1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 79 80 /** 81 * Two notifier lists: the "policy" list is involved in the 82 * validation process for a new CPU frequency policy; the 83 * "transition" list for kernel code that needs to handle 84 * changes to devices when the CPU clock speed changes. 85 * The mutex locks both lists. 86 */ 87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 88 static struct srcu_notifier_head cpufreq_transition_notifier_list; 89 90 static bool init_cpufreq_transition_notifier_list_called; 91 static int __init init_cpufreq_transition_notifier_list(void) 92 { 93 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 94 init_cpufreq_transition_notifier_list_called = true; 95 return 0; 96 } 97 pure_initcall(init_cpufreq_transition_notifier_list); 98 99 static int off __read_mostly; 100 static int cpufreq_disabled(void) 101 { 102 return off; 103 } 104 void disable_cpufreq(void) 105 { 106 off = 1; 107 } 108 static DEFINE_MUTEX(cpufreq_governor_mutex); 109 110 bool have_governor_per_policy(void) 111 { 112 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 113 } 114 EXPORT_SYMBOL_GPL(have_governor_per_policy); 115 116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 117 { 118 if (have_governor_per_policy()) 119 return &policy->kobj; 120 else 121 return cpufreq_global_kobject; 122 } 123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 124 125 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 126 { 127 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 128 129 return policy && !policy_is_inactive(policy) ? 130 policy->freq_table : NULL; 131 } 132 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 133 134 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 135 { 136 u64 idle_time; 137 u64 cur_wall_time; 138 u64 busy_time; 139 140 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 141 142 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 143 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 144 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 145 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 146 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 147 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 148 149 idle_time = cur_wall_time - busy_time; 150 if (wall) 151 *wall = cputime_to_usecs(cur_wall_time); 152 153 return cputime_to_usecs(idle_time); 154 } 155 156 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 157 { 158 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 159 160 if (idle_time == -1ULL) 161 return get_cpu_idle_time_jiffy(cpu, wall); 162 else if (!io_busy) 163 idle_time += get_cpu_iowait_time_us(cpu, wall); 164 165 return idle_time; 166 } 167 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 168 169 /* 170 * This is a generic cpufreq init() routine which can be used by cpufreq 171 * drivers of SMP systems. It will do following: 172 * - validate & show freq table passed 173 * - set policies transition latency 174 * - policy->cpus with all possible CPUs 175 */ 176 int cpufreq_generic_init(struct cpufreq_policy *policy, 177 struct cpufreq_frequency_table *table, 178 unsigned int transition_latency) 179 { 180 int ret; 181 182 ret = cpufreq_table_validate_and_show(policy, table); 183 if (ret) { 184 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 185 return ret; 186 } 187 188 policy->cpuinfo.transition_latency = transition_latency; 189 190 /* 191 * The driver only supports the SMP configuration where all processors 192 * share the clock and voltage and clock. 193 */ 194 cpumask_setall(policy->cpus); 195 196 return 0; 197 } 198 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 199 200 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 201 { 202 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 203 204 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 205 } 206 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 207 208 unsigned int cpufreq_generic_get(unsigned int cpu) 209 { 210 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 211 212 if (!policy || IS_ERR(policy->clk)) { 213 pr_err("%s: No %s associated to cpu: %d\n", 214 __func__, policy ? "clk" : "policy", cpu); 215 return 0; 216 } 217 218 return clk_get_rate(policy->clk) / 1000; 219 } 220 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 221 222 /** 223 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 224 * 225 * @cpu: cpu to find policy for. 226 * 227 * This returns policy for 'cpu', returns NULL if it doesn't exist. 228 * It also increments the kobject reference count to mark it busy and so would 229 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 230 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 231 * freed as that depends on the kobj count. 232 * 233 * Return: A valid policy on success, otherwise NULL on failure. 234 */ 235 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 236 { 237 struct cpufreq_policy *policy = NULL; 238 unsigned long flags; 239 240 if (WARN_ON(cpu >= nr_cpu_ids)) 241 return NULL; 242 243 /* get the cpufreq driver */ 244 read_lock_irqsave(&cpufreq_driver_lock, flags); 245 246 if (cpufreq_driver) { 247 /* get the CPU */ 248 policy = cpufreq_cpu_get_raw(cpu); 249 if (policy) 250 kobject_get(&policy->kobj); 251 } 252 253 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 254 255 return policy; 256 } 257 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 258 259 /** 260 * cpufreq_cpu_put: Decrements the usage count of a policy 261 * 262 * @policy: policy earlier returned by cpufreq_cpu_get(). 263 * 264 * This decrements the kobject reference count incremented earlier by calling 265 * cpufreq_cpu_get(). 266 */ 267 void cpufreq_cpu_put(struct cpufreq_policy *policy) 268 { 269 kobject_put(&policy->kobj); 270 } 271 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 272 273 /********************************************************************* 274 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 275 *********************************************************************/ 276 277 /** 278 * adjust_jiffies - adjust the system "loops_per_jiffy" 279 * 280 * This function alters the system "loops_per_jiffy" for the clock 281 * speed change. Note that loops_per_jiffy cannot be updated on SMP 282 * systems as each CPU might be scaled differently. So, use the arch 283 * per-CPU loops_per_jiffy value wherever possible. 284 */ 285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 286 { 287 #ifndef CONFIG_SMP 288 static unsigned long l_p_j_ref; 289 static unsigned int l_p_j_ref_freq; 290 291 if (ci->flags & CPUFREQ_CONST_LOOPS) 292 return; 293 294 if (!l_p_j_ref_freq) { 295 l_p_j_ref = loops_per_jiffy; 296 l_p_j_ref_freq = ci->old; 297 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 298 l_p_j_ref, l_p_j_ref_freq); 299 } 300 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 301 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 302 ci->new); 303 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 304 loops_per_jiffy, ci->new); 305 } 306 #endif 307 } 308 309 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 310 struct cpufreq_freqs *freqs, unsigned int state) 311 { 312 BUG_ON(irqs_disabled()); 313 314 if (cpufreq_disabled()) 315 return; 316 317 freqs->flags = cpufreq_driver->flags; 318 pr_debug("notification %u of frequency transition to %u kHz\n", 319 state, freqs->new); 320 321 switch (state) { 322 323 case CPUFREQ_PRECHANGE: 324 /* detect if the driver reported a value as "old frequency" 325 * which is not equal to what the cpufreq core thinks is 326 * "old frequency". 327 */ 328 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 329 if ((policy) && (policy->cpu == freqs->cpu) && 330 (policy->cur) && (policy->cur != freqs->old)) { 331 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 332 freqs->old, policy->cur); 333 freqs->old = policy->cur; 334 } 335 } 336 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 337 CPUFREQ_PRECHANGE, freqs); 338 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 339 break; 340 341 case CPUFREQ_POSTCHANGE: 342 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 343 pr_debug("FREQ: %lu - CPU: %lu\n", 344 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 345 trace_cpu_frequency(freqs->new, freqs->cpu); 346 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 347 CPUFREQ_POSTCHANGE, freqs); 348 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 349 policy->cur = freqs->new; 350 break; 351 } 352 } 353 354 /** 355 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 356 * on frequency transition. 357 * 358 * This function calls the transition notifiers and the "adjust_jiffies" 359 * function. It is called twice on all CPU frequency changes that have 360 * external effects. 361 */ 362 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 363 struct cpufreq_freqs *freqs, unsigned int state) 364 { 365 for_each_cpu(freqs->cpu, policy->cpus) 366 __cpufreq_notify_transition(policy, freqs, state); 367 } 368 369 /* Do post notifications when there are chances that transition has failed */ 370 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 371 struct cpufreq_freqs *freqs, int transition_failed) 372 { 373 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 374 if (!transition_failed) 375 return; 376 377 swap(freqs->old, freqs->new); 378 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 379 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 380 } 381 382 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 383 struct cpufreq_freqs *freqs) 384 { 385 386 /* 387 * Catch double invocations of _begin() which lead to self-deadlock. 388 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 389 * doesn't invoke _begin() on their behalf, and hence the chances of 390 * double invocations are very low. Moreover, there are scenarios 391 * where these checks can emit false-positive warnings in these 392 * drivers; so we avoid that by skipping them altogether. 393 */ 394 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 395 && current == policy->transition_task); 396 397 wait: 398 wait_event(policy->transition_wait, !policy->transition_ongoing); 399 400 spin_lock(&policy->transition_lock); 401 402 if (unlikely(policy->transition_ongoing)) { 403 spin_unlock(&policy->transition_lock); 404 goto wait; 405 } 406 407 policy->transition_ongoing = true; 408 policy->transition_task = current; 409 410 spin_unlock(&policy->transition_lock); 411 412 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 413 } 414 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 415 416 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 417 struct cpufreq_freqs *freqs, int transition_failed) 418 { 419 if (unlikely(WARN_ON(!policy->transition_ongoing))) 420 return; 421 422 cpufreq_notify_post_transition(policy, freqs, transition_failed); 423 424 policy->transition_ongoing = false; 425 policy->transition_task = NULL; 426 427 wake_up(&policy->transition_wait); 428 } 429 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 430 431 432 /********************************************************************* 433 * SYSFS INTERFACE * 434 *********************************************************************/ 435 static ssize_t show_boost(struct kobject *kobj, 436 struct attribute *attr, char *buf) 437 { 438 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 439 } 440 441 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 442 const char *buf, size_t count) 443 { 444 int ret, enable; 445 446 ret = sscanf(buf, "%d", &enable); 447 if (ret != 1 || enable < 0 || enable > 1) 448 return -EINVAL; 449 450 if (cpufreq_boost_trigger_state(enable)) { 451 pr_err("%s: Cannot %s BOOST!\n", 452 __func__, enable ? "enable" : "disable"); 453 return -EINVAL; 454 } 455 456 pr_debug("%s: cpufreq BOOST %s\n", 457 __func__, enable ? "enabled" : "disabled"); 458 459 return count; 460 } 461 define_one_global_rw(boost); 462 463 static struct cpufreq_governor *find_governor(const char *str_governor) 464 { 465 struct cpufreq_governor *t; 466 467 for_each_governor(t) 468 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 469 return t; 470 471 return NULL; 472 } 473 474 /** 475 * cpufreq_parse_governor - parse a governor string 476 */ 477 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 478 struct cpufreq_governor **governor) 479 { 480 int err = -EINVAL; 481 482 if (cpufreq_driver->setpolicy) { 483 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 484 *policy = CPUFREQ_POLICY_PERFORMANCE; 485 err = 0; 486 } else if (!strncasecmp(str_governor, "powersave", 487 CPUFREQ_NAME_LEN)) { 488 *policy = CPUFREQ_POLICY_POWERSAVE; 489 err = 0; 490 } 491 } else { 492 struct cpufreq_governor *t; 493 494 mutex_lock(&cpufreq_governor_mutex); 495 496 t = find_governor(str_governor); 497 498 if (t == NULL) { 499 int ret; 500 501 mutex_unlock(&cpufreq_governor_mutex); 502 ret = request_module("cpufreq_%s", str_governor); 503 mutex_lock(&cpufreq_governor_mutex); 504 505 if (ret == 0) 506 t = find_governor(str_governor); 507 } 508 509 if (t != NULL) { 510 *governor = t; 511 err = 0; 512 } 513 514 mutex_unlock(&cpufreq_governor_mutex); 515 } 516 return err; 517 } 518 519 /** 520 * cpufreq_per_cpu_attr_read() / show_##file_name() - 521 * print out cpufreq information 522 * 523 * Write out information from cpufreq_driver->policy[cpu]; object must be 524 * "unsigned int". 525 */ 526 527 #define show_one(file_name, object) \ 528 static ssize_t show_##file_name \ 529 (struct cpufreq_policy *policy, char *buf) \ 530 { \ 531 return sprintf(buf, "%u\n", policy->object); \ 532 } 533 534 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 535 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 536 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 537 show_one(scaling_min_freq, min); 538 show_one(scaling_max_freq, max); 539 540 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 541 { 542 ssize_t ret; 543 544 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 545 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 546 else 547 ret = sprintf(buf, "%u\n", policy->cur); 548 return ret; 549 } 550 551 static int cpufreq_set_policy(struct cpufreq_policy *policy, 552 struct cpufreq_policy *new_policy); 553 554 /** 555 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 556 */ 557 #define store_one(file_name, object) \ 558 static ssize_t store_##file_name \ 559 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 560 { \ 561 int ret, temp; \ 562 struct cpufreq_policy new_policy; \ 563 \ 564 memcpy(&new_policy, policy, sizeof(*policy)); \ 565 \ 566 ret = sscanf(buf, "%u", &new_policy.object); \ 567 if (ret != 1) \ 568 return -EINVAL; \ 569 \ 570 temp = new_policy.object; \ 571 ret = cpufreq_set_policy(policy, &new_policy); \ 572 if (!ret) \ 573 policy->user_policy.object = temp; \ 574 \ 575 return ret ? ret : count; \ 576 } 577 578 store_one(scaling_min_freq, min); 579 store_one(scaling_max_freq, max); 580 581 /** 582 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 583 */ 584 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 585 char *buf) 586 { 587 unsigned int cur_freq = __cpufreq_get(policy); 588 if (!cur_freq) 589 return sprintf(buf, "<unknown>"); 590 return sprintf(buf, "%u\n", cur_freq); 591 } 592 593 /** 594 * show_scaling_governor - show the current policy for the specified CPU 595 */ 596 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 597 { 598 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 599 return sprintf(buf, "powersave\n"); 600 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 601 return sprintf(buf, "performance\n"); 602 else if (policy->governor) 603 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 604 policy->governor->name); 605 return -EINVAL; 606 } 607 608 /** 609 * store_scaling_governor - store policy for the specified CPU 610 */ 611 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 612 const char *buf, size_t count) 613 { 614 int ret; 615 char str_governor[16]; 616 struct cpufreq_policy new_policy; 617 618 memcpy(&new_policy, policy, sizeof(*policy)); 619 620 ret = sscanf(buf, "%15s", str_governor); 621 if (ret != 1) 622 return -EINVAL; 623 624 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 625 &new_policy.governor)) 626 return -EINVAL; 627 628 ret = cpufreq_set_policy(policy, &new_policy); 629 return ret ? ret : count; 630 } 631 632 /** 633 * show_scaling_driver - show the cpufreq driver currently loaded 634 */ 635 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 636 { 637 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 638 } 639 640 /** 641 * show_scaling_available_governors - show the available CPUfreq governors 642 */ 643 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 644 char *buf) 645 { 646 ssize_t i = 0; 647 struct cpufreq_governor *t; 648 649 if (!has_target()) { 650 i += sprintf(buf, "performance powersave"); 651 goto out; 652 } 653 654 for_each_governor(t) { 655 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 656 - (CPUFREQ_NAME_LEN + 2))) 657 goto out; 658 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 659 } 660 out: 661 i += sprintf(&buf[i], "\n"); 662 return i; 663 } 664 665 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 666 { 667 ssize_t i = 0; 668 unsigned int cpu; 669 670 for_each_cpu(cpu, mask) { 671 if (i) 672 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 673 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 674 if (i >= (PAGE_SIZE - 5)) 675 break; 676 } 677 i += sprintf(&buf[i], "\n"); 678 return i; 679 } 680 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 681 682 /** 683 * show_related_cpus - show the CPUs affected by each transition even if 684 * hw coordination is in use 685 */ 686 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 687 { 688 return cpufreq_show_cpus(policy->related_cpus, buf); 689 } 690 691 /** 692 * show_affected_cpus - show the CPUs affected by each transition 693 */ 694 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 695 { 696 return cpufreq_show_cpus(policy->cpus, buf); 697 } 698 699 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 700 const char *buf, size_t count) 701 { 702 unsigned int freq = 0; 703 unsigned int ret; 704 705 if (!policy->governor || !policy->governor->store_setspeed) 706 return -EINVAL; 707 708 ret = sscanf(buf, "%u", &freq); 709 if (ret != 1) 710 return -EINVAL; 711 712 policy->governor->store_setspeed(policy, freq); 713 714 return count; 715 } 716 717 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 718 { 719 if (!policy->governor || !policy->governor->show_setspeed) 720 return sprintf(buf, "<unsupported>\n"); 721 722 return policy->governor->show_setspeed(policy, buf); 723 } 724 725 /** 726 * show_bios_limit - show the current cpufreq HW/BIOS limitation 727 */ 728 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 729 { 730 unsigned int limit; 731 int ret; 732 if (cpufreq_driver->bios_limit) { 733 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 734 if (!ret) 735 return sprintf(buf, "%u\n", limit); 736 } 737 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 738 } 739 740 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 741 cpufreq_freq_attr_ro(cpuinfo_min_freq); 742 cpufreq_freq_attr_ro(cpuinfo_max_freq); 743 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 744 cpufreq_freq_attr_ro(scaling_available_governors); 745 cpufreq_freq_attr_ro(scaling_driver); 746 cpufreq_freq_attr_ro(scaling_cur_freq); 747 cpufreq_freq_attr_ro(bios_limit); 748 cpufreq_freq_attr_ro(related_cpus); 749 cpufreq_freq_attr_ro(affected_cpus); 750 cpufreq_freq_attr_rw(scaling_min_freq); 751 cpufreq_freq_attr_rw(scaling_max_freq); 752 cpufreq_freq_attr_rw(scaling_governor); 753 cpufreq_freq_attr_rw(scaling_setspeed); 754 755 static struct attribute *default_attrs[] = { 756 &cpuinfo_min_freq.attr, 757 &cpuinfo_max_freq.attr, 758 &cpuinfo_transition_latency.attr, 759 &scaling_min_freq.attr, 760 &scaling_max_freq.attr, 761 &affected_cpus.attr, 762 &related_cpus.attr, 763 &scaling_governor.attr, 764 &scaling_driver.attr, 765 &scaling_available_governors.attr, 766 &scaling_setspeed.attr, 767 NULL 768 }; 769 770 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 771 #define to_attr(a) container_of(a, struct freq_attr, attr) 772 773 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 774 { 775 struct cpufreq_policy *policy = to_policy(kobj); 776 struct freq_attr *fattr = to_attr(attr); 777 ssize_t ret; 778 779 down_read(&policy->rwsem); 780 ret = fattr->show(policy, buf); 781 up_read(&policy->rwsem); 782 783 return ret; 784 } 785 786 static ssize_t store(struct kobject *kobj, struct attribute *attr, 787 const char *buf, size_t count) 788 { 789 struct cpufreq_policy *policy = to_policy(kobj); 790 struct freq_attr *fattr = to_attr(attr); 791 ssize_t ret = -EINVAL; 792 793 get_online_cpus(); 794 795 if (cpu_online(policy->cpu)) { 796 down_write(&policy->rwsem); 797 ret = fattr->store(policy, buf, count); 798 up_write(&policy->rwsem); 799 } 800 801 put_online_cpus(); 802 803 return ret; 804 } 805 806 static void cpufreq_sysfs_release(struct kobject *kobj) 807 { 808 struct cpufreq_policy *policy = to_policy(kobj); 809 pr_debug("last reference is dropped\n"); 810 complete(&policy->kobj_unregister); 811 } 812 813 static const struct sysfs_ops sysfs_ops = { 814 .show = show, 815 .store = store, 816 }; 817 818 static struct kobj_type ktype_cpufreq = { 819 .sysfs_ops = &sysfs_ops, 820 .default_attrs = default_attrs, 821 .release = cpufreq_sysfs_release, 822 }; 823 824 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 825 { 826 struct device *cpu_dev; 827 828 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 829 830 if (!policy) 831 return 0; 832 833 cpu_dev = get_cpu_device(cpu); 834 if (WARN_ON(!cpu_dev)) 835 return 0; 836 837 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 838 } 839 840 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 841 { 842 struct device *cpu_dev; 843 844 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 845 846 cpu_dev = get_cpu_device(cpu); 847 if (WARN_ON(!cpu_dev)) 848 return; 849 850 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 851 } 852 853 /* Add/remove symlinks for all related CPUs */ 854 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 855 { 856 unsigned int j; 857 int ret = 0; 858 859 /* Some related CPUs might not be present (physically hotplugged) */ 860 for_each_cpu(j, policy->real_cpus) { 861 ret = add_cpu_dev_symlink(policy, j); 862 if (ret) 863 break; 864 } 865 866 return ret; 867 } 868 869 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 870 { 871 unsigned int j; 872 873 /* Some related CPUs might not be present (physically hotplugged) */ 874 for_each_cpu(j, policy->real_cpus) 875 remove_cpu_dev_symlink(policy, j); 876 } 877 878 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 879 { 880 struct freq_attr **drv_attr; 881 int ret = 0; 882 883 /* set up files for this cpu device */ 884 drv_attr = cpufreq_driver->attr; 885 while (drv_attr && *drv_attr) { 886 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 887 if (ret) 888 return ret; 889 drv_attr++; 890 } 891 if (cpufreq_driver->get) { 892 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 893 if (ret) 894 return ret; 895 } 896 897 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 898 if (ret) 899 return ret; 900 901 if (cpufreq_driver->bios_limit) { 902 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 903 if (ret) 904 return ret; 905 } 906 907 return cpufreq_add_dev_symlink(policy); 908 } 909 910 __weak struct cpufreq_governor *cpufreq_default_governor(void) 911 { 912 return NULL; 913 } 914 915 static int cpufreq_init_policy(struct cpufreq_policy *policy) 916 { 917 struct cpufreq_governor *gov = NULL; 918 struct cpufreq_policy new_policy; 919 920 memcpy(&new_policy, policy, sizeof(*policy)); 921 922 /* Update governor of new_policy to the governor used before hotplug */ 923 gov = find_governor(policy->last_governor); 924 if (gov) { 925 pr_debug("Restoring governor %s for cpu %d\n", 926 policy->governor->name, policy->cpu); 927 } else { 928 gov = cpufreq_default_governor(); 929 if (!gov) 930 return -ENODATA; 931 } 932 933 new_policy.governor = gov; 934 935 /* Use the default policy if there is no last_policy. */ 936 if (cpufreq_driver->setpolicy) { 937 if (policy->last_policy) 938 new_policy.policy = policy->last_policy; 939 else 940 cpufreq_parse_governor(gov->name, &new_policy.policy, 941 NULL); 942 } 943 /* set default policy */ 944 return cpufreq_set_policy(policy, &new_policy); 945 } 946 947 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 948 { 949 int ret = 0; 950 951 /* Has this CPU been taken care of already? */ 952 if (cpumask_test_cpu(cpu, policy->cpus)) 953 return 0; 954 955 down_write(&policy->rwsem); 956 if (has_target()) { 957 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 958 if (ret) { 959 pr_err("%s: Failed to stop governor\n", __func__); 960 goto unlock; 961 } 962 } 963 964 cpumask_set_cpu(cpu, policy->cpus); 965 966 if (has_target()) { 967 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 968 if (!ret) 969 ret = cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 970 971 if (ret) 972 pr_err("%s: Failed to start governor\n", __func__); 973 } 974 975 unlock: 976 up_write(&policy->rwsem); 977 return ret; 978 } 979 980 static void handle_update(struct work_struct *work) 981 { 982 struct cpufreq_policy *policy = 983 container_of(work, struct cpufreq_policy, update); 984 unsigned int cpu = policy->cpu; 985 pr_debug("handle_update for cpu %u called\n", cpu); 986 cpufreq_update_policy(cpu); 987 } 988 989 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 990 { 991 struct device *dev = get_cpu_device(cpu); 992 struct cpufreq_policy *policy; 993 int ret; 994 995 if (WARN_ON(!dev)) 996 return NULL; 997 998 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 999 if (!policy) 1000 return NULL; 1001 1002 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1003 goto err_free_policy; 1004 1005 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1006 goto err_free_cpumask; 1007 1008 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1009 goto err_free_rcpumask; 1010 1011 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1012 cpufreq_global_kobject, "policy%u", cpu); 1013 if (ret) { 1014 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1015 goto err_free_real_cpus; 1016 } 1017 1018 INIT_LIST_HEAD(&policy->policy_list); 1019 init_rwsem(&policy->rwsem); 1020 spin_lock_init(&policy->transition_lock); 1021 init_waitqueue_head(&policy->transition_wait); 1022 init_completion(&policy->kobj_unregister); 1023 INIT_WORK(&policy->update, handle_update); 1024 1025 policy->cpu = cpu; 1026 return policy; 1027 1028 err_free_real_cpus: 1029 free_cpumask_var(policy->real_cpus); 1030 err_free_rcpumask: 1031 free_cpumask_var(policy->related_cpus); 1032 err_free_cpumask: 1033 free_cpumask_var(policy->cpus); 1034 err_free_policy: 1035 kfree(policy); 1036 1037 return NULL; 1038 } 1039 1040 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1041 { 1042 struct kobject *kobj; 1043 struct completion *cmp; 1044 1045 if (notify) 1046 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1047 CPUFREQ_REMOVE_POLICY, policy); 1048 1049 down_write(&policy->rwsem); 1050 cpufreq_remove_dev_symlink(policy); 1051 kobj = &policy->kobj; 1052 cmp = &policy->kobj_unregister; 1053 up_write(&policy->rwsem); 1054 kobject_put(kobj); 1055 1056 /* 1057 * We need to make sure that the underlying kobj is 1058 * actually not referenced anymore by anybody before we 1059 * proceed with unloading. 1060 */ 1061 pr_debug("waiting for dropping of refcount\n"); 1062 wait_for_completion(cmp); 1063 pr_debug("wait complete\n"); 1064 } 1065 1066 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1067 { 1068 unsigned long flags; 1069 int cpu; 1070 1071 /* Remove policy from list */ 1072 write_lock_irqsave(&cpufreq_driver_lock, flags); 1073 list_del(&policy->policy_list); 1074 1075 for_each_cpu(cpu, policy->related_cpus) 1076 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1077 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1078 1079 cpufreq_policy_put_kobj(policy, notify); 1080 free_cpumask_var(policy->real_cpus); 1081 free_cpumask_var(policy->related_cpus); 1082 free_cpumask_var(policy->cpus); 1083 kfree(policy); 1084 } 1085 1086 static int cpufreq_online(unsigned int cpu) 1087 { 1088 struct cpufreq_policy *policy; 1089 bool new_policy; 1090 unsigned long flags; 1091 unsigned int j; 1092 int ret; 1093 1094 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1095 1096 /* Check if this CPU already has a policy to manage it */ 1097 policy = per_cpu(cpufreq_cpu_data, cpu); 1098 if (policy) { 1099 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1100 if (!policy_is_inactive(policy)) 1101 return cpufreq_add_policy_cpu(policy, cpu); 1102 1103 /* This is the only online CPU for the policy. Start over. */ 1104 new_policy = false; 1105 down_write(&policy->rwsem); 1106 policy->cpu = cpu; 1107 policy->governor = NULL; 1108 up_write(&policy->rwsem); 1109 } else { 1110 new_policy = true; 1111 policy = cpufreq_policy_alloc(cpu); 1112 if (!policy) 1113 return -ENOMEM; 1114 } 1115 1116 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1117 1118 /* call driver. From then on the cpufreq must be able 1119 * to accept all calls to ->verify and ->setpolicy for this CPU 1120 */ 1121 ret = cpufreq_driver->init(policy); 1122 if (ret) { 1123 pr_debug("initialization failed\n"); 1124 goto out_free_policy; 1125 } 1126 1127 down_write(&policy->rwsem); 1128 1129 if (new_policy) { 1130 /* related_cpus should at least include policy->cpus. */ 1131 cpumask_copy(policy->related_cpus, policy->cpus); 1132 /* Remember CPUs present at the policy creation time. */ 1133 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1134 } 1135 1136 /* 1137 * affected cpus must always be the one, which are online. We aren't 1138 * managing offline cpus here. 1139 */ 1140 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1141 1142 if (new_policy) { 1143 policy->user_policy.min = policy->min; 1144 policy->user_policy.max = policy->max; 1145 1146 write_lock_irqsave(&cpufreq_driver_lock, flags); 1147 for_each_cpu(j, policy->related_cpus) 1148 per_cpu(cpufreq_cpu_data, j) = policy; 1149 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1150 } 1151 1152 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1153 policy->cur = cpufreq_driver->get(policy->cpu); 1154 if (!policy->cur) { 1155 pr_err("%s: ->get() failed\n", __func__); 1156 goto out_exit_policy; 1157 } 1158 } 1159 1160 /* 1161 * Sometimes boot loaders set CPU frequency to a value outside of 1162 * frequency table present with cpufreq core. In such cases CPU might be 1163 * unstable if it has to run on that frequency for long duration of time 1164 * and so its better to set it to a frequency which is specified in 1165 * freq-table. This also makes cpufreq stats inconsistent as 1166 * cpufreq-stats would fail to register because current frequency of CPU 1167 * isn't found in freq-table. 1168 * 1169 * Because we don't want this change to effect boot process badly, we go 1170 * for the next freq which is >= policy->cur ('cur' must be set by now, 1171 * otherwise we will end up setting freq to lowest of the table as 'cur' 1172 * is initialized to zero). 1173 * 1174 * We are passing target-freq as "policy->cur - 1" otherwise 1175 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1176 * equal to target-freq. 1177 */ 1178 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1179 && has_target()) { 1180 /* Are we running at unknown frequency ? */ 1181 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1182 if (ret == -EINVAL) { 1183 /* Warn user and fix it */ 1184 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1185 __func__, policy->cpu, policy->cur); 1186 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1187 CPUFREQ_RELATION_L); 1188 1189 /* 1190 * Reaching here after boot in a few seconds may not 1191 * mean that system will remain stable at "unknown" 1192 * frequency for longer duration. Hence, a BUG_ON(). 1193 */ 1194 BUG_ON(ret); 1195 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1196 __func__, policy->cpu, policy->cur); 1197 } 1198 } 1199 1200 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1201 CPUFREQ_START, policy); 1202 1203 if (new_policy) { 1204 ret = cpufreq_add_dev_interface(policy); 1205 if (ret) 1206 goto out_exit_policy; 1207 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1208 CPUFREQ_CREATE_POLICY, policy); 1209 1210 write_lock_irqsave(&cpufreq_driver_lock, flags); 1211 list_add(&policy->policy_list, &cpufreq_policy_list); 1212 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1213 } 1214 1215 ret = cpufreq_init_policy(policy); 1216 if (ret) { 1217 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1218 __func__, cpu, ret); 1219 /* cpufreq_policy_free() will notify based on this */ 1220 new_policy = false; 1221 goto out_exit_policy; 1222 } 1223 1224 up_write(&policy->rwsem); 1225 1226 kobject_uevent(&policy->kobj, KOBJ_ADD); 1227 1228 /* Callback for handling stuff after policy is ready */ 1229 if (cpufreq_driver->ready) 1230 cpufreq_driver->ready(policy); 1231 1232 pr_debug("initialization complete\n"); 1233 1234 return 0; 1235 1236 out_exit_policy: 1237 up_write(&policy->rwsem); 1238 1239 if (cpufreq_driver->exit) 1240 cpufreq_driver->exit(policy); 1241 out_free_policy: 1242 cpufreq_policy_free(policy, !new_policy); 1243 return ret; 1244 } 1245 1246 /** 1247 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1248 * @dev: CPU device. 1249 * @sif: Subsystem interface structure pointer (not used) 1250 */ 1251 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1252 { 1253 unsigned cpu = dev->id; 1254 int ret; 1255 1256 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1257 1258 if (cpu_online(cpu)) { 1259 ret = cpufreq_online(cpu); 1260 } else { 1261 /* 1262 * A hotplug notifier will follow and we will handle it as CPU 1263 * online then. For now, just create the sysfs link, unless 1264 * there is no policy or the link is already present. 1265 */ 1266 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1267 1268 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1269 ? add_cpu_dev_symlink(policy, cpu) : 0; 1270 } 1271 1272 return ret; 1273 } 1274 1275 static void cpufreq_offline(unsigned int cpu) 1276 { 1277 struct cpufreq_policy *policy; 1278 int ret; 1279 1280 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1281 1282 policy = cpufreq_cpu_get_raw(cpu); 1283 if (!policy) { 1284 pr_debug("%s: No cpu_data found\n", __func__); 1285 return; 1286 } 1287 1288 down_write(&policy->rwsem); 1289 if (has_target()) { 1290 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1291 if (ret) 1292 pr_err("%s: Failed to stop governor\n", __func__); 1293 } 1294 1295 cpumask_clear_cpu(cpu, policy->cpus); 1296 1297 if (policy_is_inactive(policy)) { 1298 if (has_target()) 1299 strncpy(policy->last_governor, policy->governor->name, 1300 CPUFREQ_NAME_LEN); 1301 else 1302 policy->last_policy = policy->policy; 1303 } else if (cpu == policy->cpu) { 1304 /* Nominate new CPU */ 1305 policy->cpu = cpumask_any(policy->cpus); 1306 } 1307 1308 /* Start governor again for active policy */ 1309 if (!policy_is_inactive(policy)) { 1310 if (has_target()) { 1311 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 1312 if (!ret) 1313 ret = cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1314 1315 if (ret) 1316 pr_err("%s: Failed to start governor\n", __func__); 1317 } 1318 1319 goto unlock; 1320 } 1321 1322 if (cpufreq_driver->stop_cpu) 1323 cpufreq_driver->stop_cpu(policy); 1324 1325 /* If cpu is last user of policy, free policy */ 1326 if (has_target()) { 1327 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1328 if (ret) 1329 pr_err("%s: Failed to exit governor\n", __func__); 1330 } 1331 1332 /* 1333 * Perform the ->exit() even during light-weight tear-down, 1334 * since this is a core component, and is essential for the 1335 * subsequent light-weight ->init() to succeed. 1336 */ 1337 if (cpufreq_driver->exit) { 1338 cpufreq_driver->exit(policy); 1339 policy->freq_table = NULL; 1340 } 1341 1342 unlock: 1343 up_write(&policy->rwsem); 1344 } 1345 1346 /** 1347 * cpufreq_remove_dev - remove a CPU device 1348 * 1349 * Removes the cpufreq interface for a CPU device. 1350 */ 1351 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1352 { 1353 unsigned int cpu = dev->id; 1354 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1355 1356 if (!policy) 1357 return; 1358 1359 if (cpu_online(cpu)) 1360 cpufreq_offline(cpu); 1361 1362 cpumask_clear_cpu(cpu, policy->real_cpus); 1363 remove_cpu_dev_symlink(policy, cpu); 1364 1365 if (cpumask_empty(policy->real_cpus)) 1366 cpufreq_policy_free(policy, true); 1367 } 1368 1369 /** 1370 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1371 * in deep trouble. 1372 * @policy: policy managing CPUs 1373 * @new_freq: CPU frequency the CPU actually runs at 1374 * 1375 * We adjust to current frequency first, and need to clean up later. 1376 * So either call to cpufreq_update_policy() or schedule handle_update()). 1377 */ 1378 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1379 unsigned int new_freq) 1380 { 1381 struct cpufreq_freqs freqs; 1382 1383 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1384 policy->cur, new_freq); 1385 1386 freqs.old = policy->cur; 1387 freqs.new = new_freq; 1388 1389 cpufreq_freq_transition_begin(policy, &freqs); 1390 cpufreq_freq_transition_end(policy, &freqs, 0); 1391 } 1392 1393 /** 1394 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1395 * @cpu: CPU number 1396 * 1397 * This is the last known freq, without actually getting it from the driver. 1398 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1399 */ 1400 unsigned int cpufreq_quick_get(unsigned int cpu) 1401 { 1402 struct cpufreq_policy *policy; 1403 unsigned int ret_freq = 0; 1404 1405 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1406 return cpufreq_driver->get(cpu); 1407 1408 policy = cpufreq_cpu_get(cpu); 1409 if (policy) { 1410 ret_freq = policy->cur; 1411 cpufreq_cpu_put(policy); 1412 } 1413 1414 return ret_freq; 1415 } 1416 EXPORT_SYMBOL(cpufreq_quick_get); 1417 1418 /** 1419 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1420 * @cpu: CPU number 1421 * 1422 * Just return the max possible frequency for a given CPU. 1423 */ 1424 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1425 { 1426 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1427 unsigned int ret_freq = 0; 1428 1429 if (policy) { 1430 ret_freq = policy->max; 1431 cpufreq_cpu_put(policy); 1432 } 1433 1434 return ret_freq; 1435 } 1436 EXPORT_SYMBOL(cpufreq_quick_get_max); 1437 1438 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1439 { 1440 unsigned int ret_freq = 0; 1441 1442 if (!cpufreq_driver->get) 1443 return ret_freq; 1444 1445 ret_freq = cpufreq_driver->get(policy->cpu); 1446 1447 /* Updating inactive policies is invalid, so avoid doing that. */ 1448 if (unlikely(policy_is_inactive(policy))) 1449 return ret_freq; 1450 1451 if (ret_freq && policy->cur && 1452 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1453 /* verify no discrepancy between actual and 1454 saved value exists */ 1455 if (unlikely(ret_freq != policy->cur)) { 1456 cpufreq_out_of_sync(policy, ret_freq); 1457 schedule_work(&policy->update); 1458 } 1459 } 1460 1461 return ret_freq; 1462 } 1463 1464 /** 1465 * cpufreq_get - get the current CPU frequency (in kHz) 1466 * @cpu: CPU number 1467 * 1468 * Get the CPU current (static) CPU frequency 1469 */ 1470 unsigned int cpufreq_get(unsigned int cpu) 1471 { 1472 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1473 unsigned int ret_freq = 0; 1474 1475 if (policy) { 1476 down_read(&policy->rwsem); 1477 ret_freq = __cpufreq_get(policy); 1478 up_read(&policy->rwsem); 1479 1480 cpufreq_cpu_put(policy); 1481 } 1482 1483 return ret_freq; 1484 } 1485 EXPORT_SYMBOL(cpufreq_get); 1486 1487 static struct subsys_interface cpufreq_interface = { 1488 .name = "cpufreq", 1489 .subsys = &cpu_subsys, 1490 .add_dev = cpufreq_add_dev, 1491 .remove_dev = cpufreq_remove_dev, 1492 }; 1493 1494 /* 1495 * In case platform wants some specific frequency to be configured 1496 * during suspend.. 1497 */ 1498 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1499 { 1500 int ret; 1501 1502 if (!policy->suspend_freq) { 1503 pr_debug("%s: suspend_freq not defined\n", __func__); 1504 return 0; 1505 } 1506 1507 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1508 policy->suspend_freq); 1509 1510 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1511 CPUFREQ_RELATION_H); 1512 if (ret) 1513 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1514 __func__, policy->suspend_freq, ret); 1515 1516 return ret; 1517 } 1518 EXPORT_SYMBOL(cpufreq_generic_suspend); 1519 1520 /** 1521 * cpufreq_suspend() - Suspend CPUFreq governors 1522 * 1523 * Called during system wide Suspend/Hibernate cycles for suspending governors 1524 * as some platforms can't change frequency after this point in suspend cycle. 1525 * Because some of the devices (like: i2c, regulators, etc) they use for 1526 * changing frequency are suspended quickly after this point. 1527 */ 1528 void cpufreq_suspend(void) 1529 { 1530 struct cpufreq_policy *policy; 1531 int ret; 1532 1533 if (!cpufreq_driver) 1534 return; 1535 1536 if (!has_target()) 1537 goto suspend; 1538 1539 pr_debug("%s: Suspending Governors\n", __func__); 1540 1541 for_each_active_policy(policy) { 1542 down_write(&policy->rwsem); 1543 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1544 up_write(&policy->rwsem); 1545 1546 if (ret) 1547 pr_err("%s: Failed to stop governor for policy: %p\n", 1548 __func__, policy); 1549 else if (cpufreq_driver->suspend 1550 && cpufreq_driver->suspend(policy)) 1551 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1552 policy); 1553 } 1554 1555 suspend: 1556 cpufreq_suspended = true; 1557 } 1558 1559 /** 1560 * cpufreq_resume() - Resume CPUFreq governors 1561 * 1562 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1563 * are suspended with cpufreq_suspend(). 1564 */ 1565 void cpufreq_resume(void) 1566 { 1567 struct cpufreq_policy *policy; 1568 int ret; 1569 1570 if (!cpufreq_driver) 1571 return; 1572 1573 cpufreq_suspended = false; 1574 1575 if (!has_target()) 1576 return; 1577 1578 pr_debug("%s: Resuming Governors\n", __func__); 1579 1580 for_each_active_policy(policy) { 1581 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1582 pr_err("%s: Failed to resume driver: %p\n", __func__, 1583 policy); 1584 } else { 1585 down_write(&policy->rwsem); 1586 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 1587 if (!ret) 1588 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1589 up_write(&policy->rwsem); 1590 1591 if (ret) 1592 pr_err("%s: Failed to start governor for policy: %p\n", 1593 __func__, policy); 1594 } 1595 } 1596 1597 /* 1598 * schedule call cpufreq_update_policy() for first-online CPU, as that 1599 * wouldn't be hotplugged-out on suspend. It will verify that the 1600 * current freq is in sync with what we believe it to be. 1601 */ 1602 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1603 if (WARN_ON(!policy)) 1604 return; 1605 1606 schedule_work(&policy->update); 1607 } 1608 1609 /** 1610 * cpufreq_get_current_driver - return current driver's name 1611 * 1612 * Return the name string of the currently loaded cpufreq driver 1613 * or NULL, if none. 1614 */ 1615 const char *cpufreq_get_current_driver(void) 1616 { 1617 if (cpufreq_driver) 1618 return cpufreq_driver->name; 1619 1620 return NULL; 1621 } 1622 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1623 1624 /** 1625 * cpufreq_get_driver_data - return current driver data 1626 * 1627 * Return the private data of the currently loaded cpufreq 1628 * driver, or NULL if no cpufreq driver is loaded. 1629 */ 1630 void *cpufreq_get_driver_data(void) 1631 { 1632 if (cpufreq_driver) 1633 return cpufreq_driver->driver_data; 1634 1635 return NULL; 1636 } 1637 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1638 1639 /********************************************************************* 1640 * NOTIFIER LISTS INTERFACE * 1641 *********************************************************************/ 1642 1643 /** 1644 * cpufreq_register_notifier - register a driver with cpufreq 1645 * @nb: notifier function to register 1646 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1647 * 1648 * Add a driver to one of two lists: either a list of drivers that 1649 * are notified about clock rate changes (once before and once after 1650 * the transition), or a list of drivers that are notified about 1651 * changes in cpufreq policy. 1652 * 1653 * This function may sleep, and has the same return conditions as 1654 * blocking_notifier_chain_register. 1655 */ 1656 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1657 { 1658 int ret; 1659 1660 if (cpufreq_disabled()) 1661 return -EINVAL; 1662 1663 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1664 1665 switch (list) { 1666 case CPUFREQ_TRANSITION_NOTIFIER: 1667 ret = srcu_notifier_chain_register( 1668 &cpufreq_transition_notifier_list, nb); 1669 break; 1670 case CPUFREQ_POLICY_NOTIFIER: 1671 ret = blocking_notifier_chain_register( 1672 &cpufreq_policy_notifier_list, nb); 1673 break; 1674 default: 1675 ret = -EINVAL; 1676 } 1677 1678 return ret; 1679 } 1680 EXPORT_SYMBOL(cpufreq_register_notifier); 1681 1682 /** 1683 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1684 * @nb: notifier block to be unregistered 1685 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1686 * 1687 * Remove a driver from the CPU frequency notifier list. 1688 * 1689 * This function may sleep, and has the same return conditions as 1690 * blocking_notifier_chain_unregister. 1691 */ 1692 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1693 { 1694 int ret; 1695 1696 if (cpufreq_disabled()) 1697 return -EINVAL; 1698 1699 switch (list) { 1700 case CPUFREQ_TRANSITION_NOTIFIER: 1701 ret = srcu_notifier_chain_unregister( 1702 &cpufreq_transition_notifier_list, nb); 1703 break; 1704 case CPUFREQ_POLICY_NOTIFIER: 1705 ret = blocking_notifier_chain_unregister( 1706 &cpufreq_policy_notifier_list, nb); 1707 break; 1708 default: 1709 ret = -EINVAL; 1710 } 1711 1712 return ret; 1713 } 1714 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1715 1716 1717 /********************************************************************* 1718 * GOVERNORS * 1719 *********************************************************************/ 1720 1721 /* Must set freqs->new to intermediate frequency */ 1722 static int __target_intermediate(struct cpufreq_policy *policy, 1723 struct cpufreq_freqs *freqs, int index) 1724 { 1725 int ret; 1726 1727 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1728 1729 /* We don't need to switch to intermediate freq */ 1730 if (!freqs->new) 1731 return 0; 1732 1733 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1734 __func__, policy->cpu, freqs->old, freqs->new); 1735 1736 cpufreq_freq_transition_begin(policy, freqs); 1737 ret = cpufreq_driver->target_intermediate(policy, index); 1738 cpufreq_freq_transition_end(policy, freqs, ret); 1739 1740 if (ret) 1741 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1742 __func__, ret); 1743 1744 return ret; 1745 } 1746 1747 static int __target_index(struct cpufreq_policy *policy, 1748 struct cpufreq_frequency_table *freq_table, int index) 1749 { 1750 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1751 unsigned int intermediate_freq = 0; 1752 int retval = -EINVAL; 1753 bool notify; 1754 1755 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1756 if (notify) { 1757 /* Handle switching to intermediate frequency */ 1758 if (cpufreq_driver->get_intermediate) { 1759 retval = __target_intermediate(policy, &freqs, index); 1760 if (retval) 1761 return retval; 1762 1763 intermediate_freq = freqs.new; 1764 /* Set old freq to intermediate */ 1765 if (intermediate_freq) 1766 freqs.old = freqs.new; 1767 } 1768 1769 freqs.new = freq_table[index].frequency; 1770 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1771 __func__, policy->cpu, freqs.old, freqs.new); 1772 1773 cpufreq_freq_transition_begin(policy, &freqs); 1774 } 1775 1776 retval = cpufreq_driver->target_index(policy, index); 1777 if (retval) 1778 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1779 retval); 1780 1781 if (notify) { 1782 cpufreq_freq_transition_end(policy, &freqs, retval); 1783 1784 /* 1785 * Failed after setting to intermediate freq? Driver should have 1786 * reverted back to initial frequency and so should we. Check 1787 * here for intermediate_freq instead of get_intermediate, in 1788 * case we haven't switched to intermediate freq at all. 1789 */ 1790 if (unlikely(retval && intermediate_freq)) { 1791 freqs.old = intermediate_freq; 1792 freqs.new = policy->restore_freq; 1793 cpufreq_freq_transition_begin(policy, &freqs); 1794 cpufreq_freq_transition_end(policy, &freqs, 0); 1795 } 1796 } 1797 1798 return retval; 1799 } 1800 1801 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1802 unsigned int target_freq, 1803 unsigned int relation) 1804 { 1805 unsigned int old_target_freq = target_freq; 1806 struct cpufreq_frequency_table *freq_table; 1807 int index, retval; 1808 1809 if (cpufreq_disabled()) 1810 return -ENODEV; 1811 1812 /* Make sure that target_freq is within supported range */ 1813 if (target_freq > policy->max) 1814 target_freq = policy->max; 1815 if (target_freq < policy->min) 1816 target_freq = policy->min; 1817 1818 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1819 policy->cpu, target_freq, relation, old_target_freq); 1820 1821 /* 1822 * This might look like a redundant call as we are checking it again 1823 * after finding index. But it is left intentionally for cases where 1824 * exactly same freq is called again and so we can save on few function 1825 * calls. 1826 */ 1827 if (target_freq == policy->cur) 1828 return 0; 1829 1830 /* Save last value to restore later on errors */ 1831 policy->restore_freq = policy->cur; 1832 1833 if (cpufreq_driver->target) 1834 return cpufreq_driver->target(policy, target_freq, relation); 1835 1836 if (!cpufreq_driver->target_index) 1837 return -EINVAL; 1838 1839 freq_table = cpufreq_frequency_get_table(policy->cpu); 1840 if (unlikely(!freq_table)) { 1841 pr_err("%s: Unable to find freq_table\n", __func__); 1842 return -EINVAL; 1843 } 1844 1845 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq, 1846 relation, &index); 1847 if (unlikely(retval)) { 1848 pr_err("%s: Unable to find matching freq\n", __func__); 1849 return retval; 1850 } 1851 1852 if (freq_table[index].frequency == policy->cur) 1853 return 0; 1854 1855 return __target_index(policy, freq_table, index); 1856 } 1857 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1858 1859 int cpufreq_driver_target(struct cpufreq_policy *policy, 1860 unsigned int target_freq, 1861 unsigned int relation) 1862 { 1863 int ret = -EINVAL; 1864 1865 down_write(&policy->rwsem); 1866 1867 ret = __cpufreq_driver_target(policy, target_freq, relation); 1868 1869 up_write(&policy->rwsem); 1870 1871 return ret; 1872 } 1873 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1874 1875 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 1876 { 1877 return NULL; 1878 } 1879 1880 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event) 1881 { 1882 int ret; 1883 1884 /* Don't start any governor operations if we are entering suspend */ 1885 if (cpufreq_suspended) 1886 return 0; 1887 /* 1888 * Governor might not be initiated here if ACPI _PPC changed 1889 * notification happened, so check it. 1890 */ 1891 if (!policy->governor) 1892 return -EINVAL; 1893 1894 if (policy->governor->max_transition_latency && 1895 policy->cpuinfo.transition_latency > 1896 policy->governor->max_transition_latency) { 1897 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 1898 1899 if (gov) { 1900 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 1901 policy->governor->name, gov->name); 1902 policy->governor = gov; 1903 } else { 1904 return -EINVAL; 1905 } 1906 } 1907 1908 if (event == CPUFREQ_GOV_POLICY_INIT) 1909 if (!try_module_get(policy->governor->owner)) 1910 return -EINVAL; 1911 1912 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 1913 1914 ret = policy->governor->governor(policy, event); 1915 1916 if (!ret) { 1917 if (event == CPUFREQ_GOV_POLICY_INIT) 1918 policy->governor->initialized++; 1919 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1920 policy->governor->initialized--; 1921 } 1922 1923 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1924 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1925 module_put(policy->governor->owner); 1926 1927 return ret; 1928 } 1929 1930 int cpufreq_register_governor(struct cpufreq_governor *governor) 1931 { 1932 int err; 1933 1934 if (!governor) 1935 return -EINVAL; 1936 1937 if (cpufreq_disabled()) 1938 return -ENODEV; 1939 1940 mutex_lock(&cpufreq_governor_mutex); 1941 1942 governor->initialized = 0; 1943 err = -EBUSY; 1944 if (!find_governor(governor->name)) { 1945 err = 0; 1946 list_add(&governor->governor_list, &cpufreq_governor_list); 1947 } 1948 1949 mutex_unlock(&cpufreq_governor_mutex); 1950 return err; 1951 } 1952 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1953 1954 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1955 { 1956 struct cpufreq_policy *policy; 1957 unsigned long flags; 1958 1959 if (!governor) 1960 return; 1961 1962 if (cpufreq_disabled()) 1963 return; 1964 1965 /* clear last_governor for all inactive policies */ 1966 read_lock_irqsave(&cpufreq_driver_lock, flags); 1967 for_each_inactive_policy(policy) { 1968 if (!strcmp(policy->last_governor, governor->name)) { 1969 policy->governor = NULL; 1970 strcpy(policy->last_governor, "\0"); 1971 } 1972 } 1973 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1974 1975 mutex_lock(&cpufreq_governor_mutex); 1976 list_del(&governor->governor_list); 1977 mutex_unlock(&cpufreq_governor_mutex); 1978 return; 1979 } 1980 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1981 1982 1983 /********************************************************************* 1984 * POLICY INTERFACE * 1985 *********************************************************************/ 1986 1987 /** 1988 * cpufreq_get_policy - get the current cpufreq_policy 1989 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1990 * is written 1991 * 1992 * Reads the current cpufreq policy. 1993 */ 1994 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1995 { 1996 struct cpufreq_policy *cpu_policy; 1997 if (!policy) 1998 return -EINVAL; 1999 2000 cpu_policy = cpufreq_cpu_get(cpu); 2001 if (!cpu_policy) 2002 return -EINVAL; 2003 2004 memcpy(policy, cpu_policy, sizeof(*policy)); 2005 2006 cpufreq_cpu_put(cpu_policy); 2007 return 0; 2008 } 2009 EXPORT_SYMBOL(cpufreq_get_policy); 2010 2011 /* 2012 * policy : current policy. 2013 * new_policy: policy to be set. 2014 */ 2015 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2016 struct cpufreq_policy *new_policy) 2017 { 2018 struct cpufreq_governor *old_gov; 2019 int ret; 2020 2021 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2022 new_policy->cpu, new_policy->min, new_policy->max); 2023 2024 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2025 2026 /* 2027 * This check works well when we store new min/max freq attributes, 2028 * because new_policy is a copy of policy with one field updated. 2029 */ 2030 if (new_policy->min > new_policy->max) 2031 return -EINVAL; 2032 2033 /* verify the cpu speed can be set within this limit */ 2034 ret = cpufreq_driver->verify(new_policy); 2035 if (ret) 2036 return ret; 2037 2038 /* adjust if necessary - all reasons */ 2039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2040 CPUFREQ_ADJUST, new_policy); 2041 2042 /* 2043 * verify the cpu speed can be set within this limit, which might be 2044 * different to the first one 2045 */ 2046 ret = cpufreq_driver->verify(new_policy); 2047 if (ret) 2048 return ret; 2049 2050 /* notification of the new policy */ 2051 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2052 CPUFREQ_NOTIFY, new_policy); 2053 2054 policy->min = new_policy->min; 2055 policy->max = new_policy->max; 2056 2057 pr_debug("new min and max freqs are %u - %u kHz\n", 2058 policy->min, policy->max); 2059 2060 if (cpufreq_driver->setpolicy) { 2061 policy->policy = new_policy->policy; 2062 pr_debug("setting range\n"); 2063 return cpufreq_driver->setpolicy(new_policy); 2064 } 2065 2066 if (new_policy->governor == policy->governor) 2067 goto out; 2068 2069 pr_debug("governor switch\n"); 2070 2071 /* save old, working values */ 2072 old_gov = policy->governor; 2073 /* end old governor */ 2074 if (old_gov) { 2075 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2076 if (ret) { 2077 /* This can happen due to race with other operations */ 2078 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2079 __func__, old_gov->name, ret); 2080 return ret; 2081 } 2082 2083 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2084 if (ret) { 2085 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2086 __func__, old_gov->name, ret); 2087 return ret; 2088 } 2089 } 2090 2091 /* start new governor */ 2092 policy->governor = new_policy->governor; 2093 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2094 if (!ret) { 2095 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 2096 if (!ret) 2097 goto out; 2098 2099 cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2100 } 2101 2102 /* new governor failed, so re-start old one */ 2103 pr_debug("starting governor %s failed\n", policy->governor->name); 2104 if (old_gov) { 2105 policy->governor = old_gov; 2106 if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2107 policy->governor = NULL; 2108 else 2109 cpufreq_governor(policy, CPUFREQ_GOV_START); 2110 } 2111 2112 return ret; 2113 2114 out: 2115 pr_debug("governor: change or update limits\n"); 2116 return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2117 } 2118 2119 /** 2120 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2121 * @cpu: CPU which shall be re-evaluated 2122 * 2123 * Useful for policy notifiers which have different necessities 2124 * at different times. 2125 */ 2126 int cpufreq_update_policy(unsigned int cpu) 2127 { 2128 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2129 struct cpufreq_policy new_policy; 2130 int ret; 2131 2132 if (!policy) 2133 return -ENODEV; 2134 2135 down_write(&policy->rwsem); 2136 2137 pr_debug("updating policy for CPU %u\n", cpu); 2138 memcpy(&new_policy, policy, sizeof(*policy)); 2139 new_policy.min = policy->user_policy.min; 2140 new_policy.max = policy->user_policy.max; 2141 2142 /* 2143 * BIOS might change freq behind our back 2144 * -> ask driver for current freq and notify governors about a change 2145 */ 2146 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2147 new_policy.cur = cpufreq_driver->get(cpu); 2148 if (WARN_ON(!new_policy.cur)) { 2149 ret = -EIO; 2150 goto unlock; 2151 } 2152 2153 if (!policy->cur) { 2154 pr_debug("Driver did not initialize current freq\n"); 2155 policy->cur = new_policy.cur; 2156 } else { 2157 if (policy->cur != new_policy.cur && has_target()) 2158 cpufreq_out_of_sync(policy, new_policy.cur); 2159 } 2160 } 2161 2162 ret = cpufreq_set_policy(policy, &new_policy); 2163 2164 unlock: 2165 up_write(&policy->rwsem); 2166 2167 cpufreq_cpu_put(policy); 2168 return ret; 2169 } 2170 EXPORT_SYMBOL(cpufreq_update_policy); 2171 2172 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2173 unsigned long action, void *hcpu) 2174 { 2175 unsigned int cpu = (unsigned long)hcpu; 2176 2177 switch (action & ~CPU_TASKS_FROZEN) { 2178 case CPU_ONLINE: 2179 cpufreq_online(cpu); 2180 break; 2181 2182 case CPU_DOWN_PREPARE: 2183 cpufreq_offline(cpu); 2184 break; 2185 2186 case CPU_DOWN_FAILED: 2187 cpufreq_online(cpu); 2188 break; 2189 } 2190 return NOTIFY_OK; 2191 } 2192 2193 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2194 .notifier_call = cpufreq_cpu_callback, 2195 }; 2196 2197 /********************************************************************* 2198 * BOOST * 2199 *********************************************************************/ 2200 static int cpufreq_boost_set_sw(int state) 2201 { 2202 struct cpufreq_frequency_table *freq_table; 2203 struct cpufreq_policy *policy; 2204 int ret = -EINVAL; 2205 2206 for_each_active_policy(policy) { 2207 freq_table = cpufreq_frequency_get_table(policy->cpu); 2208 if (freq_table) { 2209 ret = cpufreq_frequency_table_cpuinfo(policy, 2210 freq_table); 2211 if (ret) { 2212 pr_err("%s: Policy frequency update failed\n", 2213 __func__); 2214 break; 2215 } 2216 2217 down_write(&policy->rwsem); 2218 policy->user_policy.max = policy->max; 2219 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2220 up_write(&policy->rwsem); 2221 } 2222 } 2223 2224 return ret; 2225 } 2226 2227 int cpufreq_boost_trigger_state(int state) 2228 { 2229 unsigned long flags; 2230 int ret = 0; 2231 2232 if (cpufreq_driver->boost_enabled == state) 2233 return 0; 2234 2235 write_lock_irqsave(&cpufreq_driver_lock, flags); 2236 cpufreq_driver->boost_enabled = state; 2237 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2238 2239 ret = cpufreq_driver->set_boost(state); 2240 if (ret) { 2241 write_lock_irqsave(&cpufreq_driver_lock, flags); 2242 cpufreq_driver->boost_enabled = !state; 2243 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2244 2245 pr_err("%s: Cannot %s BOOST\n", 2246 __func__, state ? "enable" : "disable"); 2247 } 2248 2249 return ret; 2250 } 2251 2252 static bool cpufreq_boost_supported(void) 2253 { 2254 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2255 } 2256 2257 static int create_boost_sysfs_file(void) 2258 { 2259 int ret; 2260 2261 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2262 if (ret) 2263 pr_err("%s: cannot register global BOOST sysfs file\n", 2264 __func__); 2265 2266 return ret; 2267 } 2268 2269 static void remove_boost_sysfs_file(void) 2270 { 2271 if (cpufreq_boost_supported()) 2272 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2273 } 2274 2275 int cpufreq_enable_boost_support(void) 2276 { 2277 if (!cpufreq_driver) 2278 return -EINVAL; 2279 2280 if (cpufreq_boost_supported()) 2281 return 0; 2282 2283 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2284 2285 /* This will get removed on driver unregister */ 2286 return create_boost_sysfs_file(); 2287 } 2288 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2289 2290 int cpufreq_boost_enabled(void) 2291 { 2292 return cpufreq_driver->boost_enabled; 2293 } 2294 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2295 2296 /********************************************************************* 2297 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2298 *********************************************************************/ 2299 2300 /** 2301 * cpufreq_register_driver - register a CPU Frequency driver 2302 * @driver_data: A struct cpufreq_driver containing the values# 2303 * submitted by the CPU Frequency driver. 2304 * 2305 * Registers a CPU Frequency driver to this core code. This code 2306 * returns zero on success, -EEXIST when another driver got here first 2307 * (and isn't unregistered in the meantime). 2308 * 2309 */ 2310 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2311 { 2312 unsigned long flags; 2313 int ret; 2314 2315 if (cpufreq_disabled()) 2316 return -ENODEV; 2317 2318 if (!driver_data || !driver_data->verify || !driver_data->init || 2319 !(driver_data->setpolicy || driver_data->target_index || 2320 driver_data->target) || 2321 (driver_data->setpolicy && (driver_data->target_index || 2322 driver_data->target)) || 2323 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2324 return -EINVAL; 2325 2326 pr_debug("trying to register driver %s\n", driver_data->name); 2327 2328 /* Protect against concurrent CPU online/offline. */ 2329 get_online_cpus(); 2330 2331 write_lock_irqsave(&cpufreq_driver_lock, flags); 2332 if (cpufreq_driver) { 2333 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2334 ret = -EEXIST; 2335 goto out; 2336 } 2337 cpufreq_driver = driver_data; 2338 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2339 2340 if (driver_data->setpolicy) 2341 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2342 2343 if (cpufreq_boost_supported()) { 2344 ret = create_boost_sysfs_file(); 2345 if (ret) 2346 goto err_null_driver; 2347 } 2348 2349 ret = subsys_interface_register(&cpufreq_interface); 2350 if (ret) 2351 goto err_boost_unreg; 2352 2353 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2354 list_empty(&cpufreq_policy_list)) { 2355 /* if all ->init() calls failed, unregister */ 2356 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2357 driver_data->name); 2358 goto err_if_unreg; 2359 } 2360 2361 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2362 pr_debug("driver %s up and running\n", driver_data->name); 2363 2364 out: 2365 put_online_cpus(); 2366 return ret; 2367 2368 err_if_unreg: 2369 subsys_interface_unregister(&cpufreq_interface); 2370 err_boost_unreg: 2371 remove_boost_sysfs_file(); 2372 err_null_driver: 2373 write_lock_irqsave(&cpufreq_driver_lock, flags); 2374 cpufreq_driver = NULL; 2375 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2376 goto out; 2377 } 2378 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2379 2380 /** 2381 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2382 * 2383 * Unregister the current CPUFreq driver. Only call this if you have 2384 * the right to do so, i.e. if you have succeeded in initialising before! 2385 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2386 * currently not initialised. 2387 */ 2388 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2389 { 2390 unsigned long flags; 2391 2392 if (!cpufreq_driver || (driver != cpufreq_driver)) 2393 return -EINVAL; 2394 2395 pr_debug("unregistering driver %s\n", driver->name); 2396 2397 /* Protect against concurrent cpu hotplug */ 2398 get_online_cpus(); 2399 subsys_interface_unregister(&cpufreq_interface); 2400 remove_boost_sysfs_file(); 2401 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2402 2403 write_lock_irqsave(&cpufreq_driver_lock, flags); 2404 2405 cpufreq_driver = NULL; 2406 2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2408 put_online_cpus(); 2409 2410 return 0; 2411 } 2412 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2413 2414 /* 2415 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2416 * or mutexes when secondary CPUs are halted. 2417 */ 2418 static struct syscore_ops cpufreq_syscore_ops = { 2419 .shutdown = cpufreq_suspend, 2420 }; 2421 2422 struct kobject *cpufreq_global_kobject; 2423 EXPORT_SYMBOL(cpufreq_global_kobject); 2424 2425 static int __init cpufreq_core_init(void) 2426 { 2427 if (cpufreq_disabled()) 2428 return -ENODEV; 2429 2430 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2431 BUG_ON(!cpufreq_global_kobject); 2432 2433 register_syscore_ops(&cpufreq_syscore_ops); 2434 2435 return 0; 2436 } 2437 core_initcall(cpufreq_core_init); 2438