1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #undef pr_fmt 37 #define pr_fmt(fmt) "arch_timer: " fmt 38 39 #define CNTTIDR 0x08 40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 41 42 #define CNTACR(n) (0x40 + ((n) * 4)) 43 #define CNTACR_RPCT BIT(0) 44 #define CNTACR_RVCT BIT(1) 45 #define CNTACR_RFRQ BIT(2) 46 #define CNTACR_RVOFF BIT(3) 47 #define CNTACR_RWVT BIT(4) 48 #define CNTACR_RWPT BIT(5) 49 50 #define CNTVCT_LO 0x08 51 #define CNTVCT_HI 0x0c 52 #define CNTFRQ 0x10 53 #define CNTP_TVAL 0x28 54 #define CNTP_CTL 0x2c 55 #define CNTV_TVAL 0x38 56 #define CNTV_CTL 0x3c 57 58 static unsigned arch_timers_present __initdata; 59 60 static void __iomem *arch_counter_base; 61 62 struct arch_timer { 63 void __iomem *base; 64 struct clock_event_device evt; 65 }; 66 67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 68 69 static u32 arch_timer_rate; 70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 71 72 static struct clock_event_device __percpu *arch_timer_evt; 73 74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 75 static bool arch_timer_c3stop; 76 static bool arch_timer_mem_use_virtual; 77 static bool arch_counter_suspend_stop; 78 static bool vdso_default = true; 79 80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 81 82 static int __init early_evtstrm_cfg(char *buf) 83 { 84 return strtobool(buf, &evtstrm_enable); 85 } 86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 87 88 /* 89 * Architected system timer support. 90 */ 91 92 static __always_inline 93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 94 struct clock_event_device *clk) 95 { 96 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 97 struct arch_timer *timer = to_arch_timer(clk); 98 switch (reg) { 99 case ARCH_TIMER_REG_CTRL: 100 writel_relaxed(val, timer->base + CNTP_CTL); 101 break; 102 case ARCH_TIMER_REG_TVAL: 103 writel_relaxed(val, timer->base + CNTP_TVAL); 104 break; 105 } 106 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 107 struct arch_timer *timer = to_arch_timer(clk); 108 switch (reg) { 109 case ARCH_TIMER_REG_CTRL: 110 writel_relaxed(val, timer->base + CNTV_CTL); 111 break; 112 case ARCH_TIMER_REG_TVAL: 113 writel_relaxed(val, timer->base + CNTV_TVAL); 114 break; 115 } 116 } else { 117 arch_timer_reg_write_cp15(access, reg, val); 118 } 119 } 120 121 static __always_inline 122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 123 struct clock_event_device *clk) 124 { 125 u32 val; 126 127 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 128 struct arch_timer *timer = to_arch_timer(clk); 129 switch (reg) { 130 case ARCH_TIMER_REG_CTRL: 131 val = readl_relaxed(timer->base + CNTP_CTL); 132 break; 133 case ARCH_TIMER_REG_TVAL: 134 val = readl_relaxed(timer->base + CNTP_TVAL); 135 break; 136 } 137 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 138 struct arch_timer *timer = to_arch_timer(clk); 139 switch (reg) { 140 case ARCH_TIMER_REG_CTRL: 141 val = readl_relaxed(timer->base + CNTV_CTL); 142 break; 143 case ARCH_TIMER_REG_TVAL: 144 val = readl_relaxed(timer->base + CNTV_TVAL); 145 break; 146 } 147 } else { 148 val = arch_timer_reg_read_cp15(access, reg); 149 } 150 151 return val; 152 } 153 154 /* 155 * Default to cp15 based access because arm64 uses this function for 156 * sched_clock() before DT is probed and the cp15 method is guaranteed 157 * to exist on arm64. arm doesn't use this before DT is probed so even 158 * if we don't have the cp15 accessors we won't have a problem. 159 */ 160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 161 162 static u64 arch_counter_read(struct clocksource *cs) 163 { 164 return arch_timer_read_counter(); 165 } 166 167 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 168 { 169 return arch_timer_read_counter(); 170 } 171 172 static struct clocksource clocksource_counter = { 173 .name = "arch_sys_counter", 174 .rating = 400, 175 .read = arch_counter_read, 176 .mask = CLOCKSOURCE_MASK(56), 177 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 178 }; 179 180 static struct cyclecounter cyclecounter __ro_after_init = { 181 .read = arch_counter_read_cc, 182 .mask = CLOCKSOURCE_MASK(56), 183 }; 184 185 struct ate_acpi_oem_info { 186 char oem_id[ACPI_OEM_ID_SIZE + 1]; 187 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 188 u32 oem_revision; 189 }; 190 191 #ifdef CONFIG_FSL_ERRATUM_A008585 192 /* 193 * The number of retries is an arbitrary value well beyond the highest number 194 * of iterations the loop has been observed to take. 195 */ 196 #define __fsl_a008585_read_reg(reg) ({ \ 197 u64 _old, _new; \ 198 int _retries = 200; \ 199 \ 200 do { \ 201 _old = read_sysreg(reg); \ 202 _new = read_sysreg(reg); \ 203 _retries--; \ 204 } while (unlikely(_old != _new) && _retries); \ 205 \ 206 WARN_ON_ONCE(!_retries); \ 207 _new; \ 208 }) 209 210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 211 { 212 return __fsl_a008585_read_reg(cntp_tval_el0); 213 } 214 215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 216 { 217 return __fsl_a008585_read_reg(cntv_tval_el0); 218 } 219 220 static u64 notrace fsl_a008585_read_cntvct_el0(void) 221 { 222 return __fsl_a008585_read_reg(cntvct_el0); 223 } 224 #endif 225 226 #ifdef CONFIG_HISILICON_ERRATUM_161010101 227 /* 228 * Verify whether the value of the second read is larger than the first by 229 * less than 32 is the only way to confirm the value is correct, so clear the 230 * lower 5 bits to check whether the difference is greater than 32 or not. 231 * Theoretically the erratum should not occur more than twice in succession 232 * when reading the system counter, but it is possible that some interrupts 233 * may lead to more than twice read errors, triggering the warning, so setting 234 * the number of retries far beyond the number of iterations the loop has been 235 * observed to take. 236 */ 237 #define __hisi_161010101_read_reg(reg) ({ \ 238 u64 _old, _new; \ 239 int _retries = 50; \ 240 \ 241 do { \ 242 _old = read_sysreg(reg); \ 243 _new = read_sysreg(reg); \ 244 _retries--; \ 245 } while (unlikely((_new - _old) >> 5) && _retries); \ 246 \ 247 WARN_ON_ONCE(!_retries); \ 248 _new; \ 249 }) 250 251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 252 { 253 return __hisi_161010101_read_reg(cntp_tval_el0); 254 } 255 256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 257 { 258 return __hisi_161010101_read_reg(cntv_tval_el0); 259 } 260 261 static u64 notrace hisi_161010101_read_cntvct_el0(void) 262 { 263 return __hisi_161010101_read_reg(cntvct_el0); 264 } 265 266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 267 /* 268 * Note that trailing spaces are required to properly match 269 * the OEM table information. 270 */ 271 { 272 .oem_id = "HISI ", 273 .oem_table_id = "HIP05 ", 274 .oem_revision = 0, 275 }, 276 { 277 .oem_id = "HISI ", 278 .oem_table_id = "HIP06 ", 279 .oem_revision = 0, 280 }, 281 { 282 .oem_id = "HISI ", 283 .oem_table_id = "HIP07 ", 284 .oem_revision = 0, 285 }, 286 { /* Sentinel indicating the end of the OEM array */ }, 287 }; 288 #endif 289 290 #ifdef CONFIG_ARM64_ERRATUM_858921 291 static u64 notrace arm64_858921_read_cntvct_el0(void) 292 { 293 u64 old, new; 294 295 old = read_sysreg(cntvct_el0); 296 new = read_sysreg(cntvct_el0); 297 return (((old ^ new) >> 32) & 1) ? old : new; 298 } 299 #endif 300 301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 303 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 304 305 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 306 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 307 308 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 309 struct clock_event_device *clk) 310 { 311 unsigned long ctrl; 312 u64 cval = evt + arch_counter_get_cntvct(); 313 314 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 315 ctrl |= ARCH_TIMER_CTRL_ENABLE; 316 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 317 318 if (access == ARCH_TIMER_PHYS_ACCESS) 319 write_sysreg(cval, cntp_cval_el0); 320 else 321 write_sysreg(cval, cntv_cval_el0); 322 323 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 324 } 325 326 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 327 struct clock_event_device *clk) 328 { 329 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 330 return 0; 331 } 332 333 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 334 struct clock_event_device *clk) 335 { 336 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 337 return 0; 338 } 339 340 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 341 #ifdef CONFIG_FSL_ERRATUM_A008585 342 { 343 .match_type = ate_match_dt, 344 .id = "fsl,erratum-a008585", 345 .desc = "Freescale erratum a005858", 346 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 347 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 348 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 349 .set_next_event_phys = erratum_set_next_event_tval_phys, 350 .set_next_event_virt = erratum_set_next_event_tval_virt, 351 }, 352 #endif 353 #ifdef CONFIG_HISILICON_ERRATUM_161010101 354 { 355 .match_type = ate_match_dt, 356 .id = "hisilicon,erratum-161010101", 357 .desc = "HiSilicon erratum 161010101", 358 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 359 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 360 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 361 .set_next_event_phys = erratum_set_next_event_tval_phys, 362 .set_next_event_virt = erratum_set_next_event_tval_virt, 363 }, 364 { 365 .match_type = ate_match_acpi_oem_info, 366 .id = hisi_161010101_oem_info, 367 .desc = "HiSilicon erratum 161010101", 368 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 369 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 370 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 371 .set_next_event_phys = erratum_set_next_event_tval_phys, 372 .set_next_event_virt = erratum_set_next_event_tval_virt, 373 }, 374 #endif 375 #ifdef CONFIG_ARM64_ERRATUM_858921 376 { 377 .match_type = ate_match_local_cap_id, 378 .id = (void *)ARM64_WORKAROUND_858921, 379 .desc = "ARM erratum 858921", 380 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 381 }, 382 #endif 383 }; 384 385 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 386 const void *); 387 388 static 389 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 390 const void *arg) 391 { 392 const struct device_node *np = arg; 393 394 return of_property_read_bool(np, wa->id); 395 } 396 397 static 398 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 399 const void *arg) 400 { 401 return this_cpu_has_cap((uintptr_t)wa->id); 402 } 403 404 405 static 406 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 407 const void *arg) 408 { 409 static const struct ate_acpi_oem_info empty_oem_info = {}; 410 const struct ate_acpi_oem_info *info = wa->id; 411 const struct acpi_table_header *table = arg; 412 413 /* Iterate over the ACPI OEM info array, looking for a match */ 414 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 415 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 416 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 417 info->oem_revision == table->oem_revision) 418 return true; 419 420 info++; 421 } 422 423 return false; 424 } 425 426 static const struct arch_timer_erratum_workaround * 427 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 428 ate_match_fn_t match_fn, 429 void *arg) 430 { 431 int i; 432 433 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 434 if (ool_workarounds[i].match_type != type) 435 continue; 436 437 if (match_fn(&ool_workarounds[i], arg)) 438 return &ool_workarounds[i]; 439 } 440 441 return NULL; 442 } 443 444 static 445 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 446 bool local) 447 { 448 int i; 449 450 if (local) { 451 __this_cpu_write(timer_unstable_counter_workaround, wa); 452 } else { 453 for_each_possible_cpu(i) 454 per_cpu(timer_unstable_counter_workaround, i) = wa; 455 } 456 457 /* 458 * Use the locked version, as we're called from the CPU 459 * hotplug framework. Otherwise, we end-up in deadlock-land. 460 */ 461 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); 462 463 /* 464 * Don't use the vdso fastpath if errata require using the 465 * out-of-line counter accessor. We may change our mind pretty 466 * late in the game (with a per-CPU erratum, for example), so 467 * change both the default value and the vdso itself. 468 */ 469 if (wa->read_cntvct_el0) { 470 clocksource_counter.archdata.vdso_direct = false; 471 vdso_default = false; 472 } 473 } 474 475 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 476 void *arg) 477 { 478 const struct arch_timer_erratum_workaround *wa; 479 ate_match_fn_t match_fn = NULL; 480 bool local = false; 481 482 switch (type) { 483 case ate_match_dt: 484 match_fn = arch_timer_check_dt_erratum; 485 break; 486 case ate_match_local_cap_id: 487 match_fn = arch_timer_check_local_cap_erratum; 488 local = true; 489 break; 490 case ate_match_acpi_oem_info: 491 match_fn = arch_timer_check_acpi_oem_erratum; 492 break; 493 default: 494 WARN_ON(1); 495 return; 496 } 497 498 wa = arch_timer_iterate_errata(type, match_fn, arg); 499 if (!wa) 500 return; 501 502 if (needs_unstable_timer_counter_workaround()) { 503 const struct arch_timer_erratum_workaround *__wa; 504 __wa = __this_cpu_read(timer_unstable_counter_workaround); 505 if (__wa && wa != __wa) 506 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 507 wa->desc, __wa->desc); 508 509 if (__wa) 510 return; 511 } 512 513 arch_timer_enable_workaround(wa, local); 514 pr_info("Enabling %s workaround for %s\n", 515 local ? "local" : "global", wa->desc); 516 } 517 518 #define erratum_handler(fn, r, ...) \ 519 ({ \ 520 bool __val; \ 521 if (needs_unstable_timer_counter_workaround()) { \ 522 const struct arch_timer_erratum_workaround *__wa; \ 523 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 524 if (__wa && __wa->fn) { \ 525 r = __wa->fn(__VA_ARGS__); \ 526 __val = true; \ 527 } else { \ 528 __val = false; \ 529 } \ 530 } else { \ 531 __val = false; \ 532 } \ 533 __val; \ 534 }) 535 536 static bool arch_timer_this_cpu_has_cntvct_wa(void) 537 { 538 const struct arch_timer_erratum_workaround *wa; 539 540 wa = __this_cpu_read(timer_unstable_counter_workaround); 541 return wa && wa->read_cntvct_el0; 542 } 543 #else 544 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 545 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 546 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 547 #define erratum_handler(fn, r, ...) ({false;}) 548 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 549 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 550 551 static __always_inline irqreturn_t timer_handler(const int access, 552 struct clock_event_device *evt) 553 { 554 unsigned long ctrl; 555 556 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 557 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 558 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 559 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 560 evt->event_handler(evt); 561 return IRQ_HANDLED; 562 } 563 564 return IRQ_NONE; 565 } 566 567 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 568 { 569 struct clock_event_device *evt = dev_id; 570 571 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 572 } 573 574 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 575 { 576 struct clock_event_device *evt = dev_id; 577 578 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 579 } 580 581 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 582 { 583 struct clock_event_device *evt = dev_id; 584 585 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 586 } 587 588 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 589 { 590 struct clock_event_device *evt = dev_id; 591 592 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 593 } 594 595 static __always_inline int timer_shutdown(const int access, 596 struct clock_event_device *clk) 597 { 598 unsigned long ctrl; 599 600 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 601 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 602 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 603 604 return 0; 605 } 606 607 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 608 { 609 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 610 } 611 612 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 613 { 614 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 615 } 616 617 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 618 { 619 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 620 } 621 622 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 623 { 624 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 625 } 626 627 static __always_inline void set_next_event(const int access, unsigned long evt, 628 struct clock_event_device *clk) 629 { 630 unsigned long ctrl; 631 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 632 ctrl |= ARCH_TIMER_CTRL_ENABLE; 633 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 634 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 635 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 636 } 637 638 static int arch_timer_set_next_event_virt(unsigned long evt, 639 struct clock_event_device *clk) 640 { 641 int ret; 642 643 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 644 return ret; 645 646 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 647 return 0; 648 } 649 650 static int arch_timer_set_next_event_phys(unsigned long evt, 651 struct clock_event_device *clk) 652 { 653 int ret; 654 655 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 656 return ret; 657 658 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 659 return 0; 660 } 661 662 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 663 struct clock_event_device *clk) 664 { 665 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 666 return 0; 667 } 668 669 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 670 struct clock_event_device *clk) 671 { 672 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 673 return 0; 674 } 675 676 static void __arch_timer_setup(unsigned type, 677 struct clock_event_device *clk) 678 { 679 clk->features = CLOCK_EVT_FEAT_ONESHOT; 680 681 if (type == ARCH_TIMER_TYPE_CP15) { 682 if (arch_timer_c3stop) 683 clk->features |= CLOCK_EVT_FEAT_C3STOP; 684 clk->name = "arch_sys_timer"; 685 clk->rating = 450; 686 clk->cpumask = cpumask_of(smp_processor_id()); 687 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 688 switch (arch_timer_uses_ppi) { 689 case ARCH_TIMER_VIRT_PPI: 690 clk->set_state_shutdown = arch_timer_shutdown_virt; 691 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 692 clk->set_next_event = arch_timer_set_next_event_virt; 693 break; 694 case ARCH_TIMER_PHYS_SECURE_PPI: 695 case ARCH_TIMER_PHYS_NONSECURE_PPI: 696 case ARCH_TIMER_HYP_PPI: 697 clk->set_state_shutdown = arch_timer_shutdown_phys; 698 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 699 clk->set_next_event = arch_timer_set_next_event_phys; 700 break; 701 default: 702 BUG(); 703 } 704 705 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 706 } else { 707 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 708 clk->name = "arch_mem_timer"; 709 clk->rating = 400; 710 clk->cpumask = cpu_all_mask; 711 if (arch_timer_mem_use_virtual) { 712 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 713 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 714 clk->set_next_event = 715 arch_timer_set_next_event_virt_mem; 716 } else { 717 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 718 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 719 clk->set_next_event = 720 arch_timer_set_next_event_phys_mem; 721 } 722 } 723 724 clk->set_state_shutdown(clk); 725 726 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 727 } 728 729 static void arch_timer_evtstrm_enable(int divider) 730 { 731 u32 cntkctl = arch_timer_get_cntkctl(); 732 733 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 734 /* Set the divider and enable virtual event stream */ 735 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 736 | ARCH_TIMER_VIRT_EVT_EN; 737 arch_timer_set_cntkctl(cntkctl); 738 elf_hwcap |= HWCAP_EVTSTRM; 739 #ifdef CONFIG_COMPAT 740 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 741 #endif 742 } 743 744 static void arch_timer_configure_evtstream(void) 745 { 746 int evt_stream_div, pos; 747 748 /* Find the closest power of two to the divisor */ 749 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 750 pos = fls(evt_stream_div); 751 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 752 pos--; 753 /* enable event stream */ 754 arch_timer_evtstrm_enable(min(pos, 15)); 755 } 756 757 static void arch_counter_set_user_access(void) 758 { 759 u32 cntkctl = arch_timer_get_cntkctl(); 760 761 /* Disable user access to the timers and both counters */ 762 /* Also disable virtual event stream */ 763 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 764 | ARCH_TIMER_USR_VT_ACCESS_EN 765 | ARCH_TIMER_USR_VCT_ACCESS_EN 766 | ARCH_TIMER_VIRT_EVT_EN 767 | ARCH_TIMER_USR_PCT_ACCESS_EN); 768 769 /* 770 * Enable user access to the virtual counter if it doesn't 771 * need to be workaround. The vdso may have been already 772 * disabled though. 773 */ 774 if (arch_timer_this_cpu_has_cntvct_wa()) 775 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 776 else 777 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 778 779 arch_timer_set_cntkctl(cntkctl); 780 } 781 782 static bool arch_timer_has_nonsecure_ppi(void) 783 { 784 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 785 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 786 } 787 788 static u32 check_ppi_trigger(int irq) 789 { 790 u32 flags = irq_get_trigger_type(irq); 791 792 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 793 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 794 pr_warn("WARNING: Please fix your firmware\n"); 795 flags = IRQF_TRIGGER_LOW; 796 } 797 798 return flags; 799 } 800 801 static int arch_timer_starting_cpu(unsigned int cpu) 802 { 803 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 804 u32 flags; 805 806 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 807 808 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 809 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 810 811 if (arch_timer_has_nonsecure_ppi()) { 812 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 813 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 814 flags); 815 } 816 817 arch_counter_set_user_access(); 818 if (evtstrm_enable) 819 arch_timer_configure_evtstream(); 820 821 return 0; 822 } 823 824 /* 825 * For historical reasons, when probing with DT we use whichever (non-zero) 826 * rate was probed first, and don't verify that others match. If the first node 827 * probed has a clock-frequency property, this overrides the HW register. 828 */ 829 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 830 { 831 /* Who has more than one independent system counter? */ 832 if (arch_timer_rate) 833 return; 834 835 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 836 arch_timer_rate = rate; 837 838 /* Check the timer frequency. */ 839 if (arch_timer_rate == 0) 840 pr_warn("frequency not available\n"); 841 } 842 843 static void arch_timer_banner(unsigned type) 844 { 845 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 846 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 847 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 848 " and " : "", 849 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 850 (unsigned long)arch_timer_rate / 1000000, 851 (unsigned long)(arch_timer_rate / 10000) % 100, 852 type & ARCH_TIMER_TYPE_CP15 ? 853 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 854 "", 855 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 856 type & ARCH_TIMER_TYPE_MEM ? 857 arch_timer_mem_use_virtual ? "virt" : "phys" : 858 ""); 859 } 860 861 u32 arch_timer_get_rate(void) 862 { 863 return arch_timer_rate; 864 } 865 866 static u64 arch_counter_get_cntvct_mem(void) 867 { 868 u32 vct_lo, vct_hi, tmp_hi; 869 870 do { 871 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 872 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 873 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 874 } while (vct_hi != tmp_hi); 875 876 return ((u64) vct_hi << 32) | vct_lo; 877 } 878 879 static struct arch_timer_kvm_info arch_timer_kvm_info; 880 881 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 882 { 883 return &arch_timer_kvm_info; 884 } 885 886 static void __init arch_counter_register(unsigned type) 887 { 888 u64 start_count; 889 890 /* Register the CP15 based counter if we have one */ 891 if (type & ARCH_TIMER_TYPE_CP15) { 892 if (IS_ENABLED(CONFIG_ARM64) || 893 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 894 arch_timer_read_counter = arch_counter_get_cntvct; 895 else 896 arch_timer_read_counter = arch_counter_get_cntpct; 897 898 clocksource_counter.archdata.vdso_direct = vdso_default; 899 } else { 900 arch_timer_read_counter = arch_counter_get_cntvct_mem; 901 } 902 903 if (!arch_counter_suspend_stop) 904 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 905 start_count = arch_timer_read_counter(); 906 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 907 cyclecounter.mult = clocksource_counter.mult; 908 cyclecounter.shift = clocksource_counter.shift; 909 timecounter_init(&arch_timer_kvm_info.timecounter, 910 &cyclecounter, start_count); 911 912 /* 56 bits minimum, so we assume worst case rollover */ 913 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 914 } 915 916 static void arch_timer_stop(struct clock_event_device *clk) 917 { 918 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 919 920 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 921 if (arch_timer_has_nonsecure_ppi()) 922 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 923 924 clk->set_state_shutdown(clk); 925 } 926 927 static int arch_timer_dying_cpu(unsigned int cpu) 928 { 929 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 930 931 arch_timer_stop(clk); 932 return 0; 933 } 934 935 #ifdef CONFIG_CPU_PM 936 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 937 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 938 unsigned long action, void *hcpu) 939 { 940 if (action == CPU_PM_ENTER) 941 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 942 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 943 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 944 return NOTIFY_OK; 945 } 946 947 static struct notifier_block arch_timer_cpu_pm_notifier = { 948 .notifier_call = arch_timer_cpu_pm_notify, 949 }; 950 951 static int __init arch_timer_cpu_pm_init(void) 952 { 953 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 954 } 955 956 static void __init arch_timer_cpu_pm_deinit(void) 957 { 958 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 959 } 960 961 #else 962 static int __init arch_timer_cpu_pm_init(void) 963 { 964 return 0; 965 } 966 967 static void __init arch_timer_cpu_pm_deinit(void) 968 { 969 } 970 #endif 971 972 static int __init arch_timer_register(void) 973 { 974 int err; 975 int ppi; 976 977 arch_timer_evt = alloc_percpu(struct clock_event_device); 978 if (!arch_timer_evt) { 979 err = -ENOMEM; 980 goto out; 981 } 982 983 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 984 switch (arch_timer_uses_ppi) { 985 case ARCH_TIMER_VIRT_PPI: 986 err = request_percpu_irq(ppi, arch_timer_handler_virt, 987 "arch_timer", arch_timer_evt); 988 break; 989 case ARCH_TIMER_PHYS_SECURE_PPI: 990 case ARCH_TIMER_PHYS_NONSECURE_PPI: 991 err = request_percpu_irq(ppi, arch_timer_handler_phys, 992 "arch_timer", arch_timer_evt); 993 if (!err && arch_timer_has_nonsecure_ppi()) { 994 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 995 err = request_percpu_irq(ppi, arch_timer_handler_phys, 996 "arch_timer", arch_timer_evt); 997 if (err) 998 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 999 arch_timer_evt); 1000 } 1001 break; 1002 case ARCH_TIMER_HYP_PPI: 1003 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1004 "arch_timer", arch_timer_evt); 1005 break; 1006 default: 1007 BUG(); 1008 } 1009 1010 if (err) { 1011 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1012 goto out_free; 1013 } 1014 1015 err = arch_timer_cpu_pm_init(); 1016 if (err) 1017 goto out_unreg_notify; 1018 1019 1020 /* Register and immediately configure the timer on the boot CPU */ 1021 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1022 "clockevents/arm/arch_timer:starting", 1023 arch_timer_starting_cpu, arch_timer_dying_cpu); 1024 if (err) 1025 goto out_unreg_cpupm; 1026 return 0; 1027 1028 out_unreg_cpupm: 1029 arch_timer_cpu_pm_deinit(); 1030 1031 out_unreg_notify: 1032 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1033 if (arch_timer_has_nonsecure_ppi()) 1034 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1035 arch_timer_evt); 1036 1037 out_free: 1038 free_percpu(arch_timer_evt); 1039 out: 1040 return err; 1041 } 1042 1043 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1044 { 1045 int ret; 1046 irq_handler_t func; 1047 struct arch_timer *t; 1048 1049 t = kzalloc(sizeof(*t), GFP_KERNEL); 1050 if (!t) 1051 return -ENOMEM; 1052 1053 t->base = base; 1054 t->evt.irq = irq; 1055 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1056 1057 if (arch_timer_mem_use_virtual) 1058 func = arch_timer_handler_virt_mem; 1059 else 1060 func = arch_timer_handler_phys_mem; 1061 1062 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1063 if (ret) { 1064 pr_err("Failed to request mem timer irq\n"); 1065 kfree(t); 1066 } 1067 1068 return ret; 1069 } 1070 1071 static const struct of_device_id arch_timer_of_match[] __initconst = { 1072 { .compatible = "arm,armv7-timer", }, 1073 { .compatible = "arm,armv8-timer", }, 1074 {}, 1075 }; 1076 1077 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1078 { .compatible = "arm,armv7-timer-mem", }, 1079 {}, 1080 }; 1081 1082 static bool __init arch_timer_needs_of_probing(void) 1083 { 1084 struct device_node *dn; 1085 bool needs_probing = false; 1086 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1087 1088 /* We have two timers, and both device-tree nodes are probed. */ 1089 if ((arch_timers_present & mask) == mask) 1090 return false; 1091 1092 /* 1093 * Only one type of timer is probed, 1094 * check if we have another type of timer node in device-tree. 1095 */ 1096 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1097 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1098 else 1099 dn = of_find_matching_node(NULL, arch_timer_of_match); 1100 1101 if (dn && of_device_is_available(dn)) 1102 needs_probing = true; 1103 1104 of_node_put(dn); 1105 1106 return needs_probing; 1107 } 1108 1109 static int __init arch_timer_common_init(void) 1110 { 1111 arch_timer_banner(arch_timers_present); 1112 arch_counter_register(arch_timers_present); 1113 return arch_timer_arch_init(); 1114 } 1115 1116 /** 1117 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1118 * 1119 * If HYP mode is available, we know that the physical timer 1120 * has been configured to be accessible from PL1. Use it, so 1121 * that a guest can use the virtual timer instead. 1122 * 1123 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1124 * accesses to CNTP_*_EL1 registers are silently redirected to 1125 * their CNTHP_*_EL2 counterparts, and use a different PPI 1126 * number. 1127 * 1128 * If no interrupt provided for virtual timer, we'll have to 1129 * stick to the physical timer. It'd better be accessible... 1130 * For arm64 we never use the secure interrupt. 1131 * 1132 * Return: a suitable PPI type for the current system. 1133 */ 1134 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1135 { 1136 if (is_kernel_in_hyp_mode()) 1137 return ARCH_TIMER_HYP_PPI; 1138 1139 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1140 return ARCH_TIMER_VIRT_PPI; 1141 1142 if (IS_ENABLED(CONFIG_ARM64)) 1143 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1144 1145 return ARCH_TIMER_PHYS_SECURE_PPI; 1146 } 1147 1148 static int __init arch_timer_of_init(struct device_node *np) 1149 { 1150 int i, ret; 1151 u32 rate; 1152 1153 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1154 pr_warn("multiple nodes in dt, skipping\n"); 1155 return 0; 1156 } 1157 1158 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1159 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1160 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1161 1162 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1163 1164 rate = arch_timer_get_cntfrq(); 1165 arch_timer_of_configure_rate(rate, np); 1166 1167 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1168 1169 /* Check for globally applicable workarounds */ 1170 arch_timer_check_ool_workaround(ate_match_dt, np); 1171 1172 /* 1173 * If we cannot rely on firmware initializing the timer registers then 1174 * we should use the physical timers instead. 1175 */ 1176 if (IS_ENABLED(CONFIG_ARM) && 1177 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1178 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1179 else 1180 arch_timer_uses_ppi = arch_timer_select_ppi(); 1181 1182 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1183 pr_err("No interrupt available, giving up\n"); 1184 return -EINVAL; 1185 } 1186 1187 /* On some systems, the counter stops ticking when in suspend. */ 1188 arch_counter_suspend_stop = of_property_read_bool(np, 1189 "arm,no-tick-in-suspend"); 1190 1191 ret = arch_timer_register(); 1192 if (ret) 1193 return ret; 1194 1195 if (arch_timer_needs_of_probing()) 1196 return 0; 1197 1198 return arch_timer_common_init(); 1199 } 1200 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1201 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1202 1203 static u32 __init 1204 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1205 { 1206 void __iomem *base; 1207 u32 rate; 1208 1209 base = ioremap(frame->cntbase, frame->size); 1210 if (!base) { 1211 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1212 return 0; 1213 } 1214 1215 rate = readl_relaxed(base + CNTFRQ); 1216 1217 iounmap(base); 1218 1219 return rate; 1220 } 1221 1222 static struct arch_timer_mem_frame * __init 1223 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1224 { 1225 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1226 void __iomem *cntctlbase; 1227 u32 cnttidr; 1228 int i; 1229 1230 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1231 if (!cntctlbase) { 1232 pr_err("Can't map CNTCTLBase @ %pa\n", 1233 &timer_mem->cntctlbase); 1234 return NULL; 1235 } 1236 1237 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1238 1239 /* 1240 * Try to find a virtual capable frame. Otherwise fall back to a 1241 * physical capable frame. 1242 */ 1243 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1244 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1245 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1246 1247 frame = &timer_mem->frame[i]; 1248 if (!frame->valid) 1249 continue; 1250 1251 /* Try enabling everything, and see what sticks */ 1252 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1253 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1254 1255 if ((cnttidr & CNTTIDR_VIRT(i)) && 1256 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1257 best_frame = frame; 1258 arch_timer_mem_use_virtual = true; 1259 break; 1260 } 1261 1262 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1263 continue; 1264 1265 best_frame = frame; 1266 } 1267 1268 iounmap(cntctlbase); 1269 1270 return best_frame; 1271 } 1272 1273 static int __init 1274 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1275 { 1276 void __iomem *base; 1277 int ret, irq = 0; 1278 1279 if (arch_timer_mem_use_virtual) 1280 irq = frame->virt_irq; 1281 else 1282 irq = frame->phys_irq; 1283 1284 if (!irq) { 1285 pr_err("Frame missing %s irq.\n", 1286 arch_timer_mem_use_virtual ? "virt" : "phys"); 1287 return -EINVAL; 1288 } 1289 1290 if (!request_mem_region(frame->cntbase, frame->size, 1291 "arch_mem_timer")) 1292 return -EBUSY; 1293 1294 base = ioremap(frame->cntbase, frame->size); 1295 if (!base) { 1296 pr_err("Can't map frame's registers\n"); 1297 return -ENXIO; 1298 } 1299 1300 ret = arch_timer_mem_register(base, irq); 1301 if (ret) { 1302 iounmap(base); 1303 return ret; 1304 } 1305 1306 arch_counter_base = base; 1307 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1308 1309 return 0; 1310 } 1311 1312 static int __init arch_timer_mem_of_init(struct device_node *np) 1313 { 1314 struct arch_timer_mem *timer_mem; 1315 struct arch_timer_mem_frame *frame; 1316 struct device_node *frame_node; 1317 struct resource res; 1318 int ret = -EINVAL; 1319 u32 rate; 1320 1321 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1322 if (!timer_mem) 1323 return -ENOMEM; 1324 1325 if (of_address_to_resource(np, 0, &res)) 1326 goto out; 1327 timer_mem->cntctlbase = res.start; 1328 timer_mem->size = resource_size(&res); 1329 1330 for_each_available_child_of_node(np, frame_node) { 1331 u32 n; 1332 struct arch_timer_mem_frame *frame; 1333 1334 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1335 pr_err(FW_BUG "Missing frame-number.\n"); 1336 of_node_put(frame_node); 1337 goto out; 1338 } 1339 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1340 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1341 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1342 of_node_put(frame_node); 1343 goto out; 1344 } 1345 frame = &timer_mem->frame[n]; 1346 1347 if (frame->valid) { 1348 pr_err(FW_BUG "Duplicated frame-number.\n"); 1349 of_node_put(frame_node); 1350 goto out; 1351 } 1352 1353 if (of_address_to_resource(frame_node, 0, &res)) { 1354 of_node_put(frame_node); 1355 goto out; 1356 } 1357 frame->cntbase = res.start; 1358 frame->size = resource_size(&res); 1359 1360 frame->virt_irq = irq_of_parse_and_map(frame_node, 1361 ARCH_TIMER_VIRT_SPI); 1362 frame->phys_irq = irq_of_parse_and_map(frame_node, 1363 ARCH_TIMER_PHYS_SPI); 1364 1365 frame->valid = true; 1366 } 1367 1368 frame = arch_timer_mem_find_best_frame(timer_mem); 1369 if (!frame) { 1370 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1371 &timer_mem->cntctlbase); 1372 ret = -EINVAL; 1373 goto out; 1374 } 1375 1376 rate = arch_timer_mem_frame_get_cntfrq(frame); 1377 arch_timer_of_configure_rate(rate, np); 1378 1379 ret = arch_timer_mem_frame_register(frame); 1380 if (!ret && !arch_timer_needs_of_probing()) 1381 ret = arch_timer_common_init(); 1382 out: 1383 kfree(timer_mem); 1384 return ret; 1385 } 1386 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1387 arch_timer_mem_of_init); 1388 1389 #ifdef CONFIG_ACPI_GTDT 1390 static int __init 1391 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1392 { 1393 struct arch_timer_mem_frame *frame; 1394 u32 rate; 1395 int i; 1396 1397 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1398 frame = &timer_mem->frame[i]; 1399 1400 if (!frame->valid) 1401 continue; 1402 1403 rate = arch_timer_mem_frame_get_cntfrq(frame); 1404 if (rate == arch_timer_rate) 1405 continue; 1406 1407 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1408 &frame->cntbase, 1409 (unsigned long)rate, (unsigned long)arch_timer_rate); 1410 1411 return -EINVAL; 1412 } 1413 1414 return 0; 1415 } 1416 1417 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1418 { 1419 struct arch_timer_mem *timers, *timer; 1420 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1421 int timer_count, i, ret = 0; 1422 1423 timers = kcalloc(platform_timer_count, sizeof(*timers), 1424 GFP_KERNEL); 1425 if (!timers) 1426 return -ENOMEM; 1427 1428 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1429 if (ret || !timer_count) 1430 goto out; 1431 1432 /* 1433 * While unlikely, it's theoretically possible that none of the frames 1434 * in a timer expose the combination of feature we want. 1435 */ 1436 for (i = 0; i < timer_count; i++) { 1437 timer = &timers[i]; 1438 1439 frame = arch_timer_mem_find_best_frame(timer); 1440 if (!best_frame) 1441 best_frame = frame; 1442 1443 ret = arch_timer_mem_verify_cntfrq(timer); 1444 if (ret) { 1445 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1446 goto out; 1447 } 1448 1449 if (!best_frame) /* implies !frame */ 1450 /* 1451 * Only complain about missing suitable frames if we 1452 * haven't already found one in a previous iteration. 1453 */ 1454 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1455 &timer->cntctlbase); 1456 } 1457 1458 if (best_frame) 1459 ret = arch_timer_mem_frame_register(best_frame); 1460 out: 1461 kfree(timers); 1462 return ret; 1463 } 1464 1465 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1466 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1467 { 1468 int ret, platform_timer_count; 1469 1470 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1471 pr_warn("already initialized, skipping\n"); 1472 return -EINVAL; 1473 } 1474 1475 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1476 1477 ret = acpi_gtdt_init(table, &platform_timer_count); 1478 if (ret) { 1479 pr_err("Failed to init GTDT table.\n"); 1480 return ret; 1481 } 1482 1483 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1484 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1485 1486 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1487 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1488 1489 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1490 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1491 1492 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1493 1494 /* 1495 * When probing via ACPI, we have no mechanism to override the sysreg 1496 * CNTFRQ value. This *must* be correct. 1497 */ 1498 arch_timer_rate = arch_timer_get_cntfrq(); 1499 if (!arch_timer_rate) { 1500 pr_err(FW_BUG "frequency not available.\n"); 1501 return -EINVAL; 1502 } 1503 1504 arch_timer_uses_ppi = arch_timer_select_ppi(); 1505 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1506 pr_err("No interrupt available, giving up\n"); 1507 return -EINVAL; 1508 } 1509 1510 /* Always-on capability */ 1511 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1512 1513 /* Check for globally applicable workarounds */ 1514 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1515 1516 ret = arch_timer_register(); 1517 if (ret) 1518 return ret; 1519 1520 if (platform_timer_count && 1521 arch_timer_mem_acpi_init(platform_timer_count)) 1522 pr_err("Failed to initialize memory-mapped timer.\n"); 1523 1524 return arch_timer_common_init(); 1525 } 1526 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1527 #endif 1528