1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 * You should have received a copy of the GNU General Public License along 31 * with this program; if not, write to the Free Software Foundation, Inc., 32 * 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 /* 36 * This file holds the "policy" for the interface to the SMI state 37 * machine. It does the configuration, handles timers and interrupts, 38 * and drives the real SMI state machine. 39 */ 40 41 #include <linux/module.h> 42 #include <linux/moduleparam.h> 43 #include <asm/system.h> 44 #include <linux/sched.h> 45 #include <linux/timer.h> 46 #include <linux/errno.h> 47 #include <linux/spinlock.h> 48 #include <linux/slab.h> 49 #include <linux/delay.h> 50 #include <linux/list.h> 51 #include <linux/pci.h> 52 #include <linux/ioport.h> 53 #include <linux/notifier.h> 54 #include <linux/mutex.h> 55 #include <linux/kthread.h> 56 #include <asm/irq.h> 57 #include <linux/interrupt.h> 58 #include <linux/rcupdate.h> 59 #include <linux/ipmi_smi.h> 60 #include <asm/io.h> 61 #include "ipmi_si_sm.h" 62 #include <linux/init.h> 63 #include <linux/dmi.h> 64 #include <linux/string.h> 65 #include <linux/ctype.h> 66 67 #define PFX "ipmi_si: " 68 69 /* Measure times between events in the driver. */ 70 #undef DEBUG_TIMING 71 72 /* Call every 10 ms. */ 73 #define SI_TIMEOUT_TIME_USEC 10000 74 #define SI_USEC_PER_JIFFY (1000000/HZ) 75 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 76 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 77 short timeout */ 78 79 enum si_intf_state { 80 SI_NORMAL, 81 SI_GETTING_FLAGS, 82 SI_GETTING_EVENTS, 83 SI_CLEARING_FLAGS, 84 SI_CLEARING_FLAGS_THEN_SET_IRQ, 85 SI_GETTING_MESSAGES, 86 SI_ENABLE_INTERRUPTS1, 87 SI_ENABLE_INTERRUPTS2 88 /* FIXME - add watchdog stuff. */ 89 }; 90 91 /* Some BT-specific defines we need here. */ 92 #define IPMI_BT_INTMASK_REG 2 93 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 94 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 95 96 enum si_type { 97 SI_KCS, SI_SMIC, SI_BT 98 }; 99 static char *si_to_str[] = { "kcs", "smic", "bt" }; 100 101 #define DEVICE_NAME "ipmi_si" 102 103 static struct device_driver ipmi_driver = 104 { 105 .name = DEVICE_NAME, 106 .bus = &platform_bus_type 107 }; 108 109 struct smi_info 110 { 111 int intf_num; 112 ipmi_smi_t intf; 113 struct si_sm_data *si_sm; 114 struct si_sm_handlers *handlers; 115 enum si_type si_type; 116 spinlock_t si_lock; 117 spinlock_t msg_lock; 118 struct list_head xmit_msgs; 119 struct list_head hp_xmit_msgs; 120 struct ipmi_smi_msg *curr_msg; 121 enum si_intf_state si_state; 122 123 /* Used to handle the various types of I/O that can occur with 124 IPMI */ 125 struct si_sm_io io; 126 int (*io_setup)(struct smi_info *info); 127 void (*io_cleanup)(struct smi_info *info); 128 int (*irq_setup)(struct smi_info *info); 129 void (*irq_cleanup)(struct smi_info *info); 130 unsigned int io_size; 131 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 132 void (*addr_source_cleanup)(struct smi_info *info); 133 void *addr_source_data; 134 135 /* Per-OEM handler, called from handle_flags(). 136 Returns 1 when handle_flags() needs to be re-run 137 or 0 indicating it set si_state itself. 138 */ 139 int (*oem_data_avail_handler)(struct smi_info *smi_info); 140 141 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN 142 is set to hold the flags until we are done handling everything 143 from the flags. */ 144 #define RECEIVE_MSG_AVAIL 0x01 145 #define EVENT_MSG_BUFFER_FULL 0x02 146 #define WDT_PRE_TIMEOUT_INT 0x08 147 #define OEM0_DATA_AVAIL 0x20 148 #define OEM1_DATA_AVAIL 0x40 149 #define OEM2_DATA_AVAIL 0x80 150 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 151 OEM1_DATA_AVAIL | \ 152 OEM2_DATA_AVAIL) 153 unsigned char msg_flags; 154 155 /* If set to true, this will request events the next time the 156 state machine is idle. */ 157 atomic_t req_events; 158 159 /* If true, run the state machine to completion on every send 160 call. Generally used after a panic to make sure stuff goes 161 out. */ 162 int run_to_completion; 163 164 /* The I/O port of an SI interface. */ 165 int port; 166 167 /* The space between start addresses of the two ports. For 168 instance, if the first port is 0xca2 and the spacing is 4, then 169 the second port is 0xca6. */ 170 unsigned int spacing; 171 172 /* zero if no irq; */ 173 int irq; 174 175 /* The timer for this si. */ 176 struct timer_list si_timer; 177 178 /* The time (in jiffies) the last timeout occurred at. */ 179 unsigned long last_timeout_jiffies; 180 181 /* Used to gracefully stop the timer without race conditions. */ 182 atomic_t stop_operation; 183 184 /* The driver will disable interrupts when it gets into a 185 situation where it cannot handle messages due to lack of 186 memory. Once that situation clears up, it will re-enable 187 interrupts. */ 188 int interrupt_disabled; 189 190 /* From the get device id response... */ 191 struct ipmi_device_id device_id; 192 193 /* Driver model stuff. */ 194 struct device *dev; 195 struct platform_device *pdev; 196 197 /* True if we allocated the device, false if it came from 198 * someplace else (like PCI). */ 199 int dev_registered; 200 201 /* Slave address, could be reported from DMI. */ 202 unsigned char slave_addr; 203 204 /* Counters and things for the proc filesystem. */ 205 spinlock_t count_lock; 206 unsigned long short_timeouts; 207 unsigned long long_timeouts; 208 unsigned long timeout_restarts; 209 unsigned long idles; 210 unsigned long interrupts; 211 unsigned long attentions; 212 unsigned long flag_fetches; 213 unsigned long hosed_count; 214 unsigned long complete_transactions; 215 unsigned long events; 216 unsigned long watchdog_pretimeouts; 217 unsigned long incoming_messages; 218 219 struct task_struct *thread; 220 221 struct list_head link; 222 }; 223 224 #define SI_MAX_PARMS 4 225 226 static int force_kipmid[SI_MAX_PARMS]; 227 static int num_force_kipmid; 228 229 static int unload_when_empty = 1; 230 231 static int try_smi_init(struct smi_info *smi); 232 static void cleanup_one_si(struct smi_info *to_clean); 233 234 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 235 static int register_xaction_notifier(struct notifier_block * nb) 236 { 237 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 238 } 239 240 static void deliver_recv_msg(struct smi_info *smi_info, 241 struct ipmi_smi_msg *msg) 242 { 243 /* Deliver the message to the upper layer with the lock 244 released. */ 245 spin_unlock(&(smi_info->si_lock)); 246 ipmi_smi_msg_received(smi_info->intf, msg); 247 spin_lock(&(smi_info->si_lock)); 248 } 249 250 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 251 { 252 struct ipmi_smi_msg *msg = smi_info->curr_msg; 253 254 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 255 cCode = IPMI_ERR_UNSPECIFIED; 256 /* else use it as is */ 257 258 /* Make it a reponse */ 259 msg->rsp[0] = msg->data[0] | 4; 260 msg->rsp[1] = msg->data[1]; 261 msg->rsp[2] = cCode; 262 msg->rsp_size = 3; 263 264 smi_info->curr_msg = NULL; 265 deliver_recv_msg(smi_info, msg); 266 } 267 268 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 269 { 270 int rv; 271 struct list_head *entry = NULL; 272 #ifdef DEBUG_TIMING 273 struct timeval t; 274 #endif 275 276 /* No need to save flags, we aleady have interrupts off and we 277 already hold the SMI lock. */ 278 spin_lock(&(smi_info->msg_lock)); 279 280 /* Pick the high priority queue first. */ 281 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 282 entry = smi_info->hp_xmit_msgs.next; 283 } else if (!list_empty(&(smi_info->xmit_msgs))) { 284 entry = smi_info->xmit_msgs.next; 285 } 286 287 if (!entry) { 288 smi_info->curr_msg = NULL; 289 rv = SI_SM_IDLE; 290 } else { 291 int err; 292 293 list_del(entry); 294 smi_info->curr_msg = list_entry(entry, 295 struct ipmi_smi_msg, 296 link); 297 #ifdef DEBUG_TIMING 298 do_gettimeofday(&t); 299 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 300 #endif 301 err = atomic_notifier_call_chain(&xaction_notifier_list, 302 0, smi_info); 303 if (err & NOTIFY_STOP_MASK) { 304 rv = SI_SM_CALL_WITHOUT_DELAY; 305 goto out; 306 } 307 err = smi_info->handlers->start_transaction( 308 smi_info->si_sm, 309 smi_info->curr_msg->data, 310 smi_info->curr_msg->data_size); 311 if (err) { 312 return_hosed_msg(smi_info, err); 313 } 314 315 rv = SI_SM_CALL_WITHOUT_DELAY; 316 } 317 out: 318 spin_unlock(&(smi_info->msg_lock)); 319 320 return rv; 321 } 322 323 static void start_enable_irq(struct smi_info *smi_info) 324 { 325 unsigned char msg[2]; 326 327 /* If we are enabling interrupts, we have to tell the 328 BMC to use them. */ 329 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 330 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 331 332 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 333 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 334 } 335 336 static void start_clear_flags(struct smi_info *smi_info) 337 { 338 unsigned char msg[3]; 339 340 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 341 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 342 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 343 msg[2] = WDT_PRE_TIMEOUT_INT; 344 345 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 346 smi_info->si_state = SI_CLEARING_FLAGS; 347 } 348 349 /* When we have a situtaion where we run out of memory and cannot 350 allocate messages, we just leave them in the BMC and run the system 351 polled until we can allocate some memory. Once we have some 352 memory, we will re-enable the interrupt. */ 353 static inline void disable_si_irq(struct smi_info *smi_info) 354 { 355 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 356 disable_irq_nosync(smi_info->irq); 357 smi_info->interrupt_disabled = 1; 358 } 359 } 360 361 static inline void enable_si_irq(struct smi_info *smi_info) 362 { 363 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 364 enable_irq(smi_info->irq); 365 smi_info->interrupt_disabled = 0; 366 } 367 } 368 369 static void handle_flags(struct smi_info *smi_info) 370 { 371 retry: 372 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 373 /* Watchdog pre-timeout */ 374 spin_lock(&smi_info->count_lock); 375 smi_info->watchdog_pretimeouts++; 376 spin_unlock(&smi_info->count_lock); 377 378 start_clear_flags(smi_info); 379 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 380 spin_unlock(&(smi_info->si_lock)); 381 ipmi_smi_watchdog_pretimeout(smi_info->intf); 382 spin_lock(&(smi_info->si_lock)); 383 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 384 /* Messages available. */ 385 smi_info->curr_msg = ipmi_alloc_smi_msg(); 386 if (!smi_info->curr_msg) { 387 disable_si_irq(smi_info); 388 smi_info->si_state = SI_NORMAL; 389 return; 390 } 391 enable_si_irq(smi_info); 392 393 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 394 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 395 smi_info->curr_msg->data_size = 2; 396 397 smi_info->handlers->start_transaction( 398 smi_info->si_sm, 399 smi_info->curr_msg->data, 400 smi_info->curr_msg->data_size); 401 smi_info->si_state = SI_GETTING_MESSAGES; 402 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 403 /* Events available. */ 404 smi_info->curr_msg = ipmi_alloc_smi_msg(); 405 if (!smi_info->curr_msg) { 406 disable_si_irq(smi_info); 407 smi_info->si_state = SI_NORMAL; 408 return; 409 } 410 enable_si_irq(smi_info); 411 412 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 413 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 414 smi_info->curr_msg->data_size = 2; 415 416 smi_info->handlers->start_transaction( 417 smi_info->si_sm, 418 smi_info->curr_msg->data, 419 smi_info->curr_msg->data_size); 420 smi_info->si_state = SI_GETTING_EVENTS; 421 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 422 smi_info->oem_data_avail_handler) { 423 if (smi_info->oem_data_avail_handler(smi_info)) 424 goto retry; 425 } else { 426 smi_info->si_state = SI_NORMAL; 427 } 428 } 429 430 static void handle_transaction_done(struct smi_info *smi_info) 431 { 432 struct ipmi_smi_msg *msg; 433 #ifdef DEBUG_TIMING 434 struct timeval t; 435 436 do_gettimeofday(&t); 437 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 438 #endif 439 switch (smi_info->si_state) { 440 case SI_NORMAL: 441 if (!smi_info->curr_msg) 442 break; 443 444 smi_info->curr_msg->rsp_size 445 = smi_info->handlers->get_result( 446 smi_info->si_sm, 447 smi_info->curr_msg->rsp, 448 IPMI_MAX_MSG_LENGTH); 449 450 /* Do this here becase deliver_recv_msg() releases the 451 lock, and a new message can be put in during the 452 time the lock is released. */ 453 msg = smi_info->curr_msg; 454 smi_info->curr_msg = NULL; 455 deliver_recv_msg(smi_info, msg); 456 break; 457 458 case SI_GETTING_FLAGS: 459 { 460 unsigned char msg[4]; 461 unsigned int len; 462 463 /* We got the flags from the SMI, now handle them. */ 464 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 465 if (msg[2] != 0) { 466 /* Error fetching flags, just give up for 467 now. */ 468 smi_info->si_state = SI_NORMAL; 469 } else if (len < 4) { 470 /* Hmm, no flags. That's technically illegal, but 471 don't use uninitialized data. */ 472 smi_info->si_state = SI_NORMAL; 473 } else { 474 smi_info->msg_flags = msg[3]; 475 handle_flags(smi_info); 476 } 477 break; 478 } 479 480 case SI_CLEARING_FLAGS: 481 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 482 { 483 unsigned char msg[3]; 484 485 /* We cleared the flags. */ 486 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 487 if (msg[2] != 0) { 488 /* Error clearing flags */ 489 printk(KERN_WARNING 490 "ipmi_si: Error clearing flags: %2.2x\n", 491 msg[2]); 492 } 493 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 494 start_enable_irq(smi_info); 495 else 496 smi_info->si_state = SI_NORMAL; 497 break; 498 } 499 500 case SI_GETTING_EVENTS: 501 { 502 smi_info->curr_msg->rsp_size 503 = smi_info->handlers->get_result( 504 smi_info->si_sm, 505 smi_info->curr_msg->rsp, 506 IPMI_MAX_MSG_LENGTH); 507 508 /* Do this here becase deliver_recv_msg() releases the 509 lock, and a new message can be put in during the 510 time the lock is released. */ 511 msg = smi_info->curr_msg; 512 smi_info->curr_msg = NULL; 513 if (msg->rsp[2] != 0) { 514 /* Error getting event, probably done. */ 515 msg->done(msg); 516 517 /* Take off the event flag. */ 518 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 519 handle_flags(smi_info); 520 } else { 521 spin_lock(&smi_info->count_lock); 522 smi_info->events++; 523 spin_unlock(&smi_info->count_lock); 524 525 /* Do this before we deliver the message 526 because delivering the message releases the 527 lock and something else can mess with the 528 state. */ 529 handle_flags(smi_info); 530 531 deliver_recv_msg(smi_info, msg); 532 } 533 break; 534 } 535 536 case SI_GETTING_MESSAGES: 537 { 538 smi_info->curr_msg->rsp_size 539 = smi_info->handlers->get_result( 540 smi_info->si_sm, 541 smi_info->curr_msg->rsp, 542 IPMI_MAX_MSG_LENGTH); 543 544 /* Do this here becase deliver_recv_msg() releases the 545 lock, and a new message can be put in during the 546 time the lock is released. */ 547 msg = smi_info->curr_msg; 548 smi_info->curr_msg = NULL; 549 if (msg->rsp[2] != 0) { 550 /* Error getting event, probably done. */ 551 msg->done(msg); 552 553 /* Take off the msg flag. */ 554 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 555 handle_flags(smi_info); 556 } else { 557 spin_lock(&smi_info->count_lock); 558 smi_info->incoming_messages++; 559 spin_unlock(&smi_info->count_lock); 560 561 /* Do this before we deliver the message 562 because delivering the message releases the 563 lock and something else can mess with the 564 state. */ 565 handle_flags(smi_info); 566 567 deliver_recv_msg(smi_info, msg); 568 } 569 break; 570 } 571 572 case SI_ENABLE_INTERRUPTS1: 573 { 574 unsigned char msg[4]; 575 576 /* We got the flags from the SMI, now handle them. */ 577 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 578 if (msg[2] != 0) { 579 printk(KERN_WARNING 580 "ipmi_si: Could not enable interrupts" 581 ", failed get, using polled mode.\n"); 582 smi_info->si_state = SI_NORMAL; 583 } else { 584 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 585 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 586 msg[2] = msg[3] | 1; /* enable msg queue int */ 587 smi_info->handlers->start_transaction( 588 smi_info->si_sm, msg, 3); 589 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 590 } 591 break; 592 } 593 594 case SI_ENABLE_INTERRUPTS2: 595 { 596 unsigned char msg[4]; 597 598 /* We got the flags from the SMI, now handle them. */ 599 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 600 if (msg[2] != 0) { 601 printk(KERN_WARNING 602 "ipmi_si: Could not enable interrupts" 603 ", failed set, using polled mode.\n"); 604 } 605 smi_info->si_state = SI_NORMAL; 606 break; 607 } 608 } 609 } 610 611 /* Called on timeouts and events. Timeouts should pass the elapsed 612 time, interrupts should pass in zero. */ 613 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 614 int time) 615 { 616 enum si_sm_result si_sm_result; 617 618 restart: 619 /* There used to be a loop here that waited a little while 620 (around 25us) before giving up. That turned out to be 621 pointless, the minimum delays I was seeing were in the 300us 622 range, which is far too long to wait in an interrupt. So 623 we just run until the state machine tells us something 624 happened or it needs a delay. */ 625 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 626 time = 0; 627 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 628 { 629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 630 } 631 632 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) 633 { 634 spin_lock(&smi_info->count_lock); 635 smi_info->complete_transactions++; 636 spin_unlock(&smi_info->count_lock); 637 638 handle_transaction_done(smi_info); 639 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 640 } 641 else if (si_sm_result == SI_SM_HOSED) 642 { 643 spin_lock(&smi_info->count_lock); 644 smi_info->hosed_count++; 645 spin_unlock(&smi_info->count_lock); 646 647 /* Do the before return_hosed_msg, because that 648 releases the lock. */ 649 smi_info->si_state = SI_NORMAL; 650 if (smi_info->curr_msg != NULL) { 651 /* If we were handling a user message, format 652 a response to send to the upper layer to 653 tell it about the error. */ 654 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 655 } 656 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 657 } 658 659 /* We prefer handling attn over new messages. */ 660 if (si_sm_result == SI_SM_ATTN) 661 { 662 unsigned char msg[2]; 663 664 spin_lock(&smi_info->count_lock); 665 smi_info->attentions++; 666 spin_unlock(&smi_info->count_lock); 667 668 /* Got a attn, send down a get message flags to see 669 what's causing it. It would be better to handle 670 this in the upper layer, but due to the way 671 interrupts work with the SMI, that's not really 672 possible. */ 673 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 674 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 675 676 smi_info->handlers->start_transaction( 677 smi_info->si_sm, msg, 2); 678 smi_info->si_state = SI_GETTING_FLAGS; 679 goto restart; 680 } 681 682 /* If we are currently idle, try to start the next message. */ 683 if (si_sm_result == SI_SM_IDLE) { 684 spin_lock(&smi_info->count_lock); 685 smi_info->idles++; 686 spin_unlock(&smi_info->count_lock); 687 688 si_sm_result = start_next_msg(smi_info); 689 if (si_sm_result != SI_SM_IDLE) 690 goto restart; 691 } 692 693 if ((si_sm_result == SI_SM_IDLE) 694 && (atomic_read(&smi_info->req_events))) 695 { 696 /* We are idle and the upper layer requested that I fetch 697 events, so do so. */ 698 atomic_set(&smi_info->req_events, 0); 699 700 smi_info->curr_msg = ipmi_alloc_smi_msg(); 701 if (!smi_info->curr_msg) 702 goto out; 703 704 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 705 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 706 smi_info->curr_msg->data_size = 2; 707 708 smi_info->handlers->start_transaction( 709 smi_info->si_sm, 710 smi_info->curr_msg->data, 711 smi_info->curr_msg->data_size); 712 smi_info->si_state = SI_GETTING_EVENTS; 713 goto restart; 714 } 715 out: 716 return si_sm_result; 717 } 718 719 static void sender(void *send_info, 720 struct ipmi_smi_msg *msg, 721 int priority) 722 { 723 struct smi_info *smi_info = send_info; 724 enum si_sm_result result; 725 unsigned long flags; 726 #ifdef DEBUG_TIMING 727 struct timeval t; 728 #endif 729 730 if (atomic_read(&smi_info->stop_operation)) { 731 msg->rsp[0] = msg->data[0] | 4; 732 msg->rsp[1] = msg->data[1]; 733 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 734 msg->rsp_size = 3; 735 deliver_recv_msg(smi_info, msg); 736 return; 737 } 738 739 spin_lock_irqsave(&(smi_info->msg_lock), flags); 740 #ifdef DEBUG_TIMING 741 do_gettimeofday(&t); 742 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 743 #endif 744 745 if (smi_info->run_to_completion) { 746 /* If we are running to completion, then throw it in 747 the list and run transactions until everything is 748 clear. Priority doesn't matter here. */ 749 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 750 751 /* We have to release the msg lock and claim the smi 752 lock in this case, because of race conditions. */ 753 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 754 755 spin_lock_irqsave(&(smi_info->si_lock), flags); 756 result = smi_event_handler(smi_info, 0); 757 while (result != SI_SM_IDLE) { 758 udelay(SI_SHORT_TIMEOUT_USEC); 759 result = smi_event_handler(smi_info, 760 SI_SHORT_TIMEOUT_USEC); 761 } 762 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 763 return; 764 } else { 765 if (priority > 0) { 766 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); 767 } else { 768 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 769 } 770 } 771 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 772 773 spin_lock_irqsave(&(smi_info->si_lock), flags); 774 if ((smi_info->si_state == SI_NORMAL) 775 && (smi_info->curr_msg == NULL)) 776 { 777 start_next_msg(smi_info); 778 } 779 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 780 } 781 782 static void set_run_to_completion(void *send_info, int i_run_to_completion) 783 { 784 struct smi_info *smi_info = send_info; 785 enum si_sm_result result; 786 unsigned long flags; 787 788 spin_lock_irqsave(&(smi_info->si_lock), flags); 789 790 smi_info->run_to_completion = i_run_to_completion; 791 if (i_run_to_completion) { 792 result = smi_event_handler(smi_info, 0); 793 while (result != SI_SM_IDLE) { 794 udelay(SI_SHORT_TIMEOUT_USEC); 795 result = smi_event_handler(smi_info, 796 SI_SHORT_TIMEOUT_USEC); 797 } 798 } 799 800 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 801 } 802 803 static int ipmi_thread(void *data) 804 { 805 struct smi_info *smi_info = data; 806 unsigned long flags; 807 enum si_sm_result smi_result; 808 809 set_user_nice(current, 19); 810 while (!kthread_should_stop()) { 811 spin_lock_irqsave(&(smi_info->si_lock), flags); 812 smi_result = smi_event_handler(smi_info, 0); 813 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 814 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 815 /* do nothing */ 816 } 817 else if (smi_result == SI_SM_CALL_WITH_DELAY) 818 schedule(); 819 else 820 schedule_timeout_interruptible(1); 821 } 822 return 0; 823 } 824 825 826 static void poll(void *send_info) 827 { 828 struct smi_info *smi_info = send_info; 829 830 /* 831 * Make sure there is some delay in the poll loop so we can 832 * drive time forward and timeout things. 833 */ 834 udelay(10); 835 smi_event_handler(smi_info, 10); 836 } 837 838 static void request_events(void *send_info) 839 { 840 struct smi_info *smi_info = send_info; 841 842 if (atomic_read(&smi_info->stop_operation)) 843 return; 844 845 atomic_set(&smi_info->req_events, 1); 846 } 847 848 static int initialized; 849 850 static void smi_timeout(unsigned long data) 851 { 852 struct smi_info *smi_info = (struct smi_info *) data; 853 enum si_sm_result smi_result; 854 unsigned long flags; 855 unsigned long jiffies_now; 856 long time_diff; 857 #ifdef DEBUG_TIMING 858 struct timeval t; 859 #endif 860 861 if (atomic_read(&smi_info->stop_operation)) 862 return; 863 864 spin_lock_irqsave(&(smi_info->si_lock), flags); 865 #ifdef DEBUG_TIMING 866 do_gettimeofday(&t); 867 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 868 #endif 869 jiffies_now = jiffies; 870 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 871 * SI_USEC_PER_JIFFY); 872 smi_result = smi_event_handler(smi_info, time_diff); 873 874 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 875 876 smi_info->last_timeout_jiffies = jiffies_now; 877 878 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 879 /* Running with interrupts, only do long timeouts. */ 880 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 881 spin_lock_irqsave(&smi_info->count_lock, flags); 882 smi_info->long_timeouts++; 883 spin_unlock_irqrestore(&smi_info->count_lock, flags); 884 goto do_add_timer; 885 } 886 887 /* If the state machine asks for a short delay, then shorten 888 the timer timeout. */ 889 if (smi_result == SI_SM_CALL_WITH_DELAY) { 890 spin_lock_irqsave(&smi_info->count_lock, flags); 891 smi_info->short_timeouts++; 892 spin_unlock_irqrestore(&smi_info->count_lock, flags); 893 smi_info->si_timer.expires = jiffies + 1; 894 } else { 895 spin_lock_irqsave(&smi_info->count_lock, flags); 896 smi_info->long_timeouts++; 897 spin_unlock_irqrestore(&smi_info->count_lock, flags); 898 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 899 } 900 901 do_add_timer: 902 add_timer(&(smi_info->si_timer)); 903 } 904 905 static irqreturn_t si_irq_handler(int irq, void *data) 906 { 907 struct smi_info *smi_info = data; 908 unsigned long flags; 909 #ifdef DEBUG_TIMING 910 struct timeval t; 911 #endif 912 913 spin_lock_irqsave(&(smi_info->si_lock), flags); 914 915 spin_lock(&smi_info->count_lock); 916 smi_info->interrupts++; 917 spin_unlock(&smi_info->count_lock); 918 919 if (atomic_read(&smi_info->stop_operation)) 920 goto out; 921 922 #ifdef DEBUG_TIMING 923 do_gettimeofday(&t); 924 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 925 #endif 926 smi_event_handler(smi_info, 0); 927 out: 928 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 929 return IRQ_HANDLED; 930 } 931 932 static irqreturn_t si_bt_irq_handler(int irq, void *data) 933 { 934 struct smi_info *smi_info = data; 935 /* We need to clear the IRQ flag for the BT interface. */ 936 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 937 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 938 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 939 return si_irq_handler(irq, data); 940 } 941 942 static int smi_start_processing(void *send_info, 943 ipmi_smi_t intf) 944 { 945 struct smi_info *new_smi = send_info; 946 int enable = 0; 947 948 new_smi->intf = intf; 949 950 /* Set up the timer that drives the interface. */ 951 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 952 new_smi->last_timeout_jiffies = jiffies; 953 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 954 955 /* 956 * Check if the user forcefully enabled the daemon. 957 */ 958 if (new_smi->intf_num < num_force_kipmid) 959 enable = force_kipmid[new_smi->intf_num]; 960 /* 961 * The BT interface is efficient enough to not need a thread, 962 * and there is no need for a thread if we have interrupts. 963 */ 964 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 965 enable = 1; 966 967 if (enable) { 968 new_smi->thread = kthread_run(ipmi_thread, new_smi, 969 "kipmi%d", new_smi->intf_num); 970 if (IS_ERR(new_smi->thread)) { 971 printk(KERN_NOTICE "ipmi_si_intf: Could not start" 972 " kernel thread due to error %ld, only using" 973 " timers to drive the interface\n", 974 PTR_ERR(new_smi->thread)); 975 new_smi->thread = NULL; 976 } 977 } 978 979 return 0; 980 } 981 982 static void set_maintenance_mode(void *send_info, int enable) 983 { 984 struct smi_info *smi_info = send_info; 985 986 if (!enable) 987 atomic_set(&smi_info->req_events, 0); 988 } 989 990 static struct ipmi_smi_handlers handlers = 991 { 992 .owner = THIS_MODULE, 993 .start_processing = smi_start_processing, 994 .sender = sender, 995 .request_events = request_events, 996 .set_maintenance_mode = set_maintenance_mode, 997 .set_run_to_completion = set_run_to_completion, 998 .poll = poll, 999 }; 1000 1001 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1002 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ 1003 1004 static LIST_HEAD(smi_infos); 1005 static DEFINE_MUTEX(smi_infos_lock); 1006 static int smi_num; /* Used to sequence the SMIs */ 1007 1008 #define DEFAULT_REGSPACING 1 1009 1010 static int si_trydefaults = 1; 1011 static char *si_type[SI_MAX_PARMS]; 1012 #define MAX_SI_TYPE_STR 30 1013 static char si_type_str[MAX_SI_TYPE_STR]; 1014 static unsigned long addrs[SI_MAX_PARMS]; 1015 static int num_addrs; 1016 static unsigned int ports[SI_MAX_PARMS]; 1017 static int num_ports; 1018 static int irqs[SI_MAX_PARMS]; 1019 static int num_irqs; 1020 static int regspacings[SI_MAX_PARMS]; 1021 static int num_regspacings; 1022 static int regsizes[SI_MAX_PARMS]; 1023 static int num_regsizes; 1024 static int regshifts[SI_MAX_PARMS]; 1025 static int num_regshifts; 1026 static int slave_addrs[SI_MAX_PARMS]; 1027 static int num_slave_addrs; 1028 1029 #define IPMI_IO_ADDR_SPACE 0 1030 #define IPMI_MEM_ADDR_SPACE 1 1031 static char *addr_space_to_str[] = { "i/o", "mem" }; 1032 1033 static int hotmod_handler(const char *val, struct kernel_param *kp); 1034 1035 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1036 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1037 " Documentation/IPMI.txt in the kernel sources for the" 1038 " gory details."); 1039 1040 module_param_named(trydefaults, si_trydefaults, bool, 0); 1041 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1042 " default scan of the KCS and SMIC interface at the standard" 1043 " address"); 1044 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1045 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1046 " interface separated by commas. The types are 'kcs'," 1047 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1048 " the first interface to kcs and the second to bt"); 1049 module_param_array(addrs, long, &num_addrs, 0); 1050 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1051 " addresses separated by commas. Only use if an interface" 1052 " is in memory. Otherwise, set it to zero or leave" 1053 " it blank."); 1054 module_param_array(ports, int, &num_ports, 0); 1055 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1056 " addresses separated by commas. Only use if an interface" 1057 " is a port. Otherwise, set it to zero or leave" 1058 " it blank."); 1059 module_param_array(irqs, int, &num_irqs, 0); 1060 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1061 " addresses separated by commas. Only use if an interface" 1062 " has an interrupt. Otherwise, set it to zero or leave" 1063 " it blank."); 1064 module_param_array(regspacings, int, &num_regspacings, 0); 1065 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1066 " and each successive register used by the interface. For" 1067 " instance, if the start address is 0xca2 and the spacing" 1068 " is 2, then the second address is at 0xca4. Defaults" 1069 " to 1."); 1070 module_param_array(regsizes, int, &num_regsizes, 0); 1071 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1072 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1073 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1074 " the 8-bit IPMI register has to be read from a larger" 1075 " register."); 1076 module_param_array(regshifts, int, &num_regshifts, 0); 1077 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1078 " IPMI register, in bits. For instance, if the data" 1079 " is read from a 32-bit word and the IPMI data is in" 1080 " bit 8-15, then the shift would be 8"); 1081 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1082 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1083 " the controller. Normally this is 0x20, but can be" 1084 " overridden by this parm. This is an array indexed" 1085 " by interface number."); 1086 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1087 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1088 " disabled(0). Normally the IPMI driver auto-detects" 1089 " this, but the value may be overridden by this parm."); 1090 module_param(unload_when_empty, int, 0); 1091 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1092 " specified or found, default is 1. Setting to 0" 1093 " is useful for hot add of devices using hotmod."); 1094 1095 1096 static void std_irq_cleanup(struct smi_info *info) 1097 { 1098 if (info->si_type == SI_BT) 1099 /* Disable the interrupt in the BT interface. */ 1100 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1101 free_irq(info->irq, info); 1102 } 1103 1104 static int std_irq_setup(struct smi_info *info) 1105 { 1106 int rv; 1107 1108 if (!info->irq) 1109 return 0; 1110 1111 if (info->si_type == SI_BT) { 1112 rv = request_irq(info->irq, 1113 si_bt_irq_handler, 1114 IRQF_DISABLED, 1115 DEVICE_NAME, 1116 info); 1117 if (!rv) 1118 /* Enable the interrupt in the BT interface. */ 1119 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1120 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1121 } else 1122 rv = request_irq(info->irq, 1123 si_irq_handler, 1124 IRQF_DISABLED, 1125 DEVICE_NAME, 1126 info); 1127 if (rv) { 1128 printk(KERN_WARNING 1129 "ipmi_si: %s unable to claim interrupt %d," 1130 " running polled\n", 1131 DEVICE_NAME, info->irq); 1132 info->irq = 0; 1133 } else { 1134 info->irq_cleanup = std_irq_cleanup; 1135 printk(" Using irq %d\n", info->irq); 1136 } 1137 1138 return rv; 1139 } 1140 1141 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1142 { 1143 unsigned int addr = io->addr_data; 1144 1145 return inb(addr + (offset * io->regspacing)); 1146 } 1147 1148 static void port_outb(struct si_sm_io *io, unsigned int offset, 1149 unsigned char b) 1150 { 1151 unsigned int addr = io->addr_data; 1152 1153 outb(b, addr + (offset * io->regspacing)); 1154 } 1155 1156 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1157 { 1158 unsigned int addr = io->addr_data; 1159 1160 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1161 } 1162 1163 static void port_outw(struct si_sm_io *io, unsigned int offset, 1164 unsigned char b) 1165 { 1166 unsigned int addr = io->addr_data; 1167 1168 outw(b << io->regshift, addr + (offset * io->regspacing)); 1169 } 1170 1171 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1172 { 1173 unsigned int addr = io->addr_data; 1174 1175 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1176 } 1177 1178 static void port_outl(struct si_sm_io *io, unsigned int offset, 1179 unsigned char b) 1180 { 1181 unsigned int addr = io->addr_data; 1182 1183 outl(b << io->regshift, addr+(offset * io->regspacing)); 1184 } 1185 1186 static void port_cleanup(struct smi_info *info) 1187 { 1188 unsigned int addr = info->io.addr_data; 1189 int idx; 1190 1191 if (addr) { 1192 for (idx = 0; idx < info->io_size; idx++) { 1193 release_region(addr + idx * info->io.regspacing, 1194 info->io.regsize); 1195 } 1196 } 1197 } 1198 1199 static int port_setup(struct smi_info *info) 1200 { 1201 unsigned int addr = info->io.addr_data; 1202 int idx; 1203 1204 if (!addr) 1205 return -ENODEV; 1206 1207 info->io_cleanup = port_cleanup; 1208 1209 /* Figure out the actual inb/inw/inl/etc routine to use based 1210 upon the register size. */ 1211 switch (info->io.regsize) { 1212 case 1: 1213 info->io.inputb = port_inb; 1214 info->io.outputb = port_outb; 1215 break; 1216 case 2: 1217 info->io.inputb = port_inw; 1218 info->io.outputb = port_outw; 1219 break; 1220 case 4: 1221 info->io.inputb = port_inl; 1222 info->io.outputb = port_outl; 1223 break; 1224 default: 1225 printk("ipmi_si: Invalid register size: %d\n", 1226 info->io.regsize); 1227 return -EINVAL; 1228 } 1229 1230 /* Some BIOSes reserve disjoint I/O regions in their ACPI 1231 * tables. This causes problems when trying to register the 1232 * entire I/O region. Therefore we must register each I/O 1233 * port separately. 1234 */ 1235 for (idx = 0; idx < info->io_size; idx++) { 1236 if (request_region(addr + idx * info->io.regspacing, 1237 info->io.regsize, DEVICE_NAME) == NULL) { 1238 /* Undo allocations */ 1239 while (idx--) { 1240 release_region(addr + idx * info->io.regspacing, 1241 info->io.regsize); 1242 } 1243 return -EIO; 1244 } 1245 } 1246 return 0; 1247 } 1248 1249 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1250 { 1251 return readb((io->addr)+(offset * io->regspacing)); 1252 } 1253 1254 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1255 unsigned char b) 1256 { 1257 writeb(b, (io->addr)+(offset * io->regspacing)); 1258 } 1259 1260 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1261 { 1262 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1263 & 0xff; 1264 } 1265 1266 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1267 unsigned char b) 1268 { 1269 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1270 } 1271 1272 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1273 { 1274 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1275 & 0xff; 1276 } 1277 1278 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1279 unsigned char b) 1280 { 1281 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1282 } 1283 1284 #ifdef readq 1285 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1286 { 1287 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1288 & 0xff; 1289 } 1290 1291 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1292 unsigned char b) 1293 { 1294 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1295 } 1296 #endif 1297 1298 static void mem_cleanup(struct smi_info *info) 1299 { 1300 unsigned long addr = info->io.addr_data; 1301 int mapsize; 1302 1303 if (info->io.addr) { 1304 iounmap(info->io.addr); 1305 1306 mapsize = ((info->io_size * info->io.regspacing) 1307 - (info->io.regspacing - info->io.regsize)); 1308 1309 release_mem_region(addr, mapsize); 1310 } 1311 } 1312 1313 static int mem_setup(struct smi_info *info) 1314 { 1315 unsigned long addr = info->io.addr_data; 1316 int mapsize; 1317 1318 if (!addr) 1319 return -ENODEV; 1320 1321 info->io_cleanup = mem_cleanup; 1322 1323 /* Figure out the actual readb/readw/readl/etc routine to use based 1324 upon the register size. */ 1325 switch (info->io.regsize) { 1326 case 1: 1327 info->io.inputb = intf_mem_inb; 1328 info->io.outputb = intf_mem_outb; 1329 break; 1330 case 2: 1331 info->io.inputb = intf_mem_inw; 1332 info->io.outputb = intf_mem_outw; 1333 break; 1334 case 4: 1335 info->io.inputb = intf_mem_inl; 1336 info->io.outputb = intf_mem_outl; 1337 break; 1338 #ifdef readq 1339 case 8: 1340 info->io.inputb = mem_inq; 1341 info->io.outputb = mem_outq; 1342 break; 1343 #endif 1344 default: 1345 printk("ipmi_si: Invalid register size: %d\n", 1346 info->io.regsize); 1347 return -EINVAL; 1348 } 1349 1350 /* Calculate the total amount of memory to claim. This is an 1351 * unusual looking calculation, but it avoids claiming any 1352 * more memory than it has to. It will claim everything 1353 * between the first address to the end of the last full 1354 * register. */ 1355 mapsize = ((info->io_size * info->io.regspacing) 1356 - (info->io.regspacing - info->io.regsize)); 1357 1358 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1359 return -EIO; 1360 1361 info->io.addr = ioremap(addr, mapsize); 1362 if (info->io.addr == NULL) { 1363 release_mem_region(addr, mapsize); 1364 return -EIO; 1365 } 1366 return 0; 1367 } 1368 1369 /* 1370 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1371 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1372 * Options are: 1373 * rsp=<regspacing> 1374 * rsi=<regsize> 1375 * rsh=<regshift> 1376 * irq=<irq> 1377 * ipmb=<ipmb addr> 1378 */ 1379 enum hotmod_op { HM_ADD, HM_REMOVE }; 1380 struct hotmod_vals { 1381 char *name; 1382 int val; 1383 }; 1384 static struct hotmod_vals hotmod_ops[] = { 1385 { "add", HM_ADD }, 1386 { "remove", HM_REMOVE }, 1387 { NULL } 1388 }; 1389 static struct hotmod_vals hotmod_si[] = { 1390 { "kcs", SI_KCS }, 1391 { "smic", SI_SMIC }, 1392 { "bt", SI_BT }, 1393 { NULL } 1394 }; 1395 static struct hotmod_vals hotmod_as[] = { 1396 { "mem", IPMI_MEM_ADDR_SPACE }, 1397 { "i/o", IPMI_IO_ADDR_SPACE }, 1398 { NULL } 1399 }; 1400 1401 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1402 { 1403 char *s; 1404 int i; 1405 1406 s = strchr(*curr, ','); 1407 if (!s) { 1408 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1409 return -EINVAL; 1410 } 1411 *s = '\0'; 1412 s++; 1413 for (i = 0; hotmod_ops[i].name; i++) { 1414 if (strcmp(*curr, v[i].name) == 0) { 1415 *val = v[i].val; 1416 *curr = s; 1417 return 0; 1418 } 1419 } 1420 1421 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1422 return -EINVAL; 1423 } 1424 1425 static int check_hotmod_int_op(const char *curr, const char *option, 1426 const char *name, int *val) 1427 { 1428 char *n; 1429 1430 if (strcmp(curr, name) == 0) { 1431 if (!option) { 1432 printk(KERN_WARNING PFX 1433 "No option given for '%s'\n", 1434 curr); 1435 return -EINVAL; 1436 } 1437 *val = simple_strtoul(option, &n, 0); 1438 if ((*n != '\0') || (*option == '\0')) { 1439 printk(KERN_WARNING PFX 1440 "Bad option given for '%s'\n", 1441 curr); 1442 return -EINVAL; 1443 } 1444 return 1; 1445 } 1446 return 0; 1447 } 1448 1449 static int hotmod_handler(const char *val, struct kernel_param *kp) 1450 { 1451 char *str = kstrdup(val, GFP_KERNEL); 1452 int rv; 1453 char *next, *curr, *s, *n, *o; 1454 enum hotmod_op op; 1455 enum si_type si_type; 1456 int addr_space; 1457 unsigned long addr; 1458 int regspacing; 1459 int regsize; 1460 int regshift; 1461 int irq; 1462 int ipmb; 1463 int ival; 1464 int len; 1465 struct smi_info *info; 1466 1467 if (!str) 1468 return -ENOMEM; 1469 1470 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1471 len = strlen(str); 1472 ival = len - 1; 1473 while ((ival >= 0) && isspace(str[ival])) { 1474 str[ival] = '\0'; 1475 ival--; 1476 } 1477 1478 for (curr = str; curr; curr = next) { 1479 regspacing = 1; 1480 regsize = 1; 1481 regshift = 0; 1482 irq = 0; 1483 ipmb = 0x20; 1484 1485 next = strchr(curr, ':'); 1486 if (next) { 1487 *next = '\0'; 1488 next++; 1489 } 1490 1491 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1492 if (rv) 1493 break; 1494 op = ival; 1495 1496 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1497 if (rv) 1498 break; 1499 si_type = ival; 1500 1501 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1502 if (rv) 1503 break; 1504 1505 s = strchr(curr, ','); 1506 if (s) { 1507 *s = '\0'; 1508 s++; 1509 } 1510 addr = simple_strtoul(curr, &n, 0); 1511 if ((*n != '\0') || (*curr == '\0')) { 1512 printk(KERN_WARNING PFX "Invalid hotmod address" 1513 " '%s'\n", curr); 1514 break; 1515 } 1516 1517 while (s) { 1518 curr = s; 1519 s = strchr(curr, ','); 1520 if (s) { 1521 *s = '\0'; 1522 s++; 1523 } 1524 o = strchr(curr, '='); 1525 if (o) { 1526 *o = '\0'; 1527 o++; 1528 } 1529 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1530 if (rv < 0) 1531 goto out; 1532 else if (rv) 1533 continue; 1534 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1535 if (rv < 0) 1536 goto out; 1537 else if (rv) 1538 continue; 1539 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1540 if (rv < 0) 1541 goto out; 1542 else if (rv) 1543 continue; 1544 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1545 if (rv < 0) 1546 goto out; 1547 else if (rv) 1548 continue; 1549 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1550 if (rv < 0) 1551 goto out; 1552 else if (rv) 1553 continue; 1554 1555 rv = -EINVAL; 1556 printk(KERN_WARNING PFX 1557 "Invalid hotmod option '%s'\n", 1558 curr); 1559 goto out; 1560 } 1561 1562 if (op == HM_ADD) { 1563 info = kzalloc(sizeof(*info), GFP_KERNEL); 1564 if (!info) { 1565 rv = -ENOMEM; 1566 goto out; 1567 } 1568 1569 info->addr_source = "hotmod"; 1570 info->si_type = si_type; 1571 info->io.addr_data = addr; 1572 info->io.addr_type = addr_space; 1573 if (addr_space == IPMI_MEM_ADDR_SPACE) 1574 info->io_setup = mem_setup; 1575 else 1576 info->io_setup = port_setup; 1577 1578 info->io.addr = NULL; 1579 info->io.regspacing = regspacing; 1580 if (!info->io.regspacing) 1581 info->io.regspacing = DEFAULT_REGSPACING; 1582 info->io.regsize = regsize; 1583 if (!info->io.regsize) 1584 info->io.regsize = DEFAULT_REGSPACING; 1585 info->io.regshift = regshift; 1586 info->irq = irq; 1587 if (info->irq) 1588 info->irq_setup = std_irq_setup; 1589 info->slave_addr = ipmb; 1590 1591 try_smi_init(info); 1592 } else { 1593 /* remove */ 1594 struct smi_info *e, *tmp_e; 1595 1596 mutex_lock(&smi_infos_lock); 1597 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1598 if (e->io.addr_type != addr_space) 1599 continue; 1600 if (e->si_type != si_type) 1601 continue; 1602 if (e->io.addr_data == addr) 1603 cleanup_one_si(e); 1604 } 1605 mutex_unlock(&smi_infos_lock); 1606 } 1607 } 1608 rv = len; 1609 out: 1610 kfree(str); 1611 return rv; 1612 } 1613 1614 static __devinit void hardcode_find_bmc(void) 1615 { 1616 int i; 1617 struct smi_info *info; 1618 1619 for (i = 0; i < SI_MAX_PARMS; i++) { 1620 if (!ports[i] && !addrs[i]) 1621 continue; 1622 1623 info = kzalloc(sizeof(*info), GFP_KERNEL); 1624 if (!info) 1625 return; 1626 1627 info->addr_source = "hardcoded"; 1628 1629 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1630 info->si_type = SI_KCS; 1631 } else if (strcmp(si_type[i], "smic") == 0) { 1632 info->si_type = SI_SMIC; 1633 } else if (strcmp(si_type[i], "bt") == 0) { 1634 info->si_type = SI_BT; 1635 } else { 1636 printk(KERN_WARNING 1637 "ipmi_si: Interface type specified " 1638 "for interface %d, was invalid: %s\n", 1639 i, si_type[i]); 1640 kfree(info); 1641 continue; 1642 } 1643 1644 if (ports[i]) { 1645 /* An I/O port */ 1646 info->io_setup = port_setup; 1647 info->io.addr_data = ports[i]; 1648 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1649 } else if (addrs[i]) { 1650 /* A memory port */ 1651 info->io_setup = mem_setup; 1652 info->io.addr_data = addrs[i]; 1653 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1654 } else { 1655 printk(KERN_WARNING 1656 "ipmi_si: Interface type specified " 1657 "for interface %d, " 1658 "but port and address were not set or " 1659 "set to zero.\n", i); 1660 kfree(info); 1661 continue; 1662 } 1663 1664 info->io.addr = NULL; 1665 info->io.regspacing = regspacings[i]; 1666 if (!info->io.regspacing) 1667 info->io.regspacing = DEFAULT_REGSPACING; 1668 info->io.regsize = regsizes[i]; 1669 if (!info->io.regsize) 1670 info->io.regsize = DEFAULT_REGSPACING; 1671 info->io.regshift = regshifts[i]; 1672 info->irq = irqs[i]; 1673 if (info->irq) 1674 info->irq_setup = std_irq_setup; 1675 1676 try_smi_init(info); 1677 } 1678 } 1679 1680 #ifdef CONFIG_ACPI 1681 1682 #include <linux/acpi.h> 1683 1684 /* Once we get an ACPI failure, we don't try any more, because we go 1685 through the tables sequentially. Once we don't find a table, there 1686 are no more. */ 1687 static int acpi_failure; 1688 1689 /* For GPE-type interrupts. */ 1690 static u32 ipmi_acpi_gpe(void *context) 1691 { 1692 struct smi_info *smi_info = context; 1693 unsigned long flags; 1694 #ifdef DEBUG_TIMING 1695 struct timeval t; 1696 #endif 1697 1698 spin_lock_irqsave(&(smi_info->si_lock), flags); 1699 1700 spin_lock(&smi_info->count_lock); 1701 smi_info->interrupts++; 1702 spin_unlock(&smi_info->count_lock); 1703 1704 if (atomic_read(&smi_info->stop_operation)) 1705 goto out; 1706 1707 #ifdef DEBUG_TIMING 1708 do_gettimeofday(&t); 1709 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1710 #endif 1711 smi_event_handler(smi_info, 0); 1712 out: 1713 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1714 1715 return ACPI_INTERRUPT_HANDLED; 1716 } 1717 1718 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1719 { 1720 if (!info->irq) 1721 return; 1722 1723 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1724 } 1725 1726 static int acpi_gpe_irq_setup(struct smi_info *info) 1727 { 1728 acpi_status status; 1729 1730 if (!info->irq) 1731 return 0; 1732 1733 /* FIXME - is level triggered right? */ 1734 status = acpi_install_gpe_handler(NULL, 1735 info->irq, 1736 ACPI_GPE_LEVEL_TRIGGERED, 1737 &ipmi_acpi_gpe, 1738 info); 1739 if (status != AE_OK) { 1740 printk(KERN_WARNING 1741 "ipmi_si: %s unable to claim ACPI GPE %d," 1742 " running polled\n", 1743 DEVICE_NAME, info->irq); 1744 info->irq = 0; 1745 return -EINVAL; 1746 } else { 1747 info->irq_cleanup = acpi_gpe_irq_cleanup; 1748 printk(" Using ACPI GPE %d\n", info->irq); 1749 return 0; 1750 } 1751 } 1752 1753 /* 1754 * Defined at 1755 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf 1756 */ 1757 struct SPMITable { 1758 s8 Signature[4]; 1759 u32 Length; 1760 u8 Revision; 1761 u8 Checksum; 1762 s8 OEMID[6]; 1763 s8 OEMTableID[8]; 1764 s8 OEMRevision[4]; 1765 s8 CreatorID[4]; 1766 s8 CreatorRevision[4]; 1767 u8 InterfaceType; 1768 u8 IPMIlegacy; 1769 s16 SpecificationRevision; 1770 1771 /* 1772 * Bit 0 - SCI interrupt supported 1773 * Bit 1 - I/O APIC/SAPIC 1774 */ 1775 u8 InterruptType; 1776 1777 /* If bit 0 of InterruptType is set, then this is the SCI 1778 interrupt in the GPEx_STS register. */ 1779 u8 GPE; 1780 1781 s16 Reserved; 1782 1783 /* If bit 1 of InterruptType is set, then this is the I/O 1784 APIC/SAPIC interrupt. */ 1785 u32 GlobalSystemInterrupt; 1786 1787 /* The actual register address. */ 1788 struct acpi_generic_address addr; 1789 1790 u8 UID[4]; 1791 1792 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1793 }; 1794 1795 static __devinit int try_init_acpi(struct SPMITable *spmi) 1796 { 1797 struct smi_info *info; 1798 u8 addr_space; 1799 1800 if (spmi->IPMIlegacy != 1) { 1801 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1802 return -ENODEV; 1803 } 1804 1805 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1806 addr_space = IPMI_MEM_ADDR_SPACE; 1807 else 1808 addr_space = IPMI_IO_ADDR_SPACE; 1809 1810 info = kzalloc(sizeof(*info), GFP_KERNEL); 1811 if (!info) { 1812 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1813 return -ENOMEM; 1814 } 1815 1816 info->addr_source = "ACPI"; 1817 1818 /* Figure out the interface type. */ 1819 switch (spmi->InterfaceType) 1820 { 1821 case 1: /* KCS */ 1822 info->si_type = SI_KCS; 1823 break; 1824 case 2: /* SMIC */ 1825 info->si_type = SI_SMIC; 1826 break; 1827 case 3: /* BT */ 1828 info->si_type = SI_BT; 1829 break; 1830 default: 1831 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1832 spmi->InterfaceType); 1833 kfree(info); 1834 return -EIO; 1835 } 1836 1837 if (spmi->InterruptType & 1) { 1838 /* We've got a GPE interrupt. */ 1839 info->irq = spmi->GPE; 1840 info->irq_setup = acpi_gpe_irq_setup; 1841 } else if (spmi->InterruptType & 2) { 1842 /* We've got an APIC/SAPIC interrupt. */ 1843 info->irq = spmi->GlobalSystemInterrupt; 1844 info->irq_setup = std_irq_setup; 1845 } else { 1846 /* Use the default interrupt setting. */ 1847 info->irq = 0; 1848 info->irq_setup = NULL; 1849 } 1850 1851 if (spmi->addr.bit_width) { 1852 /* A (hopefully) properly formed register bit width. */ 1853 info->io.regspacing = spmi->addr.bit_width / 8; 1854 } else { 1855 info->io.regspacing = DEFAULT_REGSPACING; 1856 } 1857 info->io.regsize = info->io.regspacing; 1858 info->io.regshift = spmi->addr.bit_offset; 1859 1860 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1861 info->io_setup = mem_setup; 1862 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1863 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1864 info->io_setup = port_setup; 1865 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1866 } else { 1867 kfree(info); 1868 printk("ipmi_si: Unknown ACPI I/O Address type\n"); 1869 return -EIO; 1870 } 1871 info->io.addr_data = spmi->addr.address; 1872 1873 try_smi_init(info); 1874 1875 return 0; 1876 } 1877 1878 static __devinit void acpi_find_bmc(void) 1879 { 1880 acpi_status status; 1881 struct SPMITable *spmi; 1882 int i; 1883 1884 if (acpi_disabled) 1885 return; 1886 1887 if (acpi_failure) 1888 return; 1889 1890 for (i = 0; ; i++) { 1891 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 1892 (struct acpi_table_header **)&spmi); 1893 if (status != AE_OK) 1894 return; 1895 1896 try_init_acpi(spmi); 1897 } 1898 } 1899 #endif 1900 1901 #ifdef CONFIG_DMI 1902 struct dmi_ipmi_data 1903 { 1904 u8 type; 1905 u8 addr_space; 1906 unsigned long base_addr; 1907 u8 irq; 1908 u8 offset; 1909 u8 slave_addr; 1910 }; 1911 1912 static int __devinit decode_dmi(struct dmi_header *dm, 1913 struct dmi_ipmi_data *dmi) 1914 { 1915 u8 *data = (u8 *)dm; 1916 unsigned long base_addr; 1917 u8 reg_spacing; 1918 u8 len = dm->length; 1919 1920 dmi->type = data[4]; 1921 1922 memcpy(&base_addr, data+8, sizeof(unsigned long)); 1923 if (len >= 0x11) { 1924 if (base_addr & 1) { 1925 /* I/O */ 1926 base_addr &= 0xFFFE; 1927 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1928 } 1929 else { 1930 /* Memory */ 1931 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 1932 } 1933 /* If bit 4 of byte 0x10 is set, then the lsb for the address 1934 is odd. */ 1935 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 1936 1937 dmi->irq = data[0x11]; 1938 1939 /* The top two bits of byte 0x10 hold the register spacing. */ 1940 reg_spacing = (data[0x10] & 0xC0) >> 6; 1941 switch(reg_spacing){ 1942 case 0x00: /* Byte boundaries */ 1943 dmi->offset = 1; 1944 break; 1945 case 0x01: /* 32-bit boundaries */ 1946 dmi->offset = 4; 1947 break; 1948 case 0x02: /* 16-byte boundaries */ 1949 dmi->offset = 16; 1950 break; 1951 default: 1952 /* Some other interface, just ignore it. */ 1953 return -EIO; 1954 } 1955 } else { 1956 /* Old DMI spec. */ 1957 /* Note that technically, the lower bit of the base 1958 * address should be 1 if the address is I/O and 0 if 1959 * the address is in memory. So many systems get that 1960 * wrong (and all that I have seen are I/O) so we just 1961 * ignore that bit and assume I/O. Systems that use 1962 * memory should use the newer spec, anyway. */ 1963 dmi->base_addr = base_addr & 0xfffe; 1964 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1965 dmi->offset = 1; 1966 } 1967 1968 dmi->slave_addr = data[6]; 1969 1970 return 0; 1971 } 1972 1973 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 1974 { 1975 struct smi_info *info; 1976 1977 info = kzalloc(sizeof(*info), GFP_KERNEL); 1978 if (!info) { 1979 printk(KERN_ERR 1980 "ipmi_si: Could not allocate SI data\n"); 1981 return; 1982 } 1983 1984 info->addr_source = "SMBIOS"; 1985 1986 switch (ipmi_data->type) { 1987 case 0x01: /* KCS */ 1988 info->si_type = SI_KCS; 1989 break; 1990 case 0x02: /* SMIC */ 1991 info->si_type = SI_SMIC; 1992 break; 1993 case 0x03: /* BT */ 1994 info->si_type = SI_BT; 1995 break; 1996 default: 1997 return; 1998 } 1999 2000 switch (ipmi_data->addr_space) { 2001 case IPMI_MEM_ADDR_SPACE: 2002 info->io_setup = mem_setup; 2003 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2004 break; 2005 2006 case IPMI_IO_ADDR_SPACE: 2007 info->io_setup = port_setup; 2008 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2009 break; 2010 2011 default: 2012 kfree(info); 2013 printk(KERN_WARNING 2014 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 2015 ipmi_data->addr_space); 2016 return; 2017 } 2018 info->io.addr_data = ipmi_data->base_addr; 2019 2020 info->io.regspacing = ipmi_data->offset; 2021 if (!info->io.regspacing) 2022 info->io.regspacing = DEFAULT_REGSPACING; 2023 info->io.regsize = DEFAULT_REGSPACING; 2024 info->io.regshift = 0; 2025 2026 info->slave_addr = ipmi_data->slave_addr; 2027 2028 info->irq = ipmi_data->irq; 2029 if (info->irq) 2030 info->irq_setup = std_irq_setup; 2031 2032 try_smi_init(info); 2033 } 2034 2035 static void __devinit dmi_find_bmc(void) 2036 { 2037 struct dmi_device *dev = NULL; 2038 struct dmi_ipmi_data data; 2039 int rv; 2040 2041 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2042 memset(&data, 0, sizeof(data)); 2043 rv = decode_dmi((struct dmi_header *) dev->device_data, &data); 2044 if (!rv) 2045 try_init_dmi(&data); 2046 } 2047 } 2048 #endif /* CONFIG_DMI */ 2049 2050 #ifdef CONFIG_PCI 2051 2052 #define PCI_ERMC_CLASSCODE 0x0C0700 2053 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2054 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2055 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2056 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2057 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2058 2059 #define PCI_HP_VENDOR_ID 0x103C 2060 #define PCI_MMC_DEVICE_ID 0x121A 2061 #define PCI_MMC_ADDR_CW 0x10 2062 2063 static void ipmi_pci_cleanup(struct smi_info *info) 2064 { 2065 struct pci_dev *pdev = info->addr_source_data; 2066 2067 pci_disable_device(pdev); 2068 } 2069 2070 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2071 const struct pci_device_id *ent) 2072 { 2073 int rv; 2074 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2075 struct smi_info *info; 2076 int first_reg_offset = 0; 2077 2078 info = kzalloc(sizeof(*info), GFP_KERNEL); 2079 if (!info) 2080 return -ENOMEM; 2081 2082 info->addr_source = "PCI"; 2083 2084 switch (class_type) { 2085 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2086 info->si_type = SI_SMIC; 2087 break; 2088 2089 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2090 info->si_type = SI_KCS; 2091 break; 2092 2093 case PCI_ERMC_CLASSCODE_TYPE_BT: 2094 info->si_type = SI_BT; 2095 break; 2096 2097 default: 2098 kfree(info); 2099 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 2100 pci_name(pdev), class_type); 2101 return -ENOMEM; 2102 } 2103 2104 rv = pci_enable_device(pdev); 2105 if (rv) { 2106 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 2107 pci_name(pdev)); 2108 kfree(info); 2109 return rv; 2110 } 2111 2112 info->addr_source_cleanup = ipmi_pci_cleanup; 2113 info->addr_source_data = pdev; 2114 2115 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID) 2116 first_reg_offset = 1; 2117 2118 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2119 info->io_setup = port_setup; 2120 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2121 } else { 2122 info->io_setup = mem_setup; 2123 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2124 } 2125 info->io.addr_data = pci_resource_start(pdev, 0); 2126 2127 info->io.regspacing = DEFAULT_REGSPACING; 2128 info->io.regsize = DEFAULT_REGSPACING; 2129 info->io.regshift = 0; 2130 2131 info->irq = pdev->irq; 2132 if (info->irq) 2133 info->irq_setup = std_irq_setup; 2134 2135 info->dev = &pdev->dev; 2136 2137 return try_smi_init(info); 2138 } 2139 2140 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2141 { 2142 } 2143 2144 #ifdef CONFIG_PM 2145 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2146 { 2147 return 0; 2148 } 2149 2150 static int ipmi_pci_resume(struct pci_dev *pdev) 2151 { 2152 return 0; 2153 } 2154 #endif 2155 2156 static struct pci_device_id ipmi_pci_devices[] = { 2157 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2158 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) } 2159 }; 2160 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2161 2162 static struct pci_driver ipmi_pci_driver = { 2163 .name = DEVICE_NAME, 2164 .id_table = ipmi_pci_devices, 2165 .probe = ipmi_pci_probe, 2166 .remove = __devexit_p(ipmi_pci_remove), 2167 #ifdef CONFIG_PM 2168 .suspend = ipmi_pci_suspend, 2169 .resume = ipmi_pci_resume, 2170 #endif 2171 }; 2172 #endif /* CONFIG_PCI */ 2173 2174 2175 static int try_get_dev_id(struct smi_info *smi_info) 2176 { 2177 unsigned char msg[2]; 2178 unsigned char *resp; 2179 unsigned long resp_len; 2180 enum si_sm_result smi_result; 2181 int rv = 0; 2182 2183 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2184 if (!resp) 2185 return -ENOMEM; 2186 2187 /* Do a Get Device ID command, since it comes back with some 2188 useful info. */ 2189 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2190 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2191 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2192 2193 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2194 for (;;) 2195 { 2196 if (smi_result == SI_SM_CALL_WITH_DELAY || 2197 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2198 schedule_timeout_uninterruptible(1); 2199 smi_result = smi_info->handlers->event( 2200 smi_info->si_sm, 100); 2201 } 2202 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 2203 { 2204 smi_result = smi_info->handlers->event( 2205 smi_info->si_sm, 0); 2206 } 2207 else 2208 break; 2209 } 2210 if (smi_result == SI_SM_HOSED) { 2211 /* We couldn't get the state machine to run, so whatever's at 2212 the port is probably not an IPMI SMI interface. */ 2213 rv = -ENODEV; 2214 goto out; 2215 } 2216 2217 /* Otherwise, we got some data. */ 2218 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2219 resp, IPMI_MAX_MSG_LENGTH); 2220 if (resp_len < 14) { 2221 /* That's odd, it should be longer. */ 2222 rv = -EINVAL; 2223 goto out; 2224 } 2225 2226 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { 2227 /* That's odd, it shouldn't be able to fail. */ 2228 rv = -EINVAL; 2229 goto out; 2230 } 2231 2232 /* Record info from the get device id, in case we need it. */ 2233 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id); 2234 2235 out: 2236 kfree(resp); 2237 return rv; 2238 } 2239 2240 static int type_file_read_proc(char *page, char **start, off_t off, 2241 int count, int *eof, void *data) 2242 { 2243 struct smi_info *smi = data; 2244 2245 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2246 } 2247 2248 static int stat_file_read_proc(char *page, char **start, off_t off, 2249 int count, int *eof, void *data) 2250 { 2251 char *out = (char *) page; 2252 struct smi_info *smi = data; 2253 2254 out += sprintf(out, "interrupts_enabled: %d\n", 2255 smi->irq && !smi->interrupt_disabled); 2256 out += sprintf(out, "short_timeouts: %ld\n", 2257 smi->short_timeouts); 2258 out += sprintf(out, "long_timeouts: %ld\n", 2259 smi->long_timeouts); 2260 out += sprintf(out, "timeout_restarts: %ld\n", 2261 smi->timeout_restarts); 2262 out += sprintf(out, "idles: %ld\n", 2263 smi->idles); 2264 out += sprintf(out, "interrupts: %ld\n", 2265 smi->interrupts); 2266 out += sprintf(out, "attentions: %ld\n", 2267 smi->attentions); 2268 out += sprintf(out, "flag_fetches: %ld\n", 2269 smi->flag_fetches); 2270 out += sprintf(out, "hosed_count: %ld\n", 2271 smi->hosed_count); 2272 out += sprintf(out, "complete_transactions: %ld\n", 2273 smi->complete_transactions); 2274 out += sprintf(out, "events: %ld\n", 2275 smi->events); 2276 out += sprintf(out, "watchdog_pretimeouts: %ld\n", 2277 smi->watchdog_pretimeouts); 2278 out += sprintf(out, "incoming_messages: %ld\n", 2279 smi->incoming_messages); 2280 2281 return out - page; 2282 } 2283 2284 static int param_read_proc(char *page, char **start, off_t off, 2285 int count, int *eof, void *data) 2286 { 2287 struct smi_info *smi = data; 2288 2289 return sprintf(page, 2290 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2291 si_to_str[smi->si_type], 2292 addr_space_to_str[smi->io.addr_type], 2293 smi->io.addr_data, 2294 smi->io.regspacing, 2295 smi->io.regsize, 2296 smi->io.regshift, 2297 smi->irq, 2298 smi->slave_addr); 2299 } 2300 2301 /* 2302 * oem_data_avail_to_receive_msg_avail 2303 * @info - smi_info structure with msg_flags set 2304 * 2305 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2306 * Returns 1 indicating need to re-run handle_flags(). 2307 */ 2308 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2309 { 2310 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2311 RECEIVE_MSG_AVAIL); 2312 return 1; 2313 } 2314 2315 /* 2316 * setup_dell_poweredge_oem_data_handler 2317 * @info - smi_info.device_id must be populated 2318 * 2319 * Systems that match, but have firmware version < 1.40 may assert 2320 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2321 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2322 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2323 * as RECEIVE_MSG_AVAIL instead. 2324 * 2325 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2326 * assert the OEM[012] bits, and if it did, the driver would have to 2327 * change to handle that properly, we don't actually check for the 2328 * firmware version. 2329 * Device ID = 0x20 BMC on PowerEdge 8G servers 2330 * Device Revision = 0x80 2331 * Firmware Revision1 = 0x01 BMC version 1.40 2332 * Firmware Revision2 = 0x40 BCD encoded 2333 * IPMI Version = 0x51 IPMI 1.5 2334 * Manufacturer ID = A2 02 00 Dell IANA 2335 * 2336 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2337 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2338 * 2339 */ 2340 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2341 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2342 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2343 #define DELL_IANA_MFR_ID 0x0002a2 2344 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2345 { 2346 struct ipmi_device_id *id = &smi_info->device_id; 2347 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2348 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2349 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2350 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2351 smi_info->oem_data_avail_handler = 2352 oem_data_avail_to_receive_msg_avail; 2353 } 2354 else if (ipmi_version_major(id) < 1 || 2355 (ipmi_version_major(id) == 1 && 2356 ipmi_version_minor(id) < 5)) { 2357 smi_info->oem_data_avail_handler = 2358 oem_data_avail_to_receive_msg_avail; 2359 } 2360 } 2361 } 2362 2363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2364 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2365 { 2366 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2367 2368 /* Make it a reponse */ 2369 msg->rsp[0] = msg->data[0] | 4; 2370 msg->rsp[1] = msg->data[1]; 2371 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2372 msg->rsp_size = 3; 2373 smi_info->curr_msg = NULL; 2374 deliver_recv_msg(smi_info, msg); 2375 } 2376 2377 /* 2378 * dell_poweredge_bt_xaction_handler 2379 * @info - smi_info.device_id must be populated 2380 * 2381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2382 * not respond to a Get SDR command if the length of the data 2383 * requested is exactly 0x3A, which leads to command timeouts and no 2384 * data returned. This intercepts such commands, and causes userspace 2385 * callers to try again with a different-sized buffer, which succeeds. 2386 */ 2387 2388 #define STORAGE_NETFN 0x0A 2389 #define STORAGE_CMD_GET_SDR 0x23 2390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2391 unsigned long unused, 2392 void *in) 2393 { 2394 struct smi_info *smi_info = in; 2395 unsigned char *data = smi_info->curr_msg->data; 2396 unsigned int size = smi_info->curr_msg->data_size; 2397 if (size >= 8 && 2398 (data[0]>>2) == STORAGE_NETFN && 2399 data[1] == STORAGE_CMD_GET_SDR && 2400 data[7] == 0x3A) { 2401 return_hosed_msg_badsize(smi_info); 2402 return NOTIFY_STOP; 2403 } 2404 return NOTIFY_DONE; 2405 } 2406 2407 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2408 .notifier_call = dell_poweredge_bt_xaction_handler, 2409 }; 2410 2411 /* 2412 * setup_dell_poweredge_bt_xaction_handler 2413 * @info - smi_info.device_id must be filled in already 2414 * 2415 * Fills in smi_info.device_id.start_transaction_pre_hook 2416 * when we know what function to use there. 2417 */ 2418 static void 2419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2420 { 2421 struct ipmi_device_id *id = &smi_info->device_id; 2422 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2423 smi_info->si_type == SI_BT) 2424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2425 } 2426 2427 /* 2428 * setup_oem_data_handler 2429 * @info - smi_info.device_id must be filled in already 2430 * 2431 * Fills in smi_info.device_id.oem_data_available_handler 2432 * when we know what function to use there. 2433 */ 2434 2435 static void setup_oem_data_handler(struct smi_info *smi_info) 2436 { 2437 setup_dell_poweredge_oem_data_handler(smi_info); 2438 } 2439 2440 static void setup_xaction_handlers(struct smi_info *smi_info) 2441 { 2442 setup_dell_poweredge_bt_xaction_handler(smi_info); 2443 } 2444 2445 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2446 { 2447 if (smi_info->intf) { 2448 /* The timer and thread are only running if the 2449 interface has been started up and registered. */ 2450 if (smi_info->thread != NULL) 2451 kthread_stop(smi_info->thread); 2452 del_timer_sync(&smi_info->si_timer); 2453 } 2454 } 2455 2456 static __devinitdata struct ipmi_default_vals 2457 { 2458 int type; 2459 int port; 2460 } ipmi_defaults[] = 2461 { 2462 { .type = SI_KCS, .port = 0xca2 }, 2463 { .type = SI_SMIC, .port = 0xca9 }, 2464 { .type = SI_BT, .port = 0xe4 }, 2465 { .port = 0 } 2466 }; 2467 2468 static __devinit void default_find_bmc(void) 2469 { 2470 struct smi_info *info; 2471 int i; 2472 2473 for (i = 0; ; i++) { 2474 if (!ipmi_defaults[i].port) 2475 break; 2476 2477 info = kzalloc(sizeof(*info), GFP_KERNEL); 2478 if (!info) 2479 return; 2480 2481 #ifdef CONFIG_PPC_MERGE 2482 if (check_legacy_ioport(ipmi_defaults[i].port)) 2483 continue; 2484 #endif 2485 2486 info->addr_source = NULL; 2487 2488 info->si_type = ipmi_defaults[i].type; 2489 info->io_setup = port_setup; 2490 info->io.addr_data = ipmi_defaults[i].port; 2491 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2492 2493 info->io.addr = NULL; 2494 info->io.regspacing = DEFAULT_REGSPACING; 2495 info->io.regsize = DEFAULT_REGSPACING; 2496 info->io.regshift = 0; 2497 2498 if (try_smi_init(info) == 0) { 2499 /* Found one... */ 2500 printk(KERN_INFO "ipmi_si: Found default %s state" 2501 " machine at %s address 0x%lx\n", 2502 si_to_str[info->si_type], 2503 addr_space_to_str[info->io.addr_type], 2504 info->io.addr_data); 2505 return; 2506 } 2507 } 2508 } 2509 2510 static int is_new_interface(struct smi_info *info) 2511 { 2512 struct smi_info *e; 2513 2514 list_for_each_entry(e, &smi_infos, link) { 2515 if (e->io.addr_type != info->io.addr_type) 2516 continue; 2517 if (e->io.addr_data == info->io.addr_data) 2518 return 0; 2519 } 2520 2521 return 1; 2522 } 2523 2524 static int try_smi_init(struct smi_info *new_smi) 2525 { 2526 int rv; 2527 2528 if (new_smi->addr_source) { 2529 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2530 " machine at %s address 0x%lx, slave address 0x%x," 2531 " irq %d\n", 2532 new_smi->addr_source, 2533 si_to_str[new_smi->si_type], 2534 addr_space_to_str[new_smi->io.addr_type], 2535 new_smi->io.addr_data, 2536 new_smi->slave_addr, new_smi->irq); 2537 } 2538 2539 mutex_lock(&smi_infos_lock); 2540 if (!is_new_interface(new_smi)) { 2541 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2542 rv = -EBUSY; 2543 goto out_err; 2544 } 2545 2546 /* So we know not to free it unless we have allocated one. */ 2547 new_smi->intf = NULL; 2548 new_smi->si_sm = NULL; 2549 new_smi->handlers = NULL; 2550 2551 switch (new_smi->si_type) { 2552 case SI_KCS: 2553 new_smi->handlers = &kcs_smi_handlers; 2554 break; 2555 2556 case SI_SMIC: 2557 new_smi->handlers = &smic_smi_handlers; 2558 break; 2559 2560 case SI_BT: 2561 new_smi->handlers = &bt_smi_handlers; 2562 break; 2563 2564 default: 2565 /* No support for anything else yet. */ 2566 rv = -EIO; 2567 goto out_err; 2568 } 2569 2570 /* Allocate the state machine's data and initialize it. */ 2571 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2572 if (!new_smi->si_sm) { 2573 printk(" Could not allocate state machine memory\n"); 2574 rv = -ENOMEM; 2575 goto out_err; 2576 } 2577 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2578 &new_smi->io); 2579 2580 /* Now that we know the I/O size, we can set up the I/O. */ 2581 rv = new_smi->io_setup(new_smi); 2582 if (rv) { 2583 printk(" Could not set up I/O space\n"); 2584 goto out_err; 2585 } 2586 2587 spin_lock_init(&(new_smi->si_lock)); 2588 spin_lock_init(&(new_smi->msg_lock)); 2589 spin_lock_init(&(new_smi->count_lock)); 2590 2591 /* Do low-level detection first. */ 2592 if (new_smi->handlers->detect(new_smi->si_sm)) { 2593 if (new_smi->addr_source) 2594 printk(KERN_INFO "ipmi_si: Interface detection" 2595 " failed\n"); 2596 rv = -ENODEV; 2597 goto out_err; 2598 } 2599 2600 /* Attempt a get device id command. If it fails, we probably 2601 don't have a BMC here. */ 2602 rv = try_get_dev_id(new_smi); 2603 if (rv) { 2604 if (new_smi->addr_source) 2605 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 2606 " at this location\n"); 2607 goto out_err; 2608 } 2609 2610 setup_oem_data_handler(new_smi); 2611 setup_xaction_handlers(new_smi); 2612 2613 /* Try to claim any interrupts. */ 2614 if (new_smi->irq_setup) 2615 new_smi->irq_setup(new_smi); 2616 2617 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 2618 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 2619 new_smi->curr_msg = NULL; 2620 atomic_set(&new_smi->req_events, 0); 2621 new_smi->run_to_completion = 0; 2622 2623 new_smi->interrupt_disabled = 0; 2624 atomic_set(&new_smi->stop_operation, 0); 2625 new_smi->intf_num = smi_num; 2626 smi_num++; 2627 2628 /* Start clearing the flags before we enable interrupts or the 2629 timer to avoid racing with the timer. */ 2630 start_clear_flags(new_smi); 2631 /* IRQ is defined to be set when non-zero. */ 2632 if (new_smi->irq) 2633 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 2634 2635 if (!new_smi->dev) { 2636 /* If we don't already have a device from something 2637 * else (like PCI), then register a new one. */ 2638 new_smi->pdev = platform_device_alloc("ipmi_si", 2639 new_smi->intf_num); 2640 if (rv) { 2641 printk(KERN_ERR 2642 "ipmi_si_intf:" 2643 " Unable to allocate platform device\n"); 2644 goto out_err; 2645 } 2646 new_smi->dev = &new_smi->pdev->dev; 2647 new_smi->dev->driver = &ipmi_driver; 2648 2649 rv = platform_device_add(new_smi->pdev); 2650 if (rv) { 2651 printk(KERN_ERR 2652 "ipmi_si_intf:" 2653 " Unable to register system interface device:" 2654 " %d\n", 2655 rv); 2656 goto out_err; 2657 } 2658 new_smi->dev_registered = 1; 2659 } 2660 2661 rv = ipmi_register_smi(&handlers, 2662 new_smi, 2663 &new_smi->device_id, 2664 new_smi->dev, 2665 "bmc", 2666 new_smi->slave_addr); 2667 if (rv) { 2668 printk(KERN_ERR 2669 "ipmi_si: Unable to register device: error %d\n", 2670 rv); 2671 goto out_err_stop_timer; 2672 } 2673 2674 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2675 type_file_read_proc, NULL, 2676 new_smi, THIS_MODULE); 2677 if (rv) { 2678 printk(KERN_ERR 2679 "ipmi_si: Unable to create proc entry: %d\n", 2680 rv); 2681 goto out_err_stop_timer; 2682 } 2683 2684 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 2685 stat_file_read_proc, NULL, 2686 new_smi, THIS_MODULE); 2687 if (rv) { 2688 printk(KERN_ERR 2689 "ipmi_si: Unable to create proc entry: %d\n", 2690 rv); 2691 goto out_err_stop_timer; 2692 } 2693 2694 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 2695 param_read_proc, NULL, 2696 new_smi, THIS_MODULE); 2697 if (rv) { 2698 printk(KERN_ERR 2699 "ipmi_si: Unable to create proc entry: %d\n", 2700 rv); 2701 goto out_err_stop_timer; 2702 } 2703 2704 list_add_tail(&new_smi->link, &smi_infos); 2705 2706 mutex_unlock(&smi_infos_lock); 2707 2708 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]); 2709 2710 return 0; 2711 2712 out_err_stop_timer: 2713 atomic_inc(&new_smi->stop_operation); 2714 wait_for_timer_and_thread(new_smi); 2715 2716 out_err: 2717 if (new_smi->intf) 2718 ipmi_unregister_smi(new_smi->intf); 2719 2720 if (new_smi->irq_cleanup) 2721 new_smi->irq_cleanup(new_smi); 2722 2723 /* Wait until we know that we are out of any interrupt 2724 handlers might have been running before we freed the 2725 interrupt. */ 2726 synchronize_sched(); 2727 2728 if (new_smi->si_sm) { 2729 if (new_smi->handlers) 2730 new_smi->handlers->cleanup(new_smi->si_sm); 2731 kfree(new_smi->si_sm); 2732 } 2733 if (new_smi->addr_source_cleanup) 2734 new_smi->addr_source_cleanup(new_smi); 2735 if (new_smi->io_cleanup) 2736 new_smi->io_cleanup(new_smi); 2737 2738 if (new_smi->dev_registered) 2739 platform_device_unregister(new_smi->pdev); 2740 2741 kfree(new_smi); 2742 2743 mutex_unlock(&smi_infos_lock); 2744 2745 return rv; 2746 } 2747 2748 static __devinit int init_ipmi_si(void) 2749 { 2750 int i; 2751 char *str; 2752 int rv; 2753 2754 if (initialized) 2755 return 0; 2756 initialized = 1; 2757 2758 /* Register the device drivers. */ 2759 rv = driver_register(&ipmi_driver); 2760 if (rv) { 2761 printk(KERN_ERR 2762 "init_ipmi_si: Unable to register driver: %d\n", 2763 rv); 2764 return rv; 2765 } 2766 2767 2768 /* Parse out the si_type string into its components. */ 2769 str = si_type_str; 2770 if (*str != '\0') { 2771 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 2772 si_type[i] = str; 2773 str = strchr(str, ','); 2774 if (str) { 2775 *str = '\0'; 2776 str++; 2777 } else { 2778 break; 2779 } 2780 } 2781 } 2782 2783 printk(KERN_INFO "IPMI System Interface driver.\n"); 2784 2785 hardcode_find_bmc(); 2786 2787 #ifdef CONFIG_DMI 2788 dmi_find_bmc(); 2789 #endif 2790 2791 #ifdef CONFIG_ACPI 2792 acpi_find_bmc(); 2793 #endif 2794 2795 #ifdef CONFIG_PCI 2796 rv = pci_register_driver(&ipmi_pci_driver); 2797 if (rv){ 2798 printk(KERN_ERR 2799 "init_ipmi_si: Unable to register PCI driver: %d\n", 2800 rv); 2801 } 2802 #endif 2803 2804 if (si_trydefaults) { 2805 mutex_lock(&smi_infos_lock); 2806 if (list_empty(&smi_infos)) { 2807 /* No BMC was found, try defaults. */ 2808 mutex_unlock(&smi_infos_lock); 2809 default_find_bmc(); 2810 } else { 2811 mutex_unlock(&smi_infos_lock); 2812 } 2813 } 2814 2815 mutex_lock(&smi_infos_lock); 2816 if (unload_when_empty && list_empty(&smi_infos)) { 2817 mutex_unlock(&smi_infos_lock); 2818 #ifdef CONFIG_PCI 2819 pci_unregister_driver(&ipmi_pci_driver); 2820 #endif 2821 driver_unregister(&ipmi_driver); 2822 printk("ipmi_si: Unable to find any System Interface(s)\n"); 2823 return -ENODEV; 2824 } else { 2825 mutex_unlock(&smi_infos_lock); 2826 return 0; 2827 } 2828 } 2829 module_init(init_ipmi_si); 2830 2831 static void cleanup_one_si(struct smi_info *to_clean) 2832 { 2833 int rv; 2834 unsigned long flags; 2835 2836 if (!to_clean) 2837 return; 2838 2839 list_del(&to_clean->link); 2840 2841 /* Tell the timer and interrupt handlers that we are shutting 2842 down. */ 2843 spin_lock_irqsave(&(to_clean->si_lock), flags); 2844 spin_lock(&(to_clean->msg_lock)); 2845 2846 atomic_inc(&to_clean->stop_operation); 2847 2848 if (to_clean->irq_cleanup) 2849 to_clean->irq_cleanup(to_clean); 2850 2851 spin_unlock(&(to_clean->msg_lock)); 2852 spin_unlock_irqrestore(&(to_clean->si_lock), flags); 2853 2854 /* Wait until we know that we are out of any interrupt 2855 handlers might have been running before we freed the 2856 interrupt. */ 2857 synchronize_sched(); 2858 2859 wait_for_timer_and_thread(to_clean); 2860 2861 /* Interrupts and timeouts are stopped, now make sure the 2862 interface is in a clean state. */ 2863 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 2864 poll(to_clean); 2865 schedule_timeout_uninterruptible(1); 2866 } 2867 2868 rv = ipmi_unregister_smi(to_clean->intf); 2869 if (rv) { 2870 printk(KERN_ERR 2871 "ipmi_si: Unable to unregister device: errno=%d\n", 2872 rv); 2873 } 2874 2875 to_clean->handlers->cleanup(to_clean->si_sm); 2876 2877 kfree(to_clean->si_sm); 2878 2879 if (to_clean->addr_source_cleanup) 2880 to_clean->addr_source_cleanup(to_clean); 2881 if (to_clean->io_cleanup) 2882 to_clean->io_cleanup(to_clean); 2883 2884 if (to_clean->dev_registered) 2885 platform_device_unregister(to_clean->pdev); 2886 2887 kfree(to_clean); 2888 } 2889 2890 static __exit void cleanup_ipmi_si(void) 2891 { 2892 struct smi_info *e, *tmp_e; 2893 2894 if (!initialized) 2895 return; 2896 2897 #ifdef CONFIG_PCI 2898 pci_unregister_driver(&ipmi_pci_driver); 2899 #endif 2900 2901 mutex_lock(&smi_infos_lock); 2902 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2903 cleanup_one_si(e); 2904 mutex_unlock(&smi_infos_lock); 2905 2906 driver_unregister(&ipmi_driver); 2907 } 2908 module_exit(cleanup_ipmi_si); 2909 2910 MODULE_LICENSE("GPL"); 2911 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2912 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); 2913