1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 * You should have received a copy of the GNU General Public License along 31 * with this program; if not, write to the Free Software Foundation, Inc., 32 * 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 /* 36 * This file holds the "policy" for the interface to the SMI state 37 * machine. It does the configuration, handles timers and interrupts, 38 * and drives the real SMI state machine. 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #ifdef CONFIG_HIGH_RES_TIMERS 59 #include <linux/hrtime.h> 60 # if defined(schedule_next_int) 61 /* Old high-res timer code, do translations. */ 62 # define get_arch_cycles(a) quick_update_jiffies_sub(a) 63 # define arch_cycles_per_jiffy cycles_per_jiffies 64 # endif 65 static inline void add_usec_to_timer(struct timer_list *t, long v) 66 { 67 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000); 68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy) 69 { 70 t->expires++; 71 t->arch_cycle_expires -= arch_cycles_per_jiffy; 72 } 73 } 74 #endif 75 #include <linux/interrupt.h> 76 #include <linux/rcupdate.h> 77 #include <linux/ipmi_smi.h> 78 #include <asm/io.h> 79 #include "ipmi_si_sm.h" 80 #include <linux/init.h> 81 #include <linux/dmi.h> 82 83 /* Measure times between events in the driver. */ 84 #undef DEBUG_TIMING 85 86 /* Call every 10 ms. */ 87 #define SI_TIMEOUT_TIME_USEC 10000 88 #define SI_USEC_PER_JIFFY (1000000/HZ) 89 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 90 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 91 short timeout */ 92 93 enum si_intf_state { 94 SI_NORMAL, 95 SI_GETTING_FLAGS, 96 SI_GETTING_EVENTS, 97 SI_CLEARING_FLAGS, 98 SI_CLEARING_FLAGS_THEN_SET_IRQ, 99 SI_GETTING_MESSAGES, 100 SI_ENABLE_INTERRUPTS1, 101 SI_ENABLE_INTERRUPTS2 102 /* FIXME - add watchdog stuff. */ 103 }; 104 105 /* Some BT-specific defines we need here. */ 106 #define IPMI_BT_INTMASK_REG 2 107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 109 110 enum si_type { 111 SI_KCS, SI_SMIC, SI_BT 112 }; 113 static char *si_to_str[] = { "KCS", "SMIC", "BT" }; 114 115 #define DEVICE_NAME "ipmi_si" 116 117 static struct device_driver ipmi_driver = 118 { 119 .name = DEVICE_NAME, 120 .bus = &platform_bus_type 121 }; 122 123 struct smi_info 124 { 125 int intf_num; 126 ipmi_smi_t intf; 127 struct si_sm_data *si_sm; 128 struct si_sm_handlers *handlers; 129 enum si_type si_type; 130 spinlock_t si_lock; 131 spinlock_t msg_lock; 132 struct list_head xmit_msgs; 133 struct list_head hp_xmit_msgs; 134 struct ipmi_smi_msg *curr_msg; 135 enum si_intf_state si_state; 136 137 /* Used to handle the various types of I/O that can occur with 138 IPMI */ 139 struct si_sm_io io; 140 int (*io_setup)(struct smi_info *info); 141 void (*io_cleanup)(struct smi_info *info); 142 int (*irq_setup)(struct smi_info *info); 143 void (*irq_cleanup)(struct smi_info *info); 144 unsigned int io_size; 145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 146 void (*addr_source_cleanup)(struct smi_info *info); 147 void *addr_source_data; 148 149 /* Per-OEM handler, called from handle_flags(). 150 Returns 1 when handle_flags() needs to be re-run 151 or 0 indicating it set si_state itself. 152 */ 153 int (*oem_data_avail_handler)(struct smi_info *smi_info); 154 155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN 156 is set to hold the flags until we are done handling everything 157 from the flags. */ 158 #define RECEIVE_MSG_AVAIL 0x01 159 #define EVENT_MSG_BUFFER_FULL 0x02 160 #define WDT_PRE_TIMEOUT_INT 0x08 161 #define OEM0_DATA_AVAIL 0x20 162 #define OEM1_DATA_AVAIL 0x40 163 #define OEM2_DATA_AVAIL 0x80 164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 165 OEM1_DATA_AVAIL | \ 166 OEM2_DATA_AVAIL) 167 unsigned char msg_flags; 168 169 /* If set to true, this will request events the next time the 170 state machine is idle. */ 171 atomic_t req_events; 172 173 /* If true, run the state machine to completion on every send 174 call. Generally used after a panic to make sure stuff goes 175 out. */ 176 int run_to_completion; 177 178 /* The I/O port of an SI interface. */ 179 int port; 180 181 /* The space between start addresses of the two ports. For 182 instance, if the first port is 0xca2 and the spacing is 4, then 183 the second port is 0xca6. */ 184 unsigned int spacing; 185 186 /* zero if no irq; */ 187 int irq; 188 189 /* The timer for this si. */ 190 struct timer_list si_timer; 191 192 /* The time (in jiffies) the last timeout occurred at. */ 193 unsigned long last_timeout_jiffies; 194 195 /* Used to gracefully stop the timer without race conditions. */ 196 atomic_t stop_operation; 197 198 /* The driver will disable interrupts when it gets into a 199 situation where it cannot handle messages due to lack of 200 memory. Once that situation clears up, it will re-enable 201 interrupts. */ 202 int interrupt_disabled; 203 204 /* From the get device id response... */ 205 struct ipmi_device_id device_id; 206 207 /* Driver model stuff. */ 208 struct device *dev; 209 struct platform_device *pdev; 210 211 /* True if we allocated the device, false if it came from 212 * someplace else (like PCI). */ 213 int dev_registered; 214 215 /* Slave address, could be reported from DMI. */ 216 unsigned char slave_addr; 217 218 /* Counters and things for the proc filesystem. */ 219 spinlock_t count_lock; 220 unsigned long short_timeouts; 221 unsigned long long_timeouts; 222 unsigned long timeout_restarts; 223 unsigned long idles; 224 unsigned long interrupts; 225 unsigned long attentions; 226 unsigned long flag_fetches; 227 unsigned long hosed_count; 228 unsigned long complete_transactions; 229 unsigned long events; 230 unsigned long watchdog_pretimeouts; 231 unsigned long incoming_messages; 232 233 struct task_struct *thread; 234 235 struct list_head link; 236 }; 237 238 static int try_smi_init(struct smi_info *smi); 239 240 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 241 static int register_xaction_notifier(struct notifier_block * nb) 242 { 243 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 244 } 245 246 static void si_restart_short_timer(struct smi_info *smi_info); 247 248 static void deliver_recv_msg(struct smi_info *smi_info, 249 struct ipmi_smi_msg *msg) 250 { 251 /* Deliver the message to the upper layer with the lock 252 released. */ 253 spin_unlock(&(smi_info->si_lock)); 254 ipmi_smi_msg_received(smi_info->intf, msg); 255 spin_lock(&(smi_info->si_lock)); 256 } 257 258 static void return_hosed_msg(struct smi_info *smi_info) 259 { 260 struct ipmi_smi_msg *msg = smi_info->curr_msg; 261 262 /* Make it a reponse */ 263 msg->rsp[0] = msg->data[0] | 4; 264 msg->rsp[1] = msg->data[1]; 265 msg->rsp[2] = 0xFF; /* Unknown error. */ 266 msg->rsp_size = 3; 267 268 smi_info->curr_msg = NULL; 269 deliver_recv_msg(smi_info, msg); 270 } 271 272 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 273 { 274 int rv; 275 struct list_head *entry = NULL; 276 #ifdef DEBUG_TIMING 277 struct timeval t; 278 #endif 279 280 /* No need to save flags, we aleady have interrupts off and we 281 already hold the SMI lock. */ 282 spin_lock(&(smi_info->msg_lock)); 283 284 /* Pick the high priority queue first. */ 285 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 286 entry = smi_info->hp_xmit_msgs.next; 287 } else if (!list_empty(&(smi_info->xmit_msgs))) { 288 entry = smi_info->xmit_msgs.next; 289 } 290 291 if (!entry) { 292 smi_info->curr_msg = NULL; 293 rv = SI_SM_IDLE; 294 } else { 295 int err; 296 297 list_del(entry); 298 smi_info->curr_msg = list_entry(entry, 299 struct ipmi_smi_msg, 300 link); 301 #ifdef DEBUG_TIMING 302 do_gettimeofday(&t); 303 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 304 #endif 305 err = atomic_notifier_call_chain(&xaction_notifier_list, 306 0, smi_info); 307 if (err & NOTIFY_STOP_MASK) { 308 rv = SI_SM_CALL_WITHOUT_DELAY; 309 goto out; 310 } 311 err = smi_info->handlers->start_transaction( 312 smi_info->si_sm, 313 smi_info->curr_msg->data, 314 smi_info->curr_msg->data_size); 315 if (err) { 316 return_hosed_msg(smi_info); 317 } 318 319 rv = SI_SM_CALL_WITHOUT_DELAY; 320 } 321 out: 322 spin_unlock(&(smi_info->msg_lock)); 323 324 return rv; 325 } 326 327 static void start_enable_irq(struct smi_info *smi_info) 328 { 329 unsigned char msg[2]; 330 331 /* If we are enabling interrupts, we have to tell the 332 BMC to use them. */ 333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 334 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 335 336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 337 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 338 } 339 340 static void start_clear_flags(struct smi_info *smi_info) 341 { 342 unsigned char msg[3]; 343 344 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 345 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 346 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 347 msg[2] = WDT_PRE_TIMEOUT_INT; 348 349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 350 smi_info->si_state = SI_CLEARING_FLAGS; 351 } 352 353 /* When we have a situtaion where we run out of memory and cannot 354 allocate messages, we just leave them in the BMC and run the system 355 polled until we can allocate some memory. Once we have some 356 memory, we will re-enable the interrupt. */ 357 static inline void disable_si_irq(struct smi_info *smi_info) 358 { 359 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 360 disable_irq_nosync(smi_info->irq); 361 smi_info->interrupt_disabled = 1; 362 } 363 } 364 365 static inline void enable_si_irq(struct smi_info *smi_info) 366 { 367 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 368 enable_irq(smi_info->irq); 369 smi_info->interrupt_disabled = 0; 370 } 371 } 372 373 static void handle_flags(struct smi_info *smi_info) 374 { 375 retry: 376 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 377 /* Watchdog pre-timeout */ 378 spin_lock(&smi_info->count_lock); 379 smi_info->watchdog_pretimeouts++; 380 spin_unlock(&smi_info->count_lock); 381 382 start_clear_flags(smi_info); 383 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 384 spin_unlock(&(smi_info->si_lock)); 385 ipmi_smi_watchdog_pretimeout(smi_info->intf); 386 spin_lock(&(smi_info->si_lock)); 387 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 388 /* Messages available. */ 389 smi_info->curr_msg = ipmi_alloc_smi_msg(); 390 if (!smi_info->curr_msg) { 391 disable_si_irq(smi_info); 392 smi_info->si_state = SI_NORMAL; 393 return; 394 } 395 enable_si_irq(smi_info); 396 397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 398 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 399 smi_info->curr_msg->data_size = 2; 400 401 smi_info->handlers->start_transaction( 402 smi_info->si_sm, 403 smi_info->curr_msg->data, 404 smi_info->curr_msg->data_size); 405 smi_info->si_state = SI_GETTING_MESSAGES; 406 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 407 /* Events available. */ 408 smi_info->curr_msg = ipmi_alloc_smi_msg(); 409 if (!smi_info->curr_msg) { 410 disable_si_irq(smi_info); 411 smi_info->si_state = SI_NORMAL; 412 return; 413 } 414 enable_si_irq(smi_info); 415 416 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 417 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 418 smi_info->curr_msg->data_size = 2; 419 420 smi_info->handlers->start_transaction( 421 smi_info->si_sm, 422 smi_info->curr_msg->data, 423 smi_info->curr_msg->data_size); 424 smi_info->si_state = SI_GETTING_EVENTS; 425 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) { 426 if (smi_info->oem_data_avail_handler) 427 if (smi_info->oem_data_avail_handler(smi_info)) 428 goto retry; 429 } else { 430 smi_info->si_state = SI_NORMAL; 431 } 432 } 433 434 static void handle_transaction_done(struct smi_info *smi_info) 435 { 436 struct ipmi_smi_msg *msg; 437 #ifdef DEBUG_TIMING 438 struct timeval t; 439 440 do_gettimeofday(&t); 441 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 442 #endif 443 switch (smi_info->si_state) { 444 case SI_NORMAL: 445 if (!smi_info->curr_msg) 446 break; 447 448 smi_info->curr_msg->rsp_size 449 = smi_info->handlers->get_result( 450 smi_info->si_sm, 451 smi_info->curr_msg->rsp, 452 IPMI_MAX_MSG_LENGTH); 453 454 /* Do this here becase deliver_recv_msg() releases the 455 lock, and a new message can be put in during the 456 time the lock is released. */ 457 msg = smi_info->curr_msg; 458 smi_info->curr_msg = NULL; 459 deliver_recv_msg(smi_info, msg); 460 break; 461 462 case SI_GETTING_FLAGS: 463 { 464 unsigned char msg[4]; 465 unsigned int len; 466 467 /* We got the flags from the SMI, now handle them. */ 468 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 469 if (msg[2] != 0) { 470 /* Error fetching flags, just give up for 471 now. */ 472 smi_info->si_state = SI_NORMAL; 473 } else if (len < 4) { 474 /* Hmm, no flags. That's technically illegal, but 475 don't use uninitialized data. */ 476 smi_info->si_state = SI_NORMAL; 477 } else { 478 smi_info->msg_flags = msg[3]; 479 handle_flags(smi_info); 480 } 481 break; 482 } 483 484 case SI_CLEARING_FLAGS: 485 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 486 { 487 unsigned char msg[3]; 488 489 /* We cleared the flags. */ 490 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 491 if (msg[2] != 0) { 492 /* Error clearing flags */ 493 printk(KERN_WARNING 494 "ipmi_si: Error clearing flags: %2.2x\n", 495 msg[2]); 496 } 497 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 498 start_enable_irq(smi_info); 499 else 500 smi_info->si_state = SI_NORMAL; 501 break; 502 } 503 504 case SI_GETTING_EVENTS: 505 { 506 smi_info->curr_msg->rsp_size 507 = smi_info->handlers->get_result( 508 smi_info->si_sm, 509 smi_info->curr_msg->rsp, 510 IPMI_MAX_MSG_LENGTH); 511 512 /* Do this here becase deliver_recv_msg() releases the 513 lock, and a new message can be put in during the 514 time the lock is released. */ 515 msg = smi_info->curr_msg; 516 smi_info->curr_msg = NULL; 517 if (msg->rsp[2] != 0) { 518 /* Error getting event, probably done. */ 519 msg->done(msg); 520 521 /* Take off the event flag. */ 522 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 523 handle_flags(smi_info); 524 } else { 525 spin_lock(&smi_info->count_lock); 526 smi_info->events++; 527 spin_unlock(&smi_info->count_lock); 528 529 /* Do this before we deliver the message 530 because delivering the message releases the 531 lock and something else can mess with the 532 state. */ 533 handle_flags(smi_info); 534 535 deliver_recv_msg(smi_info, msg); 536 } 537 break; 538 } 539 540 case SI_GETTING_MESSAGES: 541 { 542 smi_info->curr_msg->rsp_size 543 = smi_info->handlers->get_result( 544 smi_info->si_sm, 545 smi_info->curr_msg->rsp, 546 IPMI_MAX_MSG_LENGTH); 547 548 /* Do this here becase deliver_recv_msg() releases the 549 lock, and a new message can be put in during the 550 time the lock is released. */ 551 msg = smi_info->curr_msg; 552 smi_info->curr_msg = NULL; 553 if (msg->rsp[2] != 0) { 554 /* Error getting event, probably done. */ 555 msg->done(msg); 556 557 /* Take off the msg flag. */ 558 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 559 handle_flags(smi_info); 560 } else { 561 spin_lock(&smi_info->count_lock); 562 smi_info->incoming_messages++; 563 spin_unlock(&smi_info->count_lock); 564 565 /* Do this before we deliver the message 566 because delivering the message releases the 567 lock and something else can mess with the 568 state. */ 569 handle_flags(smi_info); 570 571 deliver_recv_msg(smi_info, msg); 572 } 573 break; 574 } 575 576 case SI_ENABLE_INTERRUPTS1: 577 { 578 unsigned char msg[4]; 579 580 /* We got the flags from the SMI, now handle them. */ 581 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 582 if (msg[2] != 0) { 583 printk(KERN_WARNING 584 "ipmi_si: Could not enable interrupts" 585 ", failed get, using polled mode.\n"); 586 smi_info->si_state = SI_NORMAL; 587 } else { 588 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 589 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 590 msg[2] = msg[3] | 1; /* enable msg queue int */ 591 smi_info->handlers->start_transaction( 592 smi_info->si_sm, msg, 3); 593 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 594 } 595 break; 596 } 597 598 case SI_ENABLE_INTERRUPTS2: 599 { 600 unsigned char msg[4]; 601 602 /* We got the flags from the SMI, now handle them. */ 603 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 604 if (msg[2] != 0) { 605 printk(KERN_WARNING 606 "ipmi_si: Could not enable interrupts" 607 ", failed set, using polled mode.\n"); 608 } 609 smi_info->si_state = SI_NORMAL; 610 break; 611 } 612 } 613 } 614 615 /* Called on timeouts and events. Timeouts should pass the elapsed 616 time, interrupts should pass in zero. */ 617 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 618 int time) 619 { 620 enum si_sm_result si_sm_result; 621 622 restart: 623 /* There used to be a loop here that waited a little while 624 (around 25us) before giving up. That turned out to be 625 pointless, the minimum delays I was seeing were in the 300us 626 range, which is far too long to wait in an interrupt. So 627 we just run until the state machine tells us something 628 happened or it needs a delay. */ 629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 630 time = 0; 631 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 632 { 633 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 634 } 635 636 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) 637 { 638 spin_lock(&smi_info->count_lock); 639 smi_info->complete_transactions++; 640 spin_unlock(&smi_info->count_lock); 641 642 handle_transaction_done(smi_info); 643 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 644 } 645 else if (si_sm_result == SI_SM_HOSED) 646 { 647 spin_lock(&smi_info->count_lock); 648 smi_info->hosed_count++; 649 spin_unlock(&smi_info->count_lock); 650 651 /* Do the before return_hosed_msg, because that 652 releases the lock. */ 653 smi_info->si_state = SI_NORMAL; 654 if (smi_info->curr_msg != NULL) { 655 /* If we were handling a user message, format 656 a response to send to the upper layer to 657 tell it about the error. */ 658 return_hosed_msg(smi_info); 659 } 660 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 661 } 662 663 /* We prefer handling attn over new messages. */ 664 if (si_sm_result == SI_SM_ATTN) 665 { 666 unsigned char msg[2]; 667 668 spin_lock(&smi_info->count_lock); 669 smi_info->attentions++; 670 spin_unlock(&smi_info->count_lock); 671 672 /* Got a attn, send down a get message flags to see 673 what's causing it. It would be better to handle 674 this in the upper layer, but due to the way 675 interrupts work with the SMI, that's not really 676 possible. */ 677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 678 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 679 680 smi_info->handlers->start_transaction( 681 smi_info->si_sm, msg, 2); 682 smi_info->si_state = SI_GETTING_FLAGS; 683 goto restart; 684 } 685 686 /* If we are currently idle, try to start the next message. */ 687 if (si_sm_result == SI_SM_IDLE) { 688 spin_lock(&smi_info->count_lock); 689 smi_info->idles++; 690 spin_unlock(&smi_info->count_lock); 691 692 si_sm_result = start_next_msg(smi_info); 693 if (si_sm_result != SI_SM_IDLE) 694 goto restart; 695 } 696 697 if ((si_sm_result == SI_SM_IDLE) 698 && (atomic_read(&smi_info->req_events))) 699 { 700 /* We are idle and the upper layer requested that I fetch 701 events, so do so. */ 702 unsigned char msg[2]; 703 704 spin_lock(&smi_info->count_lock); 705 smi_info->flag_fetches++; 706 spin_unlock(&smi_info->count_lock); 707 708 atomic_set(&smi_info->req_events, 0); 709 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 710 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 711 712 smi_info->handlers->start_transaction( 713 smi_info->si_sm, msg, 2); 714 smi_info->si_state = SI_GETTING_FLAGS; 715 goto restart; 716 } 717 718 return si_sm_result; 719 } 720 721 static void sender(void *send_info, 722 struct ipmi_smi_msg *msg, 723 int priority) 724 { 725 struct smi_info *smi_info = send_info; 726 enum si_sm_result result; 727 unsigned long flags; 728 #ifdef DEBUG_TIMING 729 struct timeval t; 730 #endif 731 732 spin_lock_irqsave(&(smi_info->msg_lock), flags); 733 #ifdef DEBUG_TIMING 734 do_gettimeofday(&t); 735 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 736 #endif 737 738 if (smi_info->run_to_completion) { 739 /* If we are running to completion, then throw it in 740 the list and run transactions until everything is 741 clear. Priority doesn't matter here. */ 742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 743 744 /* We have to release the msg lock and claim the smi 745 lock in this case, because of race conditions. */ 746 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 747 748 spin_lock_irqsave(&(smi_info->si_lock), flags); 749 result = smi_event_handler(smi_info, 0); 750 while (result != SI_SM_IDLE) { 751 udelay(SI_SHORT_TIMEOUT_USEC); 752 result = smi_event_handler(smi_info, 753 SI_SHORT_TIMEOUT_USEC); 754 } 755 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 756 return; 757 } else { 758 if (priority > 0) { 759 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); 760 } else { 761 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 762 } 763 } 764 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 765 766 spin_lock_irqsave(&(smi_info->si_lock), flags); 767 if ((smi_info->si_state == SI_NORMAL) 768 && (smi_info->curr_msg == NULL)) 769 { 770 start_next_msg(smi_info); 771 si_restart_short_timer(smi_info); 772 } 773 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 774 } 775 776 static void set_run_to_completion(void *send_info, int i_run_to_completion) 777 { 778 struct smi_info *smi_info = send_info; 779 enum si_sm_result result; 780 unsigned long flags; 781 782 spin_lock_irqsave(&(smi_info->si_lock), flags); 783 784 smi_info->run_to_completion = i_run_to_completion; 785 if (i_run_to_completion) { 786 result = smi_event_handler(smi_info, 0); 787 while (result != SI_SM_IDLE) { 788 udelay(SI_SHORT_TIMEOUT_USEC); 789 result = smi_event_handler(smi_info, 790 SI_SHORT_TIMEOUT_USEC); 791 } 792 } 793 794 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 795 } 796 797 static int ipmi_thread(void *data) 798 { 799 struct smi_info *smi_info = data; 800 unsigned long flags; 801 enum si_sm_result smi_result; 802 803 set_user_nice(current, 19); 804 while (!kthread_should_stop()) { 805 spin_lock_irqsave(&(smi_info->si_lock), flags); 806 smi_result=smi_event_handler(smi_info, 0); 807 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 808 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 809 /* do nothing */ 810 } 811 else if (smi_result == SI_SM_CALL_WITH_DELAY) 812 udelay(1); 813 else 814 schedule_timeout_interruptible(1); 815 } 816 return 0; 817 } 818 819 820 static void poll(void *send_info) 821 { 822 struct smi_info *smi_info = send_info; 823 824 smi_event_handler(smi_info, 0); 825 } 826 827 static void request_events(void *send_info) 828 { 829 struct smi_info *smi_info = send_info; 830 831 atomic_set(&smi_info->req_events, 1); 832 } 833 834 static int initialized = 0; 835 836 /* Must be called with interrupts off and with the si_lock held. */ 837 static void si_restart_short_timer(struct smi_info *smi_info) 838 { 839 #if defined(CONFIG_HIGH_RES_TIMERS) 840 unsigned long flags; 841 unsigned long jiffies_now; 842 unsigned long seq; 843 844 if (del_timer(&(smi_info->si_timer))) { 845 /* If we don't delete the timer, then it will go off 846 immediately, anyway. So we only process if we 847 actually delete the timer. */ 848 849 do { 850 seq = read_seqbegin_irqsave(&xtime_lock, flags); 851 jiffies_now = jiffies; 852 smi_info->si_timer.expires = jiffies_now; 853 smi_info->si_timer.arch_cycle_expires 854 = get_arch_cycles(jiffies_now); 855 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 856 857 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); 858 859 add_timer(&(smi_info->si_timer)); 860 spin_lock_irqsave(&smi_info->count_lock, flags); 861 smi_info->timeout_restarts++; 862 spin_unlock_irqrestore(&smi_info->count_lock, flags); 863 } 864 #endif 865 } 866 867 static void smi_timeout(unsigned long data) 868 { 869 struct smi_info *smi_info = (struct smi_info *) data; 870 enum si_sm_result smi_result; 871 unsigned long flags; 872 unsigned long jiffies_now; 873 long time_diff; 874 #ifdef DEBUG_TIMING 875 struct timeval t; 876 #endif 877 878 if (atomic_read(&smi_info->stop_operation)) 879 return; 880 881 spin_lock_irqsave(&(smi_info->si_lock), flags); 882 #ifdef DEBUG_TIMING 883 do_gettimeofday(&t); 884 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 885 #endif 886 jiffies_now = jiffies; 887 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 888 * SI_USEC_PER_JIFFY); 889 smi_result = smi_event_handler(smi_info, time_diff); 890 891 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 892 893 smi_info->last_timeout_jiffies = jiffies_now; 894 895 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 896 /* Running with interrupts, only do long timeouts. */ 897 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 898 spin_lock_irqsave(&smi_info->count_lock, flags); 899 smi_info->long_timeouts++; 900 spin_unlock_irqrestore(&smi_info->count_lock, flags); 901 goto do_add_timer; 902 } 903 904 /* If the state machine asks for a short delay, then shorten 905 the timer timeout. */ 906 if (smi_result == SI_SM_CALL_WITH_DELAY) { 907 #if defined(CONFIG_HIGH_RES_TIMERS) 908 unsigned long seq; 909 #endif 910 spin_lock_irqsave(&smi_info->count_lock, flags); 911 smi_info->short_timeouts++; 912 spin_unlock_irqrestore(&smi_info->count_lock, flags); 913 #if defined(CONFIG_HIGH_RES_TIMERS) 914 do { 915 seq = read_seqbegin_irqsave(&xtime_lock, flags); 916 smi_info->si_timer.expires = jiffies; 917 smi_info->si_timer.arch_cycle_expires 918 = get_arch_cycles(smi_info->si_timer.expires); 919 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 920 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); 921 #else 922 smi_info->si_timer.expires = jiffies + 1; 923 #endif 924 } else { 925 spin_lock_irqsave(&smi_info->count_lock, flags); 926 smi_info->long_timeouts++; 927 spin_unlock_irqrestore(&smi_info->count_lock, flags); 928 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 929 #if defined(CONFIG_HIGH_RES_TIMERS) 930 smi_info->si_timer.arch_cycle_expires = 0; 931 #endif 932 } 933 934 do_add_timer: 935 add_timer(&(smi_info->si_timer)); 936 } 937 938 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs) 939 { 940 struct smi_info *smi_info = data; 941 unsigned long flags; 942 #ifdef DEBUG_TIMING 943 struct timeval t; 944 #endif 945 946 spin_lock_irqsave(&(smi_info->si_lock), flags); 947 948 spin_lock(&smi_info->count_lock); 949 smi_info->interrupts++; 950 spin_unlock(&smi_info->count_lock); 951 952 if (atomic_read(&smi_info->stop_operation)) 953 goto out; 954 955 #ifdef DEBUG_TIMING 956 do_gettimeofday(&t); 957 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 958 #endif 959 smi_event_handler(smi_info, 0); 960 out: 961 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 962 return IRQ_HANDLED; 963 } 964 965 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs) 966 { 967 struct smi_info *smi_info = data; 968 /* We need to clear the IRQ flag for the BT interface. */ 969 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 970 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 971 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 972 return si_irq_handler(irq, data, regs); 973 } 974 975 976 static struct ipmi_smi_handlers handlers = 977 { 978 .owner = THIS_MODULE, 979 .sender = sender, 980 .request_events = request_events, 981 .set_run_to_completion = set_run_to_completion, 982 .poll = poll, 983 }; 984 985 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 986 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ 987 988 #define SI_MAX_PARMS 4 989 static LIST_HEAD(smi_infos); 990 static DECLARE_MUTEX(smi_infos_lock); 991 static int smi_num; /* Used to sequence the SMIs */ 992 993 #define DEFAULT_REGSPACING 1 994 995 static int si_trydefaults = 1; 996 static char *si_type[SI_MAX_PARMS]; 997 #define MAX_SI_TYPE_STR 30 998 static char si_type_str[MAX_SI_TYPE_STR]; 999 static unsigned long addrs[SI_MAX_PARMS]; 1000 static int num_addrs; 1001 static unsigned int ports[SI_MAX_PARMS]; 1002 static int num_ports; 1003 static int irqs[SI_MAX_PARMS]; 1004 static int num_irqs; 1005 static int regspacings[SI_MAX_PARMS]; 1006 static int num_regspacings = 0; 1007 static int regsizes[SI_MAX_PARMS]; 1008 static int num_regsizes = 0; 1009 static int regshifts[SI_MAX_PARMS]; 1010 static int num_regshifts = 0; 1011 static int slave_addrs[SI_MAX_PARMS]; 1012 static int num_slave_addrs = 0; 1013 1014 1015 module_param_named(trydefaults, si_trydefaults, bool, 0); 1016 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1017 " default scan of the KCS and SMIC interface at the standard" 1018 " address"); 1019 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1020 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1021 " interface separated by commas. The types are 'kcs'," 1022 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1023 " the first interface to kcs and the second to bt"); 1024 module_param_array(addrs, long, &num_addrs, 0); 1025 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1026 " addresses separated by commas. Only use if an interface" 1027 " is in memory. Otherwise, set it to zero or leave" 1028 " it blank."); 1029 module_param_array(ports, int, &num_ports, 0); 1030 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1031 " addresses separated by commas. Only use if an interface" 1032 " is a port. Otherwise, set it to zero or leave" 1033 " it blank."); 1034 module_param_array(irqs, int, &num_irqs, 0); 1035 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1036 " addresses separated by commas. Only use if an interface" 1037 " has an interrupt. Otherwise, set it to zero or leave" 1038 " it blank."); 1039 module_param_array(regspacings, int, &num_regspacings, 0); 1040 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1041 " and each successive register used by the interface. For" 1042 " instance, if the start address is 0xca2 and the spacing" 1043 " is 2, then the second address is at 0xca4. Defaults" 1044 " to 1."); 1045 module_param_array(regsizes, int, &num_regsizes, 0); 1046 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1047 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1048 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1049 " the 8-bit IPMI register has to be read from a larger" 1050 " register."); 1051 module_param_array(regshifts, int, &num_regshifts, 0); 1052 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1053 " IPMI register, in bits. For instance, if the data" 1054 " is read from a 32-bit word and the IPMI data is in" 1055 " bit 8-15, then the shift would be 8"); 1056 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1057 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1058 " the controller. Normally this is 0x20, but can be" 1059 " overridden by this parm. This is an array indexed" 1060 " by interface number."); 1061 1062 1063 #define IPMI_IO_ADDR_SPACE 0 1064 #define IPMI_MEM_ADDR_SPACE 1 1065 static char *addr_space_to_str[] = { "I/O", "memory" }; 1066 1067 static void std_irq_cleanup(struct smi_info *info) 1068 { 1069 if (info->si_type == SI_BT) 1070 /* Disable the interrupt in the BT interface. */ 1071 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1072 free_irq(info->irq, info); 1073 } 1074 1075 static int std_irq_setup(struct smi_info *info) 1076 { 1077 int rv; 1078 1079 if (!info->irq) 1080 return 0; 1081 1082 if (info->si_type == SI_BT) { 1083 rv = request_irq(info->irq, 1084 si_bt_irq_handler, 1085 SA_INTERRUPT, 1086 DEVICE_NAME, 1087 info); 1088 if (!rv) 1089 /* Enable the interrupt in the BT interface. */ 1090 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1091 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1092 } else 1093 rv = request_irq(info->irq, 1094 si_irq_handler, 1095 SA_INTERRUPT, 1096 DEVICE_NAME, 1097 info); 1098 if (rv) { 1099 printk(KERN_WARNING 1100 "ipmi_si: %s unable to claim interrupt %d," 1101 " running polled\n", 1102 DEVICE_NAME, info->irq); 1103 info->irq = 0; 1104 } else { 1105 info->irq_cleanup = std_irq_cleanup; 1106 printk(" Using irq %d\n", info->irq); 1107 } 1108 1109 return rv; 1110 } 1111 1112 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1113 { 1114 unsigned int addr = io->addr_data; 1115 1116 return inb(addr + (offset * io->regspacing)); 1117 } 1118 1119 static void port_outb(struct si_sm_io *io, unsigned int offset, 1120 unsigned char b) 1121 { 1122 unsigned int addr = io->addr_data; 1123 1124 outb(b, addr + (offset * io->regspacing)); 1125 } 1126 1127 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1128 { 1129 unsigned int addr = io->addr_data; 1130 1131 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1132 } 1133 1134 static void port_outw(struct si_sm_io *io, unsigned int offset, 1135 unsigned char b) 1136 { 1137 unsigned int addr = io->addr_data; 1138 1139 outw(b << io->regshift, addr + (offset * io->regspacing)); 1140 } 1141 1142 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1143 { 1144 unsigned int addr = io->addr_data; 1145 1146 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1147 } 1148 1149 static void port_outl(struct si_sm_io *io, unsigned int offset, 1150 unsigned char b) 1151 { 1152 unsigned int addr = io->addr_data; 1153 1154 outl(b << io->regshift, addr+(offset * io->regspacing)); 1155 } 1156 1157 static void port_cleanup(struct smi_info *info) 1158 { 1159 unsigned int addr = info->io.addr_data; 1160 int mapsize; 1161 1162 if (addr) { 1163 mapsize = ((info->io_size * info->io.regspacing) 1164 - (info->io.regspacing - info->io.regsize)); 1165 1166 release_region (addr, mapsize); 1167 } 1168 } 1169 1170 static int port_setup(struct smi_info *info) 1171 { 1172 unsigned int addr = info->io.addr_data; 1173 int mapsize; 1174 1175 if (!addr) 1176 return -ENODEV; 1177 1178 info->io_cleanup = port_cleanup; 1179 1180 /* Figure out the actual inb/inw/inl/etc routine to use based 1181 upon the register size. */ 1182 switch (info->io.regsize) { 1183 case 1: 1184 info->io.inputb = port_inb; 1185 info->io.outputb = port_outb; 1186 break; 1187 case 2: 1188 info->io.inputb = port_inw; 1189 info->io.outputb = port_outw; 1190 break; 1191 case 4: 1192 info->io.inputb = port_inl; 1193 info->io.outputb = port_outl; 1194 break; 1195 default: 1196 printk("ipmi_si: Invalid register size: %d\n", 1197 info->io.regsize); 1198 return -EINVAL; 1199 } 1200 1201 /* Calculate the total amount of memory to claim. This is an 1202 * unusual looking calculation, but it avoids claiming any 1203 * more memory than it has to. It will claim everything 1204 * between the first address to the end of the last full 1205 * register. */ 1206 mapsize = ((info->io_size * info->io.regspacing) 1207 - (info->io.regspacing - info->io.regsize)); 1208 1209 if (request_region(addr, mapsize, DEVICE_NAME) == NULL) 1210 return -EIO; 1211 return 0; 1212 } 1213 1214 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1215 { 1216 return readb((io->addr)+(offset * io->regspacing)); 1217 } 1218 1219 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1220 unsigned char b) 1221 { 1222 writeb(b, (io->addr)+(offset * io->regspacing)); 1223 } 1224 1225 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1226 { 1227 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1228 && 0xff; 1229 } 1230 1231 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1232 unsigned char b) 1233 { 1234 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1235 } 1236 1237 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1238 { 1239 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1240 && 0xff; 1241 } 1242 1243 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1244 unsigned char b) 1245 { 1246 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1247 } 1248 1249 #ifdef readq 1250 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1251 { 1252 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1253 && 0xff; 1254 } 1255 1256 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1257 unsigned char b) 1258 { 1259 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1260 } 1261 #endif 1262 1263 static void mem_cleanup(struct smi_info *info) 1264 { 1265 unsigned long addr = info->io.addr_data; 1266 int mapsize; 1267 1268 if (info->io.addr) { 1269 iounmap(info->io.addr); 1270 1271 mapsize = ((info->io_size * info->io.regspacing) 1272 - (info->io.regspacing - info->io.regsize)); 1273 1274 release_mem_region(addr, mapsize); 1275 } 1276 } 1277 1278 static int mem_setup(struct smi_info *info) 1279 { 1280 unsigned long addr = info->io.addr_data; 1281 int mapsize; 1282 1283 if (!addr) 1284 return -ENODEV; 1285 1286 info->io_cleanup = mem_cleanup; 1287 1288 /* Figure out the actual readb/readw/readl/etc routine to use based 1289 upon the register size. */ 1290 switch (info->io.regsize) { 1291 case 1: 1292 info->io.inputb = intf_mem_inb; 1293 info->io.outputb = intf_mem_outb; 1294 break; 1295 case 2: 1296 info->io.inputb = intf_mem_inw; 1297 info->io.outputb = intf_mem_outw; 1298 break; 1299 case 4: 1300 info->io.inputb = intf_mem_inl; 1301 info->io.outputb = intf_mem_outl; 1302 break; 1303 #ifdef readq 1304 case 8: 1305 info->io.inputb = mem_inq; 1306 info->io.outputb = mem_outq; 1307 break; 1308 #endif 1309 default: 1310 printk("ipmi_si: Invalid register size: %d\n", 1311 info->io.regsize); 1312 return -EINVAL; 1313 } 1314 1315 /* Calculate the total amount of memory to claim. This is an 1316 * unusual looking calculation, but it avoids claiming any 1317 * more memory than it has to. It will claim everything 1318 * between the first address to the end of the last full 1319 * register. */ 1320 mapsize = ((info->io_size * info->io.regspacing) 1321 - (info->io.regspacing - info->io.regsize)); 1322 1323 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1324 return -EIO; 1325 1326 info->io.addr = ioremap(addr, mapsize); 1327 if (info->io.addr == NULL) { 1328 release_mem_region(addr, mapsize); 1329 return -EIO; 1330 } 1331 return 0; 1332 } 1333 1334 1335 static __devinit void hardcode_find_bmc(void) 1336 { 1337 int i; 1338 struct smi_info *info; 1339 1340 for (i = 0; i < SI_MAX_PARMS; i++) { 1341 if (!ports[i] && !addrs[i]) 1342 continue; 1343 1344 info = kzalloc(sizeof(*info), GFP_KERNEL); 1345 if (!info) 1346 return; 1347 1348 info->addr_source = "hardcoded"; 1349 1350 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1351 info->si_type = SI_KCS; 1352 } else if (strcmp(si_type[i], "smic") == 0) { 1353 info->si_type = SI_SMIC; 1354 } else if (strcmp(si_type[i], "bt") == 0) { 1355 info->si_type = SI_BT; 1356 } else { 1357 printk(KERN_WARNING 1358 "ipmi_si: Interface type specified " 1359 "for interface %d, was invalid: %s\n", 1360 i, si_type[i]); 1361 kfree(info); 1362 continue; 1363 } 1364 1365 if (ports[i]) { 1366 /* An I/O port */ 1367 info->io_setup = port_setup; 1368 info->io.addr_data = ports[i]; 1369 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1370 } else if (addrs[i]) { 1371 /* A memory port */ 1372 info->io_setup = mem_setup; 1373 info->io.addr_data = addrs[i]; 1374 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1375 } else { 1376 printk(KERN_WARNING 1377 "ipmi_si: Interface type specified " 1378 "for interface %d, " 1379 "but port and address were not set or " 1380 "set to zero.\n", i); 1381 kfree(info); 1382 continue; 1383 } 1384 1385 info->io.addr = NULL; 1386 info->io.regspacing = regspacings[i]; 1387 if (!info->io.regspacing) 1388 info->io.regspacing = DEFAULT_REGSPACING; 1389 info->io.regsize = regsizes[i]; 1390 if (!info->io.regsize) 1391 info->io.regsize = DEFAULT_REGSPACING; 1392 info->io.regshift = regshifts[i]; 1393 info->irq = irqs[i]; 1394 if (info->irq) 1395 info->irq_setup = std_irq_setup; 1396 1397 try_smi_init(info); 1398 } 1399 } 1400 1401 #ifdef CONFIG_ACPI 1402 1403 #include <linux/acpi.h> 1404 1405 /* Once we get an ACPI failure, we don't try any more, because we go 1406 through the tables sequentially. Once we don't find a table, there 1407 are no more. */ 1408 static int acpi_failure = 0; 1409 1410 /* For GPE-type interrupts. */ 1411 static u32 ipmi_acpi_gpe(void *context) 1412 { 1413 struct smi_info *smi_info = context; 1414 unsigned long flags; 1415 #ifdef DEBUG_TIMING 1416 struct timeval t; 1417 #endif 1418 1419 spin_lock_irqsave(&(smi_info->si_lock), flags); 1420 1421 spin_lock(&smi_info->count_lock); 1422 smi_info->interrupts++; 1423 spin_unlock(&smi_info->count_lock); 1424 1425 if (atomic_read(&smi_info->stop_operation)) 1426 goto out; 1427 1428 #ifdef DEBUG_TIMING 1429 do_gettimeofday(&t); 1430 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1431 #endif 1432 smi_event_handler(smi_info, 0); 1433 out: 1434 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1435 1436 return ACPI_INTERRUPT_HANDLED; 1437 } 1438 1439 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1440 { 1441 if (!info->irq) 1442 return; 1443 1444 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1445 } 1446 1447 static int acpi_gpe_irq_setup(struct smi_info *info) 1448 { 1449 acpi_status status; 1450 1451 if (!info->irq) 1452 return 0; 1453 1454 /* FIXME - is level triggered right? */ 1455 status = acpi_install_gpe_handler(NULL, 1456 info->irq, 1457 ACPI_GPE_LEVEL_TRIGGERED, 1458 &ipmi_acpi_gpe, 1459 info); 1460 if (status != AE_OK) { 1461 printk(KERN_WARNING 1462 "ipmi_si: %s unable to claim ACPI GPE %d," 1463 " running polled\n", 1464 DEVICE_NAME, info->irq); 1465 info->irq = 0; 1466 return -EINVAL; 1467 } else { 1468 info->irq_cleanup = acpi_gpe_irq_cleanup; 1469 printk(" Using ACPI GPE %d\n", info->irq); 1470 return 0; 1471 } 1472 } 1473 1474 /* 1475 * Defined at 1476 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf 1477 */ 1478 struct SPMITable { 1479 s8 Signature[4]; 1480 u32 Length; 1481 u8 Revision; 1482 u8 Checksum; 1483 s8 OEMID[6]; 1484 s8 OEMTableID[8]; 1485 s8 OEMRevision[4]; 1486 s8 CreatorID[4]; 1487 s8 CreatorRevision[4]; 1488 u8 InterfaceType; 1489 u8 IPMIlegacy; 1490 s16 SpecificationRevision; 1491 1492 /* 1493 * Bit 0 - SCI interrupt supported 1494 * Bit 1 - I/O APIC/SAPIC 1495 */ 1496 u8 InterruptType; 1497 1498 /* If bit 0 of InterruptType is set, then this is the SCI 1499 interrupt in the GPEx_STS register. */ 1500 u8 GPE; 1501 1502 s16 Reserved; 1503 1504 /* If bit 1 of InterruptType is set, then this is the I/O 1505 APIC/SAPIC interrupt. */ 1506 u32 GlobalSystemInterrupt; 1507 1508 /* The actual register address. */ 1509 struct acpi_generic_address addr; 1510 1511 u8 UID[4]; 1512 1513 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1514 }; 1515 1516 static __devinit int try_init_acpi(struct SPMITable *spmi) 1517 { 1518 struct smi_info *info; 1519 char *io_type; 1520 u8 addr_space; 1521 1522 if (spmi->IPMIlegacy != 1) { 1523 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1524 return -ENODEV; 1525 } 1526 1527 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1528 addr_space = IPMI_MEM_ADDR_SPACE; 1529 else 1530 addr_space = IPMI_IO_ADDR_SPACE; 1531 1532 info = kzalloc(sizeof(*info), GFP_KERNEL); 1533 if (!info) { 1534 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1535 return -ENOMEM; 1536 } 1537 1538 info->addr_source = "ACPI"; 1539 1540 /* Figure out the interface type. */ 1541 switch (spmi->InterfaceType) 1542 { 1543 case 1: /* KCS */ 1544 info->si_type = SI_KCS; 1545 break; 1546 case 2: /* SMIC */ 1547 info->si_type = SI_SMIC; 1548 break; 1549 case 3: /* BT */ 1550 info->si_type = SI_BT; 1551 break; 1552 default: 1553 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1554 spmi->InterfaceType); 1555 kfree(info); 1556 return -EIO; 1557 } 1558 1559 if (spmi->InterruptType & 1) { 1560 /* We've got a GPE interrupt. */ 1561 info->irq = spmi->GPE; 1562 info->irq_setup = acpi_gpe_irq_setup; 1563 } else if (spmi->InterruptType & 2) { 1564 /* We've got an APIC/SAPIC interrupt. */ 1565 info->irq = spmi->GlobalSystemInterrupt; 1566 info->irq_setup = std_irq_setup; 1567 } else { 1568 /* Use the default interrupt setting. */ 1569 info->irq = 0; 1570 info->irq_setup = NULL; 1571 } 1572 1573 if (spmi->addr.register_bit_width) { 1574 /* A (hopefully) properly formed register bit width. */ 1575 info->io.regspacing = spmi->addr.register_bit_width / 8; 1576 } else { 1577 info->io.regspacing = DEFAULT_REGSPACING; 1578 } 1579 info->io.regsize = info->io.regspacing; 1580 info->io.regshift = spmi->addr.register_bit_offset; 1581 1582 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1583 io_type = "memory"; 1584 info->io_setup = mem_setup; 1585 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1586 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1587 io_type = "I/O"; 1588 info->io_setup = port_setup; 1589 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1590 } else { 1591 kfree(info); 1592 printk("ipmi_si: Unknown ACPI I/O Address type\n"); 1593 return -EIO; 1594 } 1595 info->io.addr_data = spmi->addr.address; 1596 1597 try_smi_init(info); 1598 1599 return 0; 1600 } 1601 1602 static __devinit void acpi_find_bmc(void) 1603 { 1604 acpi_status status; 1605 struct SPMITable *spmi; 1606 int i; 1607 1608 if (acpi_disabled) 1609 return; 1610 1611 if (acpi_failure) 1612 return; 1613 1614 for (i = 0; ; i++) { 1615 status = acpi_get_firmware_table("SPMI", i+1, 1616 ACPI_LOGICAL_ADDRESSING, 1617 (struct acpi_table_header **) 1618 &spmi); 1619 if (status != AE_OK) 1620 return; 1621 1622 try_init_acpi(spmi); 1623 } 1624 } 1625 #endif 1626 1627 #ifdef CONFIG_DMI 1628 struct dmi_ipmi_data 1629 { 1630 u8 type; 1631 u8 addr_space; 1632 unsigned long base_addr; 1633 u8 irq; 1634 u8 offset; 1635 u8 slave_addr; 1636 }; 1637 1638 static int __devinit decode_dmi(struct dmi_header *dm, 1639 struct dmi_ipmi_data *dmi) 1640 { 1641 u8 *data = (u8 *)dm; 1642 unsigned long base_addr; 1643 u8 reg_spacing; 1644 u8 len = dm->length; 1645 1646 dmi->type = data[4]; 1647 1648 memcpy(&base_addr, data+8, sizeof(unsigned long)); 1649 if (len >= 0x11) { 1650 if (base_addr & 1) { 1651 /* I/O */ 1652 base_addr &= 0xFFFE; 1653 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1654 } 1655 else { 1656 /* Memory */ 1657 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 1658 } 1659 /* If bit 4 of byte 0x10 is set, then the lsb for the address 1660 is odd. */ 1661 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 1662 1663 dmi->irq = data[0x11]; 1664 1665 /* The top two bits of byte 0x10 hold the register spacing. */ 1666 reg_spacing = (data[0x10] & 0xC0) >> 6; 1667 switch(reg_spacing){ 1668 case 0x00: /* Byte boundaries */ 1669 dmi->offset = 1; 1670 break; 1671 case 0x01: /* 32-bit boundaries */ 1672 dmi->offset = 4; 1673 break; 1674 case 0x02: /* 16-byte boundaries */ 1675 dmi->offset = 16; 1676 break; 1677 default: 1678 /* Some other interface, just ignore it. */ 1679 return -EIO; 1680 } 1681 } else { 1682 /* Old DMI spec. */ 1683 /* Note that technically, the lower bit of the base 1684 * address should be 1 if the address is I/O and 0 if 1685 * the address is in memory. So many systems get that 1686 * wrong (and all that I have seen are I/O) so we just 1687 * ignore that bit and assume I/O. Systems that use 1688 * memory should use the newer spec, anyway. */ 1689 dmi->base_addr = base_addr & 0xfffe; 1690 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1691 dmi->offset = 1; 1692 } 1693 1694 dmi->slave_addr = data[6]; 1695 1696 return 0; 1697 } 1698 1699 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 1700 { 1701 struct smi_info *info; 1702 1703 info = kzalloc(sizeof(*info), GFP_KERNEL); 1704 if (!info) { 1705 printk(KERN_ERR 1706 "ipmi_si: Could not allocate SI data\n"); 1707 return; 1708 } 1709 1710 info->addr_source = "SMBIOS"; 1711 1712 switch (ipmi_data->type) { 1713 case 0x01: /* KCS */ 1714 info->si_type = SI_KCS; 1715 break; 1716 case 0x02: /* SMIC */ 1717 info->si_type = SI_SMIC; 1718 break; 1719 case 0x03: /* BT */ 1720 info->si_type = SI_BT; 1721 break; 1722 default: 1723 return; 1724 } 1725 1726 switch (ipmi_data->addr_space) { 1727 case IPMI_MEM_ADDR_SPACE: 1728 info->io_setup = mem_setup; 1729 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1730 break; 1731 1732 case IPMI_IO_ADDR_SPACE: 1733 info->io_setup = port_setup; 1734 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1735 break; 1736 1737 default: 1738 kfree(info); 1739 printk(KERN_WARNING 1740 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 1741 ipmi_data->addr_space); 1742 return; 1743 } 1744 info->io.addr_data = ipmi_data->base_addr; 1745 1746 info->io.regspacing = ipmi_data->offset; 1747 if (!info->io.regspacing) 1748 info->io.regspacing = DEFAULT_REGSPACING; 1749 info->io.regsize = DEFAULT_REGSPACING; 1750 info->io.regshift = 0; 1751 1752 info->slave_addr = ipmi_data->slave_addr; 1753 1754 info->irq = ipmi_data->irq; 1755 if (info->irq) 1756 info->irq_setup = std_irq_setup; 1757 1758 try_smi_init(info); 1759 } 1760 1761 static void __devinit dmi_find_bmc(void) 1762 { 1763 struct dmi_device *dev = NULL; 1764 struct dmi_ipmi_data data; 1765 int rv; 1766 1767 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 1768 rv = decode_dmi((struct dmi_header *) dev->device_data, &data); 1769 if (!rv) 1770 try_init_dmi(&data); 1771 } 1772 } 1773 #endif /* CONFIG_DMI */ 1774 1775 #ifdef CONFIG_PCI 1776 1777 #define PCI_ERMC_CLASSCODE 0x0C0700 1778 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 1779 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 1780 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 1781 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 1782 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 1783 1784 #define PCI_HP_VENDOR_ID 0x103C 1785 #define PCI_MMC_DEVICE_ID 0x121A 1786 #define PCI_MMC_ADDR_CW 0x10 1787 1788 static void ipmi_pci_cleanup(struct smi_info *info) 1789 { 1790 struct pci_dev *pdev = info->addr_source_data; 1791 1792 pci_disable_device(pdev); 1793 } 1794 1795 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 1796 const struct pci_device_id *ent) 1797 { 1798 int rv; 1799 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 1800 struct smi_info *info; 1801 int first_reg_offset = 0; 1802 1803 info = kzalloc(sizeof(*info), GFP_KERNEL); 1804 if (!info) 1805 return ENOMEM; 1806 1807 info->addr_source = "PCI"; 1808 1809 switch (class_type) { 1810 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 1811 info->si_type = SI_SMIC; 1812 break; 1813 1814 case PCI_ERMC_CLASSCODE_TYPE_KCS: 1815 info->si_type = SI_KCS; 1816 break; 1817 1818 case PCI_ERMC_CLASSCODE_TYPE_BT: 1819 info->si_type = SI_BT; 1820 break; 1821 1822 default: 1823 kfree(info); 1824 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 1825 pci_name(pdev), class_type); 1826 return ENOMEM; 1827 } 1828 1829 rv = pci_enable_device(pdev); 1830 if (rv) { 1831 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 1832 pci_name(pdev)); 1833 kfree(info); 1834 return rv; 1835 } 1836 1837 info->addr_source_cleanup = ipmi_pci_cleanup; 1838 info->addr_source_data = pdev; 1839 1840 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID) 1841 first_reg_offset = 1; 1842 1843 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 1844 info->io_setup = port_setup; 1845 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1846 } else { 1847 info->io_setup = mem_setup; 1848 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1849 } 1850 info->io.addr_data = pci_resource_start(pdev, 0); 1851 1852 info->io.regspacing = DEFAULT_REGSPACING; 1853 info->io.regsize = DEFAULT_REGSPACING; 1854 info->io.regshift = 0; 1855 1856 info->irq = pdev->irq; 1857 if (info->irq) 1858 info->irq_setup = std_irq_setup; 1859 1860 info->dev = &pdev->dev; 1861 1862 return try_smi_init(info); 1863 } 1864 1865 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 1866 { 1867 } 1868 1869 #ifdef CONFIG_PM 1870 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 1871 { 1872 return 0; 1873 } 1874 1875 static int ipmi_pci_resume(struct pci_dev *pdev) 1876 { 1877 return 0; 1878 } 1879 #endif 1880 1881 static struct pci_device_id ipmi_pci_devices[] = { 1882 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 1883 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) } 1884 }; 1885 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 1886 1887 static struct pci_driver ipmi_pci_driver = { 1888 .name = DEVICE_NAME, 1889 .id_table = ipmi_pci_devices, 1890 .probe = ipmi_pci_probe, 1891 .remove = __devexit_p(ipmi_pci_remove), 1892 #ifdef CONFIG_PM 1893 .suspend = ipmi_pci_suspend, 1894 .resume = ipmi_pci_resume, 1895 #endif 1896 }; 1897 #endif /* CONFIG_PCI */ 1898 1899 1900 static int try_get_dev_id(struct smi_info *smi_info) 1901 { 1902 unsigned char msg[2]; 1903 unsigned char *resp; 1904 unsigned long resp_len; 1905 enum si_sm_result smi_result; 1906 int rv = 0; 1907 1908 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1909 if (!resp) 1910 return -ENOMEM; 1911 1912 /* Do a Get Device ID command, since it comes back with some 1913 useful info. */ 1914 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1915 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1916 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1917 1918 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1919 for (;;) 1920 { 1921 if (smi_result == SI_SM_CALL_WITH_DELAY || 1922 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1923 schedule_timeout_uninterruptible(1); 1924 smi_result = smi_info->handlers->event( 1925 smi_info->si_sm, 100); 1926 } 1927 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1928 { 1929 smi_result = smi_info->handlers->event( 1930 smi_info->si_sm, 0); 1931 } 1932 else 1933 break; 1934 } 1935 if (smi_result == SI_SM_HOSED) { 1936 /* We couldn't get the state machine to run, so whatever's at 1937 the port is probably not an IPMI SMI interface. */ 1938 rv = -ENODEV; 1939 goto out; 1940 } 1941 1942 /* Otherwise, we got some data. */ 1943 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1944 resp, IPMI_MAX_MSG_LENGTH); 1945 if (resp_len < 14) { 1946 /* That's odd, it should be longer. */ 1947 rv = -EINVAL; 1948 goto out; 1949 } 1950 1951 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { 1952 /* That's odd, it shouldn't be able to fail. */ 1953 rv = -EINVAL; 1954 goto out; 1955 } 1956 1957 /* Record info from the get device id, in case we need it. */ 1958 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id); 1959 1960 out: 1961 kfree(resp); 1962 return rv; 1963 } 1964 1965 static int type_file_read_proc(char *page, char **start, off_t off, 1966 int count, int *eof, void *data) 1967 { 1968 char *out = (char *) page; 1969 struct smi_info *smi = data; 1970 1971 switch (smi->si_type) { 1972 case SI_KCS: 1973 return sprintf(out, "kcs\n"); 1974 case SI_SMIC: 1975 return sprintf(out, "smic\n"); 1976 case SI_BT: 1977 return sprintf(out, "bt\n"); 1978 default: 1979 return 0; 1980 } 1981 } 1982 1983 static int stat_file_read_proc(char *page, char **start, off_t off, 1984 int count, int *eof, void *data) 1985 { 1986 char *out = (char *) page; 1987 struct smi_info *smi = data; 1988 1989 out += sprintf(out, "interrupts_enabled: %d\n", 1990 smi->irq && !smi->interrupt_disabled); 1991 out += sprintf(out, "short_timeouts: %ld\n", 1992 smi->short_timeouts); 1993 out += sprintf(out, "long_timeouts: %ld\n", 1994 smi->long_timeouts); 1995 out += sprintf(out, "timeout_restarts: %ld\n", 1996 smi->timeout_restarts); 1997 out += sprintf(out, "idles: %ld\n", 1998 smi->idles); 1999 out += sprintf(out, "interrupts: %ld\n", 2000 smi->interrupts); 2001 out += sprintf(out, "attentions: %ld\n", 2002 smi->attentions); 2003 out += sprintf(out, "flag_fetches: %ld\n", 2004 smi->flag_fetches); 2005 out += sprintf(out, "hosed_count: %ld\n", 2006 smi->hosed_count); 2007 out += sprintf(out, "complete_transactions: %ld\n", 2008 smi->complete_transactions); 2009 out += sprintf(out, "events: %ld\n", 2010 smi->events); 2011 out += sprintf(out, "watchdog_pretimeouts: %ld\n", 2012 smi->watchdog_pretimeouts); 2013 out += sprintf(out, "incoming_messages: %ld\n", 2014 smi->incoming_messages); 2015 2016 return (out - ((char *) page)); 2017 } 2018 2019 /* 2020 * oem_data_avail_to_receive_msg_avail 2021 * @info - smi_info structure with msg_flags set 2022 * 2023 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2024 * Returns 1 indicating need to re-run handle_flags(). 2025 */ 2026 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2027 { 2028 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2029 RECEIVE_MSG_AVAIL); 2030 return 1; 2031 } 2032 2033 /* 2034 * setup_dell_poweredge_oem_data_handler 2035 * @info - smi_info.device_id must be populated 2036 * 2037 * Systems that match, but have firmware version < 1.40 may assert 2038 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2039 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2040 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2041 * as RECEIVE_MSG_AVAIL instead. 2042 * 2043 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2044 * assert the OEM[012] bits, and if it did, the driver would have to 2045 * change to handle that properly, we don't actually check for the 2046 * firmware version. 2047 * Device ID = 0x20 BMC on PowerEdge 8G servers 2048 * Device Revision = 0x80 2049 * Firmware Revision1 = 0x01 BMC version 1.40 2050 * Firmware Revision2 = 0x40 BCD encoded 2051 * IPMI Version = 0x51 IPMI 1.5 2052 * Manufacturer ID = A2 02 00 Dell IANA 2053 * 2054 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2055 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2056 * 2057 */ 2058 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2059 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2060 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2061 #define DELL_IANA_MFR_ID 0x0002a2 2062 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2063 { 2064 struct ipmi_device_id *id = &smi_info->device_id; 2065 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2066 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2067 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2068 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2069 smi_info->oem_data_avail_handler = 2070 oem_data_avail_to_receive_msg_avail; 2071 } 2072 else if (ipmi_version_major(id) < 1 || 2073 (ipmi_version_major(id) == 1 && 2074 ipmi_version_minor(id) < 5)) { 2075 smi_info->oem_data_avail_handler = 2076 oem_data_avail_to_receive_msg_avail; 2077 } 2078 } 2079 } 2080 2081 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2082 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2083 { 2084 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2085 2086 /* Make it a reponse */ 2087 msg->rsp[0] = msg->data[0] | 4; 2088 msg->rsp[1] = msg->data[1]; 2089 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2090 msg->rsp_size = 3; 2091 smi_info->curr_msg = NULL; 2092 deliver_recv_msg(smi_info, msg); 2093 } 2094 2095 /* 2096 * dell_poweredge_bt_xaction_handler 2097 * @info - smi_info.device_id must be populated 2098 * 2099 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2100 * not respond to a Get SDR command if the length of the data 2101 * requested is exactly 0x3A, which leads to command timeouts and no 2102 * data returned. This intercepts such commands, and causes userspace 2103 * callers to try again with a different-sized buffer, which succeeds. 2104 */ 2105 2106 #define STORAGE_NETFN 0x0A 2107 #define STORAGE_CMD_GET_SDR 0x23 2108 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2109 unsigned long unused, 2110 void *in) 2111 { 2112 struct smi_info *smi_info = in; 2113 unsigned char *data = smi_info->curr_msg->data; 2114 unsigned int size = smi_info->curr_msg->data_size; 2115 if (size >= 8 && 2116 (data[0]>>2) == STORAGE_NETFN && 2117 data[1] == STORAGE_CMD_GET_SDR && 2118 data[7] == 0x3A) { 2119 return_hosed_msg_badsize(smi_info); 2120 return NOTIFY_STOP; 2121 } 2122 return NOTIFY_DONE; 2123 } 2124 2125 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2126 .notifier_call = dell_poweredge_bt_xaction_handler, 2127 }; 2128 2129 /* 2130 * setup_dell_poweredge_bt_xaction_handler 2131 * @info - smi_info.device_id must be filled in already 2132 * 2133 * Fills in smi_info.device_id.start_transaction_pre_hook 2134 * when we know what function to use there. 2135 */ 2136 static void 2137 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2138 { 2139 struct ipmi_device_id *id = &smi_info->device_id; 2140 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2141 smi_info->si_type == SI_BT) 2142 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2143 } 2144 2145 /* 2146 * setup_oem_data_handler 2147 * @info - smi_info.device_id must be filled in already 2148 * 2149 * Fills in smi_info.device_id.oem_data_available_handler 2150 * when we know what function to use there. 2151 */ 2152 2153 static void setup_oem_data_handler(struct smi_info *smi_info) 2154 { 2155 setup_dell_poweredge_oem_data_handler(smi_info); 2156 } 2157 2158 static void setup_xaction_handlers(struct smi_info *smi_info) 2159 { 2160 setup_dell_poweredge_bt_xaction_handler(smi_info); 2161 } 2162 2163 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2164 { 2165 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM)) 2166 kthread_stop(smi_info->thread); 2167 del_timer_sync(&smi_info->si_timer); 2168 } 2169 2170 static struct ipmi_default_vals 2171 { 2172 int type; 2173 int port; 2174 } __devinit ipmi_defaults[] = 2175 { 2176 { .type = SI_KCS, .port = 0xca2 }, 2177 { .type = SI_SMIC, .port = 0xca9 }, 2178 { .type = SI_BT, .port = 0xe4 }, 2179 { .port = 0 } 2180 }; 2181 2182 static __devinit void default_find_bmc(void) 2183 { 2184 struct smi_info *info; 2185 int i; 2186 2187 for (i = 0; ; i++) { 2188 if (!ipmi_defaults[i].port) 2189 break; 2190 2191 info = kzalloc(sizeof(*info), GFP_KERNEL); 2192 if (!info) 2193 return; 2194 2195 info->addr_source = NULL; 2196 2197 info->si_type = ipmi_defaults[i].type; 2198 info->io_setup = port_setup; 2199 info->io.addr_data = ipmi_defaults[i].port; 2200 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2201 2202 info->io.addr = NULL; 2203 info->io.regspacing = DEFAULT_REGSPACING; 2204 info->io.regsize = DEFAULT_REGSPACING; 2205 info->io.regshift = 0; 2206 2207 if (try_smi_init(info) == 0) { 2208 /* Found one... */ 2209 printk(KERN_INFO "ipmi_si: Found default %s state" 2210 " machine at %s address 0x%lx\n", 2211 si_to_str[info->si_type], 2212 addr_space_to_str[info->io.addr_type], 2213 info->io.addr_data); 2214 return; 2215 } 2216 } 2217 } 2218 2219 static int is_new_interface(struct smi_info *info) 2220 { 2221 struct smi_info *e; 2222 2223 list_for_each_entry(e, &smi_infos, link) { 2224 if (e->io.addr_type != info->io.addr_type) 2225 continue; 2226 if (e->io.addr_data == info->io.addr_data) 2227 return 0; 2228 } 2229 2230 return 1; 2231 } 2232 2233 static int try_smi_init(struct smi_info *new_smi) 2234 { 2235 int rv; 2236 2237 if (new_smi->addr_source) { 2238 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2239 " machine at %s address 0x%lx, slave address 0x%x," 2240 " irq %d\n", 2241 new_smi->addr_source, 2242 si_to_str[new_smi->si_type], 2243 addr_space_to_str[new_smi->io.addr_type], 2244 new_smi->io.addr_data, 2245 new_smi->slave_addr, new_smi->irq); 2246 } 2247 2248 down(&smi_infos_lock); 2249 if (!is_new_interface(new_smi)) { 2250 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2251 rv = -EBUSY; 2252 goto out_err; 2253 } 2254 2255 /* So we know not to free it unless we have allocated one. */ 2256 new_smi->intf = NULL; 2257 new_smi->si_sm = NULL; 2258 new_smi->handlers = NULL; 2259 2260 switch (new_smi->si_type) { 2261 case SI_KCS: 2262 new_smi->handlers = &kcs_smi_handlers; 2263 break; 2264 2265 case SI_SMIC: 2266 new_smi->handlers = &smic_smi_handlers; 2267 break; 2268 2269 case SI_BT: 2270 new_smi->handlers = &bt_smi_handlers; 2271 break; 2272 2273 default: 2274 /* No support for anything else yet. */ 2275 rv = -EIO; 2276 goto out_err; 2277 } 2278 2279 /* Allocate the state machine's data and initialize it. */ 2280 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2281 if (!new_smi->si_sm) { 2282 printk(" Could not allocate state machine memory\n"); 2283 rv = -ENOMEM; 2284 goto out_err; 2285 } 2286 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2287 &new_smi->io); 2288 2289 /* Now that we know the I/O size, we can set up the I/O. */ 2290 rv = new_smi->io_setup(new_smi); 2291 if (rv) { 2292 printk(" Could not set up I/O space\n"); 2293 goto out_err; 2294 } 2295 2296 spin_lock_init(&(new_smi->si_lock)); 2297 spin_lock_init(&(new_smi->msg_lock)); 2298 spin_lock_init(&(new_smi->count_lock)); 2299 2300 /* Do low-level detection first. */ 2301 if (new_smi->handlers->detect(new_smi->si_sm)) { 2302 if (new_smi->addr_source) 2303 printk(KERN_INFO "ipmi_si: Interface detection" 2304 " failed\n"); 2305 rv = -ENODEV; 2306 goto out_err; 2307 } 2308 2309 /* Attempt a get device id command. If it fails, we probably 2310 don't have a BMC here. */ 2311 rv = try_get_dev_id(new_smi); 2312 if (rv) { 2313 if (new_smi->addr_source) 2314 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 2315 " at this location\n"); 2316 goto out_err; 2317 } 2318 2319 setup_oem_data_handler(new_smi); 2320 setup_xaction_handlers(new_smi); 2321 2322 /* Try to claim any interrupts. */ 2323 if (new_smi->irq_setup) 2324 new_smi->irq_setup(new_smi); 2325 2326 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 2327 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 2328 new_smi->curr_msg = NULL; 2329 atomic_set(&new_smi->req_events, 0); 2330 new_smi->run_to_completion = 0; 2331 2332 new_smi->interrupt_disabled = 0; 2333 atomic_set(&new_smi->stop_operation, 0); 2334 new_smi->intf_num = smi_num; 2335 smi_num++; 2336 2337 /* Start clearing the flags before we enable interrupts or the 2338 timer to avoid racing with the timer. */ 2339 start_clear_flags(new_smi); 2340 /* IRQ is defined to be set when non-zero. */ 2341 if (new_smi->irq) 2342 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 2343 2344 /* The ipmi_register_smi() code does some operations to 2345 determine the channel information, so we must be ready to 2346 handle operations before it is called. This means we have 2347 to stop the timer if we get an error after this point. */ 2348 init_timer(&(new_smi->si_timer)); 2349 new_smi->si_timer.data = (long) new_smi; 2350 new_smi->si_timer.function = smi_timeout; 2351 new_smi->last_timeout_jiffies = jiffies; 2352 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 2353 2354 add_timer(&(new_smi->si_timer)); 2355 if (new_smi->si_type != SI_BT) 2356 new_smi->thread = kthread_run(ipmi_thread, new_smi, 2357 "kipmi%d", new_smi->intf_num); 2358 2359 if (!new_smi->dev) { 2360 /* If we don't already have a device from something 2361 * else (like PCI), then register a new one. */ 2362 new_smi->pdev = platform_device_alloc("ipmi_si", 2363 new_smi->intf_num); 2364 if (rv) { 2365 printk(KERN_ERR 2366 "ipmi_si_intf:" 2367 " Unable to allocate platform device\n"); 2368 goto out_err_stop_timer; 2369 } 2370 new_smi->dev = &new_smi->pdev->dev; 2371 new_smi->dev->driver = &ipmi_driver; 2372 2373 rv = platform_device_register(new_smi->pdev); 2374 if (rv) { 2375 printk(KERN_ERR 2376 "ipmi_si_intf:" 2377 " Unable to register system interface device:" 2378 " %d\n", 2379 rv); 2380 goto out_err_stop_timer; 2381 } 2382 new_smi->dev_registered = 1; 2383 } 2384 2385 rv = ipmi_register_smi(&handlers, 2386 new_smi, 2387 &new_smi->device_id, 2388 new_smi->dev, 2389 new_smi->slave_addr, 2390 &(new_smi->intf)); 2391 if (rv) { 2392 printk(KERN_ERR 2393 "ipmi_si: Unable to register device: error %d\n", 2394 rv); 2395 goto out_err_stop_timer; 2396 } 2397 2398 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2399 type_file_read_proc, NULL, 2400 new_smi, THIS_MODULE); 2401 if (rv) { 2402 printk(KERN_ERR 2403 "ipmi_si: Unable to create proc entry: %d\n", 2404 rv); 2405 goto out_err_stop_timer; 2406 } 2407 2408 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 2409 stat_file_read_proc, NULL, 2410 new_smi, THIS_MODULE); 2411 if (rv) { 2412 printk(KERN_ERR 2413 "ipmi_si: Unable to create proc entry: %d\n", 2414 rv); 2415 goto out_err_stop_timer; 2416 } 2417 2418 list_add_tail(&new_smi->link, &smi_infos); 2419 2420 up(&smi_infos_lock); 2421 2422 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]); 2423 2424 return 0; 2425 2426 out_err_stop_timer: 2427 atomic_inc(&new_smi->stop_operation); 2428 wait_for_timer_and_thread(new_smi); 2429 2430 out_err: 2431 if (new_smi->intf) 2432 ipmi_unregister_smi(new_smi->intf); 2433 2434 if (new_smi->irq_cleanup) 2435 new_smi->irq_cleanup(new_smi); 2436 2437 /* Wait until we know that we are out of any interrupt 2438 handlers might have been running before we freed the 2439 interrupt. */ 2440 synchronize_sched(); 2441 2442 if (new_smi->si_sm) { 2443 if (new_smi->handlers) 2444 new_smi->handlers->cleanup(new_smi->si_sm); 2445 kfree(new_smi->si_sm); 2446 } 2447 if (new_smi->addr_source_cleanup) 2448 new_smi->addr_source_cleanup(new_smi); 2449 if (new_smi->io_cleanup) 2450 new_smi->io_cleanup(new_smi); 2451 2452 if (new_smi->dev_registered) 2453 platform_device_unregister(new_smi->pdev); 2454 2455 kfree(new_smi); 2456 2457 up(&smi_infos_lock); 2458 2459 return rv; 2460 } 2461 2462 static __devinit int init_ipmi_si(void) 2463 { 2464 int i; 2465 char *str; 2466 int rv; 2467 2468 if (initialized) 2469 return 0; 2470 initialized = 1; 2471 2472 /* Register the device drivers. */ 2473 rv = driver_register(&ipmi_driver); 2474 if (rv) { 2475 printk(KERN_ERR 2476 "init_ipmi_si: Unable to register driver: %d\n", 2477 rv); 2478 return rv; 2479 } 2480 2481 2482 /* Parse out the si_type string into its components. */ 2483 str = si_type_str; 2484 if (*str != '\0') { 2485 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 2486 si_type[i] = str; 2487 str = strchr(str, ','); 2488 if (str) { 2489 *str = '\0'; 2490 str++; 2491 } else { 2492 break; 2493 } 2494 } 2495 } 2496 2497 printk(KERN_INFO "IPMI System Interface driver.\n"); 2498 2499 hardcode_find_bmc(); 2500 2501 #ifdef CONFIG_DMI 2502 dmi_find_bmc(); 2503 #endif 2504 2505 #ifdef CONFIG_ACPI 2506 if (si_trydefaults) 2507 acpi_find_bmc(); 2508 #endif 2509 2510 #ifdef CONFIG_PCI 2511 pci_module_init(&ipmi_pci_driver); 2512 #endif 2513 2514 if (si_trydefaults) { 2515 down(&smi_infos_lock); 2516 if (list_empty(&smi_infos)) { 2517 /* No BMC was found, try defaults. */ 2518 up(&smi_infos_lock); 2519 default_find_bmc(); 2520 } else { 2521 up(&smi_infos_lock); 2522 } 2523 } 2524 2525 down(&smi_infos_lock); 2526 if (list_empty(&smi_infos)) { 2527 up(&smi_infos_lock); 2528 #ifdef CONFIG_PCI 2529 pci_unregister_driver(&ipmi_pci_driver); 2530 #endif 2531 printk("ipmi_si: Unable to find any System Interface(s)\n"); 2532 return -ENODEV; 2533 } else { 2534 up(&smi_infos_lock); 2535 return 0; 2536 } 2537 } 2538 module_init(init_ipmi_si); 2539 2540 static void __devexit cleanup_one_si(struct smi_info *to_clean) 2541 { 2542 int rv; 2543 unsigned long flags; 2544 2545 if (!to_clean) 2546 return; 2547 2548 list_del(&to_clean->link); 2549 2550 /* Tell the timer and interrupt handlers that we are shutting 2551 down. */ 2552 spin_lock_irqsave(&(to_clean->si_lock), flags); 2553 spin_lock(&(to_clean->msg_lock)); 2554 2555 atomic_inc(&to_clean->stop_operation); 2556 2557 if (to_clean->irq_cleanup) 2558 to_clean->irq_cleanup(to_clean); 2559 2560 spin_unlock(&(to_clean->msg_lock)); 2561 spin_unlock_irqrestore(&(to_clean->si_lock), flags); 2562 2563 /* Wait until we know that we are out of any interrupt 2564 handlers might have been running before we freed the 2565 interrupt. */ 2566 synchronize_sched(); 2567 2568 wait_for_timer_and_thread(to_clean); 2569 2570 /* Interrupts and timeouts are stopped, now make sure the 2571 interface is in a clean state. */ 2572 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 2573 poll(to_clean); 2574 schedule_timeout_uninterruptible(1); 2575 } 2576 2577 rv = ipmi_unregister_smi(to_clean->intf); 2578 if (rv) { 2579 printk(KERN_ERR 2580 "ipmi_si: Unable to unregister device: errno=%d\n", 2581 rv); 2582 } 2583 2584 to_clean->handlers->cleanup(to_clean->si_sm); 2585 2586 kfree(to_clean->si_sm); 2587 2588 if (to_clean->addr_source_cleanup) 2589 to_clean->addr_source_cleanup(to_clean); 2590 if (to_clean->io_cleanup) 2591 to_clean->io_cleanup(to_clean); 2592 2593 if (to_clean->dev_registered) 2594 platform_device_unregister(to_clean->pdev); 2595 2596 kfree(to_clean); 2597 } 2598 2599 static __exit void cleanup_ipmi_si(void) 2600 { 2601 struct smi_info *e, *tmp_e; 2602 2603 if (!initialized) 2604 return; 2605 2606 #ifdef CONFIG_PCI 2607 pci_unregister_driver(&ipmi_pci_driver); 2608 #endif 2609 2610 down(&smi_infos_lock); 2611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2612 cleanup_one_si(e); 2613 up(&smi_infos_lock); 2614 2615 driver_unregister(&ipmi_driver); 2616 } 2617 module_exit(cleanup_ipmi_si); 2618 2619 MODULE_LICENSE("GPL"); 2620 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2621 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); 2622