xref: /linux/drivers/cpufreq/cpufreq.c (revision 75305275a721d33ae9abfaeed2817cec8b2fee9a)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 	return active == !policy_is_inactive(policy);
44 }
45 
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 					  bool active)
49 {
50 	do {
51 		policy = list_next_entry(policy, policy_list);
52 
53 		/* No more policies in the list */
54 		if (&policy->policy_list == &cpufreq_policy_list)
55 			return NULL;
56 	} while (!suitable_policy(policy, active));
57 
58 	return policy;
59 }
60 
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 	struct cpufreq_policy *policy;
64 
65 	/* No policies in the list */
66 	if (list_empty(&cpufreq_policy_list))
67 		return NULL;
68 
69 	policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 				  policy_list);
71 
72 	if (!suitable_policy(policy, active))
73 		policy = next_policy(policy, active);
74 
75 	return policy;
76 }
77 
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active)	\
80 	for (__policy = first_policy(__active);		\
81 	     __policy;					\
82 	     __policy = next_policy(__policy, __active))
83 
84 #define for_each_active_policy(__policy)		\
85 	for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy)		\
87 	for_each_suitable_policy(__policy, false)
88 
89 #define for_each_policy(__policy)			\
90 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91 
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor)				\
95 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96 
97 /**
98  * The "cpufreq driver" - the arch- or hardware-dependent low
99  * level driver of CPUFreq support, and its spinlock. This lock
100  * also protects the cpufreq_cpu_data array.
101  */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105 DEFINE_MUTEX(cpufreq_governor_lock);
106 
107 /* Flag to suspend/resume CPUFreq governors */
108 static bool cpufreq_suspended;
109 
110 static inline bool has_target(void)
111 {
112 	return cpufreq_driver->target_index || cpufreq_driver->target;
113 }
114 
115 /* internal prototypes */
116 static int __cpufreq_governor(struct cpufreq_policy *policy,
117 		unsigned int event);
118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
119 static void handle_update(struct work_struct *work);
120 
121 /**
122  * Two notifier lists: the "policy" list is involved in the
123  * validation process for a new CPU frequency policy; the
124  * "transition" list for kernel code that needs to handle
125  * changes to devices when the CPU clock speed changes.
126  * The mutex locks both lists.
127  */
128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
129 static struct srcu_notifier_head cpufreq_transition_notifier_list;
130 
131 static bool init_cpufreq_transition_notifier_list_called;
132 static int __init init_cpufreq_transition_notifier_list(void)
133 {
134 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
135 	init_cpufreq_transition_notifier_list_called = true;
136 	return 0;
137 }
138 pure_initcall(init_cpufreq_transition_notifier_list);
139 
140 static int off __read_mostly;
141 static int cpufreq_disabled(void)
142 {
143 	return off;
144 }
145 void disable_cpufreq(void)
146 {
147 	off = 1;
148 }
149 static DEFINE_MUTEX(cpufreq_governor_mutex);
150 
151 bool have_governor_per_policy(void)
152 {
153 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
154 }
155 EXPORT_SYMBOL_GPL(have_governor_per_policy);
156 
157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
158 {
159 	if (have_governor_per_policy())
160 		return &policy->kobj;
161 	else
162 		return cpufreq_global_kobject;
163 }
164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
165 
166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
167 {
168 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
169 
170 	return policy && !policy_is_inactive(policy) ?
171 		policy->freq_table : NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
174 
175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
176 {
177 	u64 idle_time;
178 	u64 cur_wall_time;
179 	u64 busy_time;
180 
181 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
182 
183 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
184 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
185 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
186 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
187 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
188 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
189 
190 	idle_time = cur_wall_time - busy_time;
191 	if (wall)
192 		*wall = cputime_to_usecs(cur_wall_time);
193 
194 	return cputime_to_usecs(idle_time);
195 }
196 
197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
198 {
199 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
200 
201 	if (idle_time == -1ULL)
202 		return get_cpu_idle_time_jiffy(cpu, wall);
203 	else if (!io_busy)
204 		idle_time += get_cpu_iowait_time_us(cpu, wall);
205 
206 	return idle_time;
207 }
208 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
209 
210 /*
211  * This is a generic cpufreq init() routine which can be used by cpufreq
212  * drivers of SMP systems. It will do following:
213  * - validate & show freq table passed
214  * - set policies transition latency
215  * - policy->cpus with all possible CPUs
216  */
217 int cpufreq_generic_init(struct cpufreq_policy *policy,
218 		struct cpufreq_frequency_table *table,
219 		unsigned int transition_latency)
220 {
221 	int ret;
222 
223 	ret = cpufreq_table_validate_and_show(policy, table);
224 	if (ret) {
225 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
226 		return ret;
227 	}
228 
229 	policy->cpuinfo.transition_latency = transition_latency;
230 
231 	/*
232 	 * The driver only supports the SMP configuration where all processors
233 	 * share the clock and voltage and clock.
234 	 */
235 	cpumask_setall(policy->cpus);
236 
237 	return 0;
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
240 
241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
242 {
243 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
244 
245 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
248 
249 unsigned int cpufreq_generic_get(unsigned int cpu)
250 {
251 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
252 
253 	if (!policy || IS_ERR(policy->clk)) {
254 		pr_err("%s: No %s associated to cpu: %d\n",
255 		       __func__, policy ? "clk" : "policy", cpu);
256 		return 0;
257 	}
258 
259 	return clk_get_rate(policy->clk) / 1000;
260 }
261 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
262 
263 /**
264  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
265  *
266  * @cpu: cpu to find policy for.
267  *
268  * This returns policy for 'cpu', returns NULL if it doesn't exist.
269  * It also increments the kobject reference count to mark it busy and so would
270  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
271  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
272  * freed as that depends on the kobj count.
273  *
274  * Return: A valid policy on success, otherwise NULL on failure.
275  */
276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
277 {
278 	struct cpufreq_policy *policy = NULL;
279 	unsigned long flags;
280 
281 	if (WARN_ON(cpu >= nr_cpu_ids))
282 		return NULL;
283 
284 	/* get the cpufreq driver */
285 	read_lock_irqsave(&cpufreq_driver_lock, flags);
286 
287 	if (cpufreq_driver) {
288 		/* get the CPU */
289 		policy = cpufreq_cpu_get_raw(cpu);
290 		if (policy)
291 			kobject_get(&policy->kobj);
292 	}
293 
294 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
295 
296 	return policy;
297 }
298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
299 
300 /**
301  * cpufreq_cpu_put: Decrements the usage count of a policy
302  *
303  * @policy: policy earlier returned by cpufreq_cpu_get().
304  *
305  * This decrements the kobject reference count incremented earlier by calling
306  * cpufreq_cpu_get().
307  */
308 void cpufreq_cpu_put(struct cpufreq_policy *policy)
309 {
310 	kobject_put(&policy->kobj);
311 }
312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
313 
314 /*********************************************************************
315  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
316  *********************************************************************/
317 
318 /**
319  * adjust_jiffies - adjust the system "loops_per_jiffy"
320  *
321  * This function alters the system "loops_per_jiffy" for the clock
322  * speed change. Note that loops_per_jiffy cannot be updated on SMP
323  * systems as each CPU might be scaled differently. So, use the arch
324  * per-CPU loops_per_jiffy value wherever possible.
325  */
326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
327 {
328 #ifndef CONFIG_SMP
329 	static unsigned long l_p_j_ref;
330 	static unsigned int l_p_j_ref_freq;
331 
332 	if (ci->flags & CPUFREQ_CONST_LOOPS)
333 		return;
334 
335 	if (!l_p_j_ref_freq) {
336 		l_p_j_ref = loops_per_jiffy;
337 		l_p_j_ref_freq = ci->old;
338 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
339 			 l_p_j_ref, l_p_j_ref_freq);
340 	}
341 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
342 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
343 								ci->new);
344 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
345 			 loops_per_jiffy, ci->new);
346 	}
347 #endif
348 }
349 
350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
351 		struct cpufreq_freqs *freqs, unsigned int state)
352 {
353 	BUG_ON(irqs_disabled());
354 
355 	if (cpufreq_disabled())
356 		return;
357 
358 	freqs->flags = cpufreq_driver->flags;
359 	pr_debug("notification %u of frequency transition to %u kHz\n",
360 		 state, freqs->new);
361 
362 	switch (state) {
363 
364 	case CPUFREQ_PRECHANGE:
365 		/* detect if the driver reported a value as "old frequency"
366 		 * which is not equal to what the cpufreq core thinks is
367 		 * "old frequency".
368 		 */
369 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
370 			if ((policy) && (policy->cpu == freqs->cpu) &&
371 			    (policy->cur) && (policy->cur != freqs->old)) {
372 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
373 					 freqs->old, policy->cur);
374 				freqs->old = policy->cur;
375 			}
376 		}
377 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
378 				CPUFREQ_PRECHANGE, freqs);
379 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 		break;
381 
382 	case CPUFREQ_POSTCHANGE:
383 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 		pr_debug("FREQ: %lu - CPU: %lu\n",
385 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
386 		trace_cpu_frequency(freqs->new, freqs->cpu);
387 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
388 				CPUFREQ_POSTCHANGE, freqs);
389 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
390 			policy->cur = freqs->new;
391 		break;
392 	}
393 }
394 
395 /**
396  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
397  * on frequency transition.
398  *
399  * This function calls the transition notifiers and the "adjust_jiffies"
400  * function. It is called twice on all CPU frequency changes that have
401  * external effects.
402  */
403 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, unsigned int state)
405 {
406 	for_each_cpu(freqs->cpu, policy->cpus)
407 		__cpufreq_notify_transition(policy, freqs, state);
408 }
409 
410 /* Do post notifications when there are chances that transition has failed */
411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
412 		struct cpufreq_freqs *freqs, int transition_failed)
413 {
414 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
415 	if (!transition_failed)
416 		return;
417 
418 	swap(freqs->old, freqs->new);
419 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
420 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
421 }
422 
423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
424 		struct cpufreq_freqs *freqs)
425 {
426 
427 	/*
428 	 * Catch double invocations of _begin() which lead to self-deadlock.
429 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
430 	 * doesn't invoke _begin() on their behalf, and hence the chances of
431 	 * double invocations are very low. Moreover, there are scenarios
432 	 * where these checks can emit false-positive warnings in these
433 	 * drivers; so we avoid that by skipping them altogether.
434 	 */
435 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
436 				&& current == policy->transition_task);
437 
438 wait:
439 	wait_event(policy->transition_wait, !policy->transition_ongoing);
440 
441 	spin_lock(&policy->transition_lock);
442 
443 	if (unlikely(policy->transition_ongoing)) {
444 		spin_unlock(&policy->transition_lock);
445 		goto wait;
446 	}
447 
448 	policy->transition_ongoing = true;
449 	policy->transition_task = current;
450 
451 	spin_unlock(&policy->transition_lock);
452 
453 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
454 }
455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
456 
457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
458 		struct cpufreq_freqs *freqs, int transition_failed)
459 {
460 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
461 		return;
462 
463 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
464 
465 	policy->transition_ongoing = false;
466 	policy->transition_task = NULL;
467 
468 	wake_up(&policy->transition_wait);
469 }
470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
471 
472 
473 /*********************************************************************
474  *                          SYSFS INTERFACE                          *
475  *********************************************************************/
476 static ssize_t show_boost(struct kobject *kobj,
477 				 struct attribute *attr, char *buf)
478 {
479 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
480 }
481 
482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
483 				  const char *buf, size_t count)
484 {
485 	int ret, enable;
486 
487 	ret = sscanf(buf, "%d", &enable);
488 	if (ret != 1 || enable < 0 || enable > 1)
489 		return -EINVAL;
490 
491 	if (cpufreq_boost_trigger_state(enable)) {
492 		pr_err("%s: Cannot %s BOOST!\n",
493 		       __func__, enable ? "enable" : "disable");
494 		return -EINVAL;
495 	}
496 
497 	pr_debug("%s: cpufreq BOOST %s\n",
498 		 __func__, enable ? "enabled" : "disabled");
499 
500 	return count;
501 }
502 define_one_global_rw(boost);
503 
504 static struct cpufreq_governor *find_governor(const char *str_governor)
505 {
506 	struct cpufreq_governor *t;
507 
508 	for_each_governor(t)
509 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
510 			return t;
511 
512 	return NULL;
513 }
514 
515 /**
516  * cpufreq_parse_governor - parse a governor string
517  */
518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
519 				struct cpufreq_governor **governor)
520 {
521 	int err = -EINVAL;
522 
523 	if (cpufreq_driver->setpolicy) {
524 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
525 			*policy = CPUFREQ_POLICY_PERFORMANCE;
526 			err = 0;
527 		} else if (!strncasecmp(str_governor, "powersave",
528 						CPUFREQ_NAME_LEN)) {
529 			*policy = CPUFREQ_POLICY_POWERSAVE;
530 			err = 0;
531 		}
532 	} else {
533 		struct cpufreq_governor *t;
534 
535 		mutex_lock(&cpufreq_governor_mutex);
536 
537 		t = find_governor(str_governor);
538 
539 		if (t == NULL) {
540 			int ret;
541 
542 			mutex_unlock(&cpufreq_governor_mutex);
543 			ret = request_module("cpufreq_%s", str_governor);
544 			mutex_lock(&cpufreq_governor_mutex);
545 
546 			if (ret == 0)
547 				t = find_governor(str_governor);
548 		}
549 
550 		if (t != NULL) {
551 			*governor = t;
552 			err = 0;
553 		}
554 
555 		mutex_unlock(&cpufreq_governor_mutex);
556 	}
557 	return err;
558 }
559 
560 /**
561  * cpufreq_per_cpu_attr_read() / show_##file_name() -
562  * print out cpufreq information
563  *
564  * Write out information from cpufreq_driver->policy[cpu]; object must be
565  * "unsigned int".
566  */
567 
568 #define show_one(file_name, object)			\
569 static ssize_t show_##file_name				\
570 (struct cpufreq_policy *policy, char *buf)		\
571 {							\
572 	return sprintf(buf, "%u\n", policy->object);	\
573 }
574 
575 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
576 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
578 show_one(scaling_min_freq, min);
579 show_one(scaling_max_freq, max);
580 
581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
582 {
583 	ssize_t ret;
584 
585 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
586 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
587 	else
588 		ret = sprintf(buf, "%u\n", policy->cur);
589 	return ret;
590 }
591 
592 static int cpufreq_set_policy(struct cpufreq_policy *policy,
593 				struct cpufreq_policy *new_policy);
594 
595 /**
596  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
597  */
598 #define store_one(file_name, object)			\
599 static ssize_t store_##file_name					\
600 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
601 {									\
602 	int ret, temp;							\
603 	struct cpufreq_policy new_policy;				\
604 									\
605 	memcpy(&new_policy, policy, sizeof(*policy));			\
606 									\
607 	ret = sscanf(buf, "%u", &new_policy.object);			\
608 	if (ret != 1)							\
609 		return -EINVAL;						\
610 									\
611 	temp = new_policy.object;					\
612 	ret = cpufreq_set_policy(policy, &new_policy);		\
613 	if (!ret)							\
614 		policy->user_policy.object = temp;			\
615 									\
616 	return ret ? ret : count;					\
617 }
618 
619 store_one(scaling_min_freq, min);
620 store_one(scaling_max_freq, max);
621 
622 /**
623  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
624  */
625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
626 					char *buf)
627 {
628 	unsigned int cur_freq = __cpufreq_get(policy);
629 	if (!cur_freq)
630 		return sprintf(buf, "<unknown>");
631 	return sprintf(buf, "%u\n", cur_freq);
632 }
633 
634 /**
635  * show_scaling_governor - show the current policy for the specified CPU
636  */
637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
638 {
639 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
640 		return sprintf(buf, "powersave\n");
641 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
642 		return sprintf(buf, "performance\n");
643 	else if (policy->governor)
644 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
645 				policy->governor->name);
646 	return -EINVAL;
647 }
648 
649 /**
650  * store_scaling_governor - store policy for the specified CPU
651  */
652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
653 					const char *buf, size_t count)
654 {
655 	int ret;
656 	char	str_governor[16];
657 	struct cpufreq_policy new_policy;
658 
659 	memcpy(&new_policy, policy, sizeof(*policy));
660 
661 	ret = sscanf(buf, "%15s", str_governor);
662 	if (ret != 1)
663 		return -EINVAL;
664 
665 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
666 						&new_policy.governor))
667 		return -EINVAL;
668 
669 	ret = cpufreq_set_policy(policy, &new_policy);
670 	return ret ? ret : count;
671 }
672 
673 /**
674  * show_scaling_driver - show the cpufreq driver currently loaded
675  */
676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
677 {
678 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
679 }
680 
681 /**
682  * show_scaling_available_governors - show the available CPUfreq governors
683  */
684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
685 						char *buf)
686 {
687 	ssize_t i = 0;
688 	struct cpufreq_governor *t;
689 
690 	if (!has_target()) {
691 		i += sprintf(buf, "performance powersave");
692 		goto out;
693 	}
694 
695 	for_each_governor(t) {
696 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
697 		    - (CPUFREQ_NAME_LEN + 2)))
698 			goto out;
699 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
700 	}
701 out:
702 	i += sprintf(&buf[i], "\n");
703 	return i;
704 }
705 
706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
707 {
708 	ssize_t i = 0;
709 	unsigned int cpu;
710 
711 	for_each_cpu(cpu, mask) {
712 		if (i)
713 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
714 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
715 		if (i >= (PAGE_SIZE - 5))
716 			break;
717 	}
718 	i += sprintf(&buf[i], "\n");
719 	return i;
720 }
721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
722 
723 /**
724  * show_related_cpus - show the CPUs affected by each transition even if
725  * hw coordination is in use
726  */
727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
728 {
729 	return cpufreq_show_cpus(policy->related_cpus, buf);
730 }
731 
732 /**
733  * show_affected_cpus - show the CPUs affected by each transition
734  */
735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
736 {
737 	return cpufreq_show_cpus(policy->cpus, buf);
738 }
739 
740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
741 					const char *buf, size_t count)
742 {
743 	unsigned int freq = 0;
744 	unsigned int ret;
745 
746 	if (!policy->governor || !policy->governor->store_setspeed)
747 		return -EINVAL;
748 
749 	ret = sscanf(buf, "%u", &freq);
750 	if (ret != 1)
751 		return -EINVAL;
752 
753 	policy->governor->store_setspeed(policy, freq);
754 
755 	return count;
756 }
757 
758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
759 {
760 	if (!policy->governor || !policy->governor->show_setspeed)
761 		return sprintf(buf, "<unsupported>\n");
762 
763 	return policy->governor->show_setspeed(policy, buf);
764 }
765 
766 /**
767  * show_bios_limit - show the current cpufreq HW/BIOS limitation
768  */
769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
770 {
771 	unsigned int limit;
772 	int ret;
773 	if (cpufreq_driver->bios_limit) {
774 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
775 		if (!ret)
776 			return sprintf(buf, "%u\n", limit);
777 	}
778 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
779 }
780 
781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
782 cpufreq_freq_attr_ro(cpuinfo_min_freq);
783 cpufreq_freq_attr_ro(cpuinfo_max_freq);
784 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
785 cpufreq_freq_attr_ro(scaling_available_governors);
786 cpufreq_freq_attr_ro(scaling_driver);
787 cpufreq_freq_attr_ro(scaling_cur_freq);
788 cpufreq_freq_attr_ro(bios_limit);
789 cpufreq_freq_attr_ro(related_cpus);
790 cpufreq_freq_attr_ro(affected_cpus);
791 cpufreq_freq_attr_rw(scaling_min_freq);
792 cpufreq_freq_attr_rw(scaling_max_freq);
793 cpufreq_freq_attr_rw(scaling_governor);
794 cpufreq_freq_attr_rw(scaling_setspeed);
795 
796 static struct attribute *default_attrs[] = {
797 	&cpuinfo_min_freq.attr,
798 	&cpuinfo_max_freq.attr,
799 	&cpuinfo_transition_latency.attr,
800 	&scaling_min_freq.attr,
801 	&scaling_max_freq.attr,
802 	&affected_cpus.attr,
803 	&related_cpus.attr,
804 	&scaling_governor.attr,
805 	&scaling_driver.attr,
806 	&scaling_available_governors.attr,
807 	&scaling_setspeed.attr,
808 	NULL
809 };
810 
811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
812 #define to_attr(a) container_of(a, struct freq_attr, attr)
813 
814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
815 {
816 	struct cpufreq_policy *policy = to_policy(kobj);
817 	struct freq_attr *fattr = to_attr(attr);
818 	ssize_t ret;
819 
820 	down_read(&policy->rwsem);
821 
822 	if (fattr->show)
823 		ret = fattr->show(policy, buf);
824 	else
825 		ret = -EIO;
826 
827 	up_read(&policy->rwsem);
828 
829 	return ret;
830 }
831 
832 static ssize_t store(struct kobject *kobj, struct attribute *attr,
833 		     const char *buf, size_t count)
834 {
835 	struct cpufreq_policy *policy = to_policy(kobj);
836 	struct freq_attr *fattr = to_attr(attr);
837 	ssize_t ret = -EINVAL;
838 
839 	get_online_cpus();
840 
841 	if (!cpu_online(policy->cpu))
842 		goto unlock;
843 
844 	down_write(&policy->rwsem);
845 
846 	if (fattr->store)
847 		ret = fattr->store(policy, buf, count);
848 	else
849 		ret = -EIO;
850 
851 	up_write(&policy->rwsem);
852 unlock:
853 	put_online_cpus();
854 
855 	return ret;
856 }
857 
858 static void cpufreq_sysfs_release(struct kobject *kobj)
859 {
860 	struct cpufreq_policy *policy = to_policy(kobj);
861 	pr_debug("last reference is dropped\n");
862 	complete(&policy->kobj_unregister);
863 }
864 
865 static const struct sysfs_ops sysfs_ops = {
866 	.show	= show,
867 	.store	= store,
868 };
869 
870 static struct kobj_type ktype_cpufreq = {
871 	.sysfs_ops	= &sysfs_ops,
872 	.default_attrs	= default_attrs,
873 	.release	= cpufreq_sysfs_release,
874 };
875 
876 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
877 {
878 	struct device *cpu_dev;
879 
880 	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
881 
882 	if (!policy)
883 		return 0;
884 
885 	cpu_dev = get_cpu_device(cpu);
886 	if (WARN_ON(!cpu_dev))
887 		return 0;
888 
889 	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
890 }
891 
892 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
893 {
894 	struct device *cpu_dev;
895 
896 	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
897 
898 	cpu_dev = get_cpu_device(cpu);
899 	if (WARN_ON(!cpu_dev))
900 		return;
901 
902 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
903 }
904 
905 /* Add/remove symlinks for all related CPUs */
906 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
907 {
908 	unsigned int j;
909 	int ret = 0;
910 
911 	/* Some related CPUs might not be present (physically hotplugged) */
912 	for_each_cpu(j, policy->real_cpus) {
913 		ret = add_cpu_dev_symlink(policy, j);
914 		if (ret)
915 			break;
916 	}
917 
918 	return ret;
919 }
920 
921 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
922 {
923 	unsigned int j;
924 
925 	/* Some related CPUs might not be present (physically hotplugged) */
926 	for_each_cpu(j, policy->real_cpus)
927 		remove_cpu_dev_symlink(policy, j);
928 }
929 
930 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
931 {
932 	struct freq_attr **drv_attr;
933 	int ret = 0;
934 
935 	/* set up files for this cpu device */
936 	drv_attr = cpufreq_driver->attr;
937 	while (drv_attr && *drv_attr) {
938 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
939 		if (ret)
940 			return ret;
941 		drv_attr++;
942 	}
943 	if (cpufreq_driver->get) {
944 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
945 		if (ret)
946 			return ret;
947 	}
948 
949 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
950 	if (ret)
951 		return ret;
952 
953 	if (cpufreq_driver->bios_limit) {
954 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
955 		if (ret)
956 			return ret;
957 	}
958 
959 	return cpufreq_add_dev_symlink(policy);
960 }
961 
962 static int cpufreq_init_policy(struct cpufreq_policy *policy)
963 {
964 	struct cpufreq_governor *gov = NULL;
965 	struct cpufreq_policy new_policy;
966 
967 	memcpy(&new_policy, policy, sizeof(*policy));
968 
969 	/* Update governor of new_policy to the governor used before hotplug */
970 	gov = find_governor(policy->last_governor);
971 	if (gov)
972 		pr_debug("Restoring governor %s for cpu %d\n",
973 				policy->governor->name, policy->cpu);
974 	else
975 		gov = CPUFREQ_DEFAULT_GOVERNOR;
976 
977 	new_policy.governor = gov;
978 
979 	/* Use the default policy if its valid. */
980 	if (cpufreq_driver->setpolicy)
981 		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
982 
983 	/* set default policy */
984 	return cpufreq_set_policy(policy, &new_policy);
985 }
986 
987 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
988 {
989 	int ret = 0;
990 
991 	/* Has this CPU been taken care of already? */
992 	if (cpumask_test_cpu(cpu, policy->cpus))
993 		return 0;
994 
995 	if (has_target()) {
996 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
997 		if (ret) {
998 			pr_err("%s: Failed to stop governor\n", __func__);
999 			return ret;
1000 		}
1001 	}
1002 
1003 	down_write(&policy->rwsem);
1004 	cpumask_set_cpu(cpu, policy->cpus);
1005 	up_write(&policy->rwsem);
1006 
1007 	if (has_target()) {
1008 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1009 		if (!ret)
1010 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1011 
1012 		if (ret) {
1013 			pr_err("%s: Failed to start governor\n", __func__);
1014 			return ret;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1022 {
1023 	struct device *dev = get_cpu_device(cpu);
1024 	struct cpufreq_policy *policy;
1025 
1026 	if (WARN_ON(!dev))
1027 		return NULL;
1028 
1029 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1030 	if (!policy)
1031 		return NULL;
1032 
1033 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1034 		goto err_free_policy;
1035 
1036 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1037 		goto err_free_cpumask;
1038 
1039 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1040 		goto err_free_rcpumask;
1041 
1042 	kobject_init(&policy->kobj, &ktype_cpufreq);
1043 	INIT_LIST_HEAD(&policy->policy_list);
1044 	init_rwsem(&policy->rwsem);
1045 	spin_lock_init(&policy->transition_lock);
1046 	init_waitqueue_head(&policy->transition_wait);
1047 	init_completion(&policy->kobj_unregister);
1048 	INIT_WORK(&policy->update, handle_update);
1049 
1050 	policy->cpu = cpu;
1051 	return policy;
1052 
1053 err_free_rcpumask:
1054 	free_cpumask_var(policy->related_cpus);
1055 err_free_cpumask:
1056 	free_cpumask_var(policy->cpus);
1057 err_free_policy:
1058 	kfree(policy);
1059 
1060 	return NULL;
1061 }
1062 
1063 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1064 {
1065 	struct kobject *kobj;
1066 	struct completion *cmp;
1067 
1068 	if (notify)
1069 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1070 					     CPUFREQ_REMOVE_POLICY, policy);
1071 
1072 	down_write(&policy->rwsem);
1073 	cpufreq_remove_dev_symlink(policy);
1074 	kobj = &policy->kobj;
1075 	cmp = &policy->kobj_unregister;
1076 	up_write(&policy->rwsem);
1077 	kobject_put(kobj);
1078 
1079 	/*
1080 	 * We need to make sure that the underlying kobj is
1081 	 * actually not referenced anymore by anybody before we
1082 	 * proceed with unloading.
1083 	 */
1084 	pr_debug("waiting for dropping of refcount\n");
1085 	wait_for_completion(cmp);
1086 	pr_debug("wait complete\n");
1087 }
1088 
1089 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1090 {
1091 	unsigned long flags;
1092 	int cpu;
1093 
1094 	/* Remove policy from list */
1095 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1096 	list_del(&policy->policy_list);
1097 
1098 	for_each_cpu(cpu, policy->related_cpus)
1099 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1100 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1101 
1102 	cpufreq_policy_put_kobj(policy, notify);
1103 	free_cpumask_var(policy->real_cpus);
1104 	free_cpumask_var(policy->related_cpus);
1105 	free_cpumask_var(policy->cpus);
1106 	kfree(policy);
1107 }
1108 
1109 static int cpufreq_online(unsigned int cpu)
1110 {
1111 	struct cpufreq_policy *policy;
1112 	bool new_policy;
1113 	unsigned long flags;
1114 	unsigned int j;
1115 	int ret;
1116 
1117 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1118 
1119 	/* Check if this CPU already has a policy to manage it */
1120 	policy = per_cpu(cpufreq_cpu_data, cpu);
1121 	if (policy) {
1122 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1123 		if (!policy_is_inactive(policy))
1124 			return cpufreq_add_policy_cpu(policy, cpu);
1125 
1126 		/* This is the only online CPU for the policy.  Start over. */
1127 		new_policy = false;
1128 		down_write(&policy->rwsem);
1129 		policy->cpu = cpu;
1130 		policy->governor = NULL;
1131 		up_write(&policy->rwsem);
1132 	} else {
1133 		new_policy = true;
1134 		policy = cpufreq_policy_alloc(cpu);
1135 		if (!policy)
1136 			return -ENOMEM;
1137 	}
1138 
1139 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1140 
1141 	/* call driver. From then on the cpufreq must be able
1142 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1143 	 */
1144 	ret = cpufreq_driver->init(policy);
1145 	if (ret) {
1146 		pr_debug("initialization failed\n");
1147 		goto out_free_policy;
1148 	}
1149 
1150 	down_write(&policy->rwsem);
1151 
1152 	if (new_policy) {
1153 		/* related_cpus should at least include policy->cpus. */
1154 		cpumask_copy(policy->related_cpus, policy->cpus);
1155 		/* Remember CPUs present at the policy creation time. */
1156 		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1157 
1158 		/* Name and add the kobject */
1159 		ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1160 				  "policy%u",
1161 				  cpumask_first(policy->related_cpus));
1162 		if (ret) {
1163 			pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1164 			       ret);
1165 			goto out_exit_policy;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * affected cpus must always be the one, which are online. We aren't
1171 	 * managing offline cpus here.
1172 	 */
1173 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1174 
1175 	if (new_policy) {
1176 		policy->user_policy.min = policy->min;
1177 		policy->user_policy.max = policy->max;
1178 
1179 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1180 		for_each_cpu(j, policy->related_cpus)
1181 			per_cpu(cpufreq_cpu_data, j) = policy;
1182 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1183 	}
1184 
1185 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1186 		policy->cur = cpufreq_driver->get(policy->cpu);
1187 		if (!policy->cur) {
1188 			pr_err("%s: ->get() failed\n", __func__);
1189 			goto out_exit_policy;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Sometimes boot loaders set CPU frequency to a value outside of
1195 	 * frequency table present with cpufreq core. In such cases CPU might be
1196 	 * unstable if it has to run on that frequency for long duration of time
1197 	 * and so its better to set it to a frequency which is specified in
1198 	 * freq-table. This also makes cpufreq stats inconsistent as
1199 	 * cpufreq-stats would fail to register because current frequency of CPU
1200 	 * isn't found in freq-table.
1201 	 *
1202 	 * Because we don't want this change to effect boot process badly, we go
1203 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1204 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1205 	 * is initialized to zero).
1206 	 *
1207 	 * We are passing target-freq as "policy->cur - 1" otherwise
1208 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1209 	 * equal to target-freq.
1210 	 */
1211 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1212 	    && has_target()) {
1213 		/* Are we running at unknown frequency ? */
1214 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1215 		if (ret == -EINVAL) {
1216 			/* Warn user and fix it */
1217 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1218 				__func__, policy->cpu, policy->cur);
1219 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1220 				CPUFREQ_RELATION_L);
1221 
1222 			/*
1223 			 * Reaching here after boot in a few seconds may not
1224 			 * mean that system will remain stable at "unknown"
1225 			 * frequency for longer duration. Hence, a BUG_ON().
1226 			 */
1227 			BUG_ON(ret);
1228 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1229 				__func__, policy->cpu, policy->cur);
1230 		}
1231 	}
1232 
1233 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1234 				     CPUFREQ_START, policy);
1235 
1236 	if (new_policy) {
1237 		ret = cpufreq_add_dev_interface(policy);
1238 		if (ret)
1239 			goto out_exit_policy;
1240 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1241 				CPUFREQ_CREATE_POLICY, policy);
1242 
1243 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1244 		list_add(&policy->policy_list, &cpufreq_policy_list);
1245 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1246 	}
1247 
1248 	ret = cpufreq_init_policy(policy);
1249 	if (ret) {
1250 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1251 		       __func__, cpu, ret);
1252 		/* cpufreq_policy_free() will notify based on this */
1253 		new_policy = false;
1254 		goto out_exit_policy;
1255 	}
1256 
1257 	up_write(&policy->rwsem);
1258 
1259 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1260 
1261 	/* Callback for handling stuff after policy is ready */
1262 	if (cpufreq_driver->ready)
1263 		cpufreq_driver->ready(policy);
1264 
1265 	pr_debug("initialization complete\n");
1266 
1267 	return 0;
1268 
1269 out_exit_policy:
1270 	up_write(&policy->rwsem);
1271 
1272 	if (cpufreq_driver->exit)
1273 		cpufreq_driver->exit(policy);
1274 out_free_policy:
1275 	cpufreq_policy_free(policy, !new_policy);
1276 	return ret;
1277 }
1278 
1279 /**
1280  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1281  * @dev: CPU device.
1282  * @sif: Subsystem interface structure pointer (not used)
1283  */
1284 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1285 {
1286 	unsigned cpu = dev->id;
1287 	int ret;
1288 
1289 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1290 
1291 	if (cpu_online(cpu)) {
1292 		ret = cpufreq_online(cpu);
1293 	} else {
1294 		/*
1295 		 * A hotplug notifier will follow and we will handle it as CPU
1296 		 * online then.  For now, just create the sysfs link, unless
1297 		 * there is no policy or the link is already present.
1298 		 */
1299 		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1300 
1301 		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1302 			? add_cpu_dev_symlink(policy, cpu) : 0;
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 static void cpufreq_offline_prepare(unsigned int cpu)
1309 {
1310 	struct cpufreq_policy *policy;
1311 
1312 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1313 
1314 	policy = cpufreq_cpu_get_raw(cpu);
1315 	if (!policy) {
1316 		pr_debug("%s: No cpu_data found\n", __func__);
1317 		return;
1318 	}
1319 
1320 	if (has_target()) {
1321 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1322 		if (ret)
1323 			pr_err("%s: Failed to stop governor\n", __func__);
1324 	}
1325 
1326 	down_write(&policy->rwsem);
1327 	cpumask_clear_cpu(cpu, policy->cpus);
1328 
1329 	if (policy_is_inactive(policy)) {
1330 		if (has_target())
1331 			strncpy(policy->last_governor, policy->governor->name,
1332 				CPUFREQ_NAME_LEN);
1333 	} else if (cpu == policy->cpu) {
1334 		/* Nominate new CPU */
1335 		policy->cpu = cpumask_any(policy->cpus);
1336 	}
1337 	up_write(&policy->rwsem);
1338 
1339 	/* Start governor again for active policy */
1340 	if (!policy_is_inactive(policy)) {
1341 		if (has_target()) {
1342 			int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1343 			if (!ret)
1344 				ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1345 
1346 			if (ret)
1347 				pr_err("%s: Failed to start governor\n", __func__);
1348 		}
1349 	} else if (cpufreq_driver->stop_cpu) {
1350 		cpufreq_driver->stop_cpu(policy);
1351 	}
1352 }
1353 
1354 static void cpufreq_offline_finish(unsigned int cpu)
1355 {
1356 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1357 
1358 	if (!policy) {
1359 		pr_debug("%s: No cpu_data found\n", __func__);
1360 		return;
1361 	}
1362 
1363 	/* Only proceed for inactive policies */
1364 	if (!policy_is_inactive(policy))
1365 		return;
1366 
1367 	/* If cpu is last user of policy, free policy */
1368 	if (has_target()) {
1369 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1370 		if (ret)
1371 			pr_err("%s: Failed to exit governor\n", __func__);
1372 	}
1373 
1374 	/*
1375 	 * Perform the ->exit() even during light-weight tear-down,
1376 	 * since this is a core component, and is essential for the
1377 	 * subsequent light-weight ->init() to succeed.
1378 	 */
1379 	if (cpufreq_driver->exit) {
1380 		cpufreq_driver->exit(policy);
1381 		policy->freq_table = NULL;
1382 	}
1383 }
1384 
1385 /**
1386  * cpufreq_remove_dev - remove a CPU device
1387  *
1388  * Removes the cpufreq interface for a CPU device.
1389  */
1390 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1391 {
1392 	unsigned int cpu = dev->id;
1393 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1394 
1395 	if (!policy)
1396 		return;
1397 
1398 	if (cpu_online(cpu)) {
1399 		cpufreq_offline_prepare(cpu);
1400 		cpufreq_offline_finish(cpu);
1401 	}
1402 
1403 	cpumask_clear_cpu(cpu, policy->real_cpus);
1404 	remove_cpu_dev_symlink(policy, cpu);
1405 
1406 	if (cpumask_empty(policy->real_cpus))
1407 		cpufreq_policy_free(policy, true);
1408 }
1409 
1410 static void handle_update(struct work_struct *work)
1411 {
1412 	struct cpufreq_policy *policy =
1413 		container_of(work, struct cpufreq_policy, update);
1414 	unsigned int cpu = policy->cpu;
1415 	pr_debug("handle_update for cpu %u called\n", cpu);
1416 	cpufreq_update_policy(cpu);
1417 }
1418 
1419 /**
1420  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1421  *	in deep trouble.
1422  *	@policy: policy managing CPUs
1423  *	@new_freq: CPU frequency the CPU actually runs at
1424  *
1425  *	We adjust to current frequency first, and need to clean up later.
1426  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1427  */
1428 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1429 				unsigned int new_freq)
1430 {
1431 	struct cpufreq_freqs freqs;
1432 
1433 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1434 		 policy->cur, new_freq);
1435 
1436 	freqs.old = policy->cur;
1437 	freqs.new = new_freq;
1438 
1439 	cpufreq_freq_transition_begin(policy, &freqs);
1440 	cpufreq_freq_transition_end(policy, &freqs, 0);
1441 }
1442 
1443 /**
1444  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1445  * @cpu: CPU number
1446  *
1447  * This is the last known freq, without actually getting it from the driver.
1448  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1449  */
1450 unsigned int cpufreq_quick_get(unsigned int cpu)
1451 {
1452 	struct cpufreq_policy *policy;
1453 	unsigned int ret_freq = 0;
1454 
1455 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1456 		return cpufreq_driver->get(cpu);
1457 
1458 	policy = cpufreq_cpu_get(cpu);
1459 	if (policy) {
1460 		ret_freq = policy->cur;
1461 		cpufreq_cpu_put(policy);
1462 	}
1463 
1464 	return ret_freq;
1465 }
1466 EXPORT_SYMBOL(cpufreq_quick_get);
1467 
1468 /**
1469  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1470  * @cpu: CPU number
1471  *
1472  * Just return the max possible frequency for a given CPU.
1473  */
1474 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1475 {
1476 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1477 	unsigned int ret_freq = 0;
1478 
1479 	if (policy) {
1480 		ret_freq = policy->max;
1481 		cpufreq_cpu_put(policy);
1482 	}
1483 
1484 	return ret_freq;
1485 }
1486 EXPORT_SYMBOL(cpufreq_quick_get_max);
1487 
1488 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1489 {
1490 	unsigned int ret_freq = 0;
1491 
1492 	if (!cpufreq_driver->get)
1493 		return ret_freq;
1494 
1495 	ret_freq = cpufreq_driver->get(policy->cpu);
1496 
1497 	/* Updating inactive policies is invalid, so avoid doing that. */
1498 	if (unlikely(policy_is_inactive(policy)))
1499 		return ret_freq;
1500 
1501 	if (ret_freq && policy->cur &&
1502 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1503 		/* verify no discrepancy between actual and
1504 					saved value exists */
1505 		if (unlikely(ret_freq != policy->cur)) {
1506 			cpufreq_out_of_sync(policy, ret_freq);
1507 			schedule_work(&policy->update);
1508 		}
1509 	}
1510 
1511 	return ret_freq;
1512 }
1513 
1514 /**
1515  * cpufreq_get - get the current CPU frequency (in kHz)
1516  * @cpu: CPU number
1517  *
1518  * Get the CPU current (static) CPU frequency
1519  */
1520 unsigned int cpufreq_get(unsigned int cpu)
1521 {
1522 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1523 	unsigned int ret_freq = 0;
1524 
1525 	if (policy) {
1526 		down_read(&policy->rwsem);
1527 		ret_freq = __cpufreq_get(policy);
1528 		up_read(&policy->rwsem);
1529 
1530 		cpufreq_cpu_put(policy);
1531 	}
1532 
1533 	return ret_freq;
1534 }
1535 EXPORT_SYMBOL(cpufreq_get);
1536 
1537 static struct subsys_interface cpufreq_interface = {
1538 	.name		= "cpufreq",
1539 	.subsys		= &cpu_subsys,
1540 	.add_dev	= cpufreq_add_dev,
1541 	.remove_dev	= cpufreq_remove_dev,
1542 };
1543 
1544 /*
1545  * In case platform wants some specific frequency to be configured
1546  * during suspend..
1547  */
1548 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1549 {
1550 	int ret;
1551 
1552 	if (!policy->suspend_freq) {
1553 		pr_debug("%s: suspend_freq not defined\n", __func__);
1554 		return 0;
1555 	}
1556 
1557 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1558 			policy->suspend_freq);
1559 
1560 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1561 			CPUFREQ_RELATION_H);
1562 	if (ret)
1563 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1564 				__func__, policy->suspend_freq, ret);
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL(cpufreq_generic_suspend);
1569 
1570 /**
1571  * cpufreq_suspend() - Suspend CPUFreq governors
1572  *
1573  * Called during system wide Suspend/Hibernate cycles for suspending governors
1574  * as some platforms can't change frequency after this point in suspend cycle.
1575  * Because some of the devices (like: i2c, regulators, etc) they use for
1576  * changing frequency are suspended quickly after this point.
1577  */
1578 void cpufreq_suspend(void)
1579 {
1580 	struct cpufreq_policy *policy;
1581 
1582 	if (!cpufreq_driver)
1583 		return;
1584 
1585 	if (!has_target())
1586 		goto suspend;
1587 
1588 	pr_debug("%s: Suspending Governors\n", __func__);
1589 
1590 	for_each_active_policy(policy) {
1591 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1592 			pr_err("%s: Failed to stop governor for policy: %p\n",
1593 				__func__, policy);
1594 		else if (cpufreq_driver->suspend
1595 		    && cpufreq_driver->suspend(policy))
1596 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1597 				policy);
1598 	}
1599 
1600 suspend:
1601 	cpufreq_suspended = true;
1602 }
1603 
1604 /**
1605  * cpufreq_resume() - Resume CPUFreq governors
1606  *
1607  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1608  * are suspended with cpufreq_suspend().
1609  */
1610 void cpufreq_resume(void)
1611 {
1612 	struct cpufreq_policy *policy;
1613 
1614 	if (!cpufreq_driver)
1615 		return;
1616 
1617 	cpufreq_suspended = false;
1618 
1619 	if (!has_target())
1620 		return;
1621 
1622 	pr_debug("%s: Resuming Governors\n", __func__);
1623 
1624 	for_each_active_policy(policy) {
1625 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1626 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1627 				policy);
1628 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1629 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1630 			pr_err("%s: Failed to start governor for policy: %p\n",
1631 				__func__, policy);
1632 	}
1633 
1634 	/*
1635 	 * schedule call cpufreq_update_policy() for first-online CPU, as that
1636 	 * wouldn't be hotplugged-out on suspend. It will verify that the
1637 	 * current freq is in sync with what we believe it to be.
1638 	 */
1639 	policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1640 	if (WARN_ON(!policy))
1641 		return;
1642 
1643 	schedule_work(&policy->update);
1644 }
1645 
1646 /**
1647  *	cpufreq_get_current_driver - return current driver's name
1648  *
1649  *	Return the name string of the currently loaded cpufreq driver
1650  *	or NULL, if none.
1651  */
1652 const char *cpufreq_get_current_driver(void)
1653 {
1654 	if (cpufreq_driver)
1655 		return cpufreq_driver->name;
1656 
1657 	return NULL;
1658 }
1659 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1660 
1661 /**
1662  *	cpufreq_get_driver_data - return current driver data
1663  *
1664  *	Return the private data of the currently loaded cpufreq
1665  *	driver, or NULL if no cpufreq driver is loaded.
1666  */
1667 void *cpufreq_get_driver_data(void)
1668 {
1669 	if (cpufreq_driver)
1670 		return cpufreq_driver->driver_data;
1671 
1672 	return NULL;
1673 }
1674 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1675 
1676 /*********************************************************************
1677  *                     NOTIFIER LISTS INTERFACE                      *
1678  *********************************************************************/
1679 
1680 /**
1681  *	cpufreq_register_notifier - register a driver with cpufreq
1682  *	@nb: notifier function to register
1683  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1684  *
1685  *	Add a driver to one of two lists: either a list of drivers that
1686  *      are notified about clock rate changes (once before and once after
1687  *      the transition), or a list of drivers that are notified about
1688  *      changes in cpufreq policy.
1689  *
1690  *	This function may sleep, and has the same return conditions as
1691  *	blocking_notifier_chain_register.
1692  */
1693 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1694 {
1695 	int ret;
1696 
1697 	if (cpufreq_disabled())
1698 		return -EINVAL;
1699 
1700 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1701 
1702 	switch (list) {
1703 	case CPUFREQ_TRANSITION_NOTIFIER:
1704 		ret = srcu_notifier_chain_register(
1705 				&cpufreq_transition_notifier_list, nb);
1706 		break;
1707 	case CPUFREQ_POLICY_NOTIFIER:
1708 		ret = blocking_notifier_chain_register(
1709 				&cpufreq_policy_notifier_list, nb);
1710 		break;
1711 	default:
1712 		ret = -EINVAL;
1713 	}
1714 
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL(cpufreq_register_notifier);
1718 
1719 /**
1720  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1721  *	@nb: notifier block to be unregistered
1722  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1723  *
1724  *	Remove a driver from the CPU frequency notifier list.
1725  *
1726  *	This function may sleep, and has the same return conditions as
1727  *	blocking_notifier_chain_unregister.
1728  */
1729 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1730 {
1731 	int ret;
1732 
1733 	if (cpufreq_disabled())
1734 		return -EINVAL;
1735 
1736 	switch (list) {
1737 	case CPUFREQ_TRANSITION_NOTIFIER:
1738 		ret = srcu_notifier_chain_unregister(
1739 				&cpufreq_transition_notifier_list, nb);
1740 		break;
1741 	case CPUFREQ_POLICY_NOTIFIER:
1742 		ret = blocking_notifier_chain_unregister(
1743 				&cpufreq_policy_notifier_list, nb);
1744 		break;
1745 	default:
1746 		ret = -EINVAL;
1747 	}
1748 
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1752 
1753 
1754 /*********************************************************************
1755  *                              GOVERNORS                            *
1756  *********************************************************************/
1757 
1758 /* Must set freqs->new to intermediate frequency */
1759 static int __target_intermediate(struct cpufreq_policy *policy,
1760 				 struct cpufreq_freqs *freqs, int index)
1761 {
1762 	int ret;
1763 
1764 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1765 
1766 	/* We don't need to switch to intermediate freq */
1767 	if (!freqs->new)
1768 		return 0;
1769 
1770 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1771 		 __func__, policy->cpu, freqs->old, freqs->new);
1772 
1773 	cpufreq_freq_transition_begin(policy, freqs);
1774 	ret = cpufreq_driver->target_intermediate(policy, index);
1775 	cpufreq_freq_transition_end(policy, freqs, ret);
1776 
1777 	if (ret)
1778 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1779 		       __func__, ret);
1780 
1781 	return ret;
1782 }
1783 
1784 static int __target_index(struct cpufreq_policy *policy,
1785 			  struct cpufreq_frequency_table *freq_table, int index)
1786 {
1787 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1788 	unsigned int intermediate_freq = 0;
1789 	int retval = -EINVAL;
1790 	bool notify;
1791 
1792 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1793 	if (notify) {
1794 		/* Handle switching to intermediate frequency */
1795 		if (cpufreq_driver->get_intermediate) {
1796 			retval = __target_intermediate(policy, &freqs, index);
1797 			if (retval)
1798 				return retval;
1799 
1800 			intermediate_freq = freqs.new;
1801 			/* Set old freq to intermediate */
1802 			if (intermediate_freq)
1803 				freqs.old = freqs.new;
1804 		}
1805 
1806 		freqs.new = freq_table[index].frequency;
1807 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1808 			 __func__, policy->cpu, freqs.old, freqs.new);
1809 
1810 		cpufreq_freq_transition_begin(policy, &freqs);
1811 	}
1812 
1813 	retval = cpufreq_driver->target_index(policy, index);
1814 	if (retval)
1815 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1816 		       retval);
1817 
1818 	if (notify) {
1819 		cpufreq_freq_transition_end(policy, &freqs, retval);
1820 
1821 		/*
1822 		 * Failed after setting to intermediate freq? Driver should have
1823 		 * reverted back to initial frequency and so should we. Check
1824 		 * here for intermediate_freq instead of get_intermediate, in
1825 		 * case we haven't switched to intermediate freq at all.
1826 		 */
1827 		if (unlikely(retval && intermediate_freq)) {
1828 			freqs.old = intermediate_freq;
1829 			freqs.new = policy->restore_freq;
1830 			cpufreq_freq_transition_begin(policy, &freqs);
1831 			cpufreq_freq_transition_end(policy, &freqs, 0);
1832 		}
1833 	}
1834 
1835 	return retval;
1836 }
1837 
1838 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1839 			    unsigned int target_freq,
1840 			    unsigned int relation)
1841 {
1842 	unsigned int old_target_freq = target_freq;
1843 	int retval = -EINVAL;
1844 
1845 	if (cpufreq_disabled())
1846 		return -ENODEV;
1847 
1848 	/* Make sure that target_freq is within supported range */
1849 	if (target_freq > policy->max)
1850 		target_freq = policy->max;
1851 	if (target_freq < policy->min)
1852 		target_freq = policy->min;
1853 
1854 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1855 		 policy->cpu, target_freq, relation, old_target_freq);
1856 
1857 	/*
1858 	 * This might look like a redundant call as we are checking it again
1859 	 * after finding index. But it is left intentionally for cases where
1860 	 * exactly same freq is called again and so we can save on few function
1861 	 * calls.
1862 	 */
1863 	if (target_freq == policy->cur)
1864 		return 0;
1865 
1866 	/* Save last value to restore later on errors */
1867 	policy->restore_freq = policy->cur;
1868 
1869 	if (cpufreq_driver->target)
1870 		retval = cpufreq_driver->target(policy, target_freq, relation);
1871 	else if (cpufreq_driver->target_index) {
1872 		struct cpufreq_frequency_table *freq_table;
1873 		int index;
1874 
1875 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1876 		if (unlikely(!freq_table)) {
1877 			pr_err("%s: Unable to find freq_table\n", __func__);
1878 			goto out;
1879 		}
1880 
1881 		retval = cpufreq_frequency_table_target(policy, freq_table,
1882 				target_freq, relation, &index);
1883 		if (unlikely(retval)) {
1884 			pr_err("%s: Unable to find matching freq\n", __func__);
1885 			goto out;
1886 		}
1887 
1888 		if (freq_table[index].frequency == policy->cur) {
1889 			retval = 0;
1890 			goto out;
1891 		}
1892 
1893 		retval = __target_index(policy, freq_table, index);
1894 	}
1895 
1896 out:
1897 	return retval;
1898 }
1899 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1900 
1901 int cpufreq_driver_target(struct cpufreq_policy *policy,
1902 			  unsigned int target_freq,
1903 			  unsigned int relation)
1904 {
1905 	int ret = -EINVAL;
1906 
1907 	down_write(&policy->rwsem);
1908 
1909 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1910 
1911 	up_write(&policy->rwsem);
1912 
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1916 
1917 static int __cpufreq_governor(struct cpufreq_policy *policy,
1918 					unsigned int event)
1919 {
1920 	int ret;
1921 
1922 	/* Only must be defined when default governor is known to have latency
1923 	   restrictions, like e.g. conservative or ondemand.
1924 	   That this is the case is already ensured in Kconfig
1925 	*/
1926 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1927 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1928 #else
1929 	struct cpufreq_governor *gov = NULL;
1930 #endif
1931 
1932 	/* Don't start any governor operations if we are entering suspend */
1933 	if (cpufreq_suspended)
1934 		return 0;
1935 	/*
1936 	 * Governor might not be initiated here if ACPI _PPC changed
1937 	 * notification happened, so check it.
1938 	 */
1939 	if (!policy->governor)
1940 		return -EINVAL;
1941 
1942 	if (policy->governor->max_transition_latency &&
1943 	    policy->cpuinfo.transition_latency >
1944 	    policy->governor->max_transition_latency) {
1945 		if (!gov)
1946 			return -EINVAL;
1947 		else {
1948 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1949 				policy->governor->name, gov->name);
1950 			policy->governor = gov;
1951 		}
1952 	}
1953 
1954 	if (event == CPUFREQ_GOV_POLICY_INIT)
1955 		if (!try_module_get(policy->governor->owner))
1956 			return -EINVAL;
1957 
1958 	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1959 
1960 	mutex_lock(&cpufreq_governor_lock);
1961 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1962 	    || (!policy->governor_enabled
1963 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1964 		mutex_unlock(&cpufreq_governor_lock);
1965 		return -EBUSY;
1966 	}
1967 
1968 	if (event == CPUFREQ_GOV_STOP)
1969 		policy->governor_enabled = false;
1970 	else if (event == CPUFREQ_GOV_START)
1971 		policy->governor_enabled = true;
1972 
1973 	mutex_unlock(&cpufreq_governor_lock);
1974 
1975 	ret = policy->governor->governor(policy, event);
1976 
1977 	if (!ret) {
1978 		if (event == CPUFREQ_GOV_POLICY_INIT)
1979 			policy->governor->initialized++;
1980 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1981 			policy->governor->initialized--;
1982 	} else {
1983 		/* Restore original values */
1984 		mutex_lock(&cpufreq_governor_lock);
1985 		if (event == CPUFREQ_GOV_STOP)
1986 			policy->governor_enabled = true;
1987 		else if (event == CPUFREQ_GOV_START)
1988 			policy->governor_enabled = false;
1989 		mutex_unlock(&cpufreq_governor_lock);
1990 	}
1991 
1992 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1993 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1994 		module_put(policy->governor->owner);
1995 
1996 	return ret;
1997 }
1998 
1999 int cpufreq_register_governor(struct cpufreq_governor *governor)
2000 {
2001 	int err;
2002 
2003 	if (!governor)
2004 		return -EINVAL;
2005 
2006 	if (cpufreq_disabled())
2007 		return -ENODEV;
2008 
2009 	mutex_lock(&cpufreq_governor_mutex);
2010 
2011 	governor->initialized = 0;
2012 	err = -EBUSY;
2013 	if (!find_governor(governor->name)) {
2014 		err = 0;
2015 		list_add(&governor->governor_list, &cpufreq_governor_list);
2016 	}
2017 
2018 	mutex_unlock(&cpufreq_governor_mutex);
2019 	return err;
2020 }
2021 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2022 
2023 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2024 {
2025 	struct cpufreq_policy *policy;
2026 	unsigned long flags;
2027 
2028 	if (!governor)
2029 		return;
2030 
2031 	if (cpufreq_disabled())
2032 		return;
2033 
2034 	/* clear last_governor for all inactive policies */
2035 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2036 	for_each_inactive_policy(policy) {
2037 		if (!strcmp(policy->last_governor, governor->name)) {
2038 			policy->governor = NULL;
2039 			strcpy(policy->last_governor, "\0");
2040 		}
2041 	}
2042 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2043 
2044 	mutex_lock(&cpufreq_governor_mutex);
2045 	list_del(&governor->governor_list);
2046 	mutex_unlock(&cpufreq_governor_mutex);
2047 	return;
2048 }
2049 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2050 
2051 
2052 /*********************************************************************
2053  *                          POLICY INTERFACE                         *
2054  *********************************************************************/
2055 
2056 /**
2057  * cpufreq_get_policy - get the current cpufreq_policy
2058  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2059  *	is written
2060  *
2061  * Reads the current cpufreq policy.
2062  */
2063 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2064 {
2065 	struct cpufreq_policy *cpu_policy;
2066 	if (!policy)
2067 		return -EINVAL;
2068 
2069 	cpu_policy = cpufreq_cpu_get(cpu);
2070 	if (!cpu_policy)
2071 		return -EINVAL;
2072 
2073 	memcpy(policy, cpu_policy, sizeof(*policy));
2074 
2075 	cpufreq_cpu_put(cpu_policy);
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL(cpufreq_get_policy);
2079 
2080 /*
2081  * policy : current policy.
2082  * new_policy: policy to be set.
2083  */
2084 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2085 				struct cpufreq_policy *new_policy)
2086 {
2087 	struct cpufreq_governor *old_gov;
2088 	int ret;
2089 
2090 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2091 		 new_policy->cpu, new_policy->min, new_policy->max);
2092 
2093 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2094 
2095 	/*
2096 	* This check works well when we store new min/max freq attributes,
2097 	* because new_policy is a copy of policy with one field updated.
2098 	*/
2099 	if (new_policy->min > new_policy->max)
2100 		return -EINVAL;
2101 
2102 	/* verify the cpu speed can be set within this limit */
2103 	ret = cpufreq_driver->verify(new_policy);
2104 	if (ret)
2105 		return ret;
2106 
2107 	/* adjust if necessary - all reasons */
2108 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2109 			CPUFREQ_ADJUST, new_policy);
2110 
2111 	/*
2112 	 * verify the cpu speed can be set within this limit, which might be
2113 	 * different to the first one
2114 	 */
2115 	ret = cpufreq_driver->verify(new_policy);
2116 	if (ret)
2117 		return ret;
2118 
2119 	/* notification of the new policy */
2120 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2121 			CPUFREQ_NOTIFY, new_policy);
2122 
2123 	policy->min = new_policy->min;
2124 	policy->max = new_policy->max;
2125 
2126 	pr_debug("new min and max freqs are %u - %u kHz\n",
2127 		 policy->min, policy->max);
2128 
2129 	if (cpufreq_driver->setpolicy) {
2130 		policy->policy = new_policy->policy;
2131 		pr_debug("setting range\n");
2132 		return cpufreq_driver->setpolicy(new_policy);
2133 	}
2134 
2135 	if (new_policy->governor == policy->governor)
2136 		goto out;
2137 
2138 	pr_debug("governor switch\n");
2139 
2140 	/* save old, working values */
2141 	old_gov = policy->governor;
2142 	/* end old governor */
2143 	if (old_gov) {
2144 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2145 		if (ret) {
2146 			/* This can happen due to race with other operations */
2147 			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2148 				 __func__, old_gov->name, ret);
2149 			return ret;
2150 		}
2151 
2152 		up_write(&policy->rwsem);
2153 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2154 		down_write(&policy->rwsem);
2155 
2156 		if (ret) {
2157 			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2158 			       __func__, old_gov->name, ret);
2159 			return ret;
2160 		}
2161 	}
2162 
2163 	/* start new governor */
2164 	policy->governor = new_policy->governor;
2165 	ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2166 	if (!ret) {
2167 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2168 		if (!ret)
2169 			goto out;
2170 
2171 		up_write(&policy->rwsem);
2172 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2173 		down_write(&policy->rwsem);
2174 	}
2175 
2176 	/* new governor failed, so re-start old one */
2177 	pr_debug("starting governor %s failed\n", policy->governor->name);
2178 	if (old_gov) {
2179 		policy->governor = old_gov;
2180 		if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2181 			policy->governor = NULL;
2182 		else
2183 			__cpufreq_governor(policy, CPUFREQ_GOV_START);
2184 	}
2185 
2186 	return ret;
2187 
2188  out:
2189 	pr_debug("governor: change or update limits\n");
2190 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2191 }
2192 
2193 /**
2194  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2195  *	@cpu: CPU which shall be re-evaluated
2196  *
2197  *	Useful for policy notifiers which have different necessities
2198  *	at different times.
2199  */
2200 int cpufreq_update_policy(unsigned int cpu)
2201 {
2202 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2203 	struct cpufreq_policy new_policy;
2204 	int ret;
2205 
2206 	if (!policy)
2207 		return -ENODEV;
2208 
2209 	down_write(&policy->rwsem);
2210 
2211 	pr_debug("updating policy for CPU %u\n", cpu);
2212 	memcpy(&new_policy, policy, sizeof(*policy));
2213 	new_policy.min = policy->user_policy.min;
2214 	new_policy.max = policy->user_policy.max;
2215 
2216 	/*
2217 	 * BIOS might change freq behind our back
2218 	 * -> ask driver for current freq and notify governors about a change
2219 	 */
2220 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2221 		new_policy.cur = cpufreq_driver->get(cpu);
2222 		if (WARN_ON(!new_policy.cur)) {
2223 			ret = -EIO;
2224 			goto unlock;
2225 		}
2226 
2227 		if (!policy->cur) {
2228 			pr_debug("Driver did not initialize current freq\n");
2229 			policy->cur = new_policy.cur;
2230 		} else {
2231 			if (policy->cur != new_policy.cur && has_target())
2232 				cpufreq_out_of_sync(policy, new_policy.cur);
2233 		}
2234 	}
2235 
2236 	ret = cpufreq_set_policy(policy, &new_policy);
2237 
2238 unlock:
2239 	up_write(&policy->rwsem);
2240 
2241 	cpufreq_cpu_put(policy);
2242 	return ret;
2243 }
2244 EXPORT_SYMBOL(cpufreq_update_policy);
2245 
2246 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2247 					unsigned long action, void *hcpu)
2248 {
2249 	unsigned int cpu = (unsigned long)hcpu;
2250 
2251 	switch (action & ~CPU_TASKS_FROZEN) {
2252 	case CPU_ONLINE:
2253 		cpufreq_online(cpu);
2254 		break;
2255 
2256 	case CPU_DOWN_PREPARE:
2257 		cpufreq_offline_prepare(cpu);
2258 		break;
2259 
2260 	case CPU_POST_DEAD:
2261 		cpufreq_offline_finish(cpu);
2262 		break;
2263 
2264 	case CPU_DOWN_FAILED:
2265 		cpufreq_online(cpu);
2266 		break;
2267 	}
2268 	return NOTIFY_OK;
2269 }
2270 
2271 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2272 	.notifier_call = cpufreq_cpu_callback,
2273 };
2274 
2275 /*********************************************************************
2276  *               BOOST						     *
2277  *********************************************************************/
2278 static int cpufreq_boost_set_sw(int state)
2279 {
2280 	struct cpufreq_frequency_table *freq_table;
2281 	struct cpufreq_policy *policy;
2282 	int ret = -EINVAL;
2283 
2284 	for_each_active_policy(policy) {
2285 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2286 		if (freq_table) {
2287 			ret = cpufreq_frequency_table_cpuinfo(policy,
2288 							freq_table);
2289 			if (ret) {
2290 				pr_err("%s: Policy frequency update failed\n",
2291 				       __func__);
2292 				break;
2293 			}
2294 			policy->user_policy.max = policy->max;
2295 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2296 		}
2297 	}
2298 
2299 	return ret;
2300 }
2301 
2302 int cpufreq_boost_trigger_state(int state)
2303 {
2304 	unsigned long flags;
2305 	int ret = 0;
2306 
2307 	if (cpufreq_driver->boost_enabled == state)
2308 		return 0;
2309 
2310 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2311 	cpufreq_driver->boost_enabled = state;
2312 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2313 
2314 	ret = cpufreq_driver->set_boost(state);
2315 	if (ret) {
2316 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2317 		cpufreq_driver->boost_enabled = !state;
2318 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2319 
2320 		pr_err("%s: Cannot %s BOOST\n",
2321 		       __func__, state ? "enable" : "disable");
2322 	}
2323 
2324 	return ret;
2325 }
2326 
2327 int cpufreq_boost_supported(void)
2328 {
2329 	if (likely(cpufreq_driver))
2330 		return cpufreq_driver->boost_supported;
2331 
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2335 
2336 static int create_boost_sysfs_file(void)
2337 {
2338 	int ret;
2339 
2340 	if (!cpufreq_boost_supported())
2341 		return 0;
2342 
2343 	/*
2344 	 * Check if driver provides function to enable boost -
2345 	 * if not, use cpufreq_boost_set_sw as default
2346 	 */
2347 	if (!cpufreq_driver->set_boost)
2348 		cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2349 
2350 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2351 	if (ret)
2352 		pr_err("%s: cannot register global BOOST sysfs file\n",
2353 		       __func__);
2354 
2355 	return ret;
2356 }
2357 
2358 static void remove_boost_sysfs_file(void)
2359 {
2360 	if (cpufreq_boost_supported())
2361 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2362 }
2363 
2364 int cpufreq_enable_boost_support(void)
2365 {
2366 	if (!cpufreq_driver)
2367 		return -EINVAL;
2368 
2369 	if (cpufreq_boost_supported())
2370 		return 0;
2371 
2372 	cpufreq_driver->boost_supported = true;
2373 
2374 	/* This will get removed on driver unregister */
2375 	return create_boost_sysfs_file();
2376 }
2377 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2378 
2379 int cpufreq_boost_enabled(void)
2380 {
2381 	return cpufreq_driver->boost_enabled;
2382 }
2383 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2384 
2385 /*********************************************************************
2386  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2387  *********************************************************************/
2388 
2389 /**
2390  * cpufreq_register_driver - register a CPU Frequency driver
2391  * @driver_data: A struct cpufreq_driver containing the values#
2392  * submitted by the CPU Frequency driver.
2393  *
2394  * Registers a CPU Frequency driver to this core code. This code
2395  * returns zero on success, -EBUSY when another driver got here first
2396  * (and isn't unregistered in the meantime).
2397  *
2398  */
2399 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2400 {
2401 	unsigned long flags;
2402 	int ret;
2403 
2404 	if (cpufreq_disabled())
2405 		return -ENODEV;
2406 
2407 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2408 	    !(driver_data->setpolicy || driver_data->target_index ||
2409 		    driver_data->target) ||
2410 	     (driver_data->setpolicy && (driver_data->target_index ||
2411 		    driver_data->target)) ||
2412 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2413 		return -EINVAL;
2414 
2415 	pr_debug("trying to register driver %s\n", driver_data->name);
2416 
2417 	/* Protect against concurrent CPU online/offline. */
2418 	get_online_cpus();
2419 
2420 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2421 	if (cpufreq_driver) {
2422 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2423 		ret = -EEXIST;
2424 		goto out;
2425 	}
2426 	cpufreq_driver = driver_data;
2427 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2428 
2429 	if (driver_data->setpolicy)
2430 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2431 
2432 	ret = create_boost_sysfs_file();
2433 	if (ret)
2434 		goto err_null_driver;
2435 
2436 	ret = subsys_interface_register(&cpufreq_interface);
2437 	if (ret)
2438 		goto err_boost_unreg;
2439 
2440 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2441 	    list_empty(&cpufreq_policy_list)) {
2442 		/* if all ->init() calls failed, unregister */
2443 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2444 			 driver_data->name);
2445 		goto err_if_unreg;
2446 	}
2447 
2448 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2449 	pr_debug("driver %s up and running\n", driver_data->name);
2450 
2451 out:
2452 	put_online_cpus();
2453 	return ret;
2454 
2455 err_if_unreg:
2456 	subsys_interface_unregister(&cpufreq_interface);
2457 err_boost_unreg:
2458 	remove_boost_sysfs_file();
2459 err_null_driver:
2460 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2461 	cpufreq_driver = NULL;
2462 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2463 	goto out;
2464 }
2465 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2466 
2467 /**
2468  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2469  *
2470  * Unregister the current CPUFreq driver. Only call this if you have
2471  * the right to do so, i.e. if you have succeeded in initialising before!
2472  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2473  * currently not initialised.
2474  */
2475 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2476 {
2477 	unsigned long flags;
2478 
2479 	if (!cpufreq_driver || (driver != cpufreq_driver))
2480 		return -EINVAL;
2481 
2482 	pr_debug("unregistering driver %s\n", driver->name);
2483 
2484 	/* Protect against concurrent cpu hotplug */
2485 	get_online_cpus();
2486 	subsys_interface_unregister(&cpufreq_interface);
2487 	remove_boost_sysfs_file();
2488 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2489 
2490 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2491 
2492 	cpufreq_driver = NULL;
2493 
2494 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2495 	put_online_cpus();
2496 
2497 	return 0;
2498 }
2499 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2500 
2501 /*
2502  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2503  * or mutexes when secondary CPUs are halted.
2504  */
2505 static struct syscore_ops cpufreq_syscore_ops = {
2506 	.shutdown = cpufreq_suspend,
2507 };
2508 
2509 struct kobject *cpufreq_global_kobject;
2510 EXPORT_SYMBOL(cpufreq_global_kobject);
2511 
2512 static int __init cpufreq_core_init(void)
2513 {
2514 	if (cpufreq_disabled())
2515 		return -ENODEV;
2516 
2517 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2518 	BUG_ON(!cpufreq_global_kobject);
2519 
2520 	register_syscore_ops(&cpufreq_syscore_ops);
2521 
2522 	return 0;
2523 }
2524 core_initcall(cpufreq_core_init);
2525