1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * menu.c - the menu idle governor 4 * 5 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com> 6 * Copyright (C) 2009 Intel Corporation 7 * Author: 8 * Arjan van de Ven <arjan@linux.intel.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/cpuidle.h> 13 #include <linux/time.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/sched/stat.h> 18 #include <linux/math64.h> 19 20 #include "gov.h" 21 22 #define BUCKETS 6 23 #define INTERVAL_SHIFT 3 24 #define INTERVALS (1UL << INTERVAL_SHIFT) 25 #define RESOLUTION 1024 26 #define DECAY 8 27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC) 28 29 /* 30 * Concepts and ideas behind the menu governor 31 * 32 * For the menu governor, there are 2 decision factors for picking a C 33 * state: 34 * 1) Energy break even point 35 * 2) Latency tolerance (from pmqos infrastructure) 36 * These two factors are treated independently. 37 * 38 * Energy break even point 39 * ----------------------- 40 * C state entry and exit have an energy cost, and a certain amount of time in 41 * the C state is required to actually break even on this cost. CPUIDLE 42 * provides us this duration in the "target_residency" field. So all that we 43 * need is a good prediction of how long we'll be idle. Like the traditional 44 * menu governor, we take the actual known "next timer event" time. 45 * 46 * Since there are other source of wakeups (interrupts for example) than 47 * the next timer event, this estimation is rather optimistic. To get a 48 * more realistic estimate, a correction factor is applied to the estimate, 49 * that is based on historic behavior. For example, if in the past the actual 50 * duration always was 50% of the next timer tick, the correction factor will 51 * be 0.5. 52 * 53 * menu uses a running average for this correction factor, but it uses a set of 54 * factors, not just a single factor. This stems from the realization that the 55 * ratio is dependent on the order of magnitude of the expected duration; if we 56 * expect 500 milliseconds of idle time the likelihood of getting an interrupt 57 * very early is much higher than if we expect 50 micro seconds of idle time. 58 * For this reason, menu keeps an array of 6 independent factors, that gets 59 * indexed based on the magnitude of the expected duration. 60 * 61 * Repeatable-interval-detector 62 * ---------------------------- 63 * There are some cases where "next timer" is a completely unusable predictor: 64 * Those cases where the interval is fixed, for example due to hardware 65 * interrupt mitigation, but also due to fixed transfer rate devices like mice. 66 * For this, we use a different predictor: We track the duration of the last 8 67 * intervals and use them to estimate the duration of the next one. 68 */ 69 70 struct menu_device { 71 int needs_update; 72 int tick_wakeup; 73 74 u64 next_timer_ns; 75 unsigned int bucket; 76 unsigned int correction_factor[BUCKETS]; 77 unsigned int intervals[INTERVALS]; 78 int interval_ptr; 79 }; 80 81 static inline int which_bucket(u64 duration_ns) 82 { 83 int bucket = 0; 84 85 if (duration_ns < 10ULL * NSEC_PER_USEC) 86 return bucket; 87 if (duration_ns < 100ULL * NSEC_PER_USEC) 88 return bucket + 1; 89 if (duration_ns < 1000ULL * NSEC_PER_USEC) 90 return bucket + 2; 91 if (duration_ns < 10000ULL * NSEC_PER_USEC) 92 return bucket + 3; 93 if (duration_ns < 100000ULL * NSEC_PER_USEC) 94 return bucket + 4; 95 return bucket + 5; 96 } 97 98 static DEFINE_PER_CPU(struct menu_device, menu_devices); 99 100 static void menu_update_intervals(struct menu_device *data, unsigned int interval_us) 101 { 102 /* Update the repeating-pattern data. */ 103 data->intervals[data->interval_ptr++] = interval_us; 104 if (data->interval_ptr >= INTERVALS) 105 data->interval_ptr = 0; 106 } 107 108 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev); 109 110 /* 111 * Try detecting repeating patterns by keeping track of the last 8 112 * intervals, and checking if the standard deviation of that set 113 * of points is below a threshold. If it is... then use the 114 * average of these 8 points as the estimated value. 115 */ 116 static unsigned int get_typical_interval(struct menu_device *data) 117 { 118 s64 value, min_thresh = -1, max_thresh = UINT_MAX; 119 unsigned int max, min, divisor; 120 u64 avg, variance, avg_sq; 121 int i; 122 123 again: 124 /* Compute the average and variance of past intervals. */ 125 max = 0; 126 min = UINT_MAX; 127 avg = 0; 128 variance = 0; 129 divisor = 0; 130 for (i = 0; i < INTERVALS; i++) { 131 value = data->intervals[i]; 132 /* 133 * Discard the samples outside the interval between the min and 134 * max thresholds. 135 */ 136 if (value <= min_thresh || value >= max_thresh) 137 continue; 138 139 divisor++; 140 141 avg += value; 142 variance += value * value; 143 144 if (value > max) 145 max = value; 146 147 if (value < min) 148 min = value; 149 } 150 151 if (!max) 152 return UINT_MAX; 153 154 if (divisor == INTERVALS) { 155 avg >>= INTERVAL_SHIFT; 156 variance >>= INTERVAL_SHIFT; 157 } else { 158 do_div(avg, divisor); 159 do_div(variance, divisor); 160 } 161 162 avg_sq = avg * avg; 163 variance -= avg_sq; 164 165 /* 166 * The typical interval is obtained when standard deviation is 167 * small (stddev <= 20 us, variance <= 400 us^2) or standard 168 * deviation is small compared to the average interval (avg > 169 * 6*stddev, avg^2 > 36*variance). The average is smaller than 170 * UINT_MAX aka U32_MAX, so computing its square does not 171 * overflow a u64. We simply reject this candidate average if 172 * the standard deviation is greater than 715 s (which is 173 * rather unlikely). 174 * 175 * Use this result only if there is no timer to wake us up sooner. 176 */ 177 if (likely(variance <= U64_MAX/36)) { 178 if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) || 179 variance <= 400) 180 return avg; 181 } 182 183 /* 184 * If there are outliers, discard them by setting thresholds to exclude 185 * data points at a large enough distance from the average, then 186 * calculate the average and standard deviation again. Once we get 187 * down to the last 3/4 of our samples, stop excluding samples. 188 * 189 * This can deal with workloads that have long pauses interspersed 190 * with sporadic activity with a bunch of short pauses. 191 * 192 * However, if the number of remaining samples is too small to exclude 193 * any more outliers, allow the deepest available idle state to be 194 * selected because there are systems where the time spent by CPUs in 195 * deep idle states is correlated to the maximum frequency the CPUs 196 * can get to. On those systems, shallow idle states should be avoided 197 * unless there is a clear indication that the given CPU is most likley 198 * going to be woken up shortly. 199 */ 200 if (divisor * 4 <= INTERVALS * 3) 201 return UINT_MAX; 202 203 /* Update the thresholds for the next round. */ 204 if (avg - min > max - avg) 205 min_thresh = min; 206 else 207 max_thresh = max; 208 209 goto again; 210 } 211 212 /** 213 * menu_select - selects the next idle state to enter 214 * @drv: cpuidle driver containing state data 215 * @dev: the CPU 216 * @stop_tick: indication on whether or not to stop the tick 217 */ 218 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 219 bool *stop_tick) 220 { 221 struct menu_device *data = this_cpu_ptr(&menu_devices); 222 s64 latency_req = cpuidle_governor_latency_req(dev->cpu); 223 u64 predicted_ns; 224 ktime_t delta, delta_tick; 225 int i, idx; 226 227 if (data->needs_update) { 228 menu_update(drv, dev); 229 data->needs_update = 0; 230 } else if (!dev->last_residency_ns) { 231 /* 232 * This happens when the driver rejects the previously selected 233 * idle state and returns an error, so update the recent 234 * intervals table to prevent invalid information from being 235 * used going forward. 236 */ 237 menu_update_intervals(data, UINT_MAX); 238 } 239 240 /* Find the shortest expected idle interval. */ 241 predicted_ns = get_typical_interval(data) * NSEC_PER_USEC; 242 if (predicted_ns > RESIDENCY_THRESHOLD_NS) { 243 unsigned int timer_us; 244 245 /* Determine the time till the closest timer. */ 246 delta = tick_nohz_get_sleep_length(&delta_tick); 247 if (unlikely(delta < 0)) { 248 delta = 0; 249 delta_tick = 0; 250 } 251 252 data->next_timer_ns = delta; 253 data->bucket = which_bucket(data->next_timer_ns); 254 255 /* Round up the result for half microseconds. */ 256 timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 + 257 data->next_timer_ns * 258 data->correction_factor[data->bucket], 259 RESOLUTION * DECAY * NSEC_PER_USEC); 260 /* Use the lowest expected idle interval to pick the idle state. */ 261 predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns); 262 } else { 263 /* 264 * Because the next timer event is not going to be determined 265 * in this case, assume that without the tick the closest timer 266 * will be in distant future and that the closest tick will occur 267 * after 1/2 of the tick period. 268 */ 269 data->next_timer_ns = KTIME_MAX; 270 delta_tick = TICK_NSEC / 2; 271 data->bucket = BUCKETS - 1; 272 } 273 274 if (unlikely(drv->state_count <= 1 || latency_req == 0) || 275 ((data->next_timer_ns < drv->states[1].target_residency_ns || 276 latency_req < drv->states[1].exit_latency_ns) && 277 !dev->states_usage[0].disable)) { 278 /* 279 * In this case state[0] will be used no matter what, so return 280 * it right away and keep the tick running if state[0] is a 281 * polling one. 282 */ 283 *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING); 284 return 0; 285 } 286 287 /* 288 * If the tick is already stopped, the cost of possible short idle 289 * duration misprediction is much higher, because the CPU may be stuck 290 * in a shallow idle state for a long time as a result of it. In that 291 * case, say we might mispredict and use the known time till the closest 292 * timer event for the idle state selection. 293 */ 294 if (tick_nohz_tick_stopped() && predicted_ns < TICK_NSEC) 295 predicted_ns = data->next_timer_ns; 296 297 /* 298 * Find the idle state with the lowest power while satisfying 299 * our constraints. 300 */ 301 idx = -1; 302 for (i = 0; i < drv->state_count; i++) { 303 struct cpuidle_state *s = &drv->states[i]; 304 305 if (dev->states_usage[i].disable) 306 continue; 307 308 if (idx == -1) 309 idx = i; /* first enabled state */ 310 311 if (s->exit_latency_ns > latency_req) 312 break; 313 314 if (s->target_residency_ns <= predicted_ns) { 315 idx = i; 316 continue; 317 } 318 319 /* 320 * Use a physical idle state, not busy polling, unless a timer 321 * is going to trigger soon enough. 322 */ 323 if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) && 324 s->target_residency_ns <= data->next_timer_ns) { 325 predicted_ns = s->target_residency_ns; 326 idx = i; 327 break; 328 } 329 330 if (predicted_ns < TICK_NSEC) 331 break; 332 333 if (!tick_nohz_tick_stopped()) { 334 /* 335 * If the state selected so far is shallow, waking up 336 * early won't hurt, so retain the tick in that case and 337 * let the governor run again in the next iteration of 338 * the idle loop. 339 */ 340 predicted_ns = drv->states[idx].target_residency_ns; 341 break; 342 } 343 344 /* 345 * If the state selected so far is shallow and this state's 346 * target residency matches the time till the closest timer 347 * event, select this one to avoid getting stuck in the shallow 348 * one for too long. 349 */ 350 if (drv->states[idx].target_residency_ns < TICK_NSEC && 351 s->target_residency_ns <= delta_tick) 352 idx = i; 353 354 return idx; 355 } 356 357 if (idx == -1) 358 idx = 0; /* No states enabled. Must use 0. */ 359 360 /* 361 * Don't stop the tick if the selected state is a polling one or if the 362 * expected idle duration is shorter than the tick period length. 363 */ 364 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) || 365 predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) { 366 *stop_tick = false; 367 368 if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) { 369 /* 370 * The tick is not going to be stopped and the target 371 * residency of the state to be returned is not within 372 * the time until the next timer event including the 373 * tick, so try to correct that. 374 */ 375 for (i = idx - 1; i >= 0; i--) { 376 if (dev->states_usage[i].disable) 377 continue; 378 379 idx = i; 380 if (drv->states[i].target_residency_ns <= delta_tick) 381 break; 382 } 383 } 384 } 385 386 return idx; 387 } 388 389 /** 390 * menu_reflect - records that data structures need update 391 * @dev: the CPU 392 * @index: the index of actual entered state 393 * 394 * NOTE: it's important to be fast here because this operation will add to 395 * the overall exit latency. 396 */ 397 static void menu_reflect(struct cpuidle_device *dev, int index) 398 { 399 struct menu_device *data = this_cpu_ptr(&menu_devices); 400 401 dev->last_state_idx = index; 402 data->needs_update = 1; 403 data->tick_wakeup = tick_nohz_idle_got_tick(); 404 } 405 406 /** 407 * menu_update - attempts to guess what happened after entry 408 * @drv: cpuidle driver containing state data 409 * @dev: the CPU 410 */ 411 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) 412 { 413 struct menu_device *data = this_cpu_ptr(&menu_devices); 414 int last_idx = dev->last_state_idx; 415 struct cpuidle_state *target = &drv->states[last_idx]; 416 u64 measured_ns; 417 unsigned int new_factor; 418 419 /* 420 * Try to figure out how much time passed between entry to low 421 * power state and occurrence of the wakeup event. 422 * 423 * If the entered idle state didn't support residency measurements, 424 * we use them anyway if they are short, and if long, 425 * truncate to the whole expected time. 426 * 427 * Any measured amount of time will include the exit latency. 428 * Since we are interested in when the wakeup begun, not when it 429 * was completed, we must subtract the exit latency. However, if 430 * the measured amount of time is less than the exit latency, 431 * assume the state was never reached and the exit latency is 0. 432 */ 433 434 if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) { 435 /* 436 * The nohz code said that there wouldn't be any events within 437 * the tick boundary (if the tick was stopped), but the idle 438 * duration predictor had a differing opinion. Since the CPU 439 * was woken up by a tick (that wasn't stopped after all), the 440 * predictor was not quite right, so assume that the CPU could 441 * have been idle long (but not forever) to help the idle 442 * duration predictor do a better job next time. 443 */ 444 measured_ns = 9 * MAX_INTERESTING / 10; 445 } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) && 446 dev->poll_time_limit) { 447 /* 448 * The CPU exited the "polling" state due to a time limit, so 449 * the idle duration prediction leading to the selection of that 450 * state was inaccurate. If a better prediction had been made, 451 * the CPU might have been woken up from idle by the next timer. 452 * Assume that to be the case. 453 */ 454 measured_ns = data->next_timer_ns; 455 } else { 456 /* measured value */ 457 measured_ns = dev->last_residency_ns; 458 459 /* Deduct exit latency */ 460 if (measured_ns > 2 * target->exit_latency_ns) 461 measured_ns -= target->exit_latency_ns; 462 else 463 measured_ns /= 2; 464 } 465 466 /* Make sure our coefficients do not exceed unity */ 467 if (measured_ns > data->next_timer_ns) 468 measured_ns = data->next_timer_ns; 469 470 /* Update our correction ratio */ 471 new_factor = data->correction_factor[data->bucket]; 472 new_factor -= new_factor / DECAY; 473 474 if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING) 475 new_factor += div64_u64(RESOLUTION * measured_ns, 476 data->next_timer_ns); 477 else 478 /* 479 * we were idle so long that we count it as a perfect 480 * prediction 481 */ 482 new_factor += RESOLUTION; 483 484 /* 485 * We don't want 0 as factor; we always want at least 486 * a tiny bit of estimated time. Fortunately, due to rounding, 487 * new_factor will stay nonzero regardless of measured_us values 488 * and the compiler can eliminate this test as long as DECAY > 1. 489 */ 490 if (DECAY == 1 && unlikely(new_factor == 0)) 491 new_factor = 1; 492 493 data->correction_factor[data->bucket] = new_factor; 494 495 menu_update_intervals(data, ktime_to_us(measured_ns)); 496 } 497 498 /** 499 * menu_enable_device - scans a CPU's states and does setup 500 * @drv: cpuidle driver 501 * @dev: the CPU 502 */ 503 static int menu_enable_device(struct cpuidle_driver *drv, 504 struct cpuidle_device *dev) 505 { 506 struct menu_device *data = &per_cpu(menu_devices, dev->cpu); 507 int i; 508 509 memset(data, 0, sizeof(struct menu_device)); 510 511 /* 512 * if the correction factor is 0 (eg first time init or cpu hotplug 513 * etc), we actually want to start out with a unity factor. 514 */ 515 for(i = 0; i < BUCKETS; i++) 516 data->correction_factor[i] = RESOLUTION * DECAY; 517 518 return 0; 519 } 520 521 static struct cpuidle_governor menu_governor = { 522 .name = "menu", 523 .rating = 20, 524 .enable = menu_enable_device, 525 .select = menu_select, 526 .reflect = menu_reflect, 527 }; 528 529 /** 530 * init_menu - initializes the governor 531 */ 532 static int __init init_menu(void) 533 { 534 return cpuidle_register_governor(&menu_governor); 535 } 536 537 postcore_initcall(init_menu); 538