xref: /linux/drivers/cpufreq/acpi-cpufreq.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52 
53 #define PFX "acpi-cpufreq: "
54 
55 enum {
56 	UNDEFINED_CAPABLE = 0,
57 	SYSTEM_INTEL_MSR_CAPABLE,
58 	SYSTEM_AMD_MSR_CAPABLE,
59 	SYSTEM_IO_CAPABLE,
60 };
61 
62 #define INTEL_MSR_RANGE		(0xffff)
63 #define AMD_MSR_RANGE		(0x7)
64 
65 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
66 
67 struct acpi_cpufreq_data {
68 	struct cpufreq_frequency_table *freq_table;
69 	unsigned int resume;
70 	unsigned int cpu_feature;
71 	unsigned int acpi_perf_cpu;
72 	cpumask_var_t freqdomain_cpus;
73 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76 
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79 
80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84 
85 static struct cpufreq_driver acpi_cpufreq_driver;
86 
87 static unsigned int acpi_pstate_strict;
88 static struct msr __percpu *msrs;
89 
90 static bool boost_state(unsigned int cpu)
91 {
92 	u32 lo, hi;
93 	u64 msr;
94 
95 	switch (boot_cpu_data.x86_vendor) {
96 	case X86_VENDOR_INTEL:
97 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
98 		msr = lo | ((u64)hi << 32);
99 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
100 	case X86_VENDOR_AMD:
101 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102 		msr = lo | ((u64)hi << 32);
103 		return !(msr & MSR_K7_HWCR_CPB_DIS);
104 	}
105 	return false;
106 }
107 
108 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109 {
110 	u32 cpu;
111 	u32 msr_addr;
112 	u64 msr_mask;
113 
114 	switch (boot_cpu_data.x86_vendor) {
115 	case X86_VENDOR_INTEL:
116 		msr_addr = MSR_IA32_MISC_ENABLE;
117 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118 		break;
119 	case X86_VENDOR_AMD:
120 		msr_addr = MSR_K7_HWCR;
121 		msr_mask = MSR_K7_HWCR_CPB_DIS;
122 		break;
123 	default:
124 		return;
125 	}
126 
127 	rdmsr_on_cpus(cpumask, msr_addr, msrs);
128 
129 	for_each_cpu(cpu, cpumask) {
130 		struct msr *reg = per_cpu_ptr(msrs, cpu);
131 		if (enable)
132 			reg->q &= ~msr_mask;
133 		else
134 			reg->q |= msr_mask;
135 	}
136 
137 	wrmsr_on_cpus(cpumask, msr_addr, msrs);
138 }
139 
140 static int set_boost(int val)
141 {
142 	get_online_cpus();
143 	boost_set_msrs(val, cpu_online_mask);
144 	put_online_cpus();
145 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146 
147 	return 0;
148 }
149 
150 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151 {
152 	struct acpi_cpufreq_data *data = policy->driver_data;
153 
154 	if (unlikely(!data))
155 		return -ENODEV;
156 
157 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158 }
159 
160 cpufreq_freq_attr_ro(freqdomain_cpus);
161 
162 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164 			 size_t count)
165 {
166 	int ret;
167 	unsigned int val = 0;
168 
169 	if (!acpi_cpufreq_driver.set_boost)
170 		return -EINVAL;
171 
172 	ret = kstrtouint(buf, 10, &val);
173 	if (ret || val > 1)
174 		return -EINVAL;
175 
176 	set_boost(val);
177 
178 	return count;
179 }
180 
181 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182 {
183 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184 }
185 
186 cpufreq_freq_attr_rw(cpb);
187 #endif
188 
189 static int check_est_cpu(unsigned int cpuid)
190 {
191 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192 
193 	return cpu_has(cpu, X86_FEATURE_EST);
194 }
195 
196 static int check_amd_hwpstate_cpu(unsigned int cpuid)
197 {
198 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199 
200 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201 }
202 
203 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204 {
205 	struct acpi_processor_performance *perf;
206 	int i;
207 
208 	perf = to_perf_data(data);
209 
210 	for (i = 0; i < perf->state_count; i++) {
211 		if (value == perf->states[i].status)
212 			return data->freq_table[i].frequency;
213 	}
214 	return 0;
215 }
216 
217 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218 {
219 	struct cpufreq_frequency_table *pos;
220 	struct acpi_processor_performance *perf;
221 
222 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223 		msr &= AMD_MSR_RANGE;
224 	else
225 		msr &= INTEL_MSR_RANGE;
226 
227 	perf = to_perf_data(data);
228 
229 	cpufreq_for_each_entry(pos, data->freq_table)
230 		if (msr == perf->states[pos->driver_data].status)
231 			return pos->frequency;
232 	return data->freq_table[0].frequency;
233 }
234 
235 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236 {
237 	switch (data->cpu_feature) {
238 	case SYSTEM_INTEL_MSR_CAPABLE:
239 	case SYSTEM_AMD_MSR_CAPABLE:
240 		return extract_msr(val, data);
241 	case SYSTEM_IO_CAPABLE:
242 		return extract_io(val, data);
243 	default:
244 		return 0;
245 	}
246 }
247 
248 u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249 {
250 	u32 val, dummy;
251 
252 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253 	return val;
254 }
255 
256 void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257 {
258 	u32 lo, hi;
259 
260 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263 }
264 
265 u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266 {
267 	u32 val, dummy;
268 
269 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270 	return val;
271 }
272 
273 void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274 {
275 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
276 }
277 
278 u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279 {
280 	u32 val;
281 
282 	acpi_os_read_port(reg->address, &val, reg->bit_width);
283 	return val;
284 }
285 
286 void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287 {
288 	acpi_os_write_port(reg->address, val, reg->bit_width);
289 }
290 
291 struct drv_cmd {
292 	struct acpi_pct_register *reg;
293 	u32 val;
294 	union {
295 		void (*write)(struct acpi_pct_register *reg, u32 val);
296 		u32 (*read)(struct acpi_pct_register *reg);
297 	} func;
298 };
299 
300 /* Called via smp_call_function_single(), on the target CPU */
301 static void do_drv_read(void *_cmd)
302 {
303 	struct drv_cmd *cmd = _cmd;
304 
305 	cmd->val = cmd->func.read(cmd->reg);
306 }
307 
308 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309 {
310 	struct acpi_processor_performance *perf = to_perf_data(data);
311 	struct drv_cmd cmd = {
312 		.reg = &perf->control_register,
313 		.func.read = data->cpu_freq_read,
314 	};
315 	int err;
316 
317 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
319 	return cmd.val;
320 }
321 
322 /* Called via smp_call_function_many(), on the target CPUs */
323 static void do_drv_write(void *_cmd)
324 {
325 	struct drv_cmd *cmd = _cmd;
326 
327 	cmd->func.write(cmd->reg, cmd->val);
328 }
329 
330 static void drv_write(struct acpi_cpufreq_data *data,
331 		      const struct cpumask *mask, u32 val)
332 {
333 	struct acpi_processor_performance *perf = to_perf_data(data);
334 	struct drv_cmd cmd = {
335 		.reg = &perf->control_register,
336 		.val = val,
337 		.func.write = data->cpu_freq_write,
338 	};
339 	int this_cpu;
340 
341 	this_cpu = get_cpu();
342 	if (cpumask_test_cpu(this_cpu, mask))
343 		do_drv_write(&cmd);
344 
345 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
346 	put_cpu();
347 }
348 
349 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350 {
351 	u32 val;
352 
353 	if (unlikely(cpumask_empty(mask)))
354 		return 0;
355 
356 	val = drv_read(data, mask);
357 
358 	pr_debug("get_cur_val = %u\n", val);
359 
360 	return val;
361 }
362 
363 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364 {
365 	struct acpi_cpufreq_data *data;
366 	struct cpufreq_policy *policy;
367 	unsigned int freq;
368 	unsigned int cached_freq;
369 
370 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371 
372 	policy = cpufreq_cpu_get_raw(cpu);
373 	if (unlikely(!policy))
374 		return 0;
375 
376 	data = policy->driver_data;
377 	if (unlikely(!data || !data->freq_table))
378 		return 0;
379 
380 	cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381 	freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382 	if (freq != cached_freq) {
383 		/*
384 		 * The dreaded BIOS frequency change behind our back.
385 		 * Force set the frequency on next target call.
386 		 */
387 		data->resume = 1;
388 	}
389 
390 	pr_debug("cur freq = %u\n", freq);
391 
392 	return freq;
393 }
394 
395 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396 				struct acpi_cpufreq_data *data)
397 {
398 	unsigned int cur_freq;
399 	unsigned int i;
400 
401 	for (i = 0; i < 100; i++) {
402 		cur_freq = extract_freq(get_cur_val(mask, data), data);
403 		if (cur_freq == freq)
404 			return 1;
405 		udelay(10);
406 	}
407 	return 0;
408 }
409 
410 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411 			       unsigned int index)
412 {
413 	struct acpi_cpufreq_data *data = policy->driver_data;
414 	struct acpi_processor_performance *perf;
415 	const struct cpumask *mask;
416 	unsigned int next_perf_state = 0; /* Index into perf table */
417 	int result = 0;
418 
419 	if (unlikely(data == NULL || data->freq_table == NULL)) {
420 		return -ENODEV;
421 	}
422 
423 	perf = to_perf_data(data);
424 	next_perf_state = data->freq_table[index].driver_data;
425 	if (perf->state == next_perf_state) {
426 		if (unlikely(data->resume)) {
427 			pr_debug("Called after resume, resetting to P%d\n",
428 				next_perf_state);
429 			data->resume = 0;
430 		} else {
431 			pr_debug("Already at target state (P%d)\n",
432 				next_perf_state);
433 			return 0;
434 		}
435 	}
436 
437 	/*
438 	 * The core won't allow CPUs to go away until the governor has been
439 	 * stopped, so we can rely on the stability of policy->cpus.
440 	 */
441 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442 		cpumask_of(policy->cpu) : policy->cpus;
443 
444 	drv_write(data, mask, perf->states[next_perf_state].control);
445 
446 	if (acpi_pstate_strict) {
447 		if (!check_freqs(mask, data->freq_table[index].frequency,
448 					data)) {
449 			pr_debug("acpi_cpufreq_target failed (%d)\n",
450 				policy->cpu);
451 			result = -EAGAIN;
452 		}
453 	}
454 
455 	if (!result)
456 		perf->state = next_perf_state;
457 
458 	return result;
459 }
460 
461 static unsigned long
462 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463 {
464 	struct acpi_processor_performance *perf;
465 
466 	perf = to_perf_data(data);
467 	if (cpu_khz) {
468 		/* search the closest match to cpu_khz */
469 		unsigned int i;
470 		unsigned long freq;
471 		unsigned long freqn = perf->states[0].core_frequency * 1000;
472 
473 		for (i = 0; i < (perf->state_count-1); i++) {
474 			freq = freqn;
475 			freqn = perf->states[i+1].core_frequency * 1000;
476 			if ((2 * cpu_khz) > (freqn + freq)) {
477 				perf->state = i;
478 				return freq;
479 			}
480 		}
481 		perf->state = perf->state_count-1;
482 		return freqn;
483 	} else {
484 		/* assume CPU is at P0... */
485 		perf->state = 0;
486 		return perf->states[0].core_frequency * 1000;
487 	}
488 }
489 
490 static void free_acpi_perf_data(void)
491 {
492 	unsigned int i;
493 
494 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495 	for_each_possible_cpu(i)
496 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497 				 ->shared_cpu_map);
498 	free_percpu(acpi_perf_data);
499 }
500 
501 static int boost_notify(struct notifier_block *nb, unsigned long action,
502 		      void *hcpu)
503 {
504 	unsigned cpu = (long)hcpu;
505 	const struct cpumask *cpumask;
506 
507 	cpumask = get_cpu_mask(cpu);
508 
509 	/*
510 	 * Clear the boost-disable bit on the CPU_DOWN path so that
511 	 * this cpu cannot block the remaining ones from boosting. On
512 	 * the CPU_UP path we simply keep the boost-disable flag in
513 	 * sync with the current global state.
514 	 */
515 
516 	switch (action) {
517 	case CPU_UP_PREPARE:
518 	case CPU_UP_PREPARE_FROZEN:
519 		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
520 		break;
521 
522 	case CPU_DOWN_PREPARE:
523 	case CPU_DOWN_PREPARE_FROZEN:
524 		boost_set_msrs(1, cpumask);
525 		break;
526 
527 	default:
528 		break;
529 	}
530 
531 	return NOTIFY_OK;
532 }
533 
534 
535 static struct notifier_block boost_nb = {
536 	.notifier_call          = boost_notify,
537 };
538 
539 /*
540  * acpi_cpufreq_early_init - initialize ACPI P-States library
541  *
542  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
543  * in order to determine correct frequency and voltage pairings. We can
544  * do _PDC and _PSD and find out the processor dependency for the
545  * actual init that will happen later...
546  */
547 static int __init acpi_cpufreq_early_init(void)
548 {
549 	unsigned int i;
550 	pr_debug("acpi_cpufreq_early_init\n");
551 
552 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
553 	if (!acpi_perf_data) {
554 		pr_debug("Memory allocation error for acpi_perf_data.\n");
555 		return -ENOMEM;
556 	}
557 	for_each_possible_cpu(i) {
558 		if (!zalloc_cpumask_var_node(
559 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
560 			GFP_KERNEL, cpu_to_node(i))) {
561 
562 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
563 			free_acpi_perf_data();
564 			return -ENOMEM;
565 		}
566 	}
567 
568 	/* Do initialization in ACPI core */
569 	acpi_processor_preregister_performance(acpi_perf_data);
570 	return 0;
571 }
572 
573 #ifdef CONFIG_SMP
574 /*
575  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
576  * or do it in BIOS firmware and won't inform about it to OS. If not
577  * detected, this has a side effect of making CPU run at a different speed
578  * than OS intended it to run at. Detect it and handle it cleanly.
579  */
580 static int bios_with_sw_any_bug;
581 
582 static int sw_any_bug_found(const struct dmi_system_id *d)
583 {
584 	bios_with_sw_any_bug = 1;
585 	return 0;
586 }
587 
588 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
589 	{
590 		.callback = sw_any_bug_found,
591 		.ident = "Supermicro Server X6DLP",
592 		.matches = {
593 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
594 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
595 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
596 		},
597 	},
598 	{ }
599 };
600 
601 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
602 {
603 	/* Intel Xeon Processor 7100 Series Specification Update
604 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
605 	 * AL30: A Machine Check Exception (MCE) Occurring during an
606 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
607 	 * Both Processor Cores to Lock Up. */
608 	if (c->x86_vendor == X86_VENDOR_INTEL) {
609 		if ((c->x86 == 15) &&
610 		    (c->x86_model == 6) &&
611 		    (c->x86_mask == 8)) {
612 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
613 			    "Xeon(R) 7100 Errata AL30, processors may "
614 			    "lock up on frequency changes: disabling "
615 			    "acpi-cpufreq.\n");
616 			return -ENODEV;
617 		    }
618 		}
619 	return 0;
620 }
621 #endif
622 
623 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
624 {
625 	unsigned int i;
626 	unsigned int valid_states = 0;
627 	unsigned int cpu = policy->cpu;
628 	struct acpi_cpufreq_data *data;
629 	unsigned int result = 0;
630 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
631 	struct acpi_processor_performance *perf;
632 #ifdef CONFIG_SMP
633 	static int blacklisted;
634 #endif
635 
636 	pr_debug("acpi_cpufreq_cpu_init\n");
637 
638 #ifdef CONFIG_SMP
639 	if (blacklisted)
640 		return blacklisted;
641 	blacklisted = acpi_cpufreq_blacklist(c);
642 	if (blacklisted)
643 		return blacklisted;
644 #endif
645 
646 	data = kzalloc(sizeof(*data), GFP_KERNEL);
647 	if (!data)
648 		return -ENOMEM;
649 
650 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
651 		result = -ENOMEM;
652 		goto err_free;
653 	}
654 
655 	perf = per_cpu_ptr(acpi_perf_data, cpu);
656 	data->acpi_perf_cpu = cpu;
657 	policy->driver_data = data;
658 
659 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
660 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
661 
662 	result = acpi_processor_register_performance(perf, cpu);
663 	if (result)
664 		goto err_free_mask;
665 
666 	policy->shared_type = perf->shared_type;
667 
668 	/*
669 	 * Will let policy->cpus know about dependency only when software
670 	 * coordination is required.
671 	 */
672 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
673 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
674 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
675 	}
676 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
677 
678 #ifdef CONFIG_SMP
679 	dmi_check_system(sw_any_bug_dmi_table);
680 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
681 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
682 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
683 	}
684 
685 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
686 		cpumask_clear(policy->cpus);
687 		cpumask_set_cpu(cpu, policy->cpus);
688 		cpumask_copy(data->freqdomain_cpus,
689 			     topology_sibling_cpumask(cpu));
690 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
691 		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
692 	}
693 #endif
694 
695 	/* capability check */
696 	if (perf->state_count <= 1) {
697 		pr_debug("No P-States\n");
698 		result = -ENODEV;
699 		goto err_unreg;
700 	}
701 
702 	if (perf->control_register.space_id != perf->status_register.space_id) {
703 		result = -ENODEV;
704 		goto err_unreg;
705 	}
706 
707 	switch (perf->control_register.space_id) {
708 	case ACPI_ADR_SPACE_SYSTEM_IO:
709 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
710 		    boot_cpu_data.x86 == 0xf) {
711 			pr_debug("AMD K8 systems must use native drivers.\n");
712 			result = -ENODEV;
713 			goto err_unreg;
714 		}
715 		pr_debug("SYSTEM IO addr space\n");
716 		data->cpu_feature = SYSTEM_IO_CAPABLE;
717 		data->cpu_freq_read = cpu_freq_read_io;
718 		data->cpu_freq_write = cpu_freq_write_io;
719 		break;
720 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
721 		pr_debug("HARDWARE addr space\n");
722 		if (check_est_cpu(cpu)) {
723 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
724 			data->cpu_freq_read = cpu_freq_read_intel;
725 			data->cpu_freq_write = cpu_freq_write_intel;
726 			break;
727 		}
728 		if (check_amd_hwpstate_cpu(cpu)) {
729 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
730 			data->cpu_freq_read = cpu_freq_read_amd;
731 			data->cpu_freq_write = cpu_freq_write_amd;
732 			break;
733 		}
734 		result = -ENODEV;
735 		goto err_unreg;
736 	default:
737 		pr_debug("Unknown addr space %d\n",
738 			(u32) (perf->control_register.space_id));
739 		result = -ENODEV;
740 		goto err_unreg;
741 	}
742 
743 	data->freq_table = kzalloc(sizeof(*data->freq_table) *
744 		    (perf->state_count+1), GFP_KERNEL);
745 	if (!data->freq_table) {
746 		result = -ENOMEM;
747 		goto err_unreg;
748 	}
749 
750 	/* detect transition latency */
751 	policy->cpuinfo.transition_latency = 0;
752 	for (i = 0; i < perf->state_count; i++) {
753 		if ((perf->states[i].transition_latency * 1000) >
754 		    policy->cpuinfo.transition_latency)
755 			policy->cpuinfo.transition_latency =
756 			    perf->states[i].transition_latency * 1000;
757 	}
758 
759 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
760 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
761 	    policy->cpuinfo.transition_latency > 20 * 1000) {
762 		policy->cpuinfo.transition_latency = 20 * 1000;
763 		printk_once(KERN_INFO
764 			    "P-state transition latency capped at 20 uS\n");
765 	}
766 
767 	/* table init */
768 	for (i = 0; i < perf->state_count; i++) {
769 		if (i > 0 && perf->states[i].core_frequency >=
770 		    data->freq_table[valid_states-1].frequency / 1000)
771 			continue;
772 
773 		data->freq_table[valid_states].driver_data = i;
774 		data->freq_table[valid_states].frequency =
775 		    perf->states[i].core_frequency * 1000;
776 		valid_states++;
777 	}
778 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
779 	perf->state = 0;
780 
781 	result = cpufreq_table_validate_and_show(policy, data->freq_table);
782 	if (result)
783 		goto err_freqfree;
784 
785 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
786 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
787 
788 	switch (perf->control_register.space_id) {
789 	case ACPI_ADR_SPACE_SYSTEM_IO:
790 		/*
791 		 * The core will not set policy->cur, because
792 		 * cpufreq_driver->get is NULL, so we need to set it here.
793 		 * However, we have to guess it, because the current speed is
794 		 * unknown and not detectable via IO ports.
795 		 */
796 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
797 		break;
798 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
799 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
800 		break;
801 	default:
802 		break;
803 	}
804 
805 	/* notify BIOS that we exist */
806 	acpi_processor_notify_smm(THIS_MODULE);
807 
808 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
809 	for (i = 0; i < perf->state_count; i++)
810 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
811 			(i == perf->state ? '*' : ' '), i,
812 			(u32) perf->states[i].core_frequency,
813 			(u32) perf->states[i].power,
814 			(u32) perf->states[i].transition_latency);
815 
816 	/*
817 	 * the first call to ->target() should result in us actually
818 	 * writing something to the appropriate registers.
819 	 */
820 	data->resume = 1;
821 
822 	return result;
823 
824 err_freqfree:
825 	kfree(data->freq_table);
826 err_unreg:
827 	acpi_processor_unregister_performance(cpu);
828 err_free_mask:
829 	free_cpumask_var(data->freqdomain_cpus);
830 err_free:
831 	kfree(data);
832 	policy->driver_data = NULL;
833 
834 	return result;
835 }
836 
837 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
838 {
839 	struct acpi_cpufreq_data *data = policy->driver_data;
840 
841 	pr_debug("acpi_cpufreq_cpu_exit\n");
842 
843 	if (data) {
844 		policy->driver_data = NULL;
845 		acpi_processor_unregister_performance(data->acpi_perf_cpu);
846 		free_cpumask_var(data->freqdomain_cpus);
847 		kfree(data->freq_table);
848 		kfree(data);
849 	}
850 
851 	return 0;
852 }
853 
854 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
855 {
856 	struct acpi_cpufreq_data *data = policy->driver_data;
857 
858 	pr_debug("acpi_cpufreq_resume\n");
859 
860 	data->resume = 1;
861 
862 	return 0;
863 }
864 
865 static struct freq_attr *acpi_cpufreq_attr[] = {
866 	&cpufreq_freq_attr_scaling_available_freqs,
867 	&freqdomain_cpus,
868 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
869 	&cpb,
870 #endif
871 	NULL,
872 };
873 
874 static struct cpufreq_driver acpi_cpufreq_driver = {
875 	.verify		= cpufreq_generic_frequency_table_verify,
876 	.target_index	= acpi_cpufreq_target,
877 	.bios_limit	= acpi_processor_get_bios_limit,
878 	.init		= acpi_cpufreq_cpu_init,
879 	.exit		= acpi_cpufreq_cpu_exit,
880 	.resume		= acpi_cpufreq_resume,
881 	.name		= "acpi-cpufreq",
882 	.attr		= acpi_cpufreq_attr,
883 };
884 
885 static void __init acpi_cpufreq_boost_init(void)
886 {
887 	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
888 		msrs = msrs_alloc();
889 
890 		if (!msrs)
891 			return;
892 
893 		acpi_cpufreq_driver.set_boost = set_boost;
894 		acpi_cpufreq_driver.boost_enabled = boost_state(0);
895 
896 		cpu_notifier_register_begin();
897 
898 		/* Force all MSRs to the same value */
899 		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
900 			       cpu_online_mask);
901 
902 		__register_cpu_notifier(&boost_nb);
903 
904 		cpu_notifier_register_done();
905 	}
906 }
907 
908 static void acpi_cpufreq_boost_exit(void)
909 {
910 	if (msrs) {
911 		unregister_cpu_notifier(&boost_nb);
912 
913 		msrs_free(msrs);
914 		msrs = NULL;
915 	}
916 }
917 
918 static int __init acpi_cpufreq_init(void)
919 {
920 	int ret;
921 
922 	if (acpi_disabled)
923 		return -ENODEV;
924 
925 	/* don't keep reloading if cpufreq_driver exists */
926 	if (cpufreq_get_current_driver())
927 		return -EEXIST;
928 
929 	pr_debug("acpi_cpufreq_init\n");
930 
931 	ret = acpi_cpufreq_early_init();
932 	if (ret)
933 		return ret;
934 
935 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
936 	/* this is a sysfs file with a strange name and an even stranger
937 	 * semantic - per CPU instantiation, but system global effect.
938 	 * Lets enable it only on AMD CPUs for compatibility reasons and
939 	 * only if configured. This is considered legacy code, which
940 	 * will probably be removed at some point in the future.
941 	 */
942 	if (!check_amd_hwpstate_cpu(0)) {
943 		struct freq_attr **attr;
944 
945 		pr_debug("CPB unsupported, do not expose it\n");
946 
947 		for (attr = acpi_cpufreq_attr; *attr; attr++)
948 			if (*attr == &cpb) {
949 				*attr = NULL;
950 				break;
951 			}
952 	}
953 #endif
954 	acpi_cpufreq_boost_init();
955 
956 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
957 	if (ret) {
958 		free_acpi_perf_data();
959 		acpi_cpufreq_boost_exit();
960 	}
961 	return ret;
962 }
963 
964 static void __exit acpi_cpufreq_exit(void)
965 {
966 	pr_debug("acpi_cpufreq_exit\n");
967 
968 	acpi_cpufreq_boost_exit();
969 
970 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
971 
972 	free_acpi_perf_data();
973 }
974 
975 module_param(acpi_pstate_strict, uint, 0644);
976 MODULE_PARM_DESC(acpi_pstate_strict,
977 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
978 	"performed during frequency changes.");
979 
980 late_initcall(acpi_cpufreq_init);
981 module_exit(acpi_cpufreq_exit);
982 
983 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
984 	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
985 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
986 	{}
987 };
988 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
989 
990 static const struct acpi_device_id processor_device_ids[] = {
991 	{ACPI_PROCESSOR_OBJECT_HID, },
992 	{ACPI_PROCESSOR_DEVICE_HID, },
993 	{},
994 };
995 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
996 
997 MODULE_ALIAS("acpi");
998