xref: /linux/drivers/cpufreq/cpufreq-dt.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
16 
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31 
32 struct private_data {
33 	struct device *cpu_dev;
34 	struct thermal_cooling_device *cdev;
35 	const char *reg_name;
36 };
37 
38 static struct freq_attr *cpufreq_dt_attr[] = {
39 	&cpufreq_freq_attr_scaling_available_freqs,
40 	NULL,   /* Extra space for boost-attr if required */
41 	NULL,
42 };
43 
44 static int set_target(struct cpufreq_policy *policy, unsigned int index)
45 {
46 	struct private_data *priv = policy->driver_data;
47 
48 	return dev_pm_opp_set_rate(priv->cpu_dev,
49 				   policy->freq_table[index].frequency * 1000);
50 }
51 
52 /*
53  * An earlier version of opp-v1 bindings used to name the regulator
54  * "cpu0-supply", we still need to handle that for backwards compatibility.
55  */
56 static const char *find_supply_name(struct device *dev)
57 {
58 	struct device_node *np;
59 	struct property *pp;
60 	int cpu = dev->id;
61 	const char *name = NULL;
62 
63 	np = of_node_get(dev->of_node);
64 
65 	/* This must be valid for sure */
66 	if (WARN_ON(!np))
67 		return NULL;
68 
69 	/* Try "cpu0" for older DTs */
70 	if (!cpu) {
71 		pp = of_find_property(np, "cpu0-supply", NULL);
72 		if (pp) {
73 			name = "cpu0";
74 			goto node_put;
75 		}
76 	}
77 
78 	pp = of_find_property(np, "cpu-supply", NULL);
79 	if (pp) {
80 		name = "cpu";
81 		goto node_put;
82 	}
83 
84 	dev_dbg(dev, "no regulator for cpu%d\n", cpu);
85 node_put:
86 	of_node_put(np);
87 	return name;
88 }
89 
90 static int resources_available(void)
91 {
92 	struct device *cpu_dev;
93 	struct regulator *cpu_reg;
94 	struct clk *cpu_clk;
95 	int ret = 0;
96 	const char *name;
97 
98 	cpu_dev = get_cpu_device(0);
99 	if (!cpu_dev) {
100 		pr_err("failed to get cpu0 device\n");
101 		return -ENODEV;
102 	}
103 
104 	cpu_clk = clk_get(cpu_dev, NULL);
105 	ret = PTR_ERR_OR_ZERO(cpu_clk);
106 	if (ret) {
107 		/*
108 		 * If cpu's clk node is present, but clock is not yet
109 		 * registered, we should try defering probe.
110 		 */
111 		if (ret == -EPROBE_DEFER)
112 			dev_dbg(cpu_dev, "clock not ready, retry\n");
113 		else
114 			dev_err(cpu_dev, "failed to get clock: %d\n", ret);
115 
116 		return ret;
117 	}
118 
119 	clk_put(cpu_clk);
120 
121 	name = find_supply_name(cpu_dev);
122 	/* Platform doesn't require regulator */
123 	if (!name)
124 		return 0;
125 
126 	cpu_reg = regulator_get_optional(cpu_dev, name);
127 	ret = PTR_ERR_OR_ZERO(cpu_reg);
128 	if (ret) {
129 		/*
130 		 * If cpu's regulator supply node is present, but regulator is
131 		 * not yet registered, we should try defering probe.
132 		 */
133 		if (ret == -EPROBE_DEFER)
134 			dev_dbg(cpu_dev, "cpu0 regulator not ready, retry\n");
135 		else
136 			dev_dbg(cpu_dev, "no regulator for cpu0: %d\n", ret);
137 
138 		return ret;
139 	}
140 
141 	regulator_put(cpu_reg);
142 	return 0;
143 }
144 
145 static int cpufreq_init(struct cpufreq_policy *policy)
146 {
147 	struct cpufreq_frequency_table *freq_table;
148 	struct private_data *priv;
149 	struct device *cpu_dev;
150 	struct clk *cpu_clk;
151 	struct dev_pm_opp *suspend_opp;
152 	unsigned int transition_latency;
153 	bool opp_v1 = false;
154 	const char *name;
155 	int ret;
156 
157 	cpu_dev = get_cpu_device(policy->cpu);
158 	if (!cpu_dev) {
159 		pr_err("failed to get cpu%d device\n", policy->cpu);
160 		return -ENODEV;
161 	}
162 
163 	cpu_clk = clk_get(cpu_dev, NULL);
164 	if (IS_ERR(cpu_clk)) {
165 		ret = PTR_ERR(cpu_clk);
166 		dev_err(cpu_dev, "%s: failed to get clk: %d\n", __func__, ret);
167 		return ret;
168 	}
169 
170 	/* Get OPP-sharing information from "operating-points-v2" bindings */
171 	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, policy->cpus);
172 	if (ret) {
173 		/*
174 		 * operating-points-v2 not supported, fallback to old method of
175 		 * finding shared-OPPs for backward compatibility.
176 		 */
177 		if (ret == -ENOENT)
178 			opp_v1 = true;
179 		else
180 			goto out_put_clk;
181 	}
182 
183 	/*
184 	 * OPP layer will be taking care of regulators now, but it needs to know
185 	 * the name of the regulator first.
186 	 */
187 	name = find_supply_name(cpu_dev);
188 	if (name) {
189 		ret = dev_pm_opp_set_regulator(cpu_dev, name);
190 		if (ret) {
191 			dev_err(cpu_dev, "Failed to set regulator for cpu%d: %d\n",
192 				policy->cpu, ret);
193 			goto out_put_clk;
194 		}
195 	}
196 
197 	/*
198 	 * Initialize OPP tables for all policy->cpus. They will be shared by
199 	 * all CPUs which have marked their CPUs shared with OPP bindings.
200 	 *
201 	 * For platforms not using operating-points-v2 bindings, we do this
202 	 * before updating policy->cpus. Otherwise, we will end up creating
203 	 * duplicate OPPs for policy->cpus.
204 	 *
205 	 * OPPs might be populated at runtime, don't check for error here
206 	 */
207 	dev_pm_opp_of_cpumask_add_table(policy->cpus);
208 
209 	/*
210 	 * But we need OPP table to function so if it is not there let's
211 	 * give platform code chance to provide it for us.
212 	 */
213 	ret = dev_pm_opp_get_opp_count(cpu_dev);
214 	if (ret <= 0) {
215 		dev_dbg(cpu_dev, "OPP table is not ready, deferring probe\n");
216 		ret = -EPROBE_DEFER;
217 		goto out_free_opp;
218 	}
219 
220 	if (opp_v1) {
221 		struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();
222 
223 		if (!pd || !pd->independent_clocks)
224 			cpumask_setall(policy->cpus);
225 
226 		/*
227 		 * OPP tables are initialized only for policy->cpu, do it for
228 		 * others as well.
229 		 */
230 		ret = dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
231 		if (ret)
232 			dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
233 				__func__, ret);
234 	}
235 
236 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
237 	if (!priv) {
238 		ret = -ENOMEM;
239 		goto out_free_opp;
240 	}
241 
242 	priv->reg_name = name;
243 
244 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
245 	if (ret) {
246 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
247 		goto out_free_priv;
248 	}
249 
250 	priv->cpu_dev = cpu_dev;
251 	policy->driver_data = priv;
252 	policy->clk = cpu_clk;
253 
254 	rcu_read_lock();
255 	suspend_opp = dev_pm_opp_get_suspend_opp(cpu_dev);
256 	if (suspend_opp)
257 		policy->suspend_freq = dev_pm_opp_get_freq(suspend_opp) / 1000;
258 	rcu_read_unlock();
259 
260 	ret = cpufreq_table_validate_and_show(policy, freq_table);
261 	if (ret) {
262 		dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
263 			ret);
264 		goto out_free_cpufreq_table;
265 	}
266 
267 	/* Support turbo/boost mode */
268 	if (policy_has_boost_freq(policy)) {
269 		/* This gets disabled by core on driver unregister */
270 		ret = cpufreq_enable_boost_support();
271 		if (ret)
272 			goto out_free_cpufreq_table;
273 		cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
274 	}
275 
276 	transition_latency = dev_pm_opp_get_max_transition_latency(cpu_dev);
277 	if (!transition_latency)
278 		transition_latency = CPUFREQ_ETERNAL;
279 
280 	policy->cpuinfo.transition_latency = transition_latency;
281 
282 	return 0;
283 
284 out_free_cpufreq_table:
285 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
286 out_free_priv:
287 	kfree(priv);
288 out_free_opp:
289 	dev_pm_opp_of_cpumask_remove_table(policy->cpus);
290 	if (name)
291 		dev_pm_opp_put_regulator(cpu_dev);
292 out_put_clk:
293 	clk_put(cpu_clk);
294 
295 	return ret;
296 }
297 
298 static int cpufreq_exit(struct cpufreq_policy *policy)
299 {
300 	struct private_data *priv = policy->driver_data;
301 
302 	cpufreq_cooling_unregister(priv->cdev);
303 	dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
304 	dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
305 	if (priv->reg_name)
306 		dev_pm_opp_put_regulator(priv->cpu_dev);
307 
308 	clk_put(policy->clk);
309 	kfree(priv);
310 
311 	return 0;
312 }
313 
314 static void cpufreq_ready(struct cpufreq_policy *policy)
315 {
316 	struct private_data *priv = policy->driver_data;
317 	struct device_node *np = of_node_get(priv->cpu_dev->of_node);
318 
319 	if (WARN_ON(!np))
320 		return;
321 
322 	/*
323 	 * For now, just loading the cooling device;
324 	 * thermal DT code takes care of matching them.
325 	 */
326 	if (of_find_property(np, "#cooling-cells", NULL)) {
327 		u32 power_coefficient = 0;
328 
329 		of_property_read_u32(np, "dynamic-power-coefficient",
330 				     &power_coefficient);
331 
332 		priv->cdev = of_cpufreq_power_cooling_register(np,
333 				policy->related_cpus, power_coefficient, NULL);
334 		if (IS_ERR(priv->cdev)) {
335 			dev_err(priv->cpu_dev,
336 				"running cpufreq without cooling device: %ld\n",
337 				PTR_ERR(priv->cdev));
338 
339 			priv->cdev = NULL;
340 		}
341 	}
342 
343 	of_node_put(np);
344 }
345 
346 static struct cpufreq_driver dt_cpufreq_driver = {
347 	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
348 	.verify = cpufreq_generic_frequency_table_verify,
349 	.target_index = set_target,
350 	.get = cpufreq_generic_get,
351 	.init = cpufreq_init,
352 	.exit = cpufreq_exit,
353 	.ready = cpufreq_ready,
354 	.name = "cpufreq-dt",
355 	.attr = cpufreq_dt_attr,
356 	.suspend = cpufreq_generic_suspend,
357 };
358 
359 static int dt_cpufreq_probe(struct platform_device *pdev)
360 {
361 	int ret;
362 
363 	/*
364 	 * All per-cluster (CPUs sharing clock/voltages) initialization is done
365 	 * from ->init(). In probe(), we just need to make sure that clk and
366 	 * regulators are available. Else defer probe and retry.
367 	 *
368 	 * FIXME: Is checking this only for CPU0 sufficient ?
369 	 */
370 	ret = resources_available();
371 	if (ret)
372 		return ret;
373 
374 	dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
375 
376 	ret = cpufreq_register_driver(&dt_cpufreq_driver);
377 	if (ret)
378 		dev_err(&pdev->dev, "failed register driver: %d\n", ret);
379 
380 	return ret;
381 }
382 
383 static int dt_cpufreq_remove(struct platform_device *pdev)
384 {
385 	cpufreq_unregister_driver(&dt_cpufreq_driver);
386 	return 0;
387 }
388 
389 static struct platform_driver dt_cpufreq_platdrv = {
390 	.driver = {
391 		.name	= "cpufreq-dt",
392 	},
393 	.probe		= dt_cpufreq_probe,
394 	.remove		= dt_cpufreq_remove,
395 };
396 module_platform_driver(dt_cpufreq_platdrv);
397 
398 MODULE_ALIAS("platform:cpufreq-dt");
399 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
400 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
401 MODULE_DESCRIPTION("Generic cpufreq driver");
402 MODULE_LICENSE("GPL");
403