get_ifc_vf(qm);
1938 
1939 	*cmd = msg & QM_IFC_CMD_MASK;
1940 
1941 	if (data)
1942 		*data = msg >> QM_IFC_DATA_SHIFT;
1943 
1944 	return 0;
1945 }
1946 
1947 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1948 	.qm_db = qm_db_v1,
1949 	.hw_error_init = qm_hw_error_init_v1,
1950 	.set_msi = qm_set_msi,
1951 };
1952 
1953 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1954 	.get_vft = qm_get_vft_v2,
1955 	.qm_db = qm_db_v2,
1956 	.hw_error_init = qm_hw_error_init_v2,
1957 	.hw_error_uninit = qm_hw_error_uninit_v2,
1958 	.hw_error_handle = qm_hw_error_handle_v2,
1959 	.set_msi = qm_set_msi,
1960 };
1961 
1962 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1963 	.get_vft = qm_get_vft_v2,
1964 	.qm_db = qm_db_v2,
1965 	.hw_error_init = qm_hw_error_init_v3,
1966 	.hw_error_uninit = qm_hw_error_uninit_v3,
1967 	.hw_error_handle = qm_hw_error_handle_v2,
1968 	.set_msi = qm_set_msi_v3,
1969 	.set_ifc_begin = qm_set_ifc_begin_v3,
1970 	.set_ifc_end = qm_set_ifc_end_v3,
1971 	.get_ifc = qm_get_ifc_v3,
1972 };
1973 
1974 static const struct hisi_qm_hw_ops qm_hw_ops_v4 = {
1975 	.get_vft = qm_get_vft_v2,
1976 	.qm_db = qm_db_v2,
1977 	.hw_error_init = qm_hw_error_init_v3,
1978 	.hw_error_uninit = qm_hw_error_uninit_v3,
1979 	.hw_error_handle = qm_hw_error_handle_v2,
1980 	.set_msi = qm_set_msi_v3,
1981 	.set_ifc_begin = qm_set_ifc_begin_v4,
1982 	.set_ifc_end = qm_set_ifc_end_v4,
1983 	.get_ifc = qm_get_ifc_v4,
1984 };
1985 
1986 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1987 {
1988 	struct hisi_qp_status *qp_status = &qp->qp_status;
1989 	u16 sq_tail = qp_status->sq_tail;
1990 
1991 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1992 		return NULL;
1993 
1994 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1995 }
1996 
1997 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1998 {
1999 	u64 *addr;
2000 
2001 	/* Use last 64 bits of DUS to reset status. */
2002 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2003 	*addr = 0;
2004 }
2005 
2006 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2007 {
2008 	struct device *dev = &qm->pdev->dev;
2009 	struct hisi_qp *qp;
2010 	int qp_id;
2011 
2012 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2013 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
2014 		return ERR_PTR(-EPERM);
2015 	}
2016 
2017 	if (qm->qp_in_used == qm->qp_num) {
2018 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2019 				     qm->qp_num);
2020 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2021 		return ERR_PTR(-EBUSY);
2022 	}
2023 
2024 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2025 	if (qp_id < 0) {
2026 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2027 				    qm->qp_num);
2028 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2029 		return ERR_PTR(-EBUSY);
2030 	}
2031 
2032 	qp = &qm->qp_array[qp_id];
2033 	hisi_qm_unset_hw_reset(qp);
2034 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2035 
2036 	qp->event_cb = NULL;
2037 	qp->req_cb = NULL;
2038 	qp->qp_id = qp_id;
2039 	qp->alg_type = alg_type;
2040 	qp->is_in_kernel = true;
2041 	qm->qp_in_used++;
2042 
2043 	return qp;
2044 }
2045 
2046 /**
2047  * hisi_qm_create_qp() - Create a queue pair from qm.
2048  * @qm: The qm we create a qp from.
2049  * @alg_type: Accelerator specific algorithm type in sqc.
2050  *
2051  * Return created qp, negative error code if failed.
2052  */
2053 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2054 {
2055 	struct hisi_qp *qp;
2056 	int ret;
2057 
2058 	ret = qm_pm_get_sync(qm);
2059 	if (ret)
2060 		return ERR_PTR(ret);
2061 
2062 	down_write(&qm->qps_lock);
2063 	qp = qm_create_qp_nolock(qm, alg_type);
2064 	up_write(&qm->qps_lock);
2065 
2066 	if (IS_ERR(qp))
2067 		qm_pm_put_sync(qm);
2068 
2069 	return qp;
2070 }
2071 
2072 /**
2073  * hisi_qm_release_qp() - Release a qp back to its qm.
2074  * @qp: The qp we want to release.
2075  *
2076  * This function releases the resource of a qp.
2077  */
2078 static void hisi_qm_release_qp(struct hisi_qp *qp)
2079 {
2080 	struct hisi_qm *qm = qp->qm;
2081 
2082 	down_write(&qm->qps_lock);
2083 
2084 	qm->qp_in_used--;
2085 	idr_remove(&qm->qp_idr, qp->qp_id);
2086 
2087 	up_write(&qm->qps_lock);
2088 
2089 	qm_pm_put_sync(qm);
2090 }
2091 
2092 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2093 {
2094 	struct hisi_qm *qm = qp->qm;
2095 	enum qm_hw_ver ver = qm->ver;
2096 	struct qm_sqc sqc = {0};
2097 
2098 	if (ver == QM_HW_V1) {
2099 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2100 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
2101 	} else {
2102 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2103 		sqc.w8 = 0; /* rand_qc */
2104 	}
2105 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2106 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
2107 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
2108 	sqc.cq_num = cpu_to_le16(qp_id);
2109 	sqc.pasid = cpu_to_le16(pasid);
2110 
2111 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2112 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2113 				      QM_QC_PASID_ENABLE_SHIFT);
2114 
2115 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
2116 }
2117 
2118 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2119 {
2120 	struct hisi_qm *qm = qp->qm;
2121 	enum qm_hw_ver ver = qm->ver;
2122 	struct qm_cqc cqc = {0};
2123 
2124 	if (ver == QM_HW_V1) {
2125 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
2126 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
2127 	} else {
2128 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2129 		cqc.w8 = 0; /* rand_qc */
2130 	}
2131 	/*
2132 	 * Enable request finishing interrupts defaultly.
2133 	 * So, there will be some interrupts until disabling
2134 	 * this.
2135 	 */
2136 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2137 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
2138 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
2139 	cqc.pasid = cpu_to_le16(pasid);
2140 
2141 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2142 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2143 
2144 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
2145 }
2146 
2147 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2148 {
2149 	int ret;
2150 
2151 	qm_init_qp_status(qp);
2152 
2153 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2154 	if (ret)
2155 		return ret;
2156 
2157 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2158 }
2159 
2160 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2161 {
2162 	struct hisi_qm *qm = qp->qm;
2163 	struct device *dev = &qm->pdev->dev;
2164 	int qp_id = qp->qp_id;
2165 	u32 pasid = arg;
2166 	int ret;
2167 
2168 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2169 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2170 		return -EPERM;
2171 	}
2172 
2173 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2174 	if (ret)
2175 		return ret;
2176 
2177 	atomic_set(&qp->qp_status.flags, QP_START);
2178 	dev_dbg(dev, "queue %d started\n", qp_id);
2179 
2180 	return 0;
2181 }
2182 
2183 /**
2184  * hisi_qm_start_qp() - Start a qp into running.
2185  * @qp: The qp we want to start to run.
2186  * @arg: Accelerator specific argument.
2187  *
2188  * After this function, qp can receive request from user. Return 0 if
2189  * successful, negative error code if failed.
2190  */
2191 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2192 {
2193 	struct hisi_qm *qm = qp->qm;
2194 	int ret;
2195 
2196 	down_write(&qm->qps_lock);
2197 	ret = qm_start_qp_nolock(qp, arg);
2198 	up_write(&qm->qps_lock);
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2203 
2204 /**
2205  * qp_stop_fail_cb() - call request cb.
2206  * @qp: stopped failed qp.
2207  *
2208  * Callback function should be called whether task completed or not.
2209  */
2210 static void qp_stop_fail_cb(struct hisi_qp *qp)
2211 {
2212 	int qp_used = atomic_read(&qp->qp_status.used);
2213 	u16 cur_tail = qp->qp_status.sq_tail;
2214 	u16 sq_depth = qp->sq_depth;
2215 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2216 	struct hisi_qm *qm = qp->qm;
2217 	u16 pos;
2218 	int i;
2219 
2220 	for (i = 0; i < qp_used; i++) {
2221 		pos = (i + cur_head) % sq_depth;
2222 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2223 		atomic_dec(&qp->qp_status.used);
2224 	}
2225 }
2226 
2227 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2228 {
2229 	struct device *dev = &qm->pdev->dev;
2230 	struct qm_sqc sqc;
2231 	struct qm_cqc cqc;
2232 	int ret, i = 0;
2233 
2234 	while (++i) {
2235 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2236 		if (ret) {
2237 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2238 			*state = QM_DUMP_SQC_FAIL;
2239 			return ret;
2240 		}
2241 
2242 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2243 		if (ret) {
2244 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2245 			*state = QM_DUMP_CQC_FAIL;
2246 			return ret;
2247 		}
2248 
2249 		if ((sqc.tail == cqc.tail) &&
2250 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2251 			break;
2252 
2253 		if (i == MAX_WAIT_COUNTS) {
2254 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2255 			*state = QM_STOP_QUEUE_FAIL;
2256 			return -ETIMEDOUT;
2257 		}
2258 
2259 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 /**
2266  * qm_drain_qp() - Drain a qp.
2267  * @qp: The qp we want to drain.
2268  *
2269  * If the device does not support stopping queue by sending mailbox,
2270  * determine whether the queue is cleared by judging the tail pointers of
2271  * sq and cq.
2272  */
2273 static int qm_drain_qp(struct hisi_qp *qp)
2274 {
2275 	struct hisi_qm *qm = qp->qm;
2276 	u32 state = 0;
2277 	int ret;
2278 
2279 	/* No need to judge if master OOO is blocked. */
2280 	if (qm_check_dev_error(qm))
2281 		return 0;
2282 
2283 	/* HW V3 supports drain qp by device */
2284 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2285 		ret = qm_stop_qp(qp);
2286 		if (ret) {
2287 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2288 			state = QM_STOP_QUEUE_FAIL;
2289 			goto set_dev_state;
2290 		}
2291 		return ret;
2292 	}
2293 
2294 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2295 	if (ret)
2296 		goto set_dev_state;
2297 
2298 	return 0;
2299 
2300 set_dev_state:
2301 	if (qm->debug.dev_dfx.dev_timeout)
2302 		qm->debug.dev_dfx.dev_state = state;
2303 
2304 	return ret;
2305 }
2306 
2307 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2308 {
2309 	struct hisi_qm *qm = qp->qm;
2310 	struct device *dev = &qm->pdev->dev;
2311 	int ret;
2312 
2313 	/*
2314 	 * It is allowed to stop and release qp when reset, If the qp is
2315 	 * stopped when reset but still want to be released then, the
2316 	 * is_resetting flag should be set negative so that this qp will not
2317 	 * be restarted after reset.
2318 	 */
2319 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2320 		qp->is_resetting = false;
2321 		return;
2322 	}
2323 
2324 	atomic_set(&qp->qp_status.flags, QP_STOP);
2325 
2326 	/* V3 supports direct stop function when FLR prepare */
2327 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2328 		ret = qm_drain_qp(qp);
2329 		if (ret)
2330 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2331 	}
2332 
2333 	flush_workqueue(qm->wq);
2334 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2335 		qp_stop_fail_cb(qp);
2336 
2337 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2338 }
2339 
2340 /**
2341  * hisi_qm_stop_qp() - Stop a qp in qm.
2342  * @qp: The qp we want to stop.
2343  *
2344  * This function is reverse of hisi_qm_start_qp.
2345  */
2346 void hisi_qm_stop_qp(struct hisi_qp *qp)
2347 {
2348 	down_write(&qp->qm->qps_lock);
2349 	qm_stop_qp_nolock(qp);
2350 	up_write(&qp->qm->qps_lock);
2351 }
2352 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2353 
2354 /**
2355  * hisi_qp_send() - Queue up a task in the hardware queue.
2356  * @qp: The qp in which to put the message.
2357  * @msg: The message.
2358  *
2359  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2360  * if qp related qm is resetting.
2361  *
2362  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2363  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2364  *       reset may happen, we have no lock here considering performance. This
2365  *       causes current qm_db sending fail or can not receive sended sqe. QM
2366  *       sync/async receive function should handle the error sqe. ACC reset
2367  *       done function should clear used sqe to 0.
2368  */
2369 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2370 {
2371 	struct hisi_qp_status *qp_status = &qp->qp_status;
2372 	u16 sq_tail = qp_status->sq_tail;
2373 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2374 	void *sqe = qm_get_avail_sqe(qp);
2375 
2376 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2377 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2378 		     qp->is_resetting)) {
2379 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2380 		return -EAGAIN;
2381 	}
2382 
2383 	if (!sqe)
2384 		return -EBUSY;
2385 
2386 	memcpy(sqe, msg, qp->qm->sqe_size);
2387 
2388 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2389 	atomic_inc(&qp->qp_status.used);
2390 	qp_status->sq_tail = sq_tail_next;
2391 
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(hisi_qp_send);
2395 
2396 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2397 {
2398 	unsigned int val;
2399 
2400 	if (qm->ver == QM_HW_V1)
2401 		return;
2402 
2403 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2404 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2405 				       val, val & BIT(0), POLL_PERIOD,
2406 				       POLL_TIMEOUT))
2407 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2408 }
2409 
2410 static void qm_qp_event_notifier(struct hisi_qp *qp)
2411 {
2412 	wake_up_interruptible(&qp->uacce_q->wait);
2413 }
2414 
2415  /* This function returns free number of qp in qm. */
2416 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2417 {
2418 	struct hisi_qm *qm = uacce->priv;
2419 	int ret;
2420 
2421 	down_read(&qm->qps_lock);
2422 	ret = qm->qp_num - qm->qp_in_used;
2423 	up_read(&qm->qps_lock);
2424 
2425 	return ret;
2426 }
2427 
2428 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2429 {
2430 	int i;
2431 
2432 	for (i = 0; i < qm->qp_num; i++)
2433 		qm_set_qp_disable(&qm->qp_array[i], offset);
2434 }
2435 
2436 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2437 				   unsigned long arg,
2438 				   struct uacce_queue *q)
2439 {
2440 	struct hisi_qm *qm = uacce->priv;
2441 	struct hisi_qp *qp;
2442 	u8 alg_type = 0;
2443 
2444 	qp = hisi_qm_create_qp(qm, alg_type);
2445 	if (IS_ERR(qp))
2446 		return PTR_ERR(qp);
2447 
2448 	q->priv = qp;
2449 	q->uacce = uacce;
2450 	qp->uacce_q = q;
2451 	qp->event_cb = qm_qp_event_notifier;
2452 	qp->pasid = arg;
2453 	qp->is_in_kernel = false;
2454 
2455 	return 0;
2456 }
2457 
2458 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2459 {
2460 	struct hisi_qp *qp = q->priv;
2461 
2462 	hisi_qm_release_qp(qp);
2463 }
2464 
2465 /* map sq/cq/doorbell to user space */
2466 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2467 			      struct vm_area_struct *vma,
2468 			      struct uacce_qfile_region *qfr)
2469 {
2470 	struct hisi_qp *qp = q->priv;
2471 	struct hisi_qm *qm = qp->qm;
2472 	resource_size_t phys_base = qm->db_phys_base +
2473 				    qp->qp_id * qm->db_interval;
2474 	size_t sz = vma->vm_end - vma->vm_start;
2475 	struct pci_dev *pdev = qm->pdev;
2476 	struct device *dev = &pdev->dev;
2477 	unsigned long vm_pgoff;
2478 	int ret;
2479 
2480 	switch (qfr->type) {
2481 	case UACCE_QFRT_MMIO:
2482 		if (qm->ver == QM_HW_V1) {
2483 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2484 				return -EINVAL;
2485 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2486 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2487 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2488 				return -EINVAL;
2489 		} else {
2490 			if (sz > qm->db_interval)
2491 				return -EINVAL;
2492 		}
2493 
2494 		vm_flags_set(vma, VM_IO);
2495 
2496 		return remap_pfn_range(vma, vma->vm_start,
2497 				       phys_base >> PAGE_SHIFT,
2498 				       sz, pgprot_noncached(vma->vm_page_prot));
2499 	case UACCE_QFRT_DUS:
2500 		if (sz != qp->qdma.size)
2501 			return -EINVAL;
2502 
2503 		/*
2504 		 * dma_mmap_coherent() requires vm_pgoff as 0
2505 		 * restore vm_pfoff to initial value for mmap()
2506 		 */
2507 		vm_pgoff = vma->vm_pgoff;
2508 		vma->vm_pgoff = 0;
2509 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2510 					qp->qdma.dma, sz);
2511 		vma->vm_pgoff = vm_pgoff;
2512 		return ret;
2513 
2514 	default:
2515 		return -EINVAL;
2516 	}
2517 }
2518 
2519 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2520 {
2521 	struct hisi_qp *qp = q->priv;
2522 
2523 	return hisi_qm_start_qp(qp, qp->pasid);
2524 }
2525 
2526 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2527 {
2528 	struct hisi_qp *qp = q->priv;
2529 	struct hisi_qm *qm = qp->qm;
2530 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2531 	u32 i = 0;
2532 
2533 	hisi_qm_stop_qp(qp);
2534 
2535 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2536 		return;
2537 
2538 	/*
2539 	 * After the queue fails to be stopped,
2540 	 * wait for a period of time before releasing the queue.
2541 	 */
2542 	while (++i) {
2543 		msleep(WAIT_PERIOD);
2544 
2545 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2546 		if (i >= dev_dfx->dev_timeout) {
2547 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2548 			       qp->qp_id, dev_dfx->dev_state);
2549 			dev_dfx->dev_state = QM_FINISH_WAIT;
2550 			break;
2551 		}
2552 	}
2553 }
2554 
2555 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2556 {
2557 	struct hisi_qp *qp = q->priv;
2558 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2559 	int updated = 0;
2560 
2561 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2562 		/* make sure to read data from memory */
2563 		dma_rmb();
2564 		qm_cq_head_update(qp);
2565 		cqe = qp->cqe + qp->qp_status.cq_head;
2566 		updated = 1;
2567 	}
2568 
2569 	return updated;
2570 }
2571 
2572 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2573 {
2574 	struct hisi_qm *qm = q->uacce->priv;
2575 	struct hisi_qp *qp = q->priv;
2576 
2577 	down_write(&qm->qps_lock);
2578 	qp->alg_type = type;
2579 	up_write(&qm->qps_lock);
2580 }
2581 
2582 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2583 				unsigned long arg)
2584 {
2585 	struct hisi_qp *qp = q->priv;
2586 	struct hisi_qp_info qp_info;
2587 	struct hisi_qp_ctx qp_ctx;
2588 
2589 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2590 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2591 				   sizeof(struct hisi_qp_ctx)))
2592 			return -EFAULT;
2593 
2594 		if (qp_ctx.qc_type > QM_MAX_QC_TYPE)
2595 			return -EINVAL;
2596 
2597 		qm_set_sqctype(q, qp_ctx.qc_type);
2598 		qp_ctx.id = qp->qp_id;
2599 
2600 		if (copy_to_user((void __user *)arg, &qp_ctx,
2601 				 sizeof(struct hisi_qp_ctx)))
2602 			return -EFAULT;
2603 
2604 		return 0;
2605 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2606 		if (copy_from_user(&qp_info, (void __user *)arg,
2607 				   sizeof(struct hisi_qp_info)))
2608 			return -EFAULT;
2609 
2610 		qp_info.sqe_size = qp->qm->sqe_size;
2611 		qp_info.sq_depth = qp->sq_depth;
2612 		qp_info.cq_depth = qp->cq_depth;
2613 
2614 		if (copy_to_user((void __user *)arg, &qp_info,
2615 				  sizeof(struct hisi_qp_info)))
2616 			return -EFAULT;
2617 
2618 		return 0;
2619 	}
2620 
2621 	return -EINVAL;
2622 }
2623 
2624 /**
2625  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2626  * according to user's configuration of error threshold.
2627  * @qm: the uacce device
2628  */
2629 static int qm_hw_err_isolate(struct hisi_qm *qm)
2630 {
2631 	struct qm_hw_err *err, *tmp, *hw_err;
2632 	struct qm_err_isolate *isolate;
2633 	u32 count = 0;
2634 
2635 	isolate = &qm->isolate_data;
2636 
2637 #define SECONDS_PER_HOUR	3600
2638 
2639 	/* All the hw errs are processed by PF driver */
2640 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2641 		return 0;
2642 
2643 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2644 	if (!hw_err)
2645 		return -ENOMEM;
2646 
2647 	/*
2648 	 * Time-stamp every slot AER error. Then check the AER error log when the
2649 	 * next device AER error occurred. if the device slot AER error count exceeds
2650 	 * the setting error threshold in one hour, the isolated state will be set
2651 	 * to true. And the AER error logs that exceed one hour will be cleared.
2652 	 */
2653 	mutex_lock(&isolate->isolate_lock);
2654 	hw_err->timestamp = jiffies;
2655 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2656 		if ((hw_err->timestamp - err->timestamp) / HZ >
2657 		    SECONDS_PER_HOUR) {
2658 			list_del(&err->list);
2659 			kfree(err);
2660 		} else {
2661 			count++;
2662 		}
2663 	}
2664 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2665 
2666 	if (count >= isolate->err_threshold)
2667 		isolate->is_isolate = true;
2668 	mutex_unlock(&isolate->isolate_lock);
2669 
2670 	return 0;
2671 }
2672 
2673 static void qm_hw_err_destroy(struct hisi_qm *qm)
2674 {
2675 	struct qm_hw_err *err, *tmp;
2676 
2677 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2678 		list_del(&err->list);
2679 		kfree(err);
2680 	}
2681 }
2682 
2683 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2684 {
2685 	struct hisi_qm *qm = uacce->priv;
2686 	struct hisi_qm *pf_qm;
2687 
2688 	if (uacce->is_vf)
2689 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2690 	else
2691 		pf_qm = qm;
2692 
2693 	return pf_qm->isolate_data.is_isolate ?
2694 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2695 }
2696 
2697 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2698 {
2699 	struct hisi_qm *qm = uacce->priv;
2700 
2701 	/* Must be set by PF */
2702 	if (uacce->is_vf)
2703 		return -EPERM;
2704 
2705 	if (qm->isolate_data.is_isolate)
2706 		return -EPERM;
2707 
2708 	mutex_lock(&qm->isolate_data.isolate_lock);
2709 	qm->isolate_data.err_threshold = num;
2710 
2711 	/* After the policy is updated, need to reset the hardware err list */
2712 	qm_hw_err_destroy(qm);
2713 	mutex_unlock(&qm->isolate_data.isolate_lock);
2714 
2715 	return 0;
2716 }
2717 
2718 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2719 {
2720 	struct hisi_qm *qm = uacce->priv;
2721 	struct hisi_qm *pf_qm;
2722 
2723 	if (uacce->is_vf) {
2724 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2725 		return pf_qm->isolate_data.err_threshold;
2726 	}
2727 
2728 	return qm->isolate_data.err_threshold;
2729 }
2730 
2731 static const struct uacce_ops uacce_qm_ops = {
2732 	.get_available_instances = hisi_qm_get_available_instances,
2733 	.get_queue = hisi_qm_uacce_get_queue,
2734 	.put_queue = hisi_qm_uacce_put_queue,
2735 	.start_queue = hisi_qm_uacce_start_queue,
2736 	.stop_queue = hisi_qm_uacce_stop_queue,
2737 	.mmap = hisi_qm_uacce_mmap,
2738 	.ioctl = hisi_qm_uacce_ioctl,
2739 	.is_q_updated = hisi_qm_is_q_updated,
2740 	.get_isolate_state = hisi_qm_get_isolate_state,
2741 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2742 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2743 };
2744 
2745 static void qm_remove_uacce(struct hisi_qm *qm)
2746 {
2747 	struct uacce_device *uacce = qm->uacce;
2748 
2749 	if (qm->use_sva) {
2750 		mutex_lock(&qm->isolate_data.isolate_lock);
2751 		qm_hw_err_destroy(qm);
2752 		mutex_unlock(&qm->isolate_data.isolate_lock);
2753 
2754 		uacce_remove(uacce);
2755 		qm->uacce = NULL;
2756 	}
2757 }
2758 
2759 static void qm_uacce_api_ver_init(struct hisi_qm *qm)
2760 {
2761 	struct uacce_device *uacce = qm->uacce;
2762 
2763 	switch (qm->ver) {
2764 	case QM_HW_V1:
2765 		uacce->api_ver = HISI_QM_API_VER_BASE;
2766 		break;
2767 	case QM_HW_V2:
2768 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2769 		break;
2770 	case QM_HW_V3:
2771 	case QM_HW_V4:
2772 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2773 		break;
2774 	default:
2775 		uacce->api_ver = HISI_QM_API_VER5_BASE;
2776 		break;
2777 	}
2778 }
2779 
2780 static int qm_alloc_uacce(struct hisi_qm *qm)
2781 {
2782 	struct pci_dev *pdev = qm->pdev;
2783 	struct uacce_device *uacce;
2784 	unsigned long mmio_page_nr;
2785 	unsigned long dus_page_nr;
2786 	u16 sq_depth, cq_depth;
2787 	struct uacce_interface interface = {
2788 		.flags = UACCE_DEV_SVA,
2789 		.ops = &uacce_qm_ops,
2790 	};
2791 	int ret;
2792 
2793 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2794 		      sizeof(interface.name));
2795 	if (ret < 0)
2796 		return -ENAMETOOLONG;
2797 
2798 	uacce = uacce_alloc(&pdev->dev, &interface);
2799 	if (IS_ERR(uacce))
2800 		return PTR_ERR(uacce);
2801 
2802 	if (uacce->flags & UACCE_DEV_SVA) {
2803 		qm->use_sva = true;
2804 	} else {
2805 		/* only consider sva case */
2806 		qm_remove_uacce(qm);
2807 		return -EINVAL;
2808 	}
2809 
2810 	uacce->is_vf = pdev->is_virtfn;
2811 	uacce->priv = qm;
2812 
2813 	if (qm->ver == QM_HW_V1)
2814 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2815 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2816 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2817 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2818 	else
2819 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2820 
2821 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2822 
2823 	/* Add one more page for device or qp status */
2824 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2825 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2826 					 PAGE_SHIFT;
2827 
2828 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2829 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2830 
2831 	qm->uacce = uacce;
2832 	qm_uacce_api_ver_init(qm);
2833 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2834 	mutex_init(&qm->isolate_data.isolate_lock);
2835 
2836 	return 0;
2837 }
2838 
2839 /**
2840  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2841  * there is user on the QM, return failure without doing anything.
2842  * @qm: The qm needed to be fronzen.
2843  *
2844  * This function frozes QM, then we can do SRIOV disabling.
2845  */
2846 static int qm_frozen(struct hisi_qm *qm)
2847 {
2848 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2849 		return 0;
2850 
2851 	down_write(&qm->qps_lock);
2852 
2853 	if (!qm->qp_in_used) {
2854 		qm->qp_in_used = qm->qp_num;
2855 		up_write(&qm->qps_lock);
2856 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2857 		return 0;
2858 	}
2859 
2860 	up_write(&qm->qps_lock);
2861 
2862 	return -EBUSY;
2863 }
2864 
2865 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2866 			     struct hisi_qm_list *qm_list)
2867 {
2868 	struct hisi_qm *qm, *vf_qm;
2869 	struct pci_dev *dev;
2870 	int ret = 0;
2871 
2872 	if (!qm_list || !pdev)
2873 		return -EINVAL;
2874 
2875 	/* Try to frozen all the VFs as disable SRIOV */
2876 	mutex_lock(&qm_list->lock);
2877 	list_for_each_entry(qm, &qm_list->list, list) {
2878 		dev = qm->pdev;
2879 		if (dev == pdev)
2880 			continue;
2881 		if (pci_physfn(dev) == pdev) {
2882 			vf_qm = pci_get_drvdata(dev);
2883 			ret = qm_frozen(vf_qm);
2884 			if (ret)
2885 				goto frozen_fail;
2886 		}
2887 	}
2888 
2889 frozen_fail:
2890 	mutex_unlock(&qm_list->lock);
2891 
2892 	return ret;
2893 }
2894 
2895 /**
2896  * hisi_qm_wait_task_finish() - Wait until the task is finished
2897  * when removing the driver.
2898  * @qm: The qm needed to wait for the task to finish.
2899  * @qm_list: The list of all available devices.
2900  */
2901 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2902 {
2903 	while (qm_frozen(qm) ||
2904 	       ((qm->fun_type == QM_HW_PF) &&
2905 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2906 		msleep(WAIT_PERIOD);
2907 	}
2908 
2909 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2910 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2911 		msleep(WAIT_PERIOD);
2912 
2913 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2914 		flush_work(&qm->cmd_process);
2915 
2916 	udelay(REMOVE_WAIT_DELAY);
2917 }
2918 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2919 
2920 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2921 {
2922 	struct device *dev = &qm->pdev->dev;
2923 	struct qm_dma *qdma;
2924 	int i;
2925 
2926 	for (i = num - 1; i >= 0; i--) {
2927 		qdma = &qm->qp_array[i].qdma;
2928 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2929 		kfree(qm->poll_data[i].qp_finish_id);
2930 	}
2931 
2932 	kfree(qm->poll_data);
2933 	kfree(qm->qp_array);
2934 }
2935 
2936 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2937 			       u16 sq_depth, u16 cq_depth)
2938 {
2939 	struct device *dev = &qm->pdev->dev;
2940 	size_t off = qm->sqe_size * sq_depth;
2941 	struct hisi_qp *qp;
2942 	int ret = -ENOMEM;
2943 
2944 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2945 						 GFP_KERNEL);
2946 	if (!qm->poll_data[id].qp_finish_id)
2947 		return -ENOMEM;
2948 
2949 	qp = &qm->qp_array[id];
2950 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2951 					 GFP_KERNEL);
2952 	if (!qp->qdma.va)
2953 		goto err_free_qp_finish_id;
2954 
2955 	qp->sqe = qp->qdma.va;
2956 	qp->sqe_dma = qp->qdma.dma;
2957 	qp->cqe = qp->qdma.va + off;
2958 	qp->cqe_dma = qp->qdma.dma + off;
2959 	qp->qdma.size = dma_size;
2960 	qp->sq_depth = sq_depth;
2961 	qp->cq_depth = cq_depth;
2962 	qp->qm = qm;
2963 	qp->qp_id = id;
2964 
2965 	return 0;
2966 
2967 err_free_qp_finish_id:
2968 	kfree(qm->poll_data[id].qp_finish_id);
2969 	return ret;
2970 }
2971 
2972 static void hisi_qm_pre_init(struct hisi_qm *qm)
2973 {
2974 	struct pci_dev *pdev = qm->pdev;
2975 
2976 	if (qm->ver == QM_HW_V1)
2977 		qm->ops = &qm_hw_ops_v1;
2978 	else if (qm->ver == QM_HW_V2)
2979 		qm->ops = &qm_hw_ops_v2;
2980 	else if (qm->ver == QM_HW_V3)
2981 		qm->ops = &qm_hw_ops_v3;
2982 	else
2983 		qm->ops = &qm_hw_ops_v4;
2984 
2985 	pci_set_drvdata(pdev, qm);
2986 	mutex_init(&qm->mailbox_lock);
2987 	mutex_init(&qm->ifc_lock);
2988 	init_rwsem(&qm->qps_lock);
2989 	qm->qp_in_used = 0;
2990 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2991 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2992 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2993 	}
2994 }
2995 
2996 static void qm_cmd_uninit(struct hisi_qm *qm)
2997 {
2998 	u32 val;
2999 
3000 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3001 		return;
3002 
3003 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3004 	val |= QM_IFC_INT_DISABLE;
3005 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3006 }
3007 
3008 static void qm_cmd_init(struct hisi_qm *qm)
3009 {
3010 	u32 val;
3011 
3012 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3013 		return;
3014 
3015 	/* Clear communication interrupt source */
3016 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3017 
3018 	/* Enable pf to vf communication reg. */
3019 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3020 	val &= ~QM_IFC_INT_DISABLE;
3021 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3022 }
3023 
3024 static void qm_put_pci_res(struct hisi_qm *qm)
3025 {
3026 	struct pci_dev *pdev = qm->pdev;
3027 
3028 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3029 		iounmap(qm->db_io_base);
3030 
3031 	iounmap(qm->io_base);
3032 	pci_release_mem_regions(pdev);
3033 }
3034 
3035 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3036 {
3037 	struct pci_dev *pdev = qm->pdev;
3038 
3039 	pci_free_irq_vectors(pdev);
3040 	qm_put_pci_res(qm);
3041 	pci_disable_device(pdev);
3042 }
3043 
3044 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3045 {
3046 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3047 		writel(state, qm->io_base + QM_VF_STATE);
3048 }
3049 
3050 static void hisi_qm_unint_work(struct hisi_qm *qm)
3051 {
3052 	destroy_workqueue(qm->wq);
3053 }
3054 
3055 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
3056 {
3057 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
3058 	struct device *dev = &qm->pdev->dev;
3059 
3060 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
3061 }
3062 
3063 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3064 {
3065 	struct device *dev = &qm->pdev->dev;
3066 
3067 	hisi_qp_memory_uninit(qm, qm->qp_num);
3068 	hisi_qm_free_rsv_buf(qm);
3069 	if (qm->qdma.va) {
3070 		hisi_qm_cache_wb(qm);
3071 		dma_free_coherent(dev, qm->qdma.size,
3072 				  qm->qdma.va, qm->qdma.dma);
3073 	}
3074 
3075 	idr_destroy(&qm->qp_idr);
3076 
3077 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3078 		kfree(qm->factor);
3079 }
3080 
3081 /**
3082  * hisi_qm_uninit() - Uninitialize qm.
3083  * @qm: The qm needed uninit.
3084  *
3085  * This function uninits qm related device resources.
3086  */
3087 void hisi_qm_uninit(struct hisi_qm *qm)
3088 {
3089 	qm_cmd_uninit(qm);
3090 	hisi_qm_unint_work(qm);
3091 
3092 	down_write(&qm->qps_lock);
3093 	hisi_qm_memory_uninit(qm);
3094 	hisi_qm_set_state(qm, QM_NOT_READY);
3095 	up_write(&qm->qps_lock);
3096 
3097 	qm_remove_uacce(qm);
3098 	qm_irqs_unregister(qm);
3099 	hisi_qm_pci_uninit(qm);
3100 }
3101 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3102 
3103 /**
3104  * hisi_qm_get_vft() - Get vft from a qm.
3105  * @qm: The qm we want to get its vft.
3106  * @base: The base number of queue in vft.
3107  * @number: The number of queues in vft.
3108  *
3109  * We can allocate multiple queues to a qm by configuring virtual function
3110  * table. We get related configures by this function. Normally, we call this
3111  * function in VF driver to get the queue information.
3112  *
3113  * qm hw v1 does not support this interface.
3114  */
3115 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3116 {
3117 	if (!base || !number)
3118 		return -EINVAL;
3119 
3120 	if (!qm->ops->get_vft) {
3121 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3122 		return -EINVAL;
3123 	}
3124 
3125 	return qm->ops->get_vft(qm, base, number);
3126 }
3127 
3128 /**
3129  * hisi_qm_set_vft() - Set vft to a qm.
3130  * @qm: The qm we want to set its vft.
3131  * @fun_num: The function number.
3132  * @base: The base number of queue in vft.
3133  * @number: The number of queues in vft.
3134  *
3135  * This function is alway called in PF driver, it is used to assign queues
3136  * among PF and VFs.
3137  *
3138  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3139  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3140  * (VF function number 0x2)
3141  */
3142 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3143 		    u32 number)
3144 {
3145 	u32 max_q_num = qm->ctrl_qp_num;
3146 
3147 	if (base >= max_q_num || number > max_q_num ||
3148 	    (base + number) > max_q_num)
3149 		return -EINVAL;
3150 
3151 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3152 }
3153 
3154 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3155 {
3156 	struct hisi_qm_status *status = &qm->status;
3157 
3158 	status->eq_head = 0;
3159 	status->aeq_head = 0;
3160 	status->eqc_phase = true;
3161 	status->aeqc_phase = true;
3162 }
3163 
3164 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3165 {
3166 	/* Clear eq/aeq interrupt source */
3167 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3168 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3169 
3170 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3171 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3172 }
3173 
3174 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3175 {
3176 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3177 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3178 }
3179 
3180 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3181 {
3182 	struct qm_eqc eqc = {0};
3183 
3184 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3185 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3186 	if (qm->ver == QM_HW_V1)
3187 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3188 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3189 
3190 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3191 }
3192 
3193 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3194 {
3195 	struct qm_aeqc aeqc = {0};
3196 
3197 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3198 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3199 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3200 
3201 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3202 }
3203 
3204 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3205 {
3206 	struct device *dev = &qm->pdev->dev;
3207 	int ret;
3208 
3209 	qm_init_eq_aeq_status(qm);
3210 
3211 	/* Before starting the dev, clear the memory and then configure to device using. */
3212 	memset(qm->qdma.va, 0, qm->qdma.size);
3213 
3214 	ret = qm_eq_ctx_cfg(qm);
3215 	if (ret) {
3216 		dev_err(dev, "Set eqc failed!\n");
3217 		return ret;
3218 	}
3219 
3220 	return qm_aeq_ctx_cfg(qm);
3221 }
3222 
3223 static int __hisi_qm_start(struct hisi_qm *qm)
3224 {
3225 	struct device *dev = &qm->pdev->dev;
3226 	int ret;
3227 
3228 	if (!qm->qdma.va) {
3229 		dev_err(dev, "qm qdma is NULL!\n");
3230 		return -EINVAL;
3231 	}
3232 
3233 	if (qm->fun_type == QM_HW_PF) {
3234 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3235 		if (ret)
3236 			return ret;
3237 	}
3238 
3239 	ret = qm_eq_aeq_ctx_cfg(qm);
3240 	if (ret)
3241 		return ret;
3242 
3243 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3244 	if (ret)
3245 		return ret;
3246 
3247 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3248 	if (ret)
3249 		return ret;
3250 
3251 	qm_init_prefetch(qm);
3252 	qm_enable_eq_aeq_interrupts(qm);
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * hisi_qm_start() - start qm
3259  * @qm: The qm to be started.
3260  *
3261  * This function starts a qm, then we can allocate qp from this qm.
3262  */
3263 int hisi_qm_start(struct hisi_qm *qm)
3264 {
3265 	struct device *dev = &qm->pdev->dev;
3266 	int ret = 0;
3267 
3268 	down_write(&qm->qps_lock);
3269 
3270 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3271 
3272 	if (!qm->qp_num) {
3273 		dev_err(dev, "qp_num should not be 0\n");
3274 		ret = -EINVAL;
3275 		goto err_unlock;
3276 	}
3277 
3278 	ret = __hisi_qm_start(qm);
3279 	if (ret)
3280 		goto err_unlock;
3281 
3282 	atomic_set(&qm->status.flags, QM_WORK);
3283 	hisi_qm_set_state(qm, QM_READY);
3284 
3285 err_unlock:
3286 	up_write(&qm->qps_lock);
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(hisi_qm_start);
3290 
3291 static int qm_restart(struct hisi_qm *qm)
3292 {
3293 	struct device *dev = &qm->pdev->dev;
3294 	struct hisi_qp *qp;
3295 	int ret, i;
3296 
3297 	ret = hisi_qm_start(qm);
3298 	if (ret < 0)
3299 		return ret;
3300 
3301 	down_write(&qm->qps_lock);
3302 	for (i = 0; i < qm->qp_num; i++) {
3303 		qp = &qm->qp_array[i];
3304 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3305 		    qp->is_resetting == true && qp->is_in_kernel == true) {
3306 			ret = qm_start_qp_nolock(qp, 0);
3307 			if (ret < 0) {
3308 				dev_err(dev, "Failed to start qp%d!\n", i);
3309 
3310 				up_write(&qm->qps_lock);
3311 				return ret;
3312 			}
3313 			qp->is_resetting = false;
3314 		}
3315 	}
3316 	up_write(&qm->qps_lock);
3317 
3318 	return 0;
3319 }
3320 
3321 /* Stop started qps in reset flow */
3322 static void qm_stop_started_qp(struct hisi_qm *qm)
3323 {
3324 	struct hisi_qp *qp;
3325 	int i;
3326 
3327 	for (i = 0; i < qm->qp_num; i++) {
3328 		qp = &qm->qp_array[i];
3329 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3330 			qp->is_resetting = true;
3331 			qm_stop_qp_nolock(qp);
3332 		}
3333 	}
3334 }
3335 
3336 /**
3337  * qm_invalid_queues() - invalid all queues in use.
3338  * @qm: The qm in which the queues will be invalidated.
3339  *
3340  * This function invalid all queues in use. If the doorbell command is sent
3341  * to device in user space after the device is reset, the device discards
3342  * the doorbell command.
3343  */
3344 static void qm_invalid_queues(struct hisi_qm *qm)
3345 {
3346 	struct hisi_qp *qp;
3347 	struct qm_sqc *sqc;
3348 	struct qm_cqc *cqc;
3349 	int i;
3350 
3351 	/*
3352 	 * Normal stop queues is no longer used and does not need to be
3353 	 * invalid queues.
3354 	 */
3355 	if (qm->status.stop_reason == QM_NORMAL)
3356 		return;
3357 
3358 	if (qm->status.stop_reason == QM_DOWN)
3359 		hisi_qm_cache_wb(qm);
3360 
3361 	for (i = 0; i < qm->qp_num; i++) {
3362 		qp = &qm->qp_array[i];
3363 		if (!qp->is_resetting)
3364 			continue;
3365 
3366 		/* Modify random data and set sqc close bit to invalid queue. */
3367 		sqc = qm->sqc + i;
3368 		cqc = qm->cqc + i;
3369 		sqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3370 		sqc->w13 = cpu_to_le16(QM_SQC_DISABLE_QP);
3371 		cqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3372 		if (qp->is_in_kernel)
3373 			memset(qp->qdma.va, 0, qp->qdma.size);
3374 	}
3375 }
3376 
3377 /**
3378  * hisi_qm_stop() - Stop a qm.
3379  * @qm: The qm which will be stopped.
3380  * @r: The reason to stop qm.
3381  *
3382  * This function stops qm and its qps, then qm can not accept request.
3383  * Related resources are not released at this state, we can use hisi_qm_start
3384  * to let qm start again.
3385  */
3386 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3387 {
3388 	struct device *dev = &qm->pdev->dev;
3389 	int ret = 0;
3390 
3391 	down_write(&qm->qps_lock);
3392 
3393 	if (atomic_read(&qm->status.flags) == QM_STOP)
3394 		goto err_unlock;
3395 
3396 	/* Stop all the request sending at first. */
3397 	atomic_set(&qm->status.flags, QM_STOP);
3398 	qm->status.stop_reason = r;
3399 
3400 	if (qm->status.stop_reason != QM_NORMAL) {
3401 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3402 		/*
3403 		 * When performing soft reset, the hardware will no longer
3404 		 * do tasks, and the tasks in the device will be flushed
3405 		 * out directly since the master ooo is closed.
3406 		 */
3407 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3408 		    r != QM_SOFT_RESET) {
3409 			ret = qm_drain_qm(qm);
3410 			if (ret) {
3411 				dev_err(dev, "failed to drain qm!\n");
3412 				goto err_unlock;
3413 			}
3414 		}
3415 
3416 		qm_stop_started_qp(qm);
3417 
3418 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3419 	}
3420 
3421 	qm_disable_eq_aeq_interrupts(qm);
3422 	if (qm->fun_type == QM_HW_PF) {
3423 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3424 		if (ret < 0) {
3425 			dev_err(dev, "Failed to set vft!\n");
3426 			ret = -EBUSY;
3427 			goto err_unlock;
3428 		}
3429 	}
3430 
3431 	qm_invalid_queues(qm);
3432 	qm->status.stop_reason = QM_NORMAL;
3433 
3434 err_unlock:
3435 	up_write(&qm->qps_lock);
3436 	return ret;
3437 }
3438 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3439 
3440 static void qm_hw_error_init(struct hisi_qm *qm)
3441 {
3442 	if (!qm->ops->hw_error_init) {
3443 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3444 		return;
3445 	}
3446 
3447 	qm->ops->hw_error_init(qm);
3448 }
3449 
3450 static void qm_hw_error_uninit(struct hisi_qm *qm)
3451 {
3452 	if (!qm->ops->hw_error_uninit) {
3453 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3454 		return;
3455 	}
3456 
3457 	qm->ops->hw_error_uninit(qm);
3458 }
3459 
3460 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3461 {
3462 	if (!qm->ops->hw_error_handle) {
3463 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3464 		return ACC_ERR_NONE;
3465 	}
3466 
3467 	return qm->ops->hw_error_handle(qm);
3468 }
3469 
3470 /**
3471  * hisi_qm_dev_err_init() - Initialize device error configuration.
3472  * @qm: The qm for which we want to do error initialization.
3473  *
3474  * Initialize QM and device error related configuration.
3475  */
3476 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3477 {
3478 	if (qm->fun_type == QM_HW_VF)
3479 		return;
3480 
3481 	qm_hw_error_init(qm);
3482 
3483 	if (!qm->err_ini->hw_err_enable) {
3484 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3485 		return;
3486 	}
3487 	qm->err_ini->hw_err_enable(qm);
3488 }
3489 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3490 
3491 /**
3492  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3493  * @qm: The qm for which we want to do error uninitialization.
3494  *
3495  * Uninitialize QM and device error related configuration.
3496  */
3497 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3498 {
3499 	if (qm->fun_type == QM_HW_VF)
3500 		return;
3501 
3502 	qm_hw_error_uninit(qm);
3503 
3504 	if (!qm->err_ini->hw_err_disable) {
3505 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3506 		return;
3507 	}
3508 	qm->err_ini->hw_err_disable(qm);
3509 }
3510 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3511 
3512 /**
3513  * hisi_qm_free_qps() - free multiple queue pairs.
3514  * @qps: The queue pairs need to be freed.
3515  * @qp_num: The num of queue pairs.
3516  */
3517 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3518 {
3519 	int i;
3520 
3521 	if (!qps || qp_num <= 0)
3522 		return;
3523 
3524 	for (i = qp_num - 1; i >= 0; i--)
3525 		hisi_qm_release_qp(qps[i]);
3526 }
3527 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3528 
3529 static void free_list(struct list_head *head)
3530 {
3531 	struct hisi_qm_resource *res, *tmp;
3532 
3533 	list_for_each_entry_safe(res, tmp, head, list) {
3534 		list_del(&res->list);
3535 		kfree(res);
3536 	}
3537 }
3538 
3539 static int hisi_qm_sort_devices(int node, struct list_head *head,
3540 				struct hisi_qm_list *qm_list)
3541 {
3542 	struct hisi_qm_resource *res, *tmp;
3543 	struct hisi_qm *qm;
3544 	struct list_head *n;
3545 	struct device *dev;
3546 	int dev_node;
3547 
3548 	list_for_each_entry(qm, &qm_list->list, list) {
3549 		dev = &qm->pdev->dev;
3550 
3551 		dev_node = dev_to_node(dev);
3552 		if (dev_node < 0)
3553 			dev_node = 0;
3554 
3555 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3556 		if (!res)
3557 			return -ENOMEM;
3558 
3559 		res->qm = qm;
3560 		res->distance = node_distance(dev_node, node);
3561 		n = head;
3562 		list_for_each_entry(tmp, head, list) {
3563 			if (res->distance < tmp->distance) {
3564 				n = &tmp->list;
3565 				break;
3566 			}
3567 		}
3568 		list_add_tail(&res->list, n);
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 /**
3575  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3576  * @qm_list: The list of all available devices.
3577  * @qp_num: The number of queue pairs need created.
3578  * @alg_type: The algorithm type.
3579  * @node: The numa node.
3580  * @qps: The queue pairs need created.
3581  *
3582  * This function will sort all available device according to numa distance.
3583  * Then try to create all queue pairs from one device, if all devices do
3584  * not meet the requirements will return error.
3585  */
3586 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3587 			   u8 alg_type, int node, struct hisi_qp **qps)
3588 {
3589 	struct hisi_qm_resource *tmp;
3590 	int ret = -ENODEV;
3591 	LIST_HEAD(head);
3592 	int i;
3593 
3594 	if (!qps || !qm_list || qp_num <= 0)
3595 		return -EINVAL;
3596 
3597 	mutex_lock(&qm_list->lock);
3598 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3599 		mutex_unlock(&qm_list->lock);
3600 		goto err;
3601 	}
3602 
3603 	list_for_each_entry(tmp, &head, list) {
3604 		for (i = 0; i < qp_num; i++) {
3605 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3606 			if (IS_ERR(qps[i])) {
3607 				hisi_qm_free_qps(qps, i);
3608 				break;
3609 			}
3610 		}
3611 
3612 		if (i == qp_num) {
3613 			ret = 0;
3614 			break;
3615 		}
3616 	}
3617 
3618 	mutex_unlock(&qm_list->lock);
3619 	if (ret)
3620 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3621 			node, alg_type, qp_num);
3622 
3623 err:
3624 	free_list(&head);
3625 	return ret;
3626 }
3627 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3628 
3629 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3630 {
3631 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3632 	u32 max_qp_num = qm->max_qp_num;
3633 	u32 q_base = qm->qp_num;
3634 	int ret;
3635 
3636 	if (!num_vfs)
3637 		return -EINVAL;
3638 
3639 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3640 
3641 	/* If vfs_q_num is less than num_vfs, return error. */
3642 	if (vfs_q_num < num_vfs)
3643 		return -EINVAL;
3644 
3645 	q_num = vfs_q_num / num_vfs;
3646 	remain_q_num = vfs_q_num % num_vfs;
3647 
3648 	for (i = num_vfs; i > 0; i--) {
3649 		/*
3650 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3651 		 * remaining queues equally.
3652 		 */
3653 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3654 			act_q_num = q_num + remain_q_num;
3655 			remain_q_num = 0;
3656 		} else if (remain_q_num > 0) {
3657 			act_q_num = q_num + 1;
3658 			remain_q_num--;
3659 		} else {
3660 			act_q_num = q_num;
3661 		}
3662 
3663 		act_q_num = min(act_q_num, max_qp_num);
3664 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3665 		if (ret) {
3666 			for (j = num_vfs; j > i; j--)
3667 				hisi_qm_set_vft(qm, j, 0, 0);
3668 			return ret;
3669 		}
3670 		q_base += act_q_num;
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 static void qm_clear_vft_config(struct hisi_qm *qm)
3677 {
3678 	u32 i;
3679 
3680 	/*
3681 	 * When disabling SR-IOV, clear the configuration of each VF in the hardware
3682 	 * sequentially. Failure to clear a single VF should not affect the clearing
3683 	 * operation of other VFs.
3684 	 */
3685 	for (i = 1; i <= qm->vfs_num; i++)
3686 		(void)hisi_qm_set_vft(qm, i, 0, 0);
3687 
3688 	qm->vfs_num = 0;
3689 }
3690 
3691 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3692 {
3693 	struct device *dev = &qm->pdev->dev;
3694 	struct qm_shaper_factor t_factor;
3695 	u32 ir = qos * QM_QOS_RATE;
3696 	int ret, total_vfs, i;
3697 
3698 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3699 	if (fun_index > total_vfs)
3700 		return -EINVAL;
3701 
3702 	memcpy(&t_factor, &qm->factor[fun_index], sizeof(t_factor));
3703 	qm->factor[fun_index].func_qos = qos;
3704 
3705 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3706 	if (ret) {
3707 		dev_err(dev, "failed to calculate shaper parameter!\n");
3708 		return -EINVAL;
3709 	}
3710 
3711 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3712 		/* The base number of queue reuse for different alg type */
3713 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3714 		if (ret) {
3715 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3716 			goto back_func_qos;
3717 		}
3718 	}
3719 
3720 	return 0;
3721 
3722 back_func_qos:
3723 	memcpy(&qm->factor[fun_index], &t_factor, sizeof(t_factor));
3724 	for (i--; i >= ALG_TYPE_0; i--) {
3725 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3726 		if (ret)
3727 			dev_err(dev, "failed to restore shaper vft during rollback!\n");
3728 	}
3729 
3730 	return -EINVAL;
3731 }
3732 
3733 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3734 {
3735 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3736 	u64 shaper_vft, ir_calc, ir;
3737 	unsigned int val;
3738 	u32 error_rate;
3739 	int ret;
3740 
3741 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3742 					 val & BIT(0), POLL_PERIOD,
3743 					 POLL_TIMEOUT);
3744 	if (ret)
3745 		return 0;
3746 
3747 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3748 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3749 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3750 
3751 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3752 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3753 
3754 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3755 					 val & BIT(0), POLL_PERIOD,
3756 					 POLL_TIMEOUT);
3757 	if (ret)
3758 		return 0;
3759 
3760 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3761 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3762 
3763 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3764 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3765 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3766 
3767 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3768 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3769 
3770 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3771 
3772 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3773 
3774 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3775 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3776 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3777 		return 0;
3778 	}
3779 
3780 	return ir;
3781 }
3782 
3783 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3784 {
3785 	struct device *dev = &qm->pdev->dev;
3786 	u32 qos;
3787 	int ret;
3788 
3789 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3790 	if (!qos) {
3791 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3792 		return;
3793 	}
3794 
3795 	ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num);
3796 	if (ret)
3797 		dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num);
3798 }
3799 
3800 static int qm_vf_read_qos(struct hisi_qm *qm)
3801 {
3802 	int cnt = 0;
3803 	int ret = -EINVAL;
3804 
3805 	/* reset mailbox qos val */
3806 	qm->mb_qos = 0;
3807 
3808 	/* vf ping pf to get function qos */
3809 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3810 	if (ret) {
3811 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3812 		return ret;
3813 	}
3814 
3815 	while (true) {
3816 		msleep(QM_WAIT_DST_ACK);
3817 		if (qm->mb_qos)
3818 			break;
3819 
3820 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3821 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3822 			return  -ETIMEDOUT;
3823 		}
3824 	}
3825 
3826 	return ret;
3827 }
3828 
3829 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3830 			       size_t count, loff_t *pos)
3831 {
3832 	struct hisi_qm *qm = filp->private_data;
3833 	char tbuf[QM_DBG_READ_LEN];
3834 	u32 qos_val, ir;
3835 	int ret;
3836 
3837 	ret = hisi_qm_get_dfx_access(qm);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Mailbox and reset cannot be operated at the same time */
3842 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3843 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3844 		ret = -EAGAIN;
3845 		goto err_put_dfx_access;
3846 	}
3847 
3848 	if (qm->fun_type == QM_HW_PF) {
3849 		ir = qm_get_shaper_vft_qos(qm, 0);
3850 	} else {
3851 		ret = qm_vf_read_qos(qm);
3852 		if (ret)
3853 			goto err_get_status;
3854 		ir = qm->mb_qos;
3855 	}
3856 
3857 	qos_val = ir / QM_QOS_RATE;
3858 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3859 
3860 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3861 
3862 err_get_status:
3863 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3864 err_put_dfx_access:
3865 	hisi_qm_put_dfx_access(qm);
3866 	return ret;
3867 }
3868 
3869 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3870 			       unsigned long *val,
3871 			       unsigned int *fun_index)
3872 {
3873 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3874 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3875 	char val_buf[QM_DBG_READ_LEN] = {0};
3876 	struct pci_dev *pdev;
3877 	struct device *dev;
3878 	int ret;
3879 
3880 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3881 	if (ret != QM_QOS_PARAM_NUM)
3882 		return -EINVAL;
3883 
3884 	ret = kstrtoul(val_buf, 10, val);
3885 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3886 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3887 		return -EINVAL;
3888 	}
3889 
3890 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3891 	if (!dev) {
3892 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3893 		return -ENODEV;
3894 	}
3895 
3896 	pdev = container_of(dev, struct pci_dev, dev);
3897 	if (pci_physfn(pdev) != qm->pdev) {
3898 		pci_err(qm->pdev, "the pdev input does not match the pf!\n");
3899 		return -EINVAL;
3900 	}
3901 
3902 	*fun_index = pdev->devfn;
3903 
3904 	return 0;
3905 }
3906 
3907 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3908 			       size_t count, loff_t *pos)
3909 {
3910 	struct hisi_qm *qm = filp->private_data;
3911 	char tbuf[QM_DBG_READ_LEN];
3912 	unsigned int fun_index;
3913 	unsigned long val;
3914 	int len, ret;
3915 
3916 	if (*pos != 0)
3917 		return 0;
3918 
3919 	if (count >= QM_DBG_READ_LEN)
3920 		return -ENOSPC;
3921 
3922 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3923 	if (len < 0)
3924 		return len;
3925 
3926 	tbuf[len] = '\0';
3927 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3928 	if (ret)
3929 		return ret;
3930 
3931 	/* Mailbox and reset cannot be operated at the same time */
3932 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3933 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3934 		return -EAGAIN;
3935 	}
3936 
3937 	ret = qm_pm_get_sync(qm);
3938 	if (ret) {
3939 		ret = -EINVAL;
3940 		goto err_get_status;
3941 	}
3942 
3943 	ret = qm_func_shaper_enable(qm, fun_index, val);
3944 	if (ret) {
3945 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3946 		ret = -EINVAL;
3947 		goto err_put_sync;
3948 	}
3949 
3950 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3951 		 fun_index, val);
3952 	ret = count;
3953 
3954 err_put_sync:
3955 	qm_pm_put_sync(qm);
3956 err_get_status:
3957 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3958 	return ret;
3959 }
3960 
3961 static const struct file_operations qm_algqos_fops = {
3962 	.owner = THIS_MODULE,
3963 	.open = simple_open,
3964 	.read = qm_algqos_read,
3965 	.write = qm_algqos_write,
3966 };
3967 
3968 /**
3969  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3970  * @qm: The qm for which we want to add debugfs files.
3971  *
3972  * Create function qos debugfs files, VF ping PF to get function qos.
3973  */
3974 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3975 {
3976 	if (qm->fun_type == QM_HW_PF)
3977 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3978 				    qm, &qm_algqos_fops);
3979 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3980 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3981 				    qm, &qm_algqos_fops);
3982 }
3983 
3984 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3985 {
3986 	int i;
3987 
3988 	for (i = 1; i <= total_func; i++)
3989 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3990 }
3991 
3992 /**
3993  * hisi_qm_sriov_enable() - enable virtual functions
3994  * @pdev: the PCIe device
3995  * @max_vfs: the number of virtual functions to enable
3996  *
3997  * Returns the number of enabled VFs. If there are VFs enabled already or
3998  * max_vfs is more than the total number of device can be enabled, returns
3999  * failure.
4000  */
4001 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4002 {
4003 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4004 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4005 
4006 	ret = qm_pm_get_sync(qm);
4007 	if (ret)
4008 		return ret;
4009 
4010 	total_vfs = pci_sriov_get_totalvfs(pdev);
4011 	pre_existing_vfs = pci_num_vf(pdev);
4012 	if (pre_existing_vfs) {
4013 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4014 			pre_existing_vfs);
4015 		goto err_put_sync;
4016 	}
4017 
4018 	if (max_vfs > total_vfs) {
4019 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
4020 		ret = -ERANGE;
4021 		goto err_put_sync;
4022 	}
4023 
4024 	num_vfs = max_vfs;
4025 
4026 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4027 		hisi_qm_init_vf_qos(qm, num_vfs);
4028 
4029 	ret = qm_vf_q_assign(qm, num_vfs);
4030 	if (ret) {
4031 		pci_err(pdev, "Can't assign queues for VF!\n");
4032 		goto err_put_sync;
4033 	}
4034 
4035 	qm->vfs_num = num_vfs;
4036 	ret = pci_enable_sriov(pdev, num_vfs);
4037 	if (ret) {
4038 		pci_err(pdev, "Can't enable VF!\n");
4039 		qm_clear_vft_config(qm);
4040 		goto err_put_sync;
4041 	}
4042 
4043 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4044 
4045 	return num_vfs;
4046 
4047 err_put_sync:
4048 	qm_pm_put_sync(qm);
4049 	return ret;
4050 }
4051 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4052 
4053 /**
4054  * hisi_qm_sriov_disable - disable virtual functions
4055  * @pdev: the PCI device.
4056  * @is_frozen: true when all the VFs are frozen.
4057  *
4058  * Return failure if there are VFs assigned already or VF is in used.
4059  */
4060 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4061 {
4062 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4063 
4064 	if (pci_vfs_assigned(pdev)) {
4065 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4066 		return -EPERM;
4067 	}
4068 
4069 	/* While VF is in used, SRIOV cannot be disabled. */
4070 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4071 		pci_err(pdev, "Task is using its VF!\n");
4072 		return -EBUSY;
4073 	}
4074 
4075 	pci_disable_sriov(pdev);
4076 	qm_clear_vft_config(qm);
4077 	qm_pm_put_sync(qm);
4078 
4079 	return 0;
4080 }
4081 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4082 
4083 /**
4084  * hisi_qm_sriov_configure - configure the number of VFs
4085  * @pdev: The PCI device
4086  * @num_vfs: The number of VFs need enabled
4087  *
4088  * Enable SR-IOV according to num_vfs, 0 means disable.
4089  */
4090 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4091 {
4092 	if (num_vfs == 0)
4093 		return hisi_qm_sriov_disable(pdev, false);
4094 	else
4095 		return hisi_qm_sriov_enable(pdev, num_vfs);
4096 }
4097 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4098 
4099 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4100 {
4101 	if (!qm->err_ini->get_err_result) {
4102 		dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
4103 		return ACC_ERR_NONE;
4104 	}
4105 
4106 	return qm->err_ini->get_err_result(qm);
4107 }
4108 
4109 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4110 {
4111 	enum acc_err_result qm_ret, dev_ret;
4112 
4113 	/* log qm error */
4114 	qm_ret = qm_hw_error_handle(qm);
4115 
4116 	/* log device error */
4117 	dev_ret = qm_dev_err_handle(qm);
4118 
4119 	return (qm_ret == ACC_ERR_NEED_RESET ||
4120 		dev_ret == ACC_ERR_NEED_RESET) ?
4121 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4122 }
4123 
4124 /**
4125  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4126  * @pdev: The PCI device which need report error.
4127  * @state: The connectivity between CPU and device.
4128  *
4129  * We register this function into PCIe AER handlers, It will report device or
4130  * qm hardware error status when error occur.
4131  */
4132 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4133 					  pci_channel_state_t state)
4134 {
4135 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4136 	enum acc_err_result ret;
4137 
4138 	if (pdev->is_virtfn)
4139 		return PCI_ERS_RESULT_NONE;
4140 
4141 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4142 	if (state == pci_channel_io_perm_failure)
4143 		return PCI_ERS_RESULT_DISCONNECT;
4144 
4145 	ret = qm_process_dev_error(qm);
4146 	if (ret == ACC_ERR_NEED_RESET)
4147 		return PCI_ERS_RESULT_NEED_RESET;
4148 
4149 	return PCI_ERS_RESULT_RECOVERED;
4150 }
4151 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4152 
4153 static int qm_check_req_recv(struct hisi_qm *qm)
4154 {
4155 	struct pci_dev *pdev = qm->pdev;
4156 	int ret;
4157 	u32 val;
4158 
4159 	if (qm->ver >= QM_HW_V3)
4160 		return 0;
4161 
4162 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4163 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4164 					 (val == ACC_VENDOR_ID_VALUE),
4165 					 POLL_PERIOD, POLL_TIMEOUT);
4166 	if (ret) {
4167 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4168 		return ret;
4169 	}
4170 
4171 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4172 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4173 					 (val == PCI_VENDOR_ID_HUAWEI),
4174 					 POLL_PERIOD, POLL_TIMEOUT);
4175 	if (ret)
4176 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4177 
4178 	return ret;
4179 }
4180 
4181 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4182 {
4183 	struct pci_dev *pdev = qm->pdev;
4184 	u16 cmd;
4185 	int i;
4186 
4187 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4188 	if (set)
4189 		cmd |= PCI_COMMAND_MEMORY;
4190 	else
4191 		cmd &= ~PCI_COMMAND_MEMORY;
4192 
4193 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4194 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4195 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4196 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4197 			return 0;
4198 
4199 		udelay(1);
4200 	}
4201 
4202 	return -ETIMEDOUT;
4203 }
4204 
4205 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4206 {
4207 	struct pci_dev *pdev = qm->pdev;
4208 	u16 sriov_ctrl;
4209 	int pos;
4210 	int i;
4211 
4212 	/*
4213 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
4214 	 * pci_find_ext_capability cannot return 0, pos does not need to be
4215 	 * checked.
4216 	 */
4217 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4218 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4219 	if (set)
4220 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4221 	else
4222 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4223 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4224 
4225 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4226 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4227 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4228 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4229 			return 0;
4230 
4231 		udelay(1);
4232 	}
4233 
4234 	return -ETIMEDOUT;
4235 }
4236 
4237 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4238 {
4239 	u32 nfe_enb = 0;
4240 
4241 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4242 	if (qm->ver >= QM_HW_V3)
4243 		return;
4244 
4245 	if (!qm->err_status.is_dev_ecc_mbit &&
4246 	    qm->err_status.is_qm_ecc_mbit &&
4247 	    qm->err_ini->close_axi_master_ooo) {
4248 		qm->err_ini->close_axi_master_ooo(qm);
4249 	} else if (qm->err_status.is_dev_ecc_mbit &&
4250 		   !qm->err_status.is_qm_ecc_mbit &&
4251 		   !qm->err_ini->close_axi_master_ooo) {
4252 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4253 		writel(nfe_enb & ~qm->err_info.qm_err.ecc_2bits_mask,
4254 		       qm->io_base + QM_RAS_NFE_ENABLE);
4255 		writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SET);
4256 	}
4257 }
4258 
4259 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4260 			       enum qm_stop_reason stop_reason)
4261 {
4262 	struct hisi_qm_list *qm_list = qm->qm_list;
4263 	struct pci_dev *pdev = qm->pdev;
4264 	struct pci_dev *virtfn;
4265 	struct hisi_qm *vf_qm;
4266 	int ret = 0;
4267 
4268 	mutex_lock(&qm_list->lock);
4269 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4270 		virtfn = vf_qm->pdev;
4271 		if (virtfn == pdev)
4272 			continue;
4273 
4274 		if (pci_physfn(virtfn) == pdev) {
4275 			/* save VFs PCIE BAR configuration */
4276 			pci_save_state(virtfn);
4277 
4278 			ret = hisi_qm_stop(vf_qm, stop_reason);
4279 			if (ret)
4280 				goto stop_fail;
4281 		}
4282 	}
4283 
4284 stop_fail:
4285 	mutex_unlock(&qm_list->lock);
4286 	return ret;
4287 }
4288 
4289 static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd,
4290 			   enum qm_stop_reason stop_reason)
4291 {
4292 	struct pci_dev *pdev = qm->pdev;
4293 	int ret;
4294 
4295 	if (!qm->vfs_num)
4296 		return 0;
4297 
4298 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4299 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4300 		ret = qm_ping_all_vfs(qm, cmd);
4301 		if (ret)
4302 			pci_err(pdev, "failed to send command to all VFs before PF reset!\n");
4303 	} else {
4304 		ret = qm_vf_reset_prepare(qm, stop_reason);
4305 		if (ret)
4306 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4307 	}
4308 
4309 	return ret;
4310 }
4311 
4312 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4313 {
4314 	struct pci_dev *pdev = qm->pdev;
4315 	int ret;
4316 
4317 	if (qm->err_ini->set_priv_status) {
4318 		ret = qm->err_ini->set_priv_status(qm);
4319 		if (ret)
4320 			return ret;
4321 	}
4322 
4323 	ret = qm_reset_prepare_ready(qm);
4324 	if (ret) {
4325 		pci_err(pdev, "Controller reset not ready!\n");
4326 		return ret;
4327 	}
4328 
4329 	qm_dev_ecc_mbit_handle(qm);
4330 
4331 	/* PF obtains the information of VF by querying the register. */
4332 	qm_cmd_uninit(qm);
4333 
4334 	/* Whether VFs stop successfully, soft reset will continue. */
4335 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4336 	if (ret)
4337 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4338 
4339 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4340 	if (ret) {
4341 		pci_err(pdev, "Fails to stop QM!\n");
4342 		qm_reset_bit_clear(qm);
4343 		return ret;
4344 	}
4345 
4346 	if (qm->use_sva) {
4347 		ret = qm_hw_err_isolate(qm);
4348 		if (ret)
4349 			pci_err(pdev, "failed to isolate hw err!\n");
4350 	}
4351 
4352 	ret = qm_wait_vf_prepare_finish(qm);
4353 	if (ret)
4354 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4355 
4356 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4357 
4358 	return 0;
4359 }
4360 
4361 static int qm_master_ooo_check(struct hisi_qm *qm)
4362 {
4363 	u32 val;
4364 	int ret;
4365 
4366 	/* Check the ooo register of the device before resetting the device. */
4367 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4368 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4369 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4370 					 POLL_PERIOD, POLL_TIMEOUT);
4371 	if (ret)
4372 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4373 
4374 	return ret;
4375 }
4376 
4377 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4378 {
4379 	struct pci_dev *pdev = qm->pdev;
4380 	int ret;
4381 
4382 	/* Ensure all doorbells and mailboxes received by QM */
4383 	ret = qm_check_req_recv(qm);
4384 	if (ret)
4385 		return ret;
4386 
4387 	if (qm->vfs_num) {
4388 		ret = qm_set_vf_mse(qm, false);
4389 		if (ret) {
4390 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4391 			return ret;
4392 		}
4393 	}
4394 
4395 	ret = qm->ops->set_msi(qm, false);
4396 	if (ret) {
4397 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4398 		return ret;
4399 	}
4400 
4401 	ret = qm_master_ooo_check(qm);
4402 	if (ret)
4403 		return ret;
4404 
4405 	if (qm->err_ini->close_sva_prefetch)
4406 		qm->err_ini->close_sva_prefetch(qm);
4407 
4408 	ret = qm_set_pf_mse(qm, false);
4409 	if (ret)
4410 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4411 
4412 	return ret;
4413 }
4414 
4415 static int qm_reset_device(struct hisi_qm *qm)
4416 {
4417 	struct pci_dev *pdev = qm->pdev;
4418 
4419 	/* The reset related sub-control registers are not in PCI BAR */
4420 	if (ACPI_HANDLE(&pdev->dev)) {
4421 		unsigned long long value = 0;
4422 		acpi_status s;
4423 
4424 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4425 					  qm->err_info.acpi_rst,
4426 					  NULL, &value);
4427 		if (ACPI_FAILURE(s)) {
4428 			pci_err(pdev, "NO controller reset method!\n");
4429 			return -EIO;
4430 		}
4431 
4432 		if (value) {
4433 			pci_err(pdev, "Reset step %llu failed!\n", value);
4434 			return -EIO;
4435 		}
4436 
4437 		return 0;
4438 	}
4439 
4440 	pci_err(pdev, "No reset method!\n");
4441 	return -EINVAL;
4442 }
4443 
4444 static int qm_soft_reset(struct hisi_qm *qm)
4445 {
4446 	int ret;
4447 
4448 	ret = qm_soft_reset_prepare(qm);
4449 	if (ret)
4450 		return ret;
4451 
4452 	return qm_reset_device(qm);
4453 }
4454 
4455 static int qm_vf_reset_done(struct hisi_qm *qm)
4456 {
4457 	struct hisi_qm_list *qm_list = qm->qm_list;
4458 	struct pci_dev *pdev = qm->pdev;
4459 	struct pci_dev *virtfn;
4460 	struct hisi_qm *vf_qm;
4461 	int ret = 0;
4462 
4463 	mutex_lock(&qm_list->lock);
4464 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4465 		virtfn = vf_qm->pdev;
4466 		if (virtfn == pdev)
4467 			continue;
4468 
4469 		if (pci_physfn(virtfn) == pdev) {
4470 			/* enable VFs PCIE BAR configuration */
4471 			pci_restore_state(virtfn);
4472 
4473 			ret = qm_restart(vf_qm);
4474 			if (ret)
4475 				goto restart_fail;
4476 		}
4477 	}
4478 
4479 restart_fail:
4480 	mutex_unlock(&qm_list->lock);
4481 	return ret;
4482 }
4483 
4484 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
4485 {
4486 	struct pci_dev *pdev = qm->pdev;
4487 	int ret;
4488 
4489 	if (!qm->vfs_num)
4490 		return 0;
4491 
4492 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4493 	if (ret) {
4494 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4495 		return ret;
4496 	}
4497 
4498 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4499 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4500 		ret = qm_ping_all_vfs(qm, cmd);
4501 		if (ret)
4502 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4503 	} else {
4504 		ret = qm_vf_reset_done(qm);
4505 		if (ret)
4506 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4507 	}
4508 
4509 	return ret;
4510 }
4511 
4512 static int qm_dev_hw_init(struct hisi_qm *qm)
4513 {
4514 	return qm->err_ini->hw_init(qm);
4515 }
4516 
4517 static void qm_restart_prepare(struct hisi_qm *qm)
4518 {
4519 	u32 value;
4520 
4521 	if (qm->ver >= QM_HW_V3)
4522 		return;
4523 
4524 	if (!qm->err_status.is_qm_ecc_mbit &&
4525 	    !qm->err_status.is_dev_ecc_mbit)
4526 		return;
4527 
4528 	/* temporarily close the OOO port used for PEH to write out MSI */
4529 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4530 	writel(value & ~qm->err_info.msi_wr_port,
4531 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4532 
4533 	/* clear dev ecc 2bit error source if having */
4534 	value = qm_get_dev_err_status(qm) & qm->err_info.dev_err.ecc_2bits_mask;
4535 	if (value && qm->err_ini->clear_dev_hw_err_status)
4536 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4537 
4538 	/* clear QM ecc mbit error source */
4539 	writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4540 
4541 	/* clear AM Reorder Buffer ecc mbit source */
4542 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4543 }
4544 
4545 static void qm_restart_done(struct hisi_qm *qm)
4546 {
4547 	u32 value;
4548 
4549 	if (qm->ver >= QM_HW_V3)
4550 		goto clear_flags;
4551 
4552 	if (!qm->err_status.is_qm_ecc_mbit &&
4553 	    !qm->err_status.is_dev_ecc_mbit)
4554 		return;
4555 
4556 	/* open the OOO port for PEH to write out MSI */
4557 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4558 	value |= qm->err_info.msi_wr_port;
4559 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4560 
4561 clear_flags:
4562 	qm->err_status.is_qm_ecc_mbit = false;
4563 	qm->err_status.is_dev_ecc_mbit = false;
4564 }
4565 
4566 static void qm_disable_axi_error(struct hisi_qm *qm)
4567 {
4568 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
4569 	u32 val;
4570 
4571 	val = ~(qm->error_mask & (~QM_RAS_AXI_ERROR));
4572 	writel(val, qm->io_base + QM_ABNORMAL_INT_MASK);
4573 	if (qm->ver > QM_HW_V2)
4574 		writel(qm_err->shutdown_mask & (~QM_RAS_AXI_ERROR),
4575 		       qm->io_base + QM_OOO_SHUTDOWN_SEL);
4576 
4577 	if (qm->err_ini->disable_axi_error)
4578 		qm->err_ini->disable_axi_error(qm);
4579 }
4580 
4581 static void qm_enable_axi_error(struct hisi_qm *qm)
4582 {
4583 	/* clear axi error source */
4584 	writel(QM_RAS_AXI_ERROR, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4585 
4586 	writel(~qm->error_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
4587 	if (qm->ver > QM_HW_V2)
4588 		writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
4589 
4590 	if (qm->err_ini->enable_axi_error)
4591 		qm->err_ini->enable_axi_error(qm);
4592 }
4593 
4594 static int qm_controller_reset_done(struct hisi_qm *qm)
4595 {
4596 	struct pci_dev *pdev = qm->pdev;
4597 	int ret;
4598 
4599 	ret = qm->ops->set_msi(qm, true);
4600 	if (ret) {
4601 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4602 		return ret;
4603 	}
4604 
4605 	ret = qm_set_pf_mse(qm, true);
4606 	if (ret) {
4607 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4608 		return ret;
4609 	}
4610 
4611 	if (qm->vfs_num) {
4612 		ret = qm_set_vf_mse(qm, true);
4613 		if (ret) {
4614 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4615 			return ret;
4616 		}
4617 	}
4618 
4619 	ret = qm_dev_hw_init(qm);
4620 	if (ret) {
4621 		pci_err(pdev, "Failed to init device\n");
4622 		return ret;
4623 	}
4624 
4625 	qm_restart_prepare(qm);
4626 	hisi_qm_dev_err_init(qm);
4627 	qm_disable_axi_error(qm);
4628 	if (qm->err_ini->open_axi_master_ooo)
4629 		qm->err_ini->open_axi_master_ooo(qm);
4630 
4631 	ret = qm_dev_mem_reset(qm);
4632 	if (ret) {
4633 		pci_err(pdev, "failed to reset device memory\n");
4634 		return ret;
4635 	}
4636 
4637 	ret = qm_restart(qm);
4638 	if (ret) {
4639 		pci_err(pdev, "Failed to start QM!\n");
4640 		return ret;
4641 	}
4642 
4643 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4644 	if (ret)
4645 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4646 
4647 	ret = qm_wait_vf_prepare_finish(qm);
4648 	if (ret)
4649 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4650 	qm_enable_axi_error(qm);
4651 	qm_cmd_init(qm);
4652 	qm_restart_done(qm);
4653 
4654 	qm_reset_bit_clear(qm);
4655 
4656 	return 0;
4657 }
4658 
4659 static int qm_controller_reset(struct hisi_qm *qm)
4660 {
4661 	struct pci_dev *pdev = qm->pdev;
4662 	int ret;
4663 
4664 	pci_info(pdev, "Controller resetting...\n");
4665 
4666 	ret = qm_controller_reset_prepare(qm);
4667 	if (ret) {
4668 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4669 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4670 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4671 		return ret;
4672 	}
4673 
4674 	hisi_qm_show_last_dfx_regs(qm);
4675 	if (qm->err_ini->show_last_dfx_regs)
4676 		qm->err_ini->show_last_dfx_regs(qm);
4677 
4678 	ret = qm_soft_reset(qm);
4679 	if (ret)
4680 		goto err_reset;
4681 
4682 	ret = qm_controller_reset_done(qm);
4683 	if (ret)
4684 		goto err_reset;
4685 
4686 	pci_info(pdev, "Controller reset complete\n");
4687 
4688 	return 0;
4689 
4690 err_reset:
4691 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4692 	qm_reset_bit_clear(qm);
4693 
4694 	/* if resetting fails, isolate the device */
4695 	if (qm->use_sva)
4696 		qm->isolate_data.is_isolate = true;
4697 	return ret;
4698 }
4699 
4700 /**
4701  * hisi_qm_dev_slot_reset() - slot reset
4702  * @pdev: the PCIe device
4703  *
4704  * This function offers QM relate PCIe device reset interface. Drivers which
4705  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4706  */
4707 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4708 {
4709 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4710 	int ret;
4711 
4712 	if (pdev->is_virtfn)
4713 		return PCI_ERS_RESULT_RECOVERED;
4714 
4715 	/* reset pcie device controller */
4716 	ret = qm_controller_reset(qm);
4717 	if (ret) {
4718 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4719 		return PCI_ERS_RESULT_DISCONNECT;
4720 	}
4721 
4722 	return PCI_ERS_RESULT_RECOVERED;
4723 }
4724 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4725 
4726 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4727 {
4728 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4729 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4730 	u32 delay = 0;
4731 	int ret;
4732 
4733 	hisi_qm_dev_err_uninit(pf_qm);
4734 
4735 	/*
4736 	 * Check whether there is an ECC mbit error, If it occurs, need to
4737 	 * wait for soft reset to fix it.
4738 	 */
4739 	while (qm_check_dev_error(qm)) {
4740 		msleep(++delay);
4741 		if (delay > QM_RESET_WAIT_TIMEOUT)
4742 			return;
4743 	}
4744 
4745 	ret = qm_reset_prepare_ready(qm);
4746 	if (ret) {
4747 		pci_err(pdev, "FLR not ready!\n");
4748 		return;
4749 	}
4750 
4751 	/* PF obtains the information of VF by querying the register. */
4752 	if (qm->fun_type == QM_HW_PF)
4753 		qm_cmd_uninit(qm);
4754 
4755 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4756 	if (ret)
4757 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4758 
4759 	ret = hisi_qm_stop(qm, QM_DOWN);
4760 	if (ret) {
4761 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4762 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4763 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4764 		return;
4765 	}
4766 
4767 	ret = qm_wait_vf_prepare_finish(qm);
4768 	if (ret)
4769 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4770 
4771 	pci_info(pdev, "FLR resetting...\n");
4772 }
4773 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4774 
4775 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4776 {
4777 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4778 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4779 	u32 id;
4780 
4781 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4782 	if (id == QM_PCI_COMMAND_INVALID) {
4783 		pci_err(pdev, "Device can not be used!\n");
4784 		return false;
4785 	}
4786 
4787 	return true;
4788 }
4789 
4790 void hisi_qm_reset_done(struct pci_dev *pdev)
4791 {
4792 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4793 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4794 	int ret;
4795 
4796 	if (qm->fun_type == QM_HW_PF) {
4797 		ret = qm_dev_hw_init(qm);
4798 		if (ret) {
4799 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4800 			goto flr_done;
4801 		}
4802 	}
4803 
4804 	hisi_qm_dev_err_init(pf_qm);
4805 
4806 	ret = qm_restart(qm);
4807 	if (ret) {
4808 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4809 		goto flr_done;
4810 	}
4811 
4812 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4813 	if (ret)
4814 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4815 
4816 	ret = qm_wait_vf_prepare_finish(qm);
4817 	if (ret)
4818 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4819 
4820 flr_done:
4821 	if (qm->fun_type == QM_HW_PF)
4822 		qm_cmd_init(qm);
4823 
4824 	if (qm_flr_reset_complete(pdev))
4825 		pci_info(pdev, "FLR reset complete\n");
4826 
4827 	qm_reset_bit_clear(qm);
4828 }
4829 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4830 
4831 static irqreturn_t qm_rsvd_irq(int irq, void *data)
4832 {
4833 	struct hisi_qm *qm = data;
4834 
4835 	dev_info(&qm->pdev->dev, "Reserved interrupt, ignore!\n");
4836 
4837 	return IRQ_HANDLED;
4838 }
4839 
4840 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4841 {
4842 	struct hisi_qm *qm = data;
4843 	enum acc_err_result ret;
4844 
4845 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4846 	ret = qm_process_dev_error(qm);
4847 	if (ret == ACC_ERR_NEED_RESET &&
4848 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4849 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4850 		schedule_work(&qm->rst_work);
4851 
4852 	return IRQ_HANDLED;
4853 }
4854 
4855 /**
4856  * hisi_qm_dev_shutdown() - Shutdown device.
4857  * @pdev: The device will be shutdown.
4858  *
4859  * This function will stop qm when OS shutdown or rebooting.
4860  */
4861 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4862 {
4863 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4864 	int ret;
4865 
4866 	ret = hisi_qm_stop(qm, QM_DOWN);
4867 	if (ret)
4868 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4869 }
4870 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4871 
4872 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4873 {
4874 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4875 	int ret;
4876 
4877 	ret = qm_pm_get_sync(qm);
4878 	if (ret) {
4879 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4880 		return;
4881 	}
4882 
4883 	/* reset pcie device controller */
4884 	ret = qm_controller_reset(qm);
4885 	if (ret)
4886 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4887 
4888 	qm_pm_put_sync(qm);
4889 }
4890 
4891 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4892 				   enum qm_stop_reason stop_reason)
4893 {
4894 	enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE;
4895 	struct pci_dev *pdev = qm->pdev;
4896 	int ret;
4897 
4898 	ret = qm_reset_prepare_ready(qm);
4899 	if (ret) {
4900 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4901 		atomic_set(&qm->status.flags, QM_STOP);
4902 		cmd = QM_VF_PREPARE_FAIL;
4903 		goto err_prepare;
4904 	}
4905 
4906 	ret = hisi_qm_stop(qm, stop_reason);
4907 	if (ret) {
4908 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4909 		atomic_set(&qm->status.flags, QM_STOP);
4910 		cmd = QM_VF_PREPARE_FAIL;
4911 		goto err_prepare;
4912 	} else {
4913 		goto out;
4914 	}
4915 
4916 err_prepare:
4917 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4918 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4919 out:
4920 	pci_save_state(pdev);
4921 	ret = qm_ping_pf(qm, cmd);
4922 	if (ret)
4923 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4924 }
4925 
4926 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4927 {
4928 	enum qm_ifc_cmd cmd = QM_VF_START_DONE;
4929 	struct pci_dev *pdev = qm->pdev;
4930 	int ret;
4931 
4932 	pci_restore_state(pdev);
4933 	ret = hisi_qm_start(qm);
4934 	if (ret) {
4935 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4936 		cmd = QM_VF_START_FAIL;
4937 	}
4938 
4939 	qm_cmd_init(qm);
4940 	ret = qm_ping_pf(qm, cmd);
4941 	if (ret)
4942 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4943 
4944 	qm_reset_bit_clear(qm);
4945 }
4946 
4947 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4948 {
4949 	struct device *dev = &qm->pdev->dev;
4950 	u32 val, cmd;
4951 	int ret;
4952 
4953 	/* Wait for reset to finish */
4954 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4955 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4956 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4957 	/* hardware completion status should be available by this time */
4958 	if (ret) {
4959 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4960 		return -ETIMEDOUT;
4961 	}
4962 
4963 	/*
4964 	 * Whether message is got successfully,
4965 	 * VF needs to ack PF by clearing the interrupt.
4966 	 */
4967 	ret = qm->ops->get_ifc(qm, &cmd, NULL, 0);
4968 	qm_clear_cmd_interrupt(qm, 0);
4969 	if (ret) {
4970 		dev_err(dev, "failed to get command from PF in reset done!\n");
4971 		return ret;
4972 	}
4973 
4974 	if (cmd != QM_PF_RESET_DONE) {
4975 		dev_err(dev, "the command(0x%x) is not reset done!\n", cmd);
4976 		ret = -EINVAL;
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4983 				   enum qm_stop_reason stop_reason)
4984 {
4985 	struct device *dev = &qm->pdev->dev;
4986 	int ret;
4987 
4988 	dev_info(dev, "device reset start...\n");
4989 
4990 	/* The message is obtained by querying the register during resetting */
4991 	qm_cmd_uninit(qm);
4992 	qm_pf_reset_vf_prepare(qm, stop_reason);
4993 
4994 	ret = qm_wait_pf_reset_finish(qm);
4995 	if (ret)
4996 		goto err_get_status;
4997 
4998 	qm_pf_reset_vf_done(qm);
4999 
5000 	dev_info(dev, "device reset done.\n");
5001 
5002 	return;
5003 
5004 err_get_status:
5005 	qm_cmd_init(qm);
5006 	qm_reset_bit_clear(qm);
5007 }
5008 
5009 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5010 {
5011 	struct device *dev = &qm->pdev->dev;
5012 	enum qm_ifc_cmd cmd;
5013 	u32 data;
5014 	int ret;
5015 
5016 	/*
5017 	 * Get the msg from source by sending mailbox. Whether message is got
5018 	 * successfully, destination needs to ack source by clearing the interrupt.
5019 	 */
5020 	ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num);
5021 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5022 	if (ret) {
5023 		dev_err(dev, "failed to get command from source!\n");
5024 		return;
5025 	}
5026 
5027 	switch (cmd) {
5028 	case QM_PF_FLR_PREPARE:
5029 		qm_pf_reset_vf_process(qm, QM_DOWN);
5030 		break;
5031 	case QM_PF_SRST_PREPARE:
5032 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5033 		break;
5034 	case QM_VF_GET_QOS:
5035 		qm_vf_get_qos(qm, fun_num);
5036 		break;
5037 	case QM_PF_SET_QOS:
5038 		qm->mb_qos = data;
5039 		break;
5040 	default:
5041 		dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num);
5042 		break;
5043 	}
5044 }
5045 
5046 static void qm_cmd_process(struct work_struct *cmd_process)
5047 {
5048 	struct hisi_qm *qm = container_of(cmd_process,
5049 					struct hisi_qm, cmd_process);
5050 	u32 vfs_num = qm->vfs_num;
5051 	u64 val;
5052 	u32 i;
5053 
5054 	if (qm->fun_type == QM_HW_PF) {
5055 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5056 		if (!val)
5057 			return;
5058 
5059 		for (i = 1; i <= vfs_num; i++) {
5060 			if (val & BIT(i))
5061 				qm_handle_cmd_msg(qm, i);
5062 		}
5063 
5064 		return;
5065 	}
5066 
5067 	qm_handle_cmd_msg(qm, 0);
5068 }
5069 
5070 /**
5071  * hisi_qm_alg_register() - Register alg to crypto.
5072  * @qm: The qm needs add.
5073  * @qm_list: The qm list.
5074  * @guard: Guard of qp_num.
5075  *
5076  * Register algorithm to crypto when the function is satisfy guard.
5077  */
5078 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5079 {
5080 	struct device *dev = &qm->pdev->dev;
5081 
5082 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5083 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5084 		return 0;
5085 	}
5086 
5087 	if (qm->qp_num < guard) {
5088 		dev_info(dev, "qp_num is less than task need.\n");
5089 		return 0;
5090 	}
5091 
5092 	return qm_list->register_to_crypto(qm);
5093 }
5094 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5095 
5096 /**
5097  * hisi_qm_alg_unregister() - Unregister alg from crypto.
5098  * @qm: The qm needs delete.
5099  * @qm_list: The qm list.
5100  * @guard: Guard of qp_num.
5101  *
5102  * Unregister algorithm from crypto when the last function is satisfy guard.
5103  */
5104 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5105 {
5106 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5107 		return;
5108 
5109 	if (qm->qp_num < guard)
5110 		return;
5111 
5112 	qm_list->unregister_from_crypto(qm);
5113 }
5114 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5115 
5116 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5117 {
5118 	struct pci_dev *pdev = qm->pdev;
5119 	u32 irq_vector, val;
5120 
5121 	if (qm->fun_type == QM_HW_VF && qm->ver < QM_HW_V3)
5122 		return;
5123 
5124 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5125 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5126 		return;
5127 
5128 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5129 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5130 }
5131 
5132 static int qm_register_abnormal_irq(struct hisi_qm *qm)
5133 {
5134 	struct pci_dev *pdev = qm->pdev;
5135 	u32 irq_vector, val;
5136 	int ret;
5137 
5138 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5139 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5140 		return 0;
5141 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5142 
5143 	/* For VF, this is a reserved interrupt in V3 version. */
5144 	if (qm->fun_type == QM_HW_VF) {
5145 		if (qm->ver < QM_HW_V3)
5146 			return 0;
5147 
5148 		ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_rsvd_irq,
5149 				  IRQF_NO_AUTOEN, qm->dev_name, qm);
5150 		if (ret) {
5151 			dev_err(&pdev->dev, "failed to request reserved irq, ret = %d!\n", ret);
5152 			return ret;
5153 		}
5154 		return 0;
5155 	}
5156 
5157 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5158 	if (ret)
5159 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d!\n", ret);
5160 
5161 	return ret;
5162 }
5163 
5164 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5165 {
5166 	struct pci_dev *pdev = qm->pdev;
5167 	u32 irq_vector, val;
5168 
5169 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5170 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5171 		return;
5172 
5173 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5174 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5175 }
5176 
5177 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5178 {
5179 	struct pci_dev *pdev = qm->pdev;
5180 	u32 irq_vector, val;
5181 	int ret;
5182 
5183 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5184 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5185 		return 0;
5186 
5187 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5188 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5189 	if (ret)
5190 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5191 
5192 	return ret;
5193 }
5194 
5195 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5196 {
5197 	struct pci_dev *pdev = qm->pdev;
5198 	u32 irq_vector, val;
5199 
5200 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5201 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5202 		return;
5203 
5204 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5205 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5206 }
5207 
5208 static int qm_register_aeq_irq(struct hisi_qm *qm)
5209 {
5210 	struct pci_dev *pdev = qm->pdev;
5211 	u32 irq_vector, val;
5212 	int ret;
5213 
5214 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5215 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5216 		return 0;
5217 
5218 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5219 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
5220 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
5221 	if (ret)
5222 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5223 
5224 	return ret;
5225 }
5226 
5227 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5228 {
5229 	struct pci_dev *pdev = qm->pdev;
5230 	u32 irq_vector, val;
5231 
5232 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5233 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5234 		return;
5235 
5236 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5237 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5238 }
5239 
5240 static int qm_register_eq_irq(struct hisi_qm *qm)
5241 {
5242 	struct pci_dev *pdev = qm->pdev;
5243 	u32 irq_vector, val;
5244 	int ret;
5245 
5246 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5247 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5248 		return 0;
5249 
5250 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5251 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5252 	if (ret)
5253 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5254 
5255 	return ret;
5256 }
5257 
5258 static void qm_irqs_unregister(struct hisi_qm *qm)
5259 {
5260 	qm_unregister_mb_cmd_irq(qm);
5261 	qm_unregister_abnormal_irq(qm);
5262 	qm_unregister_aeq_irq(qm);
5263 	qm_unregister_eq_irq(qm);
5264 }
5265 
5266 static int qm_irqs_register(struct hisi_qm *qm)
5267 {
5268 	int ret;
5269 
5270 	ret = qm_register_eq_irq(qm);
5271 	if (ret)
5272 		return ret;
5273 
5274 	ret = qm_register_aeq_irq(qm);
5275 	if (ret)
5276 		goto free_eq_irq;
5277 
5278 	ret = qm_register_abnormal_irq(qm);
5279 	if (ret)
5280 		goto free_aeq_irq;
5281 
5282 	ret = qm_register_mb_cmd_irq(qm);
5283 	if (ret)
5284 		goto free_abnormal_irq;
5285 
5286 	return 0;
5287 
5288 free_abnormal_irq:
5289 	qm_unregister_abnormal_irq(qm);
5290 free_aeq_irq:
5291 	qm_unregister_aeq_irq(qm);
5292 free_eq_irq:
5293 	qm_unregister_eq_irq(qm);
5294 	return ret;
5295 }
5296 
5297 static int qm_get_qp_num(struct hisi_qm *qm)
5298 {
5299 	struct device *dev = &qm->pdev->dev;
5300 	bool is_db_isolation;
5301 
5302 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5303 	if (qm->fun_type == QM_HW_VF) {
5304 		if (qm->ver != QM_HW_V1)
5305 			/* v2 starts to support get vft by mailbox */
5306 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5307 
5308 		return 0;
5309 	}
5310 
5311 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5312 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5313 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5314 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5315 
5316 	if (qm->qp_num <= qm->max_qp_num)
5317 		return 0;
5318 
5319 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5320 		/* Check whether the set qp number is valid */
5321 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5322 			qm->qp_num, qm->max_qp_num);
5323 		return -EINVAL;
5324 	}
5325 
5326 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5327 		 qm->qp_num, qm->max_qp_num);
5328 	qm->qp_num = qm->max_qp_num;
5329 	qm->debug.curr_qm_qp_num = qm->qp_num;
5330 
5331 	return 0;
5332 }
5333 
5334 static int qm_pre_store_caps(struct hisi_qm *qm)
5335 {
5336 	struct hisi_qm_cap_record *qm_cap;
5337 	struct pci_dev *pdev = qm->pdev;
5338 	size_t i, size;
5339 
5340 	size = ARRAY_SIZE(qm_cap_query_info);
5341 	qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL);
5342 	if (!qm_cap)
5343 		return -ENOMEM;
5344 
5345 	for (i = 0; i < size; i++) {
5346 		qm_cap[i].type = qm_cap_query_info[i].type;
5347 		qm_cap[i].name = qm_cap_query_info[i].name;
5348 		qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info,
5349 							i, qm->cap_ver);
5350 	}
5351 
5352 	qm->cap_tables.qm_cap_table = qm_cap;
5353 	qm->cap_tables.qm_cap_size = size;
5354 
5355 	return 0;
5356 }
5357 
5358 static int qm_get_hw_caps(struct hisi_qm *qm)
5359 {
5360 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5361 						  qm_cap_info_pf : qm_cap_info_vf;
5362 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5363 				   ARRAY_SIZE(qm_cap_info_vf);
5364 	u32 val, i;
5365 
5366 	/* Doorbell isolate register is a independent register. */
5367 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5368 	if (val)
5369 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5370 
5371 	if (qm->ver >= QM_HW_V3) {
5372 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5373 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5374 	}
5375 
5376 	/* Get PF/VF common capbility */
5377 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5378 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5379 		if (val)
5380 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5381 	}
5382 
5383 	/* Get PF/VF different capbility */
5384 	for (i = 0; i < size; i++) {
5385 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5386 		if (val)
5387 			set_bit(cap_info[i].type, &qm->caps);
5388 	}
5389 
5390 	/* Fetch and save the value of qm capability registers */
5391 	return qm_pre_store_caps(qm);
5392 }
5393 
5394 static void qm_get_version(struct hisi_qm *qm)
5395 {
5396 	struct pci_dev *pdev = qm->pdev;
5397 	u32 sub_version_id;
5398 
5399 	qm->ver = pdev->revision;
5400 
5401 	if (pdev->revision == QM_HW_V3) {
5402 		sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID);
5403 		if (sub_version_id)
5404 			qm->ver = sub_version_id;
5405 	}
5406 }
5407 
5408 static int qm_get_pci_res(struct hisi_qm *qm)
5409 {
5410 	struct pci_dev *pdev = qm->pdev;
5411 	struct device *dev = &pdev->dev;
5412 	int ret;
5413 
5414 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5415 	if (ret < 0) {
5416 		dev_err(dev, "Failed to request mem regions!\n");
5417 		return ret;
5418 	}
5419 
5420 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5421 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5422 	if (!qm->io_base) {
5423 		ret = -EIO;
5424 		goto err_request_mem_regions;
5425 	}
5426 
5427 	qm_get_version(qm);
5428 
5429 	ret = qm_get_hw_caps(qm);
5430 	if (ret)
5431 		goto err_ioremap;
5432 
5433 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5434 		qm->db_interval = QM_QP_DB_INTERVAL;
5435 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5436 		qm->db_io_base = ioremap(qm->db_phys_base,
5437 					 pci_resource_len(pdev, PCI_BAR_4));
5438 		if (!qm->db_io_base) {
5439 			ret = -EIO;
5440 			goto err_ioremap;
5441 		}
5442 	} else {
5443 		qm->db_phys_base = qm->phys_base;
5444 		qm->db_io_base = qm->io_base;
5445 		qm->db_interval = 0;
5446 	}
5447 
5448 	hisi_qm_pre_init(qm);
5449 	ret = qm_get_qp_num(qm);
5450 	if (ret)
5451 		goto err_db_ioremap;
5452 
5453 	return 0;
5454 
5455 err_db_ioremap:
5456 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5457 		iounmap(qm->db_io_base);
5458 err_ioremap:
5459 	iounmap(qm->io_base);
5460 err_request_mem_regions:
5461 	pci_release_mem_regions(pdev);
5462 	return ret;
5463 }
5464 
5465 static int qm_clear_device(struct hisi_qm *qm)
5466 {
5467 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5468 	int ret;
5469 
5470 	if (qm->fun_type == QM_HW_VF)
5471 		return 0;
5472 
5473 	/* Device does not support reset, return */
5474 	if (!qm->err_ini->err_info_init)
5475 		return 0;
5476 	qm->err_ini->err_info_init(qm);
5477 
5478 	if (!handle)
5479 		return 0;
5480 
5481 	/* No reset method, return */
5482 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5483 		return 0;
5484 
5485 	ret = qm_master_ooo_check(qm);
5486 	if (ret) {
5487 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5488 		return ret;
5489 	}
5490 
5491 	if (qm->err_ini->set_priv_status) {
5492 		ret = qm->err_ini->set_priv_status(qm);
5493 		if (ret) {
5494 			writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5495 			return ret;
5496 		}
5497 	}
5498 
5499 	return qm_reset_device(qm);
5500 }
5501 
5502 static int hisi_qm_pci_init(struct hisi_qm *qm)
5503 {
5504 	struct pci_dev *pdev = qm->pdev;
5505 	struct device *dev = &pdev->dev;
5506 	unsigned int num_vec;
5507 	int ret;
5508 
5509 	ret = pci_enable_device_mem(pdev);
5510 	if (ret < 0) {
5511 		dev_err(dev, "Failed to enable device mem!\n");
5512 		return ret;
5513 	}
5514 
5515 	ret = qm_get_pci_res(qm);
5516 	if (ret)
5517 		goto err_disable_pcidev;
5518 
5519 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5520 	if (ret < 0)
5521 		goto err_get_pci_res;
5522 	pci_set_master(pdev);
5523 
5524 	num_vec = qm_get_irq_num(qm);
5525 	if (!num_vec) {
5526 		dev_err(dev, "Device irq num is zero!\n");
5527 		ret = -EINVAL;
5528 		goto err_get_pci_res;
5529 	}
5530 	num_vec = roundup_pow_of_two(num_vec);
5531 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5532 	if (ret < 0) {
5533 		dev_err(dev, "Failed to enable MSI vectors!\n");
5534 		goto err_get_pci_res;
5535 	}
5536 
5537 	ret = qm_clear_device(qm);
5538 	if (ret)
5539 		goto err_free_vectors;
5540 
5541 	return 0;
5542 
5543 err_free_vectors:
5544 	pci_free_irq_vectors(pdev);
5545 err_get_pci_res:
5546 	qm_put_pci_res(qm);
5547 err_disable_pcidev:
5548 	pci_disable_device(pdev);
5549 	return ret;
5550 }
5551 
5552 static int hisi_qm_init_work(struct hisi_qm *qm)
5553 {
5554 	int i;
5555 
5556 	for (i = 0; i < qm->qp_num; i++)
5557 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5558 
5559 	if (qm->fun_type == QM_HW_PF)
5560 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5561 
5562 	if (qm->ver > QM_HW_V2)
5563 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5564 
5565 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5566 				 WQ_UNBOUND, num_online_cpus(),
5567 				 pci_name(qm->pdev));
5568 	if (!qm->wq) {
5569 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5570 		return -ENOMEM;
5571 	}
5572 
5573 	return 0;
5574 }
5575 
5576 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5577 {
5578 	struct device *dev = &qm->pdev->dev;
5579 	u16 sq_depth, cq_depth;
5580 	size_t qp_dma_size;
5581 	int i, ret;
5582 
5583 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5584 	if (!qm->qp_array)
5585 		return -ENOMEM;
5586 
5587 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5588 	if (!qm->poll_data) {
5589 		kfree(qm->qp_array);
5590 		return -ENOMEM;
5591 	}
5592 
5593 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5594 
5595 	/* one more page for device or qp statuses */
5596 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5597 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5598 	for (i = 0; i < qm->qp_num; i++) {
5599 		qm->poll_data[i].qm = qm;
5600 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5601 		if (ret)
5602 			goto err_init_qp_mem;
5603 
5604 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5605 	}
5606 
5607 	return 0;
5608 err_init_qp_mem:
5609 	hisi_qp_memory_uninit(qm, i);
5610 
5611 	return ret;
5612 }
5613 
5614 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5615 {
5616 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5617 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5618 	struct device *dev = &qm->pdev->dev;
5619 	size_t off = 0;
5620 
5621 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5622 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5623 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5624 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5625 } while (0)
5626 
5627 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5628 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5629 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5630 			QMC_ALIGN(sizeof(struct qm_cqc));
5631 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5632 					 &xqc_dma->dma, GFP_KERNEL);
5633 	if (!xqc_dma->va)
5634 		return -ENOMEM;
5635 
5636 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5637 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5638 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5639 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5640 
5641 	return 0;
5642 }
5643 
5644 static int hisi_qm_memory_init(struct hisi_qm *qm)
5645 {
5646 	struct device *dev = &qm->pdev->dev;
5647 	int ret, total_func;
5648 	size_t off = 0;
5649 
5650 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5651 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5652 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5653 		if (!qm->factor)
5654 			return -ENOMEM;
5655 
5656 		/* Only the PF value needs to be initialized */
5657 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5658 	}
5659 
5660 #define QM_INIT_BUF(qm, type, num) do { \
5661 	(qm)->type = ((qm)->qdma.va + (off)); \
5662 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5663 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5664 } while (0)
5665 
5666 	idr_init(&qm->qp_idr);
5667 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5668 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5669 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5670 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5671 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5672 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5673 					 GFP_ATOMIC);
5674 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5675 	if (!qm->qdma.va) {
5676 		ret = -ENOMEM;
5677 		goto err_destroy_idr;
5678 	}
5679 
5680 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5681 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5682 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5683 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5684 
5685 	ret = hisi_qm_alloc_rsv_buf(qm);
5686 	if (ret)
5687 		goto err_free_qdma;
5688 
5689 	ret = hisi_qp_alloc_memory(qm);
5690 	if (ret)
5691 		goto err_free_reserve_buf;
5692 
5693 	return 0;
5694 
5695 err_free_reserve_buf:
5696 	hisi_qm_free_rsv_buf(qm);
5697 err_free_qdma:
5698 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5699 err_destroy_idr:
5700 	idr_destroy(&qm->qp_idr);
5701 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5702 		kfree(qm->factor);
5703 
5704 	return ret;
5705 }
5706 
5707 /**
5708  * hisi_qm_init() - Initialize configures about qm.
5709  * @qm: The qm needing init.
5710  *
5711  * This function init qm, then we can call hisi_qm_start to put qm into work.
5712  */
5713 int hisi_qm_init(struct hisi_qm *qm)
5714 {
5715 	struct pci_dev *pdev = qm->pdev;
5716 	struct device *dev = &pdev->dev;
5717 	int ret;
5718 
5719 	ret = hisi_qm_pci_init(qm);
5720 	if (ret)
5721 		return ret;
5722 
5723 	ret = qm_irqs_register(qm);
5724 	if (ret)
5725 		goto err_pci_init;
5726 
5727 	if (qm->fun_type == QM_HW_PF) {
5728 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5729 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5730 		qm_disable_clock_gate(qm);
5731 		ret = qm_dev_mem_reset(qm);
5732 		if (ret) {
5733 			dev_err(dev, "failed to reset device memory\n");
5734 			goto err_irq_register;
5735 		}
5736 	}
5737 
5738 	if (qm->mode == UACCE_MODE_SVA) {
5739 		ret = qm_alloc_uacce(qm);
5740 		if (ret < 0)
5741 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5742 	}
5743 
5744 	ret = hisi_qm_memory_init(qm);
5745 	if (ret)
5746 		goto err_alloc_uacce;
5747 
5748 	ret = hisi_qm_init_work(qm);
5749 	if (ret)
5750 		goto err_free_qm_memory;
5751 
5752 	qm_cmd_init(qm);
5753 
5754 	return 0;
5755 
5756 err_free_qm_memory:
5757 	hisi_qm_memory_uninit(qm);
5758 err_alloc_uacce:
5759 	qm_remove_uacce(qm);
5760 err_irq_register:
5761 	qm_irqs_unregister(qm);
5762 err_pci_init:
5763 	hisi_qm_pci_uninit(qm);
5764 	return ret;
5765 }
5766 EXPORT_SYMBOL_GPL(hisi_qm_init);
5767 
5768 /**
5769  * hisi_qm_get_dfx_access() - Try to get dfx access.
5770  * @qm: pointer to accelerator device.
5771  *
5772  * Try to get dfx access, then user can get message.
5773  *
5774  * If device is in suspended, return failure, otherwise
5775  * bump up the runtime PM usage counter.
5776  */
5777 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5778 {
5779 	struct device *dev = &qm->pdev->dev;
5780 
5781 	if (pm_runtime_suspended(dev)) {
5782 		dev_info(dev, "can not read/write - device in suspended.\n");
5783 		return -EAGAIN;
5784 	}
5785 
5786 	return qm_pm_get_sync(qm);
5787 }
5788 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5789 
5790 /**
5791  * hisi_qm_put_dfx_access() - Put dfx access.
5792  * @qm: pointer to accelerator device.
5793  *
5794  * Put dfx access, drop runtime PM usage counter.
5795  */
5796 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5797 {
5798 	qm_pm_put_sync(qm);
5799 }
5800 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5801 
5802 /**
5803  * hisi_qm_pm_init() - Initialize qm runtime PM.
5804  * @qm: pointer to accelerator device.
5805  *
5806  * Function that initialize qm runtime PM.
5807  */
5808 void hisi_qm_pm_init(struct hisi_qm *qm)
5809 {
5810 	struct device *dev = &qm->pdev->dev;
5811 
5812 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5813 		return;
5814 
5815 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5816 	pm_runtime_use_autosuspend(dev);
5817 	pm_runtime_put_noidle(dev);
5818 }
5819 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5820 
5821 /**
5822  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5823  * @qm: pointer to accelerator device.
5824  *
5825  * Function that uninitialize qm runtime PM.
5826  */
5827 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5828 {
5829 	struct device *dev = &qm->pdev->dev;
5830 
5831 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5832 		return;
5833 
5834 	pm_runtime_get_noresume(dev);
5835 	pm_runtime_dont_use_autosuspend(dev);
5836 }
5837 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5838 
5839 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5840 {
5841 	struct pci_dev *pdev = qm->pdev;
5842 	int ret;
5843 
5844 	ret = qm->ops->set_msi(qm, false);
5845 	if (ret) {
5846 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5847 		return ret;
5848 	}
5849 
5850 	ret = qm_master_ooo_check(qm);
5851 	if (ret)
5852 		return ret;
5853 
5854 	if (qm->err_ini->set_priv_status) {
5855 		ret = qm->err_ini->set_priv_status(qm);
5856 		if (ret)
5857 			return ret;
5858 	}
5859 
5860 	ret = qm_set_pf_mse(qm, false);
5861 	if (ret)
5862 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5863 
5864 	return ret;
5865 }
5866 
5867 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5868 {
5869 	struct pci_dev *pdev = qm->pdev;
5870 	int ret;
5871 
5872 	ret = qm_set_pf_mse(qm, true);
5873 	if (ret) {
5874 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5875 		return ret;
5876 	}
5877 
5878 	ret = qm->ops->set_msi(qm, true);
5879 	if (ret) {
5880 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5881 		return ret;
5882 	}
5883 
5884 	ret = qm_dev_hw_init(qm);
5885 	if (ret) {
5886 		pci_err(pdev, "failed to init device after resuming\n");
5887 		return ret;
5888 	}
5889 
5890 	qm_cmd_init(qm);
5891 	hisi_qm_dev_err_init(qm);
5892 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5893 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5894 	qm_disable_clock_gate(qm);
5895 	ret = qm_dev_mem_reset(qm);
5896 	if (ret)
5897 		pci_err(pdev, "failed to reset device memory\n");
5898 
5899 	return ret;
5900 }
5901 
5902 /**
5903  * hisi_qm_suspend() - Runtime suspend of given device.
5904  * @dev: device to suspend.
5905  *
5906  * Function that suspend the device.
5907  */
5908 int hisi_qm_suspend(struct device *dev)
5909 {
5910 	struct pci_dev *pdev = to_pci_dev(dev);
5911 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5912 	int ret;
5913 
5914 	pci_info(pdev, "entering suspended state\n");
5915 
5916 	ret = hisi_qm_stop(qm, QM_NORMAL);
5917 	if (ret) {
5918 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5919 		return ret;
5920 	}
5921 
5922 	ret = qm_prepare_for_suspend(qm);
5923 	if (ret)
5924 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5925 
5926 	return ret;
5927 }
5928 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5929 
5930 /**
5931  * hisi_qm_resume() - Runtime resume of given device.
5932  * @dev: device to resume.
5933  *
5934  * Function that resume the device.
5935  */
5936 int hisi_qm_resume(struct device *dev)
5937 {
5938 	struct pci_dev *pdev = to_pci_dev(dev);
5939 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5940 	int ret;
5941 
5942 	pci_info(pdev, "resuming from suspend state\n");
5943 
5944 	ret = qm_rebuild_for_resume(qm);
5945 	if (ret) {
5946 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5947 		return ret;
5948 	}
5949 
5950 	ret = hisi_qm_start(qm);
5951 	if (ret) {
5952 		if (qm_check_dev_error(qm)) {
5953 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5954 			return 0;
5955 		}
5956 
5957 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5958 	}
5959 
5960 	return ret;
5961 }
5962 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5963 
5964 MODULE_LICENSE("GPL v2");
5965 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5966 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5967