1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 */ 15 16 #include <linux/config.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/notifier.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/interrupt.h> 24 #include <linux/spinlock.h> 25 #include <linux/device.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/completion.h> 29 30 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg) 31 32 /** 33 * The "cpufreq driver" - the arch- or hardware-dependend low 34 * level driver of CPUFreq support, and its spinlock. This lock 35 * also protects the cpufreq_cpu_data array. 36 */ 37 static struct cpufreq_driver *cpufreq_driver; 38 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS]; 39 static DEFINE_SPINLOCK(cpufreq_driver_lock); 40 41 /* internal prototypes */ 42 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 43 static void handle_update(void *data); 44 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci); 45 46 /** 47 * Two notifier lists: the "policy" list is involved in the 48 * validation process for a new CPU frequency policy; the 49 * "transition" list for kernel code that needs to handle 50 * changes to devices when the CPU clock speed changes. 51 * The mutex locks both lists. 52 */ 53 static struct notifier_block *cpufreq_policy_notifier_list; 54 static struct notifier_block *cpufreq_transition_notifier_list; 55 static DECLARE_RWSEM (cpufreq_notifier_rwsem); 56 57 58 static LIST_HEAD(cpufreq_governor_list); 59 static DECLARE_MUTEX (cpufreq_governor_sem); 60 61 struct cpufreq_policy * cpufreq_cpu_get(unsigned int cpu) 62 { 63 struct cpufreq_policy *data; 64 unsigned long flags; 65 66 if (cpu >= NR_CPUS) 67 goto err_out; 68 69 /* get the cpufreq driver */ 70 spin_lock_irqsave(&cpufreq_driver_lock, flags); 71 72 if (!cpufreq_driver) 73 goto err_out_unlock; 74 75 if (!try_module_get(cpufreq_driver->owner)) 76 goto err_out_unlock; 77 78 79 /* get the CPU */ 80 data = cpufreq_cpu_data[cpu]; 81 82 if (!data) 83 goto err_out_put_module; 84 85 if (!kobject_get(&data->kobj)) 86 goto err_out_put_module; 87 88 89 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 90 91 return data; 92 93 err_out_put_module: 94 module_put(cpufreq_driver->owner); 95 err_out_unlock: 96 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 97 err_out: 98 return NULL; 99 } 100 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 101 102 void cpufreq_cpu_put(struct cpufreq_policy *data) 103 { 104 kobject_put(&data->kobj); 105 module_put(cpufreq_driver->owner); 106 } 107 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 108 109 110 /********************************************************************* 111 * UNIFIED DEBUG HELPERS * 112 *********************************************************************/ 113 #ifdef CONFIG_CPU_FREQ_DEBUG 114 115 /* what part(s) of the CPUfreq subsystem are debugged? */ 116 static unsigned int debug; 117 118 /* is the debug output ratelimit'ed using printk_ratelimit? User can 119 * set or modify this value. 120 */ 121 static unsigned int debug_ratelimit = 1; 122 123 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 124 * loading of a cpufreq driver, temporarily disabled when a new policy 125 * is set, and disabled upon cpufreq driver removal 126 */ 127 static unsigned int disable_ratelimit = 1; 128 static DEFINE_SPINLOCK(disable_ratelimit_lock); 129 130 static inline void cpufreq_debug_enable_ratelimit(void) 131 { 132 unsigned long flags; 133 134 spin_lock_irqsave(&disable_ratelimit_lock, flags); 135 if (disable_ratelimit) 136 disable_ratelimit--; 137 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 138 } 139 140 static inline void cpufreq_debug_disable_ratelimit(void) 141 { 142 unsigned long flags; 143 144 spin_lock_irqsave(&disable_ratelimit_lock, flags); 145 disable_ratelimit++; 146 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 147 } 148 149 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...) 150 { 151 char s[256]; 152 va_list args; 153 unsigned int len; 154 unsigned long flags; 155 156 WARN_ON(!prefix); 157 if (type & debug) { 158 spin_lock_irqsave(&disable_ratelimit_lock, flags); 159 if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) { 160 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 161 return; 162 } 163 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 164 165 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 166 167 va_start(args, fmt); 168 len += vsnprintf(&s[len], (256 - len), fmt, args); 169 va_end(args); 170 171 printk(s); 172 173 WARN_ON(len < 5); 174 } 175 } 176 EXPORT_SYMBOL(cpufreq_debug_printk); 177 178 179 module_param(debug, uint, 0644); 180 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors."); 181 182 module_param(debug_ratelimit, uint, 0644); 183 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting."); 184 185 #else /* !CONFIG_CPU_FREQ_DEBUG */ 186 187 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 188 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 189 190 #endif /* CONFIG_CPU_FREQ_DEBUG */ 191 192 193 /********************************************************************* 194 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 195 *********************************************************************/ 196 197 /** 198 * adjust_jiffies - adjust the system "loops_per_jiffy" 199 * 200 * This function alters the system "loops_per_jiffy" for the clock 201 * speed change. Note that loops_per_jiffy cannot be updated on SMP 202 * systems as each CPU might be scaled differently. So, use the arch 203 * per-CPU loops_per_jiffy value wherever possible. 204 */ 205 #ifndef CONFIG_SMP 206 static unsigned long l_p_j_ref; 207 static unsigned int l_p_j_ref_freq; 208 209 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 210 { 211 if (ci->flags & CPUFREQ_CONST_LOOPS) 212 return; 213 214 if (!l_p_j_ref_freq) { 215 l_p_j_ref = loops_per_jiffy; 216 l_p_j_ref_freq = ci->old; 217 dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 218 } 219 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 220 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 221 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 222 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new); 223 dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new); 224 } 225 } 226 #else 227 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; } 228 #endif 229 230 231 /** 232 * cpufreq_notify_transition - call notifier chain and adjust_jiffies on frequency transition 233 * 234 * This function calls the transition notifiers and the "adjust_jiffies" function. It is called 235 * twice on all CPU frequency changes that have external effects. 236 */ 237 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 238 { 239 BUG_ON(irqs_disabled()); 240 241 freqs->flags = cpufreq_driver->flags; 242 dprintk("notification %u of frequency transition to %u kHz\n", state, freqs->new); 243 244 down_read(&cpufreq_notifier_rwsem); 245 switch (state) { 246 case CPUFREQ_PRECHANGE: 247 /* detect if the driver reported a value as "old frequency" which 248 * is not equal to what the cpufreq core thinks is "old frequency". 249 */ 250 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 251 if ((likely(cpufreq_cpu_data[freqs->cpu])) && 252 (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu)) && 253 (likely(cpufreq_cpu_data[freqs->cpu]->cur)) && 254 (unlikely(freqs->old != cpufreq_cpu_data[freqs->cpu]->cur))) 255 { 256 dprintk(KERN_WARNING "Warning: CPU frequency is %u, " 257 "cpufreq assumed %u kHz.\n", freqs->old, cpufreq_cpu_data[freqs->cpu]->cur); 258 freqs->old = cpufreq_cpu_data[freqs->cpu]->cur; 259 } 260 } 261 notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_PRECHANGE, freqs); 262 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 263 break; 264 case CPUFREQ_POSTCHANGE: 265 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 266 notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_POSTCHANGE, freqs); 267 if ((likely(cpufreq_cpu_data[freqs->cpu])) && 268 (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu))) 269 cpufreq_cpu_data[freqs->cpu]->cur = freqs->new; 270 break; 271 } 272 up_read(&cpufreq_notifier_rwsem); 273 } 274 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 275 276 277 278 /********************************************************************* 279 * SYSFS INTERFACE * 280 *********************************************************************/ 281 282 /** 283 * cpufreq_parse_governor - parse a governor string 284 */ 285 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy, 286 struct cpufreq_governor **governor) 287 { 288 if (!cpufreq_driver) 289 return -EINVAL; 290 if (cpufreq_driver->setpolicy) { 291 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 292 *policy = CPUFREQ_POLICY_PERFORMANCE; 293 return 0; 294 } else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 295 *policy = CPUFREQ_POLICY_POWERSAVE; 296 return 0; 297 } 298 return -EINVAL; 299 } else { 300 struct cpufreq_governor *t; 301 down(&cpufreq_governor_sem); 302 if (!cpufreq_driver || !cpufreq_driver->target) 303 goto out; 304 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 305 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) { 306 *governor = t; 307 up(&cpufreq_governor_sem); 308 return 0; 309 } 310 } 311 out: 312 up(&cpufreq_governor_sem); 313 } 314 return -EINVAL; 315 } 316 EXPORT_SYMBOL_GPL(cpufreq_parse_governor); 317 318 319 /* drivers/base/cpu.c */ 320 extern struct sysdev_class cpu_sysdev_class; 321 322 323 /** 324 * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information 325 * 326 * Write out information from cpufreq_driver->policy[cpu]; object must be 327 * "unsigned int". 328 */ 329 330 #define show_one(file_name, object) \ 331 static ssize_t show_##file_name \ 332 (struct cpufreq_policy * policy, char *buf) \ 333 { \ 334 return sprintf (buf, "%u\n", policy->object); \ 335 } 336 337 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 338 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 339 show_one(scaling_min_freq, min); 340 show_one(scaling_max_freq, max); 341 show_one(scaling_cur_freq, cur); 342 343 /** 344 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 345 */ 346 #define store_one(file_name, object) \ 347 static ssize_t store_##file_name \ 348 (struct cpufreq_policy * policy, const char *buf, size_t count) \ 349 { \ 350 unsigned int ret = -EINVAL; \ 351 struct cpufreq_policy new_policy; \ 352 \ 353 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 354 if (ret) \ 355 return -EINVAL; \ 356 \ 357 ret = sscanf (buf, "%u", &new_policy.object); \ 358 if (ret != 1) \ 359 return -EINVAL; \ 360 \ 361 ret = cpufreq_set_policy(&new_policy); \ 362 \ 363 return ret ? ret : count; \ 364 } 365 366 store_one(scaling_min_freq,min); 367 store_one(scaling_max_freq,max); 368 369 /** 370 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 371 */ 372 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf) 373 { 374 unsigned int cur_freq = cpufreq_get(policy->cpu); 375 if (!cur_freq) 376 return sprintf(buf, "<unknown>"); 377 return sprintf(buf, "%u\n", cur_freq); 378 } 379 380 381 /** 382 * show_scaling_governor - show the current policy for the specified CPU 383 */ 384 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf) 385 { 386 if(policy->policy == CPUFREQ_POLICY_POWERSAVE) 387 return sprintf(buf, "powersave\n"); 388 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 389 return sprintf(buf, "performance\n"); 390 else if (policy->governor) 391 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name); 392 return -EINVAL; 393 } 394 395 396 /** 397 * store_scaling_governor - store policy for the specified CPU 398 */ 399 static ssize_t store_scaling_governor (struct cpufreq_policy * policy, 400 const char *buf, size_t count) 401 { 402 unsigned int ret = -EINVAL; 403 char str_governor[16]; 404 struct cpufreq_policy new_policy; 405 406 ret = cpufreq_get_policy(&new_policy, policy->cpu); 407 if (ret) 408 return ret; 409 410 ret = sscanf (buf, "%15s", str_governor); 411 if (ret != 1) 412 return -EINVAL; 413 414 if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor)) 415 return -EINVAL; 416 417 ret = cpufreq_set_policy(&new_policy); 418 419 return ret ? ret : count; 420 } 421 422 /** 423 * show_scaling_driver - show the cpufreq driver currently loaded 424 */ 425 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf) 426 { 427 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 428 } 429 430 /** 431 * show_scaling_available_governors - show the available CPUfreq governors 432 */ 433 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy, 434 char *buf) 435 { 436 ssize_t i = 0; 437 struct cpufreq_governor *t; 438 439 if (!cpufreq_driver->target) { 440 i += sprintf(buf, "performance powersave"); 441 goto out; 442 } 443 444 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 445 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2))) 446 goto out; 447 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 448 } 449 out: 450 i += sprintf(&buf[i], "\n"); 451 return i; 452 } 453 /** 454 * show_affected_cpus - show the CPUs affected by each transition 455 */ 456 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf) 457 { 458 ssize_t i = 0; 459 unsigned int cpu; 460 461 for_each_cpu_mask(cpu, policy->cpus) { 462 if (i) 463 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 464 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 465 if (i >= (PAGE_SIZE - 5)) 466 break; 467 } 468 i += sprintf(&buf[i], "\n"); 469 return i; 470 } 471 472 473 #define define_one_ro(_name) \ 474 static struct freq_attr _name = \ 475 __ATTR(_name, 0444, show_##_name, NULL) 476 477 #define define_one_ro0400(_name) \ 478 static struct freq_attr _name = \ 479 __ATTR(_name, 0400, show_##_name, NULL) 480 481 #define define_one_rw(_name) \ 482 static struct freq_attr _name = \ 483 __ATTR(_name, 0644, show_##_name, store_##_name) 484 485 define_one_ro0400(cpuinfo_cur_freq); 486 define_one_ro(cpuinfo_min_freq); 487 define_one_ro(cpuinfo_max_freq); 488 define_one_ro(scaling_available_governors); 489 define_one_ro(scaling_driver); 490 define_one_ro(scaling_cur_freq); 491 define_one_ro(affected_cpus); 492 define_one_rw(scaling_min_freq); 493 define_one_rw(scaling_max_freq); 494 define_one_rw(scaling_governor); 495 496 static struct attribute * default_attrs[] = { 497 &cpuinfo_min_freq.attr, 498 &cpuinfo_max_freq.attr, 499 &scaling_min_freq.attr, 500 &scaling_max_freq.attr, 501 &affected_cpus.attr, 502 &scaling_governor.attr, 503 &scaling_driver.attr, 504 &scaling_available_governors.attr, 505 NULL 506 }; 507 508 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj) 509 #define to_attr(a) container_of(a,struct freq_attr,attr) 510 511 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf) 512 { 513 struct cpufreq_policy * policy = to_policy(kobj); 514 struct freq_attr * fattr = to_attr(attr); 515 ssize_t ret; 516 policy = cpufreq_cpu_get(policy->cpu); 517 if (!policy) 518 return -EINVAL; 519 ret = fattr->show ? fattr->show(policy,buf) : -EIO; 520 cpufreq_cpu_put(policy); 521 return ret; 522 } 523 524 static ssize_t store(struct kobject * kobj, struct attribute * attr, 525 const char * buf, size_t count) 526 { 527 struct cpufreq_policy * policy = to_policy(kobj); 528 struct freq_attr * fattr = to_attr(attr); 529 ssize_t ret; 530 policy = cpufreq_cpu_get(policy->cpu); 531 if (!policy) 532 return -EINVAL; 533 ret = fattr->store ? fattr->store(policy,buf,count) : -EIO; 534 cpufreq_cpu_put(policy); 535 return ret; 536 } 537 538 static void cpufreq_sysfs_release(struct kobject * kobj) 539 { 540 struct cpufreq_policy * policy = to_policy(kobj); 541 dprintk("last reference is dropped\n"); 542 complete(&policy->kobj_unregister); 543 } 544 545 static struct sysfs_ops sysfs_ops = { 546 .show = show, 547 .store = store, 548 }; 549 550 static struct kobj_type ktype_cpufreq = { 551 .sysfs_ops = &sysfs_ops, 552 .default_attrs = default_attrs, 553 .release = cpufreq_sysfs_release, 554 }; 555 556 557 /** 558 * cpufreq_add_dev - add a CPU device 559 * 560 * Adds the cpufreq interface for a CPU device. 561 */ 562 static int cpufreq_add_dev (struct sys_device * sys_dev) 563 { 564 unsigned int cpu = sys_dev->id; 565 int ret = 0; 566 struct cpufreq_policy new_policy; 567 struct cpufreq_policy *policy; 568 struct freq_attr **drv_attr; 569 unsigned long flags; 570 unsigned int j; 571 572 if (cpu_is_offline(cpu)) 573 return 0; 574 575 cpufreq_debug_disable_ratelimit(); 576 dprintk("adding CPU %u\n", cpu); 577 578 #ifdef CONFIG_SMP 579 /* check whether a different CPU already registered this 580 * CPU because it is in the same boat. */ 581 policy = cpufreq_cpu_get(cpu); 582 if (unlikely(policy)) { 583 dprintk("CPU already managed, adding link\n"); 584 sysfs_create_link(&sys_dev->kobj, &policy->kobj, "cpufreq"); 585 cpufreq_debug_enable_ratelimit(); 586 return 0; 587 } 588 #endif 589 590 if (!try_module_get(cpufreq_driver->owner)) { 591 ret = -EINVAL; 592 goto module_out; 593 } 594 595 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 596 if (!policy) { 597 ret = -ENOMEM; 598 goto nomem_out; 599 } 600 601 policy->cpu = cpu; 602 policy->cpus = cpumask_of_cpu(cpu); 603 604 init_MUTEX_LOCKED(&policy->lock); 605 init_completion(&policy->kobj_unregister); 606 INIT_WORK(&policy->update, handle_update, (void *)(long)cpu); 607 608 /* call driver. From then on the cpufreq must be able 609 * to accept all calls to ->verify and ->setpolicy for this CPU 610 */ 611 ret = cpufreq_driver->init(policy); 612 if (ret) { 613 dprintk("initialization failed\n"); 614 goto err_out; 615 } 616 617 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 618 619 /* prepare interface data */ 620 policy->kobj.parent = &sys_dev->kobj; 621 policy->kobj.ktype = &ktype_cpufreq; 622 strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN); 623 624 ret = kobject_register(&policy->kobj); 625 if (ret) 626 goto err_out_driver_exit; 627 628 /* set up files for this cpu device */ 629 drv_attr = cpufreq_driver->attr; 630 while ((drv_attr) && (*drv_attr)) { 631 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 632 drv_attr++; 633 } 634 if (cpufreq_driver->get) 635 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 636 if (cpufreq_driver->target) 637 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 638 639 spin_lock_irqsave(&cpufreq_driver_lock, flags); 640 for_each_cpu_mask(j, policy->cpus) 641 cpufreq_cpu_data[j] = policy; 642 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 643 policy->governor = NULL; /* to assure that the starting sequence is 644 * run in cpufreq_set_policy */ 645 up(&policy->lock); 646 647 /* set default policy */ 648 649 ret = cpufreq_set_policy(&new_policy); 650 if (ret) { 651 dprintk("setting policy failed\n"); 652 goto err_out_unregister; 653 } 654 655 module_put(cpufreq_driver->owner); 656 dprintk("initialization complete\n"); 657 cpufreq_debug_enable_ratelimit(); 658 659 return 0; 660 661 662 err_out_unregister: 663 spin_lock_irqsave(&cpufreq_driver_lock, flags); 664 for_each_cpu_mask(j, policy->cpus) 665 cpufreq_cpu_data[j] = NULL; 666 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 667 668 kobject_unregister(&policy->kobj); 669 wait_for_completion(&policy->kobj_unregister); 670 671 err_out_driver_exit: 672 if (cpufreq_driver->exit) 673 cpufreq_driver->exit(policy); 674 675 err_out: 676 kfree(policy); 677 678 nomem_out: 679 module_put(cpufreq_driver->owner); 680 module_out: 681 cpufreq_debug_enable_ratelimit(); 682 return ret; 683 } 684 685 686 /** 687 * cpufreq_remove_dev - remove a CPU device 688 * 689 * Removes the cpufreq interface for a CPU device. 690 */ 691 static int cpufreq_remove_dev (struct sys_device * sys_dev) 692 { 693 unsigned int cpu = sys_dev->id; 694 unsigned long flags; 695 struct cpufreq_policy *data; 696 #ifdef CONFIG_SMP 697 struct sys_device *cpu_sys_dev; 698 unsigned int j; 699 #endif 700 701 cpufreq_debug_disable_ratelimit(); 702 dprintk("unregistering CPU %u\n", cpu); 703 704 spin_lock_irqsave(&cpufreq_driver_lock, flags); 705 data = cpufreq_cpu_data[cpu]; 706 707 if (!data) { 708 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 709 cpufreq_debug_enable_ratelimit(); 710 return -EINVAL; 711 } 712 cpufreq_cpu_data[cpu] = NULL; 713 714 715 #ifdef CONFIG_SMP 716 /* if this isn't the CPU which is the parent of the kobj, we 717 * only need to unlink, put and exit 718 */ 719 if (unlikely(cpu != data->cpu)) { 720 dprintk("removing link\n"); 721 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 722 sysfs_remove_link(&sys_dev->kobj, "cpufreq"); 723 cpufreq_cpu_put(data); 724 cpufreq_debug_enable_ratelimit(); 725 return 0; 726 } 727 #endif 728 729 730 if (!kobject_get(&data->kobj)) { 731 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 732 cpufreq_debug_enable_ratelimit(); 733 return -EFAULT; 734 } 735 736 #ifdef CONFIG_SMP 737 /* if we have other CPUs still registered, we need to unlink them, 738 * or else wait_for_completion below will lock up. Clean the 739 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs 740 * links afterwards. 741 */ 742 if (unlikely(cpus_weight(data->cpus) > 1)) { 743 for_each_cpu_mask(j, data->cpus) { 744 if (j == cpu) 745 continue; 746 cpufreq_cpu_data[j] = NULL; 747 } 748 } 749 750 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 751 752 if (unlikely(cpus_weight(data->cpus) > 1)) { 753 for_each_cpu_mask(j, data->cpus) { 754 if (j == cpu) 755 continue; 756 dprintk("removing link for cpu %u\n", j); 757 cpu_sys_dev = get_cpu_sysdev(j); 758 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq"); 759 cpufreq_cpu_put(data); 760 } 761 } 762 #else 763 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 764 #endif 765 766 down(&data->lock); 767 if (cpufreq_driver->target) 768 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 769 up(&data->lock); 770 771 kobject_unregister(&data->kobj); 772 773 kobject_put(&data->kobj); 774 775 /* we need to make sure that the underlying kobj is actually 776 * not referenced anymore by anybody before we proceed with 777 * unloading. 778 */ 779 dprintk("waiting for dropping of refcount\n"); 780 wait_for_completion(&data->kobj_unregister); 781 dprintk("wait complete\n"); 782 783 if (cpufreq_driver->exit) 784 cpufreq_driver->exit(data); 785 786 kfree(data); 787 788 cpufreq_debug_enable_ratelimit(); 789 790 return 0; 791 } 792 793 794 static void handle_update(void *data) 795 { 796 unsigned int cpu = (unsigned int)(long)data; 797 dprintk("handle_update for cpu %u called\n", cpu); 798 cpufreq_update_policy(cpu); 799 } 800 801 /** 802 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 803 * @cpu: cpu number 804 * @old_freq: CPU frequency the kernel thinks the CPU runs at 805 * @new_freq: CPU frequency the CPU actually runs at 806 * 807 * We adjust to current frequency first, and need to clean up later. So either call 808 * to cpufreq_update_policy() or schedule handle_update()). 809 */ 810 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq) 811 { 812 struct cpufreq_freqs freqs; 813 814 dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing " 815 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 816 817 freqs.cpu = cpu; 818 freqs.old = old_freq; 819 freqs.new = new_freq; 820 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 821 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 822 } 823 824 825 /** 826 * cpufreq_get - get the current CPU frequency (in kHz) 827 * @cpu: CPU number 828 * 829 * Get the CPU current (static) CPU frequency 830 */ 831 unsigned int cpufreq_get(unsigned int cpu) 832 { 833 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 834 unsigned int ret = 0; 835 836 if (!policy) 837 return 0; 838 839 if (!cpufreq_driver->get) 840 goto out; 841 842 down(&policy->lock); 843 844 ret = cpufreq_driver->get(cpu); 845 846 if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) 847 { 848 /* verify no discrepancy between actual and saved value exists */ 849 if (unlikely(ret != policy->cur)) { 850 cpufreq_out_of_sync(cpu, policy->cur, ret); 851 schedule_work(&policy->update); 852 } 853 } 854 855 up(&policy->lock); 856 857 out: 858 cpufreq_cpu_put(policy); 859 860 return (ret); 861 } 862 EXPORT_SYMBOL(cpufreq_get); 863 864 865 /** 866 * cpufreq_suspend - let the low level driver prepare for suspend 867 */ 868 869 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg) 870 { 871 int cpu = sysdev->id; 872 unsigned int ret = 0; 873 unsigned int cur_freq = 0; 874 struct cpufreq_policy *cpu_policy; 875 876 dprintk("resuming cpu %u\n", cpu); 877 878 if (!cpu_online(cpu)) 879 return 0; 880 881 /* we may be lax here as interrupts are off. Nonetheless 882 * we need to grab the correct cpu policy, as to check 883 * whether we really run on this CPU. 884 */ 885 886 cpu_policy = cpufreq_cpu_get(cpu); 887 if (!cpu_policy) 888 return -EINVAL; 889 890 /* only handle each CPU group once */ 891 if (unlikely(cpu_policy->cpu != cpu)) { 892 cpufreq_cpu_put(cpu_policy); 893 return 0; 894 } 895 896 if (cpufreq_driver->suspend) { 897 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 898 if (ret) { 899 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 900 "step on CPU %u\n", cpu_policy->cpu); 901 cpufreq_cpu_put(cpu_policy); 902 return ret; 903 } 904 } 905 906 907 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS) 908 goto out; 909 910 if (cpufreq_driver->get) 911 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 912 913 if (!cur_freq || !cpu_policy->cur) { 914 printk(KERN_ERR "cpufreq: suspend failed to assert current " 915 "frequency is what timing core thinks it is.\n"); 916 goto out; 917 } 918 919 if (unlikely(cur_freq != cpu_policy->cur)) { 920 struct cpufreq_freqs freqs; 921 922 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 923 dprintk(KERN_DEBUG "Warning: CPU frequency is %u, " 924 "cpufreq assumed %u kHz.\n", 925 cur_freq, cpu_policy->cur); 926 927 freqs.cpu = cpu; 928 freqs.old = cpu_policy->cur; 929 freqs.new = cur_freq; 930 931 notifier_call_chain(&cpufreq_transition_notifier_list, 932 CPUFREQ_SUSPENDCHANGE, &freqs); 933 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs); 934 935 cpu_policy->cur = cur_freq; 936 } 937 938 out: 939 cpufreq_cpu_put(cpu_policy); 940 return 0; 941 } 942 943 /** 944 * cpufreq_resume - restore proper CPU frequency handling after resume 945 * 946 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 947 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync 948 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are 949 * restored. 950 */ 951 static int cpufreq_resume(struct sys_device * sysdev) 952 { 953 int cpu = sysdev->id; 954 unsigned int ret = 0; 955 struct cpufreq_policy *cpu_policy; 956 957 dprintk("resuming cpu %u\n", cpu); 958 959 if (!cpu_online(cpu)) 960 return 0; 961 962 /* we may be lax here as interrupts are off. Nonetheless 963 * we need to grab the correct cpu policy, as to check 964 * whether we really run on this CPU. 965 */ 966 967 cpu_policy = cpufreq_cpu_get(cpu); 968 if (!cpu_policy) 969 return -EINVAL; 970 971 /* only handle each CPU group once */ 972 if (unlikely(cpu_policy->cpu != cpu)) { 973 cpufreq_cpu_put(cpu_policy); 974 return 0; 975 } 976 977 if (cpufreq_driver->resume) { 978 ret = cpufreq_driver->resume(cpu_policy); 979 if (ret) { 980 printk(KERN_ERR "cpufreq: resume failed in ->resume " 981 "step on CPU %u\n", cpu_policy->cpu); 982 cpufreq_cpu_put(cpu_policy); 983 return ret; 984 } 985 } 986 987 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 988 unsigned int cur_freq = 0; 989 990 if (cpufreq_driver->get) 991 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 992 993 if (!cur_freq || !cpu_policy->cur) { 994 printk(KERN_ERR "cpufreq: resume failed to assert " 995 "current frequency is what timing core " 996 "thinks it is.\n"); 997 goto out; 998 } 999 1000 if (unlikely(cur_freq != cpu_policy->cur)) { 1001 struct cpufreq_freqs freqs; 1002 1003 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 1004 dprintk(KERN_WARNING "Warning: CPU frequency" 1005 "is %u, cpufreq assumed %u kHz.\n", 1006 cur_freq, cpu_policy->cur); 1007 1008 freqs.cpu = cpu; 1009 freqs.old = cpu_policy->cur; 1010 freqs.new = cur_freq; 1011 1012 notifier_call_chain(&cpufreq_transition_notifier_list, 1013 CPUFREQ_RESUMECHANGE, &freqs); 1014 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs); 1015 1016 cpu_policy->cur = cur_freq; 1017 } 1018 } 1019 1020 out: 1021 schedule_work(&cpu_policy->update); 1022 cpufreq_cpu_put(cpu_policy); 1023 return ret; 1024 } 1025 1026 static struct sysdev_driver cpufreq_sysdev_driver = { 1027 .add = cpufreq_add_dev, 1028 .remove = cpufreq_remove_dev, 1029 .suspend = cpufreq_suspend, 1030 .resume = cpufreq_resume, 1031 }; 1032 1033 1034 /********************************************************************* 1035 * NOTIFIER LISTS INTERFACE * 1036 *********************************************************************/ 1037 1038 /** 1039 * cpufreq_register_notifier - register a driver with cpufreq 1040 * @nb: notifier function to register 1041 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1042 * 1043 * Add a driver to one of two lists: either a list of drivers that 1044 * are notified about clock rate changes (once before and once after 1045 * the transition), or a list of drivers that are notified about 1046 * changes in cpufreq policy. 1047 * 1048 * This function may sleep, and has the same return conditions as 1049 * notifier_chain_register. 1050 */ 1051 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1052 { 1053 int ret; 1054 1055 down_write(&cpufreq_notifier_rwsem); 1056 switch (list) { 1057 case CPUFREQ_TRANSITION_NOTIFIER: 1058 ret = notifier_chain_register(&cpufreq_transition_notifier_list, nb); 1059 break; 1060 case CPUFREQ_POLICY_NOTIFIER: 1061 ret = notifier_chain_register(&cpufreq_policy_notifier_list, nb); 1062 break; 1063 default: 1064 ret = -EINVAL; 1065 } 1066 up_write(&cpufreq_notifier_rwsem); 1067 1068 return ret; 1069 } 1070 EXPORT_SYMBOL(cpufreq_register_notifier); 1071 1072 1073 /** 1074 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1075 * @nb: notifier block to be unregistered 1076 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1077 * 1078 * Remove a driver from the CPU frequency notifier list. 1079 * 1080 * This function may sleep, and has the same return conditions as 1081 * notifier_chain_unregister. 1082 */ 1083 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1084 { 1085 int ret; 1086 1087 down_write(&cpufreq_notifier_rwsem); 1088 switch (list) { 1089 case CPUFREQ_TRANSITION_NOTIFIER: 1090 ret = notifier_chain_unregister(&cpufreq_transition_notifier_list, nb); 1091 break; 1092 case CPUFREQ_POLICY_NOTIFIER: 1093 ret = notifier_chain_unregister(&cpufreq_policy_notifier_list, nb); 1094 break; 1095 default: 1096 ret = -EINVAL; 1097 } 1098 up_write(&cpufreq_notifier_rwsem); 1099 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1103 1104 1105 /********************************************************************* 1106 * GOVERNORS * 1107 *********************************************************************/ 1108 1109 1110 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1111 unsigned int target_freq, 1112 unsigned int relation) 1113 { 1114 int retval = -EINVAL; 1115 1116 lock_cpu_hotplug(); 1117 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1118 target_freq, relation); 1119 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1120 retval = cpufreq_driver->target(policy, target_freq, relation); 1121 1122 unlock_cpu_hotplug(); 1123 1124 return retval; 1125 } 1126 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1127 1128 int cpufreq_driver_target(struct cpufreq_policy *policy, 1129 unsigned int target_freq, 1130 unsigned int relation) 1131 { 1132 int ret; 1133 1134 policy = cpufreq_cpu_get(policy->cpu); 1135 if (!policy) 1136 return -EINVAL; 1137 1138 down(&policy->lock); 1139 1140 ret = __cpufreq_driver_target(policy, target_freq, relation); 1141 1142 up(&policy->lock); 1143 1144 cpufreq_cpu_put(policy); 1145 1146 return ret; 1147 } 1148 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1149 1150 1151 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event) 1152 { 1153 int ret; 1154 1155 if (!try_module_get(policy->governor->owner)) 1156 return -EINVAL; 1157 1158 dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event); 1159 ret = policy->governor->governor(policy, event); 1160 1161 /* we keep one module reference alive for each CPU governed by this CPU */ 1162 if ((event != CPUFREQ_GOV_START) || ret) 1163 module_put(policy->governor->owner); 1164 if ((event == CPUFREQ_GOV_STOP) && !ret) 1165 module_put(policy->governor->owner); 1166 1167 return ret; 1168 } 1169 1170 1171 int cpufreq_governor(unsigned int cpu, unsigned int event) 1172 { 1173 int ret = 0; 1174 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1175 1176 if (!policy) 1177 return -EINVAL; 1178 1179 down(&policy->lock); 1180 ret = __cpufreq_governor(policy, event); 1181 up(&policy->lock); 1182 1183 cpufreq_cpu_put(policy); 1184 1185 return ret; 1186 } 1187 EXPORT_SYMBOL_GPL(cpufreq_governor); 1188 1189 1190 int cpufreq_register_governor(struct cpufreq_governor *governor) 1191 { 1192 struct cpufreq_governor *t; 1193 1194 if (!governor) 1195 return -EINVAL; 1196 1197 down(&cpufreq_governor_sem); 1198 1199 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 1200 if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) { 1201 up(&cpufreq_governor_sem); 1202 return -EBUSY; 1203 } 1204 } 1205 list_add(&governor->governor_list, &cpufreq_governor_list); 1206 1207 up(&cpufreq_governor_sem); 1208 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1212 1213 1214 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1215 { 1216 if (!governor) 1217 return; 1218 1219 down(&cpufreq_governor_sem); 1220 list_del(&governor->governor_list); 1221 up(&cpufreq_governor_sem); 1222 return; 1223 } 1224 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1225 1226 1227 1228 /********************************************************************* 1229 * POLICY INTERFACE * 1230 *********************************************************************/ 1231 1232 /** 1233 * cpufreq_get_policy - get the current cpufreq_policy 1234 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written 1235 * 1236 * Reads the current cpufreq policy. 1237 */ 1238 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1239 { 1240 struct cpufreq_policy *cpu_policy; 1241 if (!policy) 1242 return -EINVAL; 1243 1244 cpu_policy = cpufreq_cpu_get(cpu); 1245 if (!cpu_policy) 1246 return -EINVAL; 1247 1248 down(&cpu_policy->lock); 1249 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1250 up(&cpu_policy->lock); 1251 1252 cpufreq_cpu_put(cpu_policy); 1253 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(cpufreq_get_policy); 1257 1258 1259 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy) 1260 { 1261 int ret = 0; 1262 1263 cpufreq_debug_disable_ratelimit(); 1264 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1265 policy->min, policy->max); 1266 1267 memcpy(&policy->cpuinfo, 1268 &data->cpuinfo, 1269 sizeof(struct cpufreq_cpuinfo)); 1270 1271 /* verify the cpu speed can be set within this limit */ 1272 ret = cpufreq_driver->verify(policy); 1273 if (ret) 1274 goto error_out; 1275 1276 down_read(&cpufreq_notifier_rwsem); 1277 1278 /* adjust if necessary - all reasons */ 1279 notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_ADJUST, 1280 policy); 1281 1282 /* adjust if necessary - hardware incompatibility*/ 1283 notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_INCOMPATIBLE, 1284 policy); 1285 1286 /* verify the cpu speed can be set within this limit, 1287 which might be different to the first one */ 1288 ret = cpufreq_driver->verify(policy); 1289 if (ret) { 1290 up_read(&cpufreq_notifier_rwsem); 1291 goto error_out; 1292 } 1293 1294 /* notification of the new policy */ 1295 notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_NOTIFY, 1296 policy); 1297 1298 up_read(&cpufreq_notifier_rwsem); 1299 1300 data->min = policy->min; 1301 data->max = policy->max; 1302 1303 dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max); 1304 1305 if (cpufreq_driver->setpolicy) { 1306 data->policy = policy->policy; 1307 dprintk("setting range\n"); 1308 ret = cpufreq_driver->setpolicy(policy); 1309 } else { 1310 if (policy->governor != data->governor) { 1311 /* save old, working values */ 1312 struct cpufreq_governor *old_gov = data->governor; 1313 1314 dprintk("governor switch\n"); 1315 1316 /* end old governor */ 1317 if (data->governor) 1318 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1319 1320 /* start new governor */ 1321 data->governor = policy->governor; 1322 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1323 /* new governor failed, so re-start old one */ 1324 dprintk("starting governor %s failed\n", data->governor->name); 1325 if (old_gov) { 1326 data->governor = old_gov; 1327 __cpufreq_governor(data, CPUFREQ_GOV_START); 1328 } 1329 ret = -EINVAL; 1330 goto error_out; 1331 } 1332 /* might be a policy change, too, so fall through */ 1333 } 1334 dprintk("governor: change or update limits\n"); 1335 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1336 } 1337 1338 error_out: 1339 cpufreq_debug_enable_ratelimit(); 1340 return ret; 1341 } 1342 1343 /** 1344 * cpufreq_set_policy - set a new CPUFreq policy 1345 * @policy: policy to be set. 1346 * 1347 * Sets a new CPU frequency and voltage scaling policy. 1348 */ 1349 int cpufreq_set_policy(struct cpufreq_policy *policy) 1350 { 1351 int ret = 0; 1352 struct cpufreq_policy *data; 1353 1354 if (!policy) 1355 return -EINVAL; 1356 1357 data = cpufreq_cpu_get(policy->cpu); 1358 if (!data) 1359 return -EINVAL; 1360 1361 /* lock this CPU */ 1362 down(&data->lock); 1363 1364 ret = __cpufreq_set_policy(data, policy); 1365 data->user_policy.min = data->min; 1366 data->user_policy.max = data->max; 1367 data->user_policy.policy = data->policy; 1368 data->user_policy.governor = data->governor; 1369 1370 up(&data->lock); 1371 cpufreq_cpu_put(data); 1372 1373 return ret; 1374 } 1375 EXPORT_SYMBOL(cpufreq_set_policy); 1376 1377 1378 /** 1379 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1380 * @cpu: CPU which shall be re-evaluated 1381 * 1382 * Usefull for policy notifiers which have different necessities 1383 * at different times. 1384 */ 1385 int cpufreq_update_policy(unsigned int cpu) 1386 { 1387 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1388 struct cpufreq_policy policy; 1389 int ret = 0; 1390 1391 if (!data) 1392 return -ENODEV; 1393 1394 down(&data->lock); 1395 1396 dprintk("updating policy for CPU %u\n", cpu); 1397 memcpy(&policy, 1398 data, 1399 sizeof(struct cpufreq_policy)); 1400 policy.min = data->user_policy.min; 1401 policy.max = data->user_policy.max; 1402 policy.policy = data->user_policy.policy; 1403 policy.governor = data->user_policy.governor; 1404 1405 ret = __cpufreq_set_policy(data, &policy); 1406 1407 up(&data->lock); 1408 1409 cpufreq_cpu_put(data); 1410 return ret; 1411 } 1412 EXPORT_SYMBOL(cpufreq_update_policy); 1413 1414 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1415 unsigned long action, void *hcpu) 1416 { 1417 unsigned int cpu = (unsigned long)hcpu; 1418 struct cpufreq_policy *policy; 1419 struct sys_device *sys_dev; 1420 1421 sys_dev = get_cpu_sysdev(cpu); 1422 1423 if (sys_dev) { 1424 switch (action) { 1425 case CPU_ONLINE: 1426 cpufreq_add_dev(sys_dev); 1427 break; 1428 case CPU_DOWN_PREPARE: 1429 /* 1430 * We attempt to put this cpu in lowest frequency 1431 * possible before going down. This will permit 1432 * hardware-managed P-State to switch other related 1433 * threads to min or higher speeds if possible. 1434 */ 1435 policy = cpufreq_cpu_data[cpu]; 1436 if (policy) { 1437 cpufreq_driver_target(policy, policy->min, 1438 CPUFREQ_RELATION_H); 1439 } 1440 break; 1441 case CPU_DEAD: 1442 cpufreq_remove_dev(sys_dev); 1443 break; 1444 } 1445 } 1446 return NOTIFY_OK; 1447 } 1448 1449 static struct notifier_block cpufreq_cpu_notifier = 1450 { 1451 .notifier_call = cpufreq_cpu_callback, 1452 }; 1453 1454 /********************************************************************* 1455 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1456 *********************************************************************/ 1457 1458 /** 1459 * cpufreq_register_driver - register a CPU Frequency driver 1460 * @driver_data: A struct cpufreq_driver containing the values# 1461 * submitted by the CPU Frequency driver. 1462 * 1463 * Registers a CPU Frequency driver to this core code. This code 1464 * returns zero on success, -EBUSY when another driver got here first 1465 * (and isn't unregistered in the meantime). 1466 * 1467 */ 1468 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1469 { 1470 unsigned long flags; 1471 int ret; 1472 1473 if (!driver_data || !driver_data->verify || !driver_data->init || 1474 ((!driver_data->setpolicy) && (!driver_data->target))) 1475 return -EINVAL; 1476 1477 dprintk("trying to register driver %s\n", driver_data->name); 1478 1479 if (driver_data->setpolicy) 1480 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1481 1482 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1483 if (cpufreq_driver) { 1484 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1485 return -EBUSY; 1486 } 1487 cpufreq_driver = driver_data; 1488 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1489 1490 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver); 1491 1492 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1493 int i; 1494 ret = -ENODEV; 1495 1496 /* check for at least one working CPU */ 1497 for (i=0; i<NR_CPUS; i++) 1498 if (cpufreq_cpu_data[i]) 1499 ret = 0; 1500 1501 /* if all ->init() calls failed, unregister */ 1502 if (ret) { 1503 dprintk("no CPU initialized for driver %s\n", driver_data->name); 1504 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1505 1506 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1507 cpufreq_driver = NULL; 1508 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1509 } 1510 } 1511 1512 if (!ret) { 1513 register_cpu_notifier(&cpufreq_cpu_notifier); 1514 dprintk("driver %s up and running\n", driver_data->name); 1515 cpufreq_debug_enable_ratelimit(); 1516 } 1517 1518 return (ret); 1519 } 1520 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1521 1522 1523 /** 1524 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1525 * 1526 * Unregister the current CPUFreq driver. Only call this if you have 1527 * the right to do so, i.e. if you have succeeded in initialising before! 1528 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1529 * currently not initialised. 1530 */ 1531 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1532 { 1533 unsigned long flags; 1534 1535 cpufreq_debug_disable_ratelimit(); 1536 1537 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1538 cpufreq_debug_enable_ratelimit(); 1539 return -EINVAL; 1540 } 1541 1542 dprintk("unregistering driver %s\n", driver->name); 1543 1544 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1545 unregister_cpu_notifier(&cpufreq_cpu_notifier); 1546 1547 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1548 cpufreq_driver = NULL; 1549 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1554