xref: /linux/drivers/clk/ti/fapll.c (revision 02b4e2756e01c623cc4dbceae4b07be75252db5b)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/clk/ti.h>
19 
20 /* FAPLL Control Register PLL_CTRL */
21 #define FAPLL_MAIN_MULT_N_SHIFT	16
22 #define FAPLL_MAIN_DIV_P_SHIFT	8
23 #define FAPLL_MAIN_LOCK		BIT(7)
24 #define FAPLL_MAIN_PLLEN	BIT(3)
25 #define FAPLL_MAIN_BP		BIT(2)
26 #define FAPLL_MAIN_LOC_CTL	BIT(0)
27 
28 #define FAPLL_MAIN_MAX_MULT_N	0xffff
29 #define FAPLL_MAIN_MAX_DIV_P	0xff
30 #define FAPLL_MAIN_CLEAR_MASK	\
31 	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
32 	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
33 	 FAPLL_MAIN_LOC_CTL)
34 
35 /* FAPLL powerdown register PWD */
36 #define FAPLL_PWD_OFFSET	4
37 
38 #define MAX_FAPLL_OUTPUTS	7
39 #define FAPLL_MAX_RETRIES	1000
40 
41 #define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
42 #define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
43 
44 /* The bypass bit is inverted on the ddr_pll.. */
45 #define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
46 
47 /*
48  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
49  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
50  */
51 #define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
52 #define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
53 
54 /* Synthesizer divider register */
55 #define SYNTH_LDMDIV1		BIT(8)
56 
57 /* Synthesizer frequency register */
58 #define SYNTH_LDFREQ		BIT(31)
59 
60 #define SYNTH_PHASE_K		8
61 #define SYNTH_MAX_INT_DIV	0xf
62 #define SYNTH_MAX_DIV_M		0xff
63 
64 struct fapll_data {
65 	struct clk_hw hw;
66 	void __iomem *base;
67 	const char *name;
68 	struct clk *clk_ref;
69 	struct clk *clk_bypass;
70 	struct clk_onecell_data outputs;
71 	bool bypass_bit_inverted;
72 };
73 
74 struct fapll_synth {
75 	struct clk_hw hw;
76 	struct fapll_data *fd;
77 	int index;
78 	void __iomem *freq;
79 	void __iomem *div;
80 	const char *name;
81 	struct clk *clk_pll;
82 };
83 
84 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
85 {
86 	u32 v = readl_relaxed(fd->base);
87 
88 	if (fd->bypass_bit_inverted)
89 		return !(v & FAPLL_MAIN_BP);
90 	else
91 		return !!(v & FAPLL_MAIN_BP);
92 }
93 
94 static void ti_fapll_set_bypass(struct fapll_data *fd)
95 {
96 	u32 v = readl_relaxed(fd->base);
97 
98 	if (fd->bypass_bit_inverted)
99 		v &= ~FAPLL_MAIN_BP;
100 	else
101 		v |= FAPLL_MAIN_BP;
102 	writel_relaxed(v, fd->base);
103 }
104 
105 static void ti_fapll_clear_bypass(struct fapll_data *fd)
106 {
107 	u32 v = readl_relaxed(fd->base);
108 
109 	if (fd->bypass_bit_inverted)
110 		v |= FAPLL_MAIN_BP;
111 	else
112 		v &= ~FAPLL_MAIN_BP;
113 	writel_relaxed(v, fd->base);
114 }
115 
116 static int ti_fapll_wait_lock(struct fapll_data *fd)
117 {
118 	int retries = FAPLL_MAX_RETRIES;
119 	u32 v;
120 
121 	while ((v = readl_relaxed(fd->base))) {
122 		if (v & FAPLL_MAIN_LOCK)
123 			return 0;
124 
125 		if (retries-- <= 0)
126 			break;
127 
128 		udelay(1);
129 	}
130 
131 	pr_err("%s failed to lock\n", fd->name);
132 
133 	return -ETIMEDOUT;
134 }
135 
136 static int ti_fapll_enable(struct clk_hw *hw)
137 {
138 	struct fapll_data *fd = to_fapll(hw);
139 	u32 v = readl_relaxed(fd->base);
140 
141 	v |= FAPLL_MAIN_PLLEN;
142 	writel_relaxed(v, fd->base);
143 	ti_fapll_wait_lock(fd);
144 
145 	return 0;
146 }
147 
148 static void ti_fapll_disable(struct clk_hw *hw)
149 {
150 	struct fapll_data *fd = to_fapll(hw);
151 	u32 v = readl_relaxed(fd->base);
152 
153 	v &= ~FAPLL_MAIN_PLLEN;
154 	writel_relaxed(v, fd->base);
155 }
156 
157 static int ti_fapll_is_enabled(struct clk_hw *hw)
158 {
159 	struct fapll_data *fd = to_fapll(hw);
160 	u32 v = readl_relaxed(fd->base);
161 
162 	return v & FAPLL_MAIN_PLLEN;
163 }
164 
165 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
166 					  unsigned long parent_rate)
167 {
168 	struct fapll_data *fd = to_fapll(hw);
169 	u32 fapll_n, fapll_p, v;
170 	long long rate;
171 
172 	if (ti_fapll_clock_is_bypass(fd))
173 		return parent_rate;
174 
175 	rate = parent_rate;
176 
177 	/* PLL pre-divider is P and multiplier is N */
178 	v = readl_relaxed(fd->base);
179 	fapll_p = (v >> 8) & 0xff;
180 	if (fapll_p)
181 		do_div(rate, fapll_p);
182 	fapll_n = v >> 16;
183 	if (fapll_n)
184 		rate *= fapll_n;
185 
186 	return rate;
187 }
188 
189 static u8 ti_fapll_get_parent(struct clk_hw *hw)
190 {
191 	struct fapll_data *fd = to_fapll(hw);
192 
193 	if (ti_fapll_clock_is_bypass(fd))
194 		return 1;
195 
196 	return 0;
197 }
198 
199 static int ti_fapll_set_div_mult(unsigned long rate,
200 				 unsigned long parent_rate,
201 				 u32 *pre_div_p, u32 *mult_n)
202 {
203 	/*
204 	 * So far no luck getting decent clock with PLL divider,
205 	 * PLL does not seem to lock and the signal does not look
206 	 * right. It seems the divider can only be used together
207 	 * with the multiplier?
208 	 */
209 	if (rate < parent_rate) {
210 		pr_warn("FAPLL main divider rates unsupported\n");
211 		return -EINVAL;
212 	}
213 
214 	*mult_n = rate / parent_rate;
215 	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
216 		return -EINVAL;
217 	*pre_div_p = 1;
218 
219 	return 0;
220 }
221 
222 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
223 				unsigned long *parent_rate)
224 {
225 	u32 pre_div_p, mult_n;
226 	int error;
227 
228 	if (!rate)
229 		return -EINVAL;
230 
231 	error = ti_fapll_set_div_mult(rate, *parent_rate,
232 				      &pre_div_p, &mult_n);
233 	if (error)
234 		return error;
235 
236 	rate = *parent_rate / pre_div_p;
237 	rate *= mult_n;
238 
239 	return rate;
240 }
241 
242 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
243 			     unsigned long parent_rate)
244 {
245 	struct fapll_data *fd = to_fapll(hw);
246 	u32 pre_div_p, mult_n, v;
247 	int error;
248 
249 	if (!rate)
250 		return -EINVAL;
251 
252 	error = ti_fapll_set_div_mult(rate, parent_rate,
253 				      &pre_div_p, &mult_n);
254 	if (error)
255 		return error;
256 
257 	ti_fapll_set_bypass(fd);
258 	v = readl_relaxed(fd->base);
259 	v &= ~FAPLL_MAIN_CLEAR_MASK;
260 	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
261 	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
262 	writel_relaxed(v, fd->base);
263 	if (ti_fapll_is_enabled(hw))
264 		ti_fapll_wait_lock(fd);
265 	ti_fapll_clear_bypass(fd);
266 
267 	return 0;
268 }
269 
270 static struct clk_ops ti_fapll_ops = {
271 	.enable = ti_fapll_enable,
272 	.disable = ti_fapll_disable,
273 	.is_enabled = ti_fapll_is_enabled,
274 	.recalc_rate = ti_fapll_recalc_rate,
275 	.get_parent = ti_fapll_get_parent,
276 	.round_rate = ti_fapll_round_rate,
277 	.set_rate = ti_fapll_set_rate,
278 };
279 
280 static int ti_fapll_synth_enable(struct clk_hw *hw)
281 {
282 	struct fapll_synth *synth = to_synth(hw);
283 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
284 
285 	v &= ~(1 << synth->index);
286 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
287 
288 	return 0;
289 }
290 
291 static void ti_fapll_synth_disable(struct clk_hw *hw)
292 {
293 	struct fapll_synth *synth = to_synth(hw);
294 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
295 
296 	v |= 1 << synth->index;
297 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
298 }
299 
300 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
301 {
302 	struct fapll_synth *synth = to_synth(hw);
303 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
304 
305 	return !(v & (1 << synth->index));
306 }
307 
308 /*
309  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
310  */
311 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
312 						unsigned long parent_rate)
313 {
314 	struct fapll_synth *synth = to_synth(hw);
315 	u32 synth_div_m;
316 	long long rate;
317 
318 	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
319 	if (!synth->div)
320 		return 32768;
321 
322 	/*
323 	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
324 	 * can be also be set to 27MHz, so we can't use parent_rate to
325 	 * check for bypass mode.
326 	 */
327 	if (ti_fapll_clock_is_bypass(synth->fd))
328 		return parent_rate;
329 
330 	rate = parent_rate;
331 
332 	/*
333 	 * Synth frequency integer and fractional divider.
334 	 * Note that the phase output K is 8, so the result needs
335 	 * to be multiplied by SYNTH_PHASE_K.
336 	 */
337 	if (synth->freq) {
338 		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
339 
340 		v = readl_relaxed(synth->freq);
341 		synth_int_div = (v >> 24) & 0xf;
342 		synth_frac_div = v & 0xffffff;
343 		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
344 		rate *= 10000000;
345 		do_div(rate, synth_div_freq);
346 		rate *= SYNTH_PHASE_K;
347 	}
348 
349 	/* Synth post-divider M */
350 	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
351 
352 	return DIV_ROUND_UP_ULL(rate, synth_div_m);
353 }
354 
355 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
356 						  unsigned long parent_rate)
357 {
358 	struct fapll_synth *synth = to_synth(hw);
359 	unsigned long current_rate, frac_rate;
360 	u32 post_div_m;
361 
362 	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
363 	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
364 	frac_rate = current_rate * post_div_m;
365 
366 	return frac_rate;
367 }
368 
369 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
370 					unsigned long rate,
371 					unsigned long parent_rate)
372 {
373 	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
374 
375 	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
376 	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
377 	if (post_div_m > SYNTH_MAX_DIV_M)
378 		return -EINVAL;
379 	if (!post_div_m)
380 		post_div_m = 1;
381 
382 	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
383 		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
384 						 SYNTH_PHASE_K *
385 						 10000000,
386 						 rate * post_div_m);
387 		synth_frac_div = synth_int_div % 10000000;
388 		synth_int_div /= 10000000;
389 
390 		if (synth_int_div <= SYNTH_MAX_INT_DIV)
391 			break;
392 	}
393 
394 	if (synth_int_div > SYNTH_MAX_INT_DIV)
395 		return -EINVAL;
396 
397 	v = readl_relaxed(synth->freq);
398 	v &= ~0x1fffffff;
399 	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
400 	v |= (synth_frac_div & 0xffffff);
401 	v |= SYNTH_LDFREQ;
402 	writel_relaxed(v, synth->freq);
403 
404 	return post_div_m;
405 }
406 
407 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
408 				      unsigned long *parent_rate)
409 {
410 	struct fapll_synth *synth = to_synth(hw);
411 	struct fapll_data *fd = synth->fd;
412 	unsigned long r;
413 
414 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
415 		return -EINVAL;
416 
417 	/* Only post divider m available with no fractional divider? */
418 	if (!synth->freq) {
419 		unsigned long frac_rate;
420 		u32 synth_post_div_m;
421 
422 		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
423 		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
424 		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
425 		goto out;
426 	}
427 
428 	r = *parent_rate * SYNTH_PHASE_K;
429 	if (rate > r)
430 		goto out;
431 
432 	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
433 	if (rate < r)
434 		goto out;
435 
436 	r = rate;
437 out:
438 	return r;
439 }
440 
441 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
442 				   unsigned long parent_rate)
443 {
444 	struct fapll_synth *synth = to_synth(hw);
445 	struct fapll_data *fd = synth->fd;
446 	unsigned long frac_rate, post_rate = 0;
447 	u32 post_div_m = 0, v;
448 
449 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
450 		return -EINVAL;
451 
452 	/* Produce the rate with just post divider M? */
453 	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
454 	if (frac_rate < rate) {
455 		if (!synth->freq)
456 			return -EINVAL;
457 	} else {
458 		post_div_m = DIV_ROUND_UP(frac_rate, rate);
459 		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
460 			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
461 		if (!synth->freq && !post_rate)
462 			return -EINVAL;
463 	}
464 
465 	/* Need to recalculate the fractional divider? */
466 	if ((post_rate != rate) && synth->freq)
467 		post_div_m = ti_fapll_synth_set_frac_rate(synth,
468 							  rate,
469 							  parent_rate);
470 
471 	v = readl_relaxed(synth->div);
472 	v &= ~SYNTH_MAX_DIV_M;
473 	v |= post_div_m;
474 	v |= SYNTH_LDMDIV1;
475 	writel_relaxed(v, synth->div);
476 
477 	return 0;
478 }
479 
480 static struct clk_ops ti_fapll_synt_ops = {
481 	.enable = ti_fapll_synth_enable,
482 	.disable = ti_fapll_synth_disable,
483 	.is_enabled = ti_fapll_synth_is_enabled,
484 	.recalc_rate = ti_fapll_synth_recalc_rate,
485 	.round_rate = ti_fapll_synth_round_rate,
486 	.set_rate = ti_fapll_synth_set_rate,
487 };
488 
489 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
490 						void __iomem *freq,
491 						void __iomem *div,
492 						int index,
493 						const char *name,
494 						const char *parent,
495 						struct clk *pll_clk)
496 {
497 	struct clk_init_data *init;
498 	struct fapll_synth *synth;
499 
500 	init = kzalloc(sizeof(*init), GFP_KERNEL);
501 	if (!init)
502 		return ERR_PTR(-ENOMEM);
503 
504 	init->ops = &ti_fapll_synt_ops;
505 	init->name = name;
506 	init->parent_names = &parent;
507 	init->num_parents = 1;
508 
509 	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
510 	if (!synth)
511 		goto free;
512 
513 	synth->fd = fd;
514 	synth->index = index;
515 	synth->freq = freq;
516 	synth->div = div;
517 	synth->name = name;
518 	synth->hw.init = init;
519 	synth->clk_pll = pll_clk;
520 
521 	return clk_register(NULL, &synth->hw);
522 
523 free:
524 	kfree(synth);
525 	kfree(init);
526 
527 	return ERR_PTR(-ENOMEM);
528 }
529 
530 static void __init ti_fapll_setup(struct device_node *node)
531 {
532 	struct fapll_data *fd;
533 	struct clk_init_data *init = NULL;
534 	const char *parent_name[2];
535 	struct clk *pll_clk;
536 	int i;
537 
538 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
539 	if (!fd)
540 		return;
541 
542 	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
543 				   MAX_FAPLL_OUTPUTS + 1,
544 				   GFP_KERNEL);
545 	if (!fd->outputs.clks)
546 		goto free;
547 
548 	init = kzalloc(sizeof(*init), GFP_KERNEL);
549 	if (!init)
550 		goto free;
551 
552 	init->ops = &ti_fapll_ops;
553 	init->name = node->name;
554 
555 	init->num_parents = of_clk_get_parent_count(node);
556 	if (init->num_parents != 2) {
557 		pr_err("%s must have two parents\n", node->name);
558 		goto free;
559 	}
560 
561 	parent_name[0] = of_clk_get_parent_name(node, 0);
562 	parent_name[1] = of_clk_get_parent_name(node, 1);
563 	init->parent_names = parent_name;
564 
565 	fd->clk_ref = of_clk_get(node, 0);
566 	if (IS_ERR(fd->clk_ref)) {
567 		pr_err("%s could not get clk_ref\n", node->name);
568 		goto free;
569 	}
570 
571 	fd->clk_bypass = of_clk_get(node, 1);
572 	if (IS_ERR(fd->clk_bypass)) {
573 		pr_err("%s could not get clk_bypass\n", node->name);
574 		goto free;
575 	}
576 
577 	fd->base = of_iomap(node, 0);
578 	if (!fd->base) {
579 		pr_err("%s could not get IO base\n", node->name);
580 		goto free;
581 	}
582 
583 	if (fapll_is_ddr_pll(fd->base))
584 		fd->bypass_bit_inverted = true;
585 
586 	fd->name = node->name;
587 	fd->hw.init = init;
588 
589 	/* Register the parent PLL */
590 	pll_clk = clk_register(NULL, &fd->hw);
591 	if (IS_ERR(pll_clk))
592 		goto unmap;
593 
594 	fd->outputs.clks[0] = pll_clk;
595 	fd->outputs.clk_num++;
596 
597 	/*
598 	 * Set up the child synthesizers starting at index 1 as the
599 	 * PLL output is at index 0. We need to check the clock-indices
600 	 * for numbering in case there are holes in the synth mapping,
601 	 * and then probe the synth register to see if it has a FREQ
602 	 * register available.
603 	 */
604 	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605 		const char *output_name;
606 		void __iomem *freq, *div;
607 		struct clk *synth_clk;
608 		int output_instance;
609 		u32 v;
610 
611 		if (of_property_read_string_index(node, "clock-output-names",
612 						  i, &output_name))
613 			continue;
614 
615 		if (of_property_read_u32_index(node, "clock-indices", i,
616 					       &output_instance))
617 			output_instance = i;
618 
619 		freq = fd->base + (output_instance * 8);
620 		div = freq + 4;
621 
622 		/* Check for hardwired audio_pll_clk1 */
623 		if (is_audio_pll_clk1(freq)) {
624 			freq = 0;
625 			div = 0;
626 		} else {
627 			/* Does the synthesizer have a FREQ register? */
628 			v = readl_relaxed(freq);
629 			if (!v)
630 				freq = 0;
631 		}
632 		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633 						 output_name, node->name,
634 						 pll_clk);
635 		if (IS_ERR(synth_clk))
636 			continue;
637 
638 		fd->outputs.clks[output_instance] = synth_clk;
639 		fd->outputs.clk_num++;
640 
641 		clk_register_clkdev(synth_clk, output_name, NULL);
642 	}
643 
644 	/* Register the child synthesizers as the FAPLL outputs */
645 	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646 	/* Add clock alias for the outputs */
647 
648 	kfree(init);
649 
650 	return;
651 
652 unmap:
653 	iounmap(fd->base);
654 free:
655 	if (fd->clk_bypass)
656 		clk_put(fd->clk_bypass);
657 	if (fd->clk_ref)
658 		clk_put(fd->clk_ref);
659 	kfree(fd->outputs.clks);
660 	kfree(fd);
661 	kfree(init);
662 }
663 
664 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
665