1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 * You should have received a copy of the GNU General Public License along 31 * with this program; if not, write to the Free Software Foundation, Inc., 32 * 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 /* 36 * This file holds the "policy" for the interface to the SMI state 37 * machine. It does the configuration, handles timers and interrupts, 38 * and drives the real SMI state machine. 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 66 /* Measure times between events in the driver. */ 67 #undef DEBUG_TIMING 68 69 /* Call every 10 ms. */ 70 #define SI_TIMEOUT_TIME_USEC 10000 71 #define SI_USEC_PER_JIFFY (1000000/HZ) 72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 74 short timeout */ 75 76 enum si_intf_state { 77 SI_NORMAL, 78 SI_GETTING_FLAGS, 79 SI_GETTING_EVENTS, 80 SI_CLEARING_FLAGS, 81 SI_CLEARING_FLAGS_THEN_SET_IRQ, 82 SI_GETTING_MESSAGES, 83 SI_ENABLE_INTERRUPTS1, 84 SI_ENABLE_INTERRUPTS2 85 /* FIXME - add watchdog stuff. */ 86 }; 87 88 /* Some BT-specific defines we need here. */ 89 #define IPMI_BT_INTMASK_REG 2 90 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 91 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 92 93 enum si_type { 94 SI_KCS, SI_SMIC, SI_BT 95 }; 96 static char *si_to_str[] = { "KCS", "SMIC", "BT" }; 97 98 #define DEVICE_NAME "ipmi_si" 99 100 static struct device_driver ipmi_driver = 101 { 102 .name = DEVICE_NAME, 103 .bus = &platform_bus_type 104 }; 105 106 struct smi_info 107 { 108 int intf_num; 109 ipmi_smi_t intf; 110 struct si_sm_data *si_sm; 111 struct si_sm_handlers *handlers; 112 enum si_type si_type; 113 spinlock_t si_lock; 114 spinlock_t msg_lock; 115 struct list_head xmit_msgs; 116 struct list_head hp_xmit_msgs; 117 struct ipmi_smi_msg *curr_msg; 118 enum si_intf_state si_state; 119 120 /* Used to handle the various types of I/O that can occur with 121 IPMI */ 122 struct si_sm_io io; 123 int (*io_setup)(struct smi_info *info); 124 void (*io_cleanup)(struct smi_info *info); 125 int (*irq_setup)(struct smi_info *info); 126 void (*irq_cleanup)(struct smi_info *info); 127 unsigned int io_size; 128 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 129 void (*addr_source_cleanup)(struct smi_info *info); 130 void *addr_source_data; 131 132 /* Per-OEM handler, called from handle_flags(). 133 Returns 1 when handle_flags() needs to be re-run 134 or 0 indicating it set si_state itself. 135 */ 136 int (*oem_data_avail_handler)(struct smi_info *smi_info); 137 138 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN 139 is set to hold the flags until we are done handling everything 140 from the flags. */ 141 #define RECEIVE_MSG_AVAIL 0x01 142 #define EVENT_MSG_BUFFER_FULL 0x02 143 #define WDT_PRE_TIMEOUT_INT 0x08 144 #define OEM0_DATA_AVAIL 0x20 145 #define OEM1_DATA_AVAIL 0x40 146 #define OEM2_DATA_AVAIL 0x80 147 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 148 OEM1_DATA_AVAIL | \ 149 OEM2_DATA_AVAIL) 150 unsigned char msg_flags; 151 152 /* If set to true, this will request events the next time the 153 state machine is idle. */ 154 atomic_t req_events; 155 156 /* If true, run the state machine to completion on every send 157 call. Generally used after a panic to make sure stuff goes 158 out. */ 159 int run_to_completion; 160 161 /* The I/O port of an SI interface. */ 162 int port; 163 164 /* The space between start addresses of the two ports. For 165 instance, if the first port is 0xca2 and the spacing is 4, then 166 the second port is 0xca6. */ 167 unsigned int spacing; 168 169 /* zero if no irq; */ 170 int irq; 171 172 /* The timer for this si. */ 173 struct timer_list si_timer; 174 175 /* The time (in jiffies) the last timeout occurred at. */ 176 unsigned long last_timeout_jiffies; 177 178 /* Used to gracefully stop the timer without race conditions. */ 179 atomic_t stop_operation; 180 181 /* The driver will disable interrupts when it gets into a 182 situation where it cannot handle messages due to lack of 183 memory. Once that situation clears up, it will re-enable 184 interrupts. */ 185 int interrupt_disabled; 186 187 /* From the get device id response... */ 188 struct ipmi_device_id device_id; 189 190 /* Driver model stuff. */ 191 struct device *dev; 192 struct platform_device *pdev; 193 194 /* True if we allocated the device, false if it came from 195 * someplace else (like PCI). */ 196 int dev_registered; 197 198 /* Slave address, could be reported from DMI. */ 199 unsigned char slave_addr; 200 201 /* Counters and things for the proc filesystem. */ 202 spinlock_t count_lock; 203 unsigned long short_timeouts; 204 unsigned long long_timeouts; 205 unsigned long timeout_restarts; 206 unsigned long idles; 207 unsigned long interrupts; 208 unsigned long attentions; 209 unsigned long flag_fetches; 210 unsigned long hosed_count; 211 unsigned long complete_transactions; 212 unsigned long events; 213 unsigned long watchdog_pretimeouts; 214 unsigned long incoming_messages; 215 216 struct task_struct *thread; 217 218 struct list_head link; 219 }; 220 221 static int try_smi_init(struct smi_info *smi); 222 223 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 224 static int register_xaction_notifier(struct notifier_block * nb) 225 { 226 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 227 } 228 229 static void deliver_recv_msg(struct smi_info *smi_info, 230 struct ipmi_smi_msg *msg) 231 { 232 /* Deliver the message to the upper layer with the lock 233 released. */ 234 spin_unlock(&(smi_info->si_lock)); 235 ipmi_smi_msg_received(smi_info->intf, msg); 236 spin_lock(&(smi_info->si_lock)); 237 } 238 239 static void return_hosed_msg(struct smi_info *smi_info) 240 { 241 struct ipmi_smi_msg *msg = smi_info->curr_msg; 242 243 /* Make it a reponse */ 244 msg->rsp[0] = msg->data[0] | 4; 245 msg->rsp[1] = msg->data[1]; 246 msg->rsp[2] = 0xFF; /* Unknown error. */ 247 msg->rsp_size = 3; 248 249 smi_info->curr_msg = NULL; 250 deliver_recv_msg(smi_info, msg); 251 } 252 253 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 254 { 255 int rv; 256 struct list_head *entry = NULL; 257 #ifdef DEBUG_TIMING 258 struct timeval t; 259 #endif 260 261 /* No need to save flags, we aleady have interrupts off and we 262 already hold the SMI lock. */ 263 spin_lock(&(smi_info->msg_lock)); 264 265 /* Pick the high priority queue first. */ 266 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 267 entry = smi_info->hp_xmit_msgs.next; 268 } else if (!list_empty(&(smi_info->xmit_msgs))) { 269 entry = smi_info->xmit_msgs.next; 270 } 271 272 if (!entry) { 273 smi_info->curr_msg = NULL; 274 rv = SI_SM_IDLE; 275 } else { 276 int err; 277 278 list_del(entry); 279 smi_info->curr_msg = list_entry(entry, 280 struct ipmi_smi_msg, 281 link); 282 #ifdef DEBUG_TIMING 283 do_gettimeofday(&t); 284 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 285 #endif 286 err = atomic_notifier_call_chain(&xaction_notifier_list, 287 0, smi_info); 288 if (err & NOTIFY_STOP_MASK) { 289 rv = SI_SM_CALL_WITHOUT_DELAY; 290 goto out; 291 } 292 err = smi_info->handlers->start_transaction( 293 smi_info->si_sm, 294 smi_info->curr_msg->data, 295 smi_info->curr_msg->data_size); 296 if (err) { 297 return_hosed_msg(smi_info); 298 } 299 300 rv = SI_SM_CALL_WITHOUT_DELAY; 301 } 302 out: 303 spin_unlock(&(smi_info->msg_lock)); 304 305 return rv; 306 } 307 308 static void start_enable_irq(struct smi_info *smi_info) 309 { 310 unsigned char msg[2]; 311 312 /* If we are enabling interrupts, we have to tell the 313 BMC to use them. */ 314 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 315 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 316 317 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 318 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 319 } 320 321 static void start_clear_flags(struct smi_info *smi_info) 322 { 323 unsigned char msg[3]; 324 325 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 326 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 327 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 328 msg[2] = WDT_PRE_TIMEOUT_INT; 329 330 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 331 smi_info->si_state = SI_CLEARING_FLAGS; 332 } 333 334 /* When we have a situtaion where we run out of memory and cannot 335 allocate messages, we just leave them in the BMC and run the system 336 polled until we can allocate some memory. Once we have some 337 memory, we will re-enable the interrupt. */ 338 static inline void disable_si_irq(struct smi_info *smi_info) 339 { 340 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 341 disable_irq_nosync(smi_info->irq); 342 smi_info->interrupt_disabled = 1; 343 } 344 } 345 346 static inline void enable_si_irq(struct smi_info *smi_info) 347 { 348 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 349 enable_irq(smi_info->irq); 350 smi_info->interrupt_disabled = 0; 351 } 352 } 353 354 static void handle_flags(struct smi_info *smi_info) 355 { 356 retry: 357 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 358 /* Watchdog pre-timeout */ 359 spin_lock(&smi_info->count_lock); 360 smi_info->watchdog_pretimeouts++; 361 spin_unlock(&smi_info->count_lock); 362 363 start_clear_flags(smi_info); 364 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 365 spin_unlock(&(smi_info->si_lock)); 366 ipmi_smi_watchdog_pretimeout(smi_info->intf); 367 spin_lock(&(smi_info->si_lock)); 368 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 369 /* Messages available. */ 370 smi_info->curr_msg = ipmi_alloc_smi_msg(); 371 if (!smi_info->curr_msg) { 372 disable_si_irq(smi_info); 373 smi_info->si_state = SI_NORMAL; 374 return; 375 } 376 enable_si_irq(smi_info); 377 378 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 379 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 380 smi_info->curr_msg->data_size = 2; 381 382 smi_info->handlers->start_transaction( 383 smi_info->si_sm, 384 smi_info->curr_msg->data, 385 smi_info->curr_msg->data_size); 386 smi_info->si_state = SI_GETTING_MESSAGES; 387 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 388 /* Events available. */ 389 smi_info->curr_msg = ipmi_alloc_smi_msg(); 390 if (!smi_info->curr_msg) { 391 disable_si_irq(smi_info); 392 smi_info->si_state = SI_NORMAL; 393 return; 394 } 395 enable_si_irq(smi_info); 396 397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 398 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 399 smi_info->curr_msg->data_size = 2; 400 401 smi_info->handlers->start_transaction( 402 smi_info->si_sm, 403 smi_info->curr_msg->data, 404 smi_info->curr_msg->data_size); 405 smi_info->si_state = SI_GETTING_EVENTS; 406 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) { 407 if (smi_info->oem_data_avail_handler) 408 if (smi_info->oem_data_avail_handler(smi_info)) 409 goto retry; 410 } else { 411 smi_info->si_state = SI_NORMAL; 412 } 413 } 414 415 static void handle_transaction_done(struct smi_info *smi_info) 416 { 417 struct ipmi_smi_msg *msg; 418 #ifdef DEBUG_TIMING 419 struct timeval t; 420 421 do_gettimeofday(&t); 422 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 423 #endif 424 switch (smi_info->si_state) { 425 case SI_NORMAL: 426 if (!smi_info->curr_msg) 427 break; 428 429 smi_info->curr_msg->rsp_size 430 = smi_info->handlers->get_result( 431 smi_info->si_sm, 432 smi_info->curr_msg->rsp, 433 IPMI_MAX_MSG_LENGTH); 434 435 /* Do this here becase deliver_recv_msg() releases the 436 lock, and a new message can be put in during the 437 time the lock is released. */ 438 msg = smi_info->curr_msg; 439 smi_info->curr_msg = NULL; 440 deliver_recv_msg(smi_info, msg); 441 break; 442 443 case SI_GETTING_FLAGS: 444 { 445 unsigned char msg[4]; 446 unsigned int len; 447 448 /* We got the flags from the SMI, now handle them. */ 449 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 450 if (msg[2] != 0) { 451 /* Error fetching flags, just give up for 452 now. */ 453 smi_info->si_state = SI_NORMAL; 454 } else if (len < 4) { 455 /* Hmm, no flags. That's technically illegal, but 456 don't use uninitialized data. */ 457 smi_info->si_state = SI_NORMAL; 458 } else { 459 smi_info->msg_flags = msg[3]; 460 handle_flags(smi_info); 461 } 462 break; 463 } 464 465 case SI_CLEARING_FLAGS: 466 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 467 { 468 unsigned char msg[3]; 469 470 /* We cleared the flags. */ 471 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 472 if (msg[2] != 0) { 473 /* Error clearing flags */ 474 printk(KERN_WARNING 475 "ipmi_si: Error clearing flags: %2.2x\n", 476 msg[2]); 477 } 478 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 479 start_enable_irq(smi_info); 480 else 481 smi_info->si_state = SI_NORMAL; 482 break; 483 } 484 485 case SI_GETTING_EVENTS: 486 { 487 smi_info->curr_msg->rsp_size 488 = smi_info->handlers->get_result( 489 smi_info->si_sm, 490 smi_info->curr_msg->rsp, 491 IPMI_MAX_MSG_LENGTH); 492 493 /* Do this here becase deliver_recv_msg() releases the 494 lock, and a new message can be put in during the 495 time the lock is released. */ 496 msg = smi_info->curr_msg; 497 smi_info->curr_msg = NULL; 498 if (msg->rsp[2] != 0) { 499 /* Error getting event, probably done. */ 500 msg->done(msg); 501 502 /* Take off the event flag. */ 503 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 504 handle_flags(smi_info); 505 } else { 506 spin_lock(&smi_info->count_lock); 507 smi_info->events++; 508 spin_unlock(&smi_info->count_lock); 509 510 /* Do this before we deliver the message 511 because delivering the message releases the 512 lock and something else can mess with the 513 state. */ 514 handle_flags(smi_info); 515 516 deliver_recv_msg(smi_info, msg); 517 } 518 break; 519 } 520 521 case SI_GETTING_MESSAGES: 522 { 523 smi_info->curr_msg->rsp_size 524 = smi_info->handlers->get_result( 525 smi_info->si_sm, 526 smi_info->curr_msg->rsp, 527 IPMI_MAX_MSG_LENGTH); 528 529 /* Do this here becase deliver_recv_msg() releases the 530 lock, and a new message can be put in during the 531 time the lock is released. */ 532 msg = smi_info->curr_msg; 533 smi_info->curr_msg = NULL; 534 if (msg->rsp[2] != 0) { 535 /* Error getting event, probably done. */ 536 msg->done(msg); 537 538 /* Take off the msg flag. */ 539 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 540 handle_flags(smi_info); 541 } else { 542 spin_lock(&smi_info->count_lock); 543 smi_info->incoming_messages++; 544 spin_unlock(&smi_info->count_lock); 545 546 /* Do this before we deliver the message 547 because delivering the message releases the 548 lock and something else can mess with the 549 state. */ 550 handle_flags(smi_info); 551 552 deliver_recv_msg(smi_info, msg); 553 } 554 break; 555 } 556 557 case SI_ENABLE_INTERRUPTS1: 558 { 559 unsigned char msg[4]; 560 561 /* We got the flags from the SMI, now handle them. */ 562 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 563 if (msg[2] != 0) { 564 printk(KERN_WARNING 565 "ipmi_si: Could not enable interrupts" 566 ", failed get, using polled mode.\n"); 567 smi_info->si_state = SI_NORMAL; 568 } else { 569 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 570 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 571 msg[2] = msg[3] | 1; /* enable msg queue int */ 572 smi_info->handlers->start_transaction( 573 smi_info->si_sm, msg, 3); 574 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 575 } 576 break; 577 } 578 579 case SI_ENABLE_INTERRUPTS2: 580 { 581 unsigned char msg[4]; 582 583 /* We got the flags from the SMI, now handle them. */ 584 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 585 if (msg[2] != 0) { 586 printk(KERN_WARNING 587 "ipmi_si: Could not enable interrupts" 588 ", failed set, using polled mode.\n"); 589 } 590 smi_info->si_state = SI_NORMAL; 591 break; 592 } 593 } 594 } 595 596 /* Called on timeouts and events. Timeouts should pass the elapsed 597 time, interrupts should pass in zero. */ 598 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 599 int time) 600 { 601 enum si_sm_result si_sm_result; 602 603 restart: 604 /* There used to be a loop here that waited a little while 605 (around 25us) before giving up. That turned out to be 606 pointless, the minimum delays I was seeing were in the 300us 607 range, which is far too long to wait in an interrupt. So 608 we just run until the state machine tells us something 609 happened or it needs a delay. */ 610 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 611 time = 0; 612 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 613 { 614 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 615 } 616 617 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) 618 { 619 spin_lock(&smi_info->count_lock); 620 smi_info->complete_transactions++; 621 spin_unlock(&smi_info->count_lock); 622 623 handle_transaction_done(smi_info); 624 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 625 } 626 else if (si_sm_result == SI_SM_HOSED) 627 { 628 spin_lock(&smi_info->count_lock); 629 smi_info->hosed_count++; 630 spin_unlock(&smi_info->count_lock); 631 632 /* Do the before return_hosed_msg, because that 633 releases the lock. */ 634 smi_info->si_state = SI_NORMAL; 635 if (smi_info->curr_msg != NULL) { 636 /* If we were handling a user message, format 637 a response to send to the upper layer to 638 tell it about the error. */ 639 return_hosed_msg(smi_info); 640 } 641 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 642 } 643 644 /* We prefer handling attn over new messages. */ 645 if (si_sm_result == SI_SM_ATTN) 646 { 647 unsigned char msg[2]; 648 649 spin_lock(&smi_info->count_lock); 650 smi_info->attentions++; 651 spin_unlock(&smi_info->count_lock); 652 653 /* Got a attn, send down a get message flags to see 654 what's causing it. It would be better to handle 655 this in the upper layer, but due to the way 656 interrupts work with the SMI, that's not really 657 possible. */ 658 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 659 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 660 661 smi_info->handlers->start_transaction( 662 smi_info->si_sm, msg, 2); 663 smi_info->si_state = SI_GETTING_FLAGS; 664 goto restart; 665 } 666 667 /* If we are currently idle, try to start the next message. */ 668 if (si_sm_result == SI_SM_IDLE) { 669 spin_lock(&smi_info->count_lock); 670 smi_info->idles++; 671 spin_unlock(&smi_info->count_lock); 672 673 si_sm_result = start_next_msg(smi_info); 674 if (si_sm_result != SI_SM_IDLE) 675 goto restart; 676 } 677 678 if ((si_sm_result == SI_SM_IDLE) 679 && (atomic_read(&smi_info->req_events))) 680 { 681 /* We are idle and the upper layer requested that I fetch 682 events, so do so. */ 683 unsigned char msg[2]; 684 685 spin_lock(&smi_info->count_lock); 686 smi_info->flag_fetches++; 687 spin_unlock(&smi_info->count_lock); 688 689 atomic_set(&smi_info->req_events, 0); 690 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 691 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 692 693 smi_info->handlers->start_transaction( 694 smi_info->si_sm, msg, 2); 695 smi_info->si_state = SI_GETTING_FLAGS; 696 goto restart; 697 } 698 699 return si_sm_result; 700 } 701 702 static void sender(void *send_info, 703 struct ipmi_smi_msg *msg, 704 int priority) 705 { 706 struct smi_info *smi_info = send_info; 707 enum si_sm_result result; 708 unsigned long flags; 709 #ifdef DEBUG_TIMING 710 struct timeval t; 711 #endif 712 713 spin_lock_irqsave(&(smi_info->msg_lock), flags); 714 #ifdef DEBUG_TIMING 715 do_gettimeofday(&t); 716 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 717 #endif 718 719 if (smi_info->run_to_completion) { 720 /* If we are running to completion, then throw it in 721 the list and run transactions until everything is 722 clear. Priority doesn't matter here. */ 723 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 724 725 /* We have to release the msg lock and claim the smi 726 lock in this case, because of race conditions. */ 727 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 728 729 spin_lock_irqsave(&(smi_info->si_lock), flags); 730 result = smi_event_handler(smi_info, 0); 731 while (result != SI_SM_IDLE) { 732 udelay(SI_SHORT_TIMEOUT_USEC); 733 result = smi_event_handler(smi_info, 734 SI_SHORT_TIMEOUT_USEC); 735 } 736 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 737 return; 738 } else { 739 if (priority > 0) { 740 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); 741 } else { 742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 743 } 744 } 745 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 746 747 spin_lock_irqsave(&(smi_info->si_lock), flags); 748 if ((smi_info->si_state == SI_NORMAL) 749 && (smi_info->curr_msg == NULL)) 750 { 751 start_next_msg(smi_info); 752 } 753 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 754 } 755 756 static void set_run_to_completion(void *send_info, int i_run_to_completion) 757 { 758 struct smi_info *smi_info = send_info; 759 enum si_sm_result result; 760 unsigned long flags; 761 762 spin_lock_irqsave(&(smi_info->si_lock), flags); 763 764 smi_info->run_to_completion = i_run_to_completion; 765 if (i_run_to_completion) { 766 result = smi_event_handler(smi_info, 0); 767 while (result != SI_SM_IDLE) { 768 udelay(SI_SHORT_TIMEOUT_USEC); 769 result = smi_event_handler(smi_info, 770 SI_SHORT_TIMEOUT_USEC); 771 } 772 } 773 774 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 775 } 776 777 static int ipmi_thread(void *data) 778 { 779 struct smi_info *smi_info = data; 780 unsigned long flags; 781 enum si_sm_result smi_result; 782 783 set_user_nice(current, 19); 784 while (!kthread_should_stop()) { 785 spin_lock_irqsave(&(smi_info->si_lock), flags); 786 smi_result = smi_event_handler(smi_info, 0); 787 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 788 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 789 /* do nothing */ 790 } 791 else if (smi_result == SI_SM_CALL_WITH_DELAY) 792 schedule(); 793 else 794 schedule_timeout_interruptible(1); 795 } 796 return 0; 797 } 798 799 800 static void poll(void *send_info) 801 { 802 struct smi_info *smi_info = send_info; 803 804 smi_event_handler(smi_info, 0); 805 } 806 807 static void request_events(void *send_info) 808 { 809 struct smi_info *smi_info = send_info; 810 811 atomic_set(&smi_info->req_events, 1); 812 } 813 814 static int initialized = 0; 815 816 static void smi_timeout(unsigned long data) 817 { 818 struct smi_info *smi_info = (struct smi_info *) data; 819 enum si_sm_result smi_result; 820 unsigned long flags; 821 unsigned long jiffies_now; 822 long time_diff; 823 #ifdef DEBUG_TIMING 824 struct timeval t; 825 #endif 826 827 if (atomic_read(&smi_info->stop_operation)) 828 return; 829 830 spin_lock_irqsave(&(smi_info->si_lock), flags); 831 #ifdef DEBUG_TIMING 832 do_gettimeofday(&t); 833 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 834 #endif 835 jiffies_now = jiffies; 836 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 837 * SI_USEC_PER_JIFFY); 838 smi_result = smi_event_handler(smi_info, time_diff); 839 840 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 841 842 smi_info->last_timeout_jiffies = jiffies_now; 843 844 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 845 /* Running with interrupts, only do long timeouts. */ 846 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 847 spin_lock_irqsave(&smi_info->count_lock, flags); 848 smi_info->long_timeouts++; 849 spin_unlock_irqrestore(&smi_info->count_lock, flags); 850 goto do_add_timer; 851 } 852 853 /* If the state machine asks for a short delay, then shorten 854 the timer timeout. */ 855 if (smi_result == SI_SM_CALL_WITH_DELAY) { 856 spin_lock_irqsave(&smi_info->count_lock, flags); 857 smi_info->short_timeouts++; 858 spin_unlock_irqrestore(&smi_info->count_lock, flags); 859 smi_info->si_timer.expires = jiffies + 1; 860 } else { 861 spin_lock_irqsave(&smi_info->count_lock, flags); 862 smi_info->long_timeouts++; 863 spin_unlock_irqrestore(&smi_info->count_lock, flags); 864 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 865 } 866 867 do_add_timer: 868 add_timer(&(smi_info->si_timer)); 869 } 870 871 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs) 872 { 873 struct smi_info *smi_info = data; 874 unsigned long flags; 875 #ifdef DEBUG_TIMING 876 struct timeval t; 877 #endif 878 879 spin_lock_irqsave(&(smi_info->si_lock), flags); 880 881 spin_lock(&smi_info->count_lock); 882 smi_info->interrupts++; 883 spin_unlock(&smi_info->count_lock); 884 885 if (atomic_read(&smi_info->stop_operation)) 886 goto out; 887 888 #ifdef DEBUG_TIMING 889 do_gettimeofday(&t); 890 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 891 #endif 892 smi_event_handler(smi_info, 0); 893 out: 894 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 895 return IRQ_HANDLED; 896 } 897 898 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs) 899 { 900 struct smi_info *smi_info = data; 901 /* We need to clear the IRQ flag for the BT interface. */ 902 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 903 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 904 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 905 return si_irq_handler(irq, data, regs); 906 } 907 908 static int smi_start_processing(void *send_info, 909 ipmi_smi_t intf) 910 { 911 struct smi_info *new_smi = send_info; 912 913 new_smi->intf = intf; 914 915 /* Set up the timer that drives the interface. */ 916 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 917 new_smi->last_timeout_jiffies = jiffies; 918 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 919 920 if (new_smi->si_type != SI_BT) { 921 new_smi->thread = kthread_run(ipmi_thread, new_smi, 922 "kipmi%d", new_smi->intf_num); 923 if (IS_ERR(new_smi->thread)) { 924 printk(KERN_NOTICE "ipmi_si_intf: Could not start" 925 " kernel thread due to error %ld, only using" 926 " timers to drive the interface\n", 927 PTR_ERR(new_smi->thread)); 928 new_smi->thread = NULL; 929 } 930 } 931 932 return 0; 933 } 934 935 static struct ipmi_smi_handlers handlers = 936 { 937 .owner = THIS_MODULE, 938 .start_processing = smi_start_processing, 939 .sender = sender, 940 .request_events = request_events, 941 .set_run_to_completion = set_run_to_completion, 942 .poll = poll, 943 }; 944 945 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 946 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ 947 948 #define SI_MAX_PARMS 4 949 static LIST_HEAD(smi_infos); 950 static DEFINE_MUTEX(smi_infos_lock); 951 static int smi_num; /* Used to sequence the SMIs */ 952 953 #define DEFAULT_REGSPACING 1 954 955 static int si_trydefaults = 1; 956 static char *si_type[SI_MAX_PARMS]; 957 #define MAX_SI_TYPE_STR 30 958 static char si_type_str[MAX_SI_TYPE_STR]; 959 static unsigned long addrs[SI_MAX_PARMS]; 960 static int num_addrs; 961 static unsigned int ports[SI_MAX_PARMS]; 962 static int num_ports; 963 static int irqs[SI_MAX_PARMS]; 964 static int num_irqs; 965 static int regspacings[SI_MAX_PARMS]; 966 static int num_regspacings = 0; 967 static int regsizes[SI_MAX_PARMS]; 968 static int num_regsizes = 0; 969 static int regshifts[SI_MAX_PARMS]; 970 static int num_regshifts = 0; 971 static int slave_addrs[SI_MAX_PARMS]; 972 static int num_slave_addrs = 0; 973 974 975 module_param_named(trydefaults, si_trydefaults, bool, 0); 976 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 977 " default scan of the KCS and SMIC interface at the standard" 978 " address"); 979 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 980 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 981 " interface separated by commas. The types are 'kcs'," 982 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 983 " the first interface to kcs and the second to bt"); 984 module_param_array(addrs, long, &num_addrs, 0); 985 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 986 " addresses separated by commas. Only use if an interface" 987 " is in memory. Otherwise, set it to zero or leave" 988 " it blank."); 989 module_param_array(ports, int, &num_ports, 0); 990 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 991 " addresses separated by commas. Only use if an interface" 992 " is a port. Otherwise, set it to zero or leave" 993 " it blank."); 994 module_param_array(irqs, int, &num_irqs, 0); 995 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 996 " addresses separated by commas. Only use if an interface" 997 " has an interrupt. Otherwise, set it to zero or leave" 998 " it blank."); 999 module_param_array(regspacings, int, &num_regspacings, 0); 1000 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1001 " and each successive register used by the interface. For" 1002 " instance, if the start address is 0xca2 and the spacing" 1003 " is 2, then the second address is at 0xca4. Defaults" 1004 " to 1."); 1005 module_param_array(regsizes, int, &num_regsizes, 0); 1006 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1007 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1008 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1009 " the 8-bit IPMI register has to be read from a larger" 1010 " register."); 1011 module_param_array(regshifts, int, &num_regshifts, 0); 1012 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1013 " IPMI register, in bits. For instance, if the data" 1014 " is read from a 32-bit word and the IPMI data is in" 1015 " bit 8-15, then the shift would be 8"); 1016 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1017 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1018 " the controller. Normally this is 0x20, but can be" 1019 " overridden by this parm. This is an array indexed" 1020 " by interface number."); 1021 1022 1023 #define IPMI_IO_ADDR_SPACE 0 1024 #define IPMI_MEM_ADDR_SPACE 1 1025 static char *addr_space_to_str[] = { "I/O", "memory" }; 1026 1027 static void std_irq_cleanup(struct smi_info *info) 1028 { 1029 if (info->si_type == SI_BT) 1030 /* Disable the interrupt in the BT interface. */ 1031 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1032 free_irq(info->irq, info); 1033 } 1034 1035 static int std_irq_setup(struct smi_info *info) 1036 { 1037 int rv; 1038 1039 if (!info->irq) 1040 return 0; 1041 1042 if (info->si_type == SI_BT) { 1043 rv = request_irq(info->irq, 1044 si_bt_irq_handler, 1045 SA_INTERRUPT, 1046 DEVICE_NAME, 1047 info); 1048 if (!rv) 1049 /* Enable the interrupt in the BT interface. */ 1050 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1051 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1052 } else 1053 rv = request_irq(info->irq, 1054 si_irq_handler, 1055 SA_INTERRUPT, 1056 DEVICE_NAME, 1057 info); 1058 if (rv) { 1059 printk(KERN_WARNING 1060 "ipmi_si: %s unable to claim interrupt %d," 1061 " running polled\n", 1062 DEVICE_NAME, info->irq); 1063 info->irq = 0; 1064 } else { 1065 info->irq_cleanup = std_irq_cleanup; 1066 printk(" Using irq %d\n", info->irq); 1067 } 1068 1069 return rv; 1070 } 1071 1072 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1073 { 1074 unsigned int addr = io->addr_data; 1075 1076 return inb(addr + (offset * io->regspacing)); 1077 } 1078 1079 static void port_outb(struct si_sm_io *io, unsigned int offset, 1080 unsigned char b) 1081 { 1082 unsigned int addr = io->addr_data; 1083 1084 outb(b, addr + (offset * io->regspacing)); 1085 } 1086 1087 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1088 { 1089 unsigned int addr = io->addr_data; 1090 1091 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1092 } 1093 1094 static void port_outw(struct si_sm_io *io, unsigned int offset, 1095 unsigned char b) 1096 { 1097 unsigned int addr = io->addr_data; 1098 1099 outw(b << io->regshift, addr + (offset * io->regspacing)); 1100 } 1101 1102 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1103 { 1104 unsigned int addr = io->addr_data; 1105 1106 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1107 } 1108 1109 static void port_outl(struct si_sm_io *io, unsigned int offset, 1110 unsigned char b) 1111 { 1112 unsigned int addr = io->addr_data; 1113 1114 outl(b << io->regshift, addr+(offset * io->regspacing)); 1115 } 1116 1117 static void port_cleanup(struct smi_info *info) 1118 { 1119 unsigned int addr = info->io.addr_data; 1120 int idx; 1121 1122 if (addr) { 1123 for (idx = 0; idx < info->io_size; idx++) { 1124 release_region(addr + idx * info->io.regspacing, 1125 info->io.regsize); 1126 } 1127 } 1128 } 1129 1130 static int port_setup(struct smi_info *info) 1131 { 1132 unsigned int addr = info->io.addr_data; 1133 int idx; 1134 1135 if (!addr) 1136 return -ENODEV; 1137 1138 info->io_cleanup = port_cleanup; 1139 1140 /* Figure out the actual inb/inw/inl/etc routine to use based 1141 upon the register size. */ 1142 switch (info->io.regsize) { 1143 case 1: 1144 info->io.inputb = port_inb; 1145 info->io.outputb = port_outb; 1146 break; 1147 case 2: 1148 info->io.inputb = port_inw; 1149 info->io.outputb = port_outw; 1150 break; 1151 case 4: 1152 info->io.inputb = port_inl; 1153 info->io.outputb = port_outl; 1154 break; 1155 default: 1156 printk("ipmi_si: Invalid register size: %d\n", 1157 info->io.regsize); 1158 return -EINVAL; 1159 } 1160 1161 /* Some BIOSes reserve disjoint I/O regions in their ACPI 1162 * tables. This causes problems when trying to register the 1163 * entire I/O region. Therefore we must register each I/O 1164 * port separately. 1165 */ 1166 for (idx = 0; idx < info->io_size; idx++) { 1167 if (request_region(addr + idx * info->io.regspacing, 1168 info->io.regsize, DEVICE_NAME) == NULL) { 1169 /* Undo allocations */ 1170 while (idx--) { 1171 release_region(addr + idx * info->io.regspacing, 1172 info->io.regsize); 1173 } 1174 return -EIO; 1175 } 1176 } 1177 return 0; 1178 } 1179 1180 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1181 { 1182 return readb((io->addr)+(offset * io->regspacing)); 1183 } 1184 1185 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1186 unsigned char b) 1187 { 1188 writeb(b, (io->addr)+(offset * io->regspacing)); 1189 } 1190 1191 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1192 { 1193 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1194 && 0xff; 1195 } 1196 1197 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1198 unsigned char b) 1199 { 1200 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1201 } 1202 1203 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1204 { 1205 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1206 && 0xff; 1207 } 1208 1209 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1210 unsigned char b) 1211 { 1212 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1213 } 1214 1215 #ifdef readq 1216 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1217 { 1218 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1219 && 0xff; 1220 } 1221 1222 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1223 unsigned char b) 1224 { 1225 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1226 } 1227 #endif 1228 1229 static void mem_cleanup(struct smi_info *info) 1230 { 1231 unsigned long addr = info->io.addr_data; 1232 int mapsize; 1233 1234 if (info->io.addr) { 1235 iounmap(info->io.addr); 1236 1237 mapsize = ((info->io_size * info->io.regspacing) 1238 - (info->io.regspacing - info->io.regsize)); 1239 1240 release_mem_region(addr, mapsize); 1241 } 1242 } 1243 1244 static int mem_setup(struct smi_info *info) 1245 { 1246 unsigned long addr = info->io.addr_data; 1247 int mapsize; 1248 1249 if (!addr) 1250 return -ENODEV; 1251 1252 info->io_cleanup = mem_cleanup; 1253 1254 /* Figure out the actual readb/readw/readl/etc routine to use based 1255 upon the register size. */ 1256 switch (info->io.regsize) { 1257 case 1: 1258 info->io.inputb = intf_mem_inb; 1259 info->io.outputb = intf_mem_outb; 1260 break; 1261 case 2: 1262 info->io.inputb = intf_mem_inw; 1263 info->io.outputb = intf_mem_outw; 1264 break; 1265 case 4: 1266 info->io.inputb = intf_mem_inl; 1267 info->io.outputb = intf_mem_outl; 1268 break; 1269 #ifdef readq 1270 case 8: 1271 info->io.inputb = mem_inq; 1272 info->io.outputb = mem_outq; 1273 break; 1274 #endif 1275 default: 1276 printk("ipmi_si: Invalid register size: %d\n", 1277 info->io.regsize); 1278 return -EINVAL; 1279 } 1280 1281 /* Calculate the total amount of memory to claim. This is an 1282 * unusual looking calculation, but it avoids claiming any 1283 * more memory than it has to. It will claim everything 1284 * between the first address to the end of the last full 1285 * register. */ 1286 mapsize = ((info->io_size * info->io.regspacing) 1287 - (info->io.regspacing - info->io.regsize)); 1288 1289 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1290 return -EIO; 1291 1292 info->io.addr = ioremap(addr, mapsize); 1293 if (info->io.addr == NULL) { 1294 release_mem_region(addr, mapsize); 1295 return -EIO; 1296 } 1297 return 0; 1298 } 1299 1300 1301 static __devinit void hardcode_find_bmc(void) 1302 { 1303 int i; 1304 struct smi_info *info; 1305 1306 for (i = 0; i < SI_MAX_PARMS; i++) { 1307 if (!ports[i] && !addrs[i]) 1308 continue; 1309 1310 info = kzalloc(sizeof(*info), GFP_KERNEL); 1311 if (!info) 1312 return; 1313 1314 info->addr_source = "hardcoded"; 1315 1316 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1317 info->si_type = SI_KCS; 1318 } else if (strcmp(si_type[i], "smic") == 0) { 1319 info->si_type = SI_SMIC; 1320 } else if (strcmp(si_type[i], "bt") == 0) { 1321 info->si_type = SI_BT; 1322 } else { 1323 printk(KERN_WARNING 1324 "ipmi_si: Interface type specified " 1325 "for interface %d, was invalid: %s\n", 1326 i, si_type[i]); 1327 kfree(info); 1328 continue; 1329 } 1330 1331 if (ports[i]) { 1332 /* An I/O port */ 1333 info->io_setup = port_setup; 1334 info->io.addr_data = ports[i]; 1335 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1336 } else if (addrs[i]) { 1337 /* A memory port */ 1338 info->io_setup = mem_setup; 1339 info->io.addr_data = addrs[i]; 1340 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1341 } else { 1342 printk(KERN_WARNING 1343 "ipmi_si: Interface type specified " 1344 "for interface %d, " 1345 "but port and address were not set or " 1346 "set to zero.\n", i); 1347 kfree(info); 1348 continue; 1349 } 1350 1351 info->io.addr = NULL; 1352 info->io.regspacing = regspacings[i]; 1353 if (!info->io.regspacing) 1354 info->io.regspacing = DEFAULT_REGSPACING; 1355 info->io.regsize = regsizes[i]; 1356 if (!info->io.regsize) 1357 info->io.regsize = DEFAULT_REGSPACING; 1358 info->io.regshift = regshifts[i]; 1359 info->irq = irqs[i]; 1360 if (info->irq) 1361 info->irq_setup = std_irq_setup; 1362 1363 try_smi_init(info); 1364 } 1365 } 1366 1367 #ifdef CONFIG_ACPI 1368 1369 #include <linux/acpi.h> 1370 1371 /* Once we get an ACPI failure, we don't try any more, because we go 1372 through the tables sequentially. Once we don't find a table, there 1373 are no more. */ 1374 static int acpi_failure = 0; 1375 1376 /* For GPE-type interrupts. */ 1377 static u32 ipmi_acpi_gpe(void *context) 1378 { 1379 struct smi_info *smi_info = context; 1380 unsigned long flags; 1381 #ifdef DEBUG_TIMING 1382 struct timeval t; 1383 #endif 1384 1385 spin_lock_irqsave(&(smi_info->si_lock), flags); 1386 1387 spin_lock(&smi_info->count_lock); 1388 smi_info->interrupts++; 1389 spin_unlock(&smi_info->count_lock); 1390 1391 if (atomic_read(&smi_info->stop_operation)) 1392 goto out; 1393 1394 #ifdef DEBUG_TIMING 1395 do_gettimeofday(&t); 1396 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1397 #endif 1398 smi_event_handler(smi_info, 0); 1399 out: 1400 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1401 1402 return ACPI_INTERRUPT_HANDLED; 1403 } 1404 1405 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1406 { 1407 if (!info->irq) 1408 return; 1409 1410 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1411 } 1412 1413 static int acpi_gpe_irq_setup(struct smi_info *info) 1414 { 1415 acpi_status status; 1416 1417 if (!info->irq) 1418 return 0; 1419 1420 /* FIXME - is level triggered right? */ 1421 status = acpi_install_gpe_handler(NULL, 1422 info->irq, 1423 ACPI_GPE_LEVEL_TRIGGERED, 1424 &ipmi_acpi_gpe, 1425 info); 1426 if (status != AE_OK) { 1427 printk(KERN_WARNING 1428 "ipmi_si: %s unable to claim ACPI GPE %d," 1429 " running polled\n", 1430 DEVICE_NAME, info->irq); 1431 info->irq = 0; 1432 return -EINVAL; 1433 } else { 1434 info->irq_cleanup = acpi_gpe_irq_cleanup; 1435 printk(" Using ACPI GPE %d\n", info->irq); 1436 return 0; 1437 } 1438 } 1439 1440 /* 1441 * Defined at 1442 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf 1443 */ 1444 struct SPMITable { 1445 s8 Signature[4]; 1446 u32 Length; 1447 u8 Revision; 1448 u8 Checksum; 1449 s8 OEMID[6]; 1450 s8 OEMTableID[8]; 1451 s8 OEMRevision[4]; 1452 s8 CreatorID[4]; 1453 s8 CreatorRevision[4]; 1454 u8 InterfaceType; 1455 u8 IPMIlegacy; 1456 s16 SpecificationRevision; 1457 1458 /* 1459 * Bit 0 - SCI interrupt supported 1460 * Bit 1 - I/O APIC/SAPIC 1461 */ 1462 u8 InterruptType; 1463 1464 /* If bit 0 of InterruptType is set, then this is the SCI 1465 interrupt in the GPEx_STS register. */ 1466 u8 GPE; 1467 1468 s16 Reserved; 1469 1470 /* If bit 1 of InterruptType is set, then this is the I/O 1471 APIC/SAPIC interrupt. */ 1472 u32 GlobalSystemInterrupt; 1473 1474 /* The actual register address. */ 1475 struct acpi_generic_address addr; 1476 1477 u8 UID[4]; 1478 1479 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1480 }; 1481 1482 static __devinit int try_init_acpi(struct SPMITable *spmi) 1483 { 1484 struct smi_info *info; 1485 char *io_type; 1486 u8 addr_space; 1487 1488 if (spmi->IPMIlegacy != 1) { 1489 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1490 return -ENODEV; 1491 } 1492 1493 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1494 addr_space = IPMI_MEM_ADDR_SPACE; 1495 else 1496 addr_space = IPMI_IO_ADDR_SPACE; 1497 1498 info = kzalloc(sizeof(*info), GFP_KERNEL); 1499 if (!info) { 1500 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1501 return -ENOMEM; 1502 } 1503 1504 info->addr_source = "ACPI"; 1505 1506 /* Figure out the interface type. */ 1507 switch (spmi->InterfaceType) 1508 { 1509 case 1: /* KCS */ 1510 info->si_type = SI_KCS; 1511 break; 1512 case 2: /* SMIC */ 1513 info->si_type = SI_SMIC; 1514 break; 1515 case 3: /* BT */ 1516 info->si_type = SI_BT; 1517 break; 1518 default: 1519 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1520 spmi->InterfaceType); 1521 kfree(info); 1522 return -EIO; 1523 } 1524 1525 if (spmi->InterruptType & 1) { 1526 /* We've got a GPE interrupt. */ 1527 info->irq = spmi->GPE; 1528 info->irq_setup = acpi_gpe_irq_setup; 1529 } else if (spmi->InterruptType & 2) { 1530 /* We've got an APIC/SAPIC interrupt. */ 1531 info->irq = spmi->GlobalSystemInterrupt; 1532 info->irq_setup = std_irq_setup; 1533 } else { 1534 /* Use the default interrupt setting. */ 1535 info->irq = 0; 1536 info->irq_setup = NULL; 1537 } 1538 1539 if (spmi->addr.register_bit_width) { 1540 /* A (hopefully) properly formed register bit width. */ 1541 info->io.regspacing = spmi->addr.register_bit_width / 8; 1542 } else { 1543 info->io.regspacing = DEFAULT_REGSPACING; 1544 } 1545 info->io.regsize = info->io.regspacing; 1546 info->io.regshift = spmi->addr.register_bit_offset; 1547 1548 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1549 io_type = "memory"; 1550 info->io_setup = mem_setup; 1551 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1552 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1553 io_type = "I/O"; 1554 info->io_setup = port_setup; 1555 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1556 } else { 1557 kfree(info); 1558 printk("ipmi_si: Unknown ACPI I/O Address type\n"); 1559 return -EIO; 1560 } 1561 info->io.addr_data = spmi->addr.address; 1562 1563 try_smi_init(info); 1564 1565 return 0; 1566 } 1567 1568 static __devinit void acpi_find_bmc(void) 1569 { 1570 acpi_status status; 1571 struct SPMITable *spmi; 1572 int i; 1573 1574 if (acpi_disabled) 1575 return; 1576 1577 if (acpi_failure) 1578 return; 1579 1580 for (i = 0; ; i++) { 1581 status = acpi_get_firmware_table("SPMI", i+1, 1582 ACPI_LOGICAL_ADDRESSING, 1583 (struct acpi_table_header **) 1584 &spmi); 1585 if (status != AE_OK) 1586 return; 1587 1588 try_init_acpi(spmi); 1589 } 1590 } 1591 #endif 1592 1593 #ifdef CONFIG_DMI 1594 struct dmi_ipmi_data 1595 { 1596 u8 type; 1597 u8 addr_space; 1598 unsigned long base_addr; 1599 u8 irq; 1600 u8 offset; 1601 u8 slave_addr; 1602 }; 1603 1604 static int __devinit decode_dmi(struct dmi_header *dm, 1605 struct dmi_ipmi_data *dmi) 1606 { 1607 u8 *data = (u8 *)dm; 1608 unsigned long base_addr; 1609 u8 reg_spacing; 1610 u8 len = dm->length; 1611 1612 dmi->type = data[4]; 1613 1614 memcpy(&base_addr, data+8, sizeof(unsigned long)); 1615 if (len >= 0x11) { 1616 if (base_addr & 1) { 1617 /* I/O */ 1618 base_addr &= 0xFFFE; 1619 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1620 } 1621 else { 1622 /* Memory */ 1623 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 1624 } 1625 /* If bit 4 of byte 0x10 is set, then the lsb for the address 1626 is odd. */ 1627 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 1628 1629 dmi->irq = data[0x11]; 1630 1631 /* The top two bits of byte 0x10 hold the register spacing. */ 1632 reg_spacing = (data[0x10] & 0xC0) >> 6; 1633 switch(reg_spacing){ 1634 case 0x00: /* Byte boundaries */ 1635 dmi->offset = 1; 1636 break; 1637 case 0x01: /* 32-bit boundaries */ 1638 dmi->offset = 4; 1639 break; 1640 case 0x02: /* 16-byte boundaries */ 1641 dmi->offset = 16; 1642 break; 1643 default: 1644 /* Some other interface, just ignore it. */ 1645 return -EIO; 1646 } 1647 } else { 1648 /* Old DMI spec. */ 1649 /* Note that technically, the lower bit of the base 1650 * address should be 1 if the address is I/O and 0 if 1651 * the address is in memory. So many systems get that 1652 * wrong (and all that I have seen are I/O) so we just 1653 * ignore that bit and assume I/O. Systems that use 1654 * memory should use the newer spec, anyway. */ 1655 dmi->base_addr = base_addr & 0xfffe; 1656 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1657 dmi->offset = 1; 1658 } 1659 1660 dmi->slave_addr = data[6]; 1661 1662 return 0; 1663 } 1664 1665 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 1666 { 1667 struct smi_info *info; 1668 1669 info = kzalloc(sizeof(*info), GFP_KERNEL); 1670 if (!info) { 1671 printk(KERN_ERR 1672 "ipmi_si: Could not allocate SI data\n"); 1673 return; 1674 } 1675 1676 info->addr_source = "SMBIOS"; 1677 1678 switch (ipmi_data->type) { 1679 case 0x01: /* KCS */ 1680 info->si_type = SI_KCS; 1681 break; 1682 case 0x02: /* SMIC */ 1683 info->si_type = SI_SMIC; 1684 break; 1685 case 0x03: /* BT */ 1686 info->si_type = SI_BT; 1687 break; 1688 default: 1689 return; 1690 } 1691 1692 switch (ipmi_data->addr_space) { 1693 case IPMI_MEM_ADDR_SPACE: 1694 info->io_setup = mem_setup; 1695 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1696 break; 1697 1698 case IPMI_IO_ADDR_SPACE: 1699 info->io_setup = port_setup; 1700 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1701 break; 1702 1703 default: 1704 kfree(info); 1705 printk(KERN_WARNING 1706 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 1707 ipmi_data->addr_space); 1708 return; 1709 } 1710 info->io.addr_data = ipmi_data->base_addr; 1711 1712 info->io.regspacing = ipmi_data->offset; 1713 if (!info->io.regspacing) 1714 info->io.regspacing = DEFAULT_REGSPACING; 1715 info->io.regsize = DEFAULT_REGSPACING; 1716 info->io.regshift = 0; 1717 1718 info->slave_addr = ipmi_data->slave_addr; 1719 1720 info->irq = ipmi_data->irq; 1721 if (info->irq) 1722 info->irq_setup = std_irq_setup; 1723 1724 try_smi_init(info); 1725 } 1726 1727 static void __devinit dmi_find_bmc(void) 1728 { 1729 struct dmi_device *dev = NULL; 1730 struct dmi_ipmi_data data; 1731 int rv; 1732 1733 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 1734 rv = decode_dmi((struct dmi_header *) dev->device_data, &data); 1735 if (!rv) 1736 try_init_dmi(&data); 1737 } 1738 } 1739 #endif /* CONFIG_DMI */ 1740 1741 #ifdef CONFIG_PCI 1742 1743 #define PCI_ERMC_CLASSCODE 0x0C0700 1744 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 1745 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 1746 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 1747 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 1748 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 1749 1750 #define PCI_HP_VENDOR_ID 0x103C 1751 #define PCI_MMC_DEVICE_ID 0x121A 1752 #define PCI_MMC_ADDR_CW 0x10 1753 1754 static void ipmi_pci_cleanup(struct smi_info *info) 1755 { 1756 struct pci_dev *pdev = info->addr_source_data; 1757 1758 pci_disable_device(pdev); 1759 } 1760 1761 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 1762 const struct pci_device_id *ent) 1763 { 1764 int rv; 1765 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 1766 struct smi_info *info; 1767 int first_reg_offset = 0; 1768 1769 info = kzalloc(sizeof(*info), GFP_KERNEL); 1770 if (!info) 1771 return ENOMEM; 1772 1773 info->addr_source = "PCI"; 1774 1775 switch (class_type) { 1776 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 1777 info->si_type = SI_SMIC; 1778 break; 1779 1780 case PCI_ERMC_CLASSCODE_TYPE_KCS: 1781 info->si_type = SI_KCS; 1782 break; 1783 1784 case PCI_ERMC_CLASSCODE_TYPE_BT: 1785 info->si_type = SI_BT; 1786 break; 1787 1788 default: 1789 kfree(info); 1790 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 1791 pci_name(pdev), class_type); 1792 return ENOMEM; 1793 } 1794 1795 rv = pci_enable_device(pdev); 1796 if (rv) { 1797 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 1798 pci_name(pdev)); 1799 kfree(info); 1800 return rv; 1801 } 1802 1803 info->addr_source_cleanup = ipmi_pci_cleanup; 1804 info->addr_source_data = pdev; 1805 1806 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID) 1807 first_reg_offset = 1; 1808 1809 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 1810 info->io_setup = port_setup; 1811 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1812 } else { 1813 info->io_setup = mem_setup; 1814 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1815 } 1816 info->io.addr_data = pci_resource_start(pdev, 0); 1817 1818 info->io.regspacing = DEFAULT_REGSPACING; 1819 info->io.regsize = DEFAULT_REGSPACING; 1820 info->io.regshift = 0; 1821 1822 info->irq = pdev->irq; 1823 if (info->irq) 1824 info->irq_setup = std_irq_setup; 1825 1826 info->dev = &pdev->dev; 1827 1828 return try_smi_init(info); 1829 } 1830 1831 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 1832 { 1833 } 1834 1835 #ifdef CONFIG_PM 1836 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 1837 { 1838 return 0; 1839 } 1840 1841 static int ipmi_pci_resume(struct pci_dev *pdev) 1842 { 1843 return 0; 1844 } 1845 #endif 1846 1847 static struct pci_device_id ipmi_pci_devices[] = { 1848 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 1849 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) } 1850 }; 1851 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 1852 1853 static struct pci_driver ipmi_pci_driver = { 1854 .name = DEVICE_NAME, 1855 .id_table = ipmi_pci_devices, 1856 .probe = ipmi_pci_probe, 1857 .remove = __devexit_p(ipmi_pci_remove), 1858 #ifdef CONFIG_PM 1859 .suspend = ipmi_pci_suspend, 1860 .resume = ipmi_pci_resume, 1861 #endif 1862 }; 1863 #endif /* CONFIG_PCI */ 1864 1865 1866 static int try_get_dev_id(struct smi_info *smi_info) 1867 { 1868 unsigned char msg[2]; 1869 unsigned char *resp; 1870 unsigned long resp_len; 1871 enum si_sm_result smi_result; 1872 int rv = 0; 1873 1874 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1875 if (!resp) 1876 return -ENOMEM; 1877 1878 /* Do a Get Device ID command, since it comes back with some 1879 useful info. */ 1880 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1881 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1882 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1883 1884 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1885 for (;;) 1886 { 1887 if (smi_result == SI_SM_CALL_WITH_DELAY || 1888 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1889 schedule_timeout_uninterruptible(1); 1890 smi_result = smi_info->handlers->event( 1891 smi_info->si_sm, 100); 1892 } 1893 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1894 { 1895 smi_result = smi_info->handlers->event( 1896 smi_info->si_sm, 0); 1897 } 1898 else 1899 break; 1900 } 1901 if (smi_result == SI_SM_HOSED) { 1902 /* We couldn't get the state machine to run, so whatever's at 1903 the port is probably not an IPMI SMI interface. */ 1904 rv = -ENODEV; 1905 goto out; 1906 } 1907 1908 /* Otherwise, we got some data. */ 1909 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1910 resp, IPMI_MAX_MSG_LENGTH); 1911 if (resp_len < 14) { 1912 /* That's odd, it should be longer. */ 1913 rv = -EINVAL; 1914 goto out; 1915 } 1916 1917 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { 1918 /* That's odd, it shouldn't be able to fail. */ 1919 rv = -EINVAL; 1920 goto out; 1921 } 1922 1923 /* Record info from the get device id, in case we need it. */ 1924 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id); 1925 1926 out: 1927 kfree(resp); 1928 return rv; 1929 } 1930 1931 static int type_file_read_proc(char *page, char **start, off_t off, 1932 int count, int *eof, void *data) 1933 { 1934 char *out = (char *) page; 1935 struct smi_info *smi = data; 1936 1937 switch (smi->si_type) { 1938 case SI_KCS: 1939 return sprintf(out, "kcs\n"); 1940 case SI_SMIC: 1941 return sprintf(out, "smic\n"); 1942 case SI_BT: 1943 return sprintf(out, "bt\n"); 1944 default: 1945 return 0; 1946 } 1947 } 1948 1949 static int stat_file_read_proc(char *page, char **start, off_t off, 1950 int count, int *eof, void *data) 1951 { 1952 char *out = (char *) page; 1953 struct smi_info *smi = data; 1954 1955 out += sprintf(out, "interrupts_enabled: %d\n", 1956 smi->irq && !smi->interrupt_disabled); 1957 out += sprintf(out, "short_timeouts: %ld\n", 1958 smi->short_timeouts); 1959 out += sprintf(out, "long_timeouts: %ld\n", 1960 smi->long_timeouts); 1961 out += sprintf(out, "timeout_restarts: %ld\n", 1962 smi->timeout_restarts); 1963 out += sprintf(out, "idles: %ld\n", 1964 smi->idles); 1965 out += sprintf(out, "interrupts: %ld\n", 1966 smi->interrupts); 1967 out += sprintf(out, "attentions: %ld\n", 1968 smi->attentions); 1969 out += sprintf(out, "flag_fetches: %ld\n", 1970 smi->flag_fetches); 1971 out += sprintf(out, "hosed_count: %ld\n", 1972 smi->hosed_count); 1973 out += sprintf(out, "complete_transactions: %ld\n", 1974 smi->complete_transactions); 1975 out += sprintf(out, "events: %ld\n", 1976 smi->events); 1977 out += sprintf(out, "watchdog_pretimeouts: %ld\n", 1978 smi->watchdog_pretimeouts); 1979 out += sprintf(out, "incoming_messages: %ld\n", 1980 smi->incoming_messages); 1981 1982 return (out - ((char *) page)); 1983 } 1984 1985 /* 1986 * oem_data_avail_to_receive_msg_avail 1987 * @info - smi_info structure with msg_flags set 1988 * 1989 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 1990 * Returns 1 indicating need to re-run handle_flags(). 1991 */ 1992 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 1993 { 1994 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 1995 RECEIVE_MSG_AVAIL); 1996 return 1; 1997 } 1998 1999 /* 2000 * setup_dell_poweredge_oem_data_handler 2001 * @info - smi_info.device_id must be populated 2002 * 2003 * Systems that match, but have firmware version < 1.40 may assert 2004 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2005 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2006 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2007 * as RECEIVE_MSG_AVAIL instead. 2008 * 2009 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2010 * assert the OEM[012] bits, and if it did, the driver would have to 2011 * change to handle that properly, we don't actually check for the 2012 * firmware version. 2013 * Device ID = 0x20 BMC on PowerEdge 8G servers 2014 * Device Revision = 0x80 2015 * Firmware Revision1 = 0x01 BMC version 1.40 2016 * Firmware Revision2 = 0x40 BCD encoded 2017 * IPMI Version = 0x51 IPMI 1.5 2018 * Manufacturer ID = A2 02 00 Dell IANA 2019 * 2020 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2021 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2022 * 2023 */ 2024 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2025 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2026 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2027 #define DELL_IANA_MFR_ID 0x0002a2 2028 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2029 { 2030 struct ipmi_device_id *id = &smi_info->device_id; 2031 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2032 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2033 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2034 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2035 smi_info->oem_data_avail_handler = 2036 oem_data_avail_to_receive_msg_avail; 2037 } 2038 else if (ipmi_version_major(id) < 1 || 2039 (ipmi_version_major(id) == 1 && 2040 ipmi_version_minor(id) < 5)) { 2041 smi_info->oem_data_avail_handler = 2042 oem_data_avail_to_receive_msg_avail; 2043 } 2044 } 2045 } 2046 2047 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2048 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2049 { 2050 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2051 2052 /* Make it a reponse */ 2053 msg->rsp[0] = msg->data[0] | 4; 2054 msg->rsp[1] = msg->data[1]; 2055 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2056 msg->rsp_size = 3; 2057 smi_info->curr_msg = NULL; 2058 deliver_recv_msg(smi_info, msg); 2059 } 2060 2061 /* 2062 * dell_poweredge_bt_xaction_handler 2063 * @info - smi_info.device_id must be populated 2064 * 2065 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2066 * not respond to a Get SDR command if the length of the data 2067 * requested is exactly 0x3A, which leads to command timeouts and no 2068 * data returned. This intercepts such commands, and causes userspace 2069 * callers to try again with a different-sized buffer, which succeeds. 2070 */ 2071 2072 #define STORAGE_NETFN 0x0A 2073 #define STORAGE_CMD_GET_SDR 0x23 2074 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2075 unsigned long unused, 2076 void *in) 2077 { 2078 struct smi_info *smi_info = in; 2079 unsigned char *data = smi_info->curr_msg->data; 2080 unsigned int size = smi_info->curr_msg->data_size; 2081 if (size >= 8 && 2082 (data[0]>>2) == STORAGE_NETFN && 2083 data[1] == STORAGE_CMD_GET_SDR && 2084 data[7] == 0x3A) { 2085 return_hosed_msg_badsize(smi_info); 2086 return NOTIFY_STOP; 2087 } 2088 return NOTIFY_DONE; 2089 } 2090 2091 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2092 .notifier_call = dell_poweredge_bt_xaction_handler, 2093 }; 2094 2095 /* 2096 * setup_dell_poweredge_bt_xaction_handler 2097 * @info - smi_info.device_id must be filled in already 2098 * 2099 * Fills in smi_info.device_id.start_transaction_pre_hook 2100 * when we know what function to use there. 2101 */ 2102 static void 2103 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2104 { 2105 struct ipmi_device_id *id = &smi_info->device_id; 2106 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2107 smi_info->si_type == SI_BT) 2108 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2109 } 2110 2111 /* 2112 * setup_oem_data_handler 2113 * @info - smi_info.device_id must be filled in already 2114 * 2115 * Fills in smi_info.device_id.oem_data_available_handler 2116 * when we know what function to use there. 2117 */ 2118 2119 static void setup_oem_data_handler(struct smi_info *smi_info) 2120 { 2121 setup_dell_poweredge_oem_data_handler(smi_info); 2122 } 2123 2124 static void setup_xaction_handlers(struct smi_info *smi_info) 2125 { 2126 setup_dell_poweredge_bt_xaction_handler(smi_info); 2127 } 2128 2129 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2130 { 2131 if (smi_info->intf) { 2132 /* The timer and thread are only running if the 2133 interface has been started up and registered. */ 2134 if (smi_info->thread != NULL) 2135 kthread_stop(smi_info->thread); 2136 del_timer_sync(&smi_info->si_timer); 2137 } 2138 } 2139 2140 static __devinitdata struct ipmi_default_vals 2141 { 2142 int type; 2143 int port; 2144 } ipmi_defaults[] = 2145 { 2146 { .type = SI_KCS, .port = 0xca2 }, 2147 { .type = SI_SMIC, .port = 0xca9 }, 2148 { .type = SI_BT, .port = 0xe4 }, 2149 { .port = 0 } 2150 }; 2151 2152 static __devinit void default_find_bmc(void) 2153 { 2154 struct smi_info *info; 2155 int i; 2156 2157 for (i = 0; ; i++) { 2158 if (!ipmi_defaults[i].port) 2159 break; 2160 2161 info = kzalloc(sizeof(*info), GFP_KERNEL); 2162 if (!info) 2163 return; 2164 2165 info->addr_source = NULL; 2166 2167 info->si_type = ipmi_defaults[i].type; 2168 info->io_setup = port_setup; 2169 info->io.addr_data = ipmi_defaults[i].port; 2170 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2171 2172 info->io.addr = NULL; 2173 info->io.regspacing = DEFAULT_REGSPACING; 2174 info->io.regsize = DEFAULT_REGSPACING; 2175 info->io.regshift = 0; 2176 2177 if (try_smi_init(info) == 0) { 2178 /* Found one... */ 2179 printk(KERN_INFO "ipmi_si: Found default %s state" 2180 " machine at %s address 0x%lx\n", 2181 si_to_str[info->si_type], 2182 addr_space_to_str[info->io.addr_type], 2183 info->io.addr_data); 2184 return; 2185 } 2186 } 2187 } 2188 2189 static int is_new_interface(struct smi_info *info) 2190 { 2191 struct smi_info *e; 2192 2193 list_for_each_entry(e, &smi_infos, link) { 2194 if (e->io.addr_type != info->io.addr_type) 2195 continue; 2196 if (e->io.addr_data == info->io.addr_data) 2197 return 0; 2198 } 2199 2200 return 1; 2201 } 2202 2203 static int try_smi_init(struct smi_info *new_smi) 2204 { 2205 int rv; 2206 2207 if (new_smi->addr_source) { 2208 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2209 " machine at %s address 0x%lx, slave address 0x%x," 2210 " irq %d\n", 2211 new_smi->addr_source, 2212 si_to_str[new_smi->si_type], 2213 addr_space_to_str[new_smi->io.addr_type], 2214 new_smi->io.addr_data, 2215 new_smi->slave_addr, new_smi->irq); 2216 } 2217 2218 mutex_lock(&smi_infos_lock); 2219 if (!is_new_interface(new_smi)) { 2220 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2221 rv = -EBUSY; 2222 goto out_err; 2223 } 2224 2225 /* So we know not to free it unless we have allocated one. */ 2226 new_smi->intf = NULL; 2227 new_smi->si_sm = NULL; 2228 new_smi->handlers = NULL; 2229 2230 switch (new_smi->si_type) { 2231 case SI_KCS: 2232 new_smi->handlers = &kcs_smi_handlers; 2233 break; 2234 2235 case SI_SMIC: 2236 new_smi->handlers = &smic_smi_handlers; 2237 break; 2238 2239 case SI_BT: 2240 new_smi->handlers = &bt_smi_handlers; 2241 break; 2242 2243 default: 2244 /* No support for anything else yet. */ 2245 rv = -EIO; 2246 goto out_err; 2247 } 2248 2249 /* Allocate the state machine's data and initialize it. */ 2250 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2251 if (!new_smi->si_sm) { 2252 printk(" Could not allocate state machine memory\n"); 2253 rv = -ENOMEM; 2254 goto out_err; 2255 } 2256 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2257 &new_smi->io); 2258 2259 /* Now that we know the I/O size, we can set up the I/O. */ 2260 rv = new_smi->io_setup(new_smi); 2261 if (rv) { 2262 printk(" Could not set up I/O space\n"); 2263 goto out_err; 2264 } 2265 2266 spin_lock_init(&(new_smi->si_lock)); 2267 spin_lock_init(&(new_smi->msg_lock)); 2268 spin_lock_init(&(new_smi->count_lock)); 2269 2270 /* Do low-level detection first. */ 2271 if (new_smi->handlers->detect(new_smi->si_sm)) { 2272 if (new_smi->addr_source) 2273 printk(KERN_INFO "ipmi_si: Interface detection" 2274 " failed\n"); 2275 rv = -ENODEV; 2276 goto out_err; 2277 } 2278 2279 /* Attempt a get device id command. If it fails, we probably 2280 don't have a BMC here. */ 2281 rv = try_get_dev_id(new_smi); 2282 if (rv) { 2283 if (new_smi->addr_source) 2284 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 2285 " at this location\n"); 2286 goto out_err; 2287 } 2288 2289 setup_oem_data_handler(new_smi); 2290 setup_xaction_handlers(new_smi); 2291 2292 /* Try to claim any interrupts. */ 2293 if (new_smi->irq_setup) 2294 new_smi->irq_setup(new_smi); 2295 2296 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 2297 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 2298 new_smi->curr_msg = NULL; 2299 atomic_set(&new_smi->req_events, 0); 2300 new_smi->run_to_completion = 0; 2301 2302 new_smi->interrupt_disabled = 0; 2303 atomic_set(&new_smi->stop_operation, 0); 2304 new_smi->intf_num = smi_num; 2305 smi_num++; 2306 2307 /* Start clearing the flags before we enable interrupts or the 2308 timer to avoid racing with the timer. */ 2309 start_clear_flags(new_smi); 2310 /* IRQ is defined to be set when non-zero. */ 2311 if (new_smi->irq) 2312 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 2313 2314 if (!new_smi->dev) { 2315 /* If we don't already have a device from something 2316 * else (like PCI), then register a new one. */ 2317 new_smi->pdev = platform_device_alloc("ipmi_si", 2318 new_smi->intf_num); 2319 if (rv) { 2320 printk(KERN_ERR 2321 "ipmi_si_intf:" 2322 " Unable to allocate platform device\n"); 2323 goto out_err; 2324 } 2325 new_smi->dev = &new_smi->pdev->dev; 2326 new_smi->dev->driver = &ipmi_driver; 2327 2328 rv = platform_device_register(new_smi->pdev); 2329 if (rv) { 2330 printk(KERN_ERR 2331 "ipmi_si_intf:" 2332 " Unable to register system interface device:" 2333 " %d\n", 2334 rv); 2335 goto out_err; 2336 } 2337 new_smi->dev_registered = 1; 2338 } 2339 2340 rv = ipmi_register_smi(&handlers, 2341 new_smi, 2342 &new_smi->device_id, 2343 new_smi->dev, 2344 new_smi->slave_addr); 2345 if (rv) { 2346 printk(KERN_ERR 2347 "ipmi_si: Unable to register device: error %d\n", 2348 rv); 2349 goto out_err_stop_timer; 2350 } 2351 2352 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2353 type_file_read_proc, NULL, 2354 new_smi, THIS_MODULE); 2355 if (rv) { 2356 printk(KERN_ERR 2357 "ipmi_si: Unable to create proc entry: %d\n", 2358 rv); 2359 goto out_err_stop_timer; 2360 } 2361 2362 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 2363 stat_file_read_proc, NULL, 2364 new_smi, THIS_MODULE); 2365 if (rv) { 2366 printk(KERN_ERR 2367 "ipmi_si: Unable to create proc entry: %d\n", 2368 rv); 2369 goto out_err_stop_timer; 2370 } 2371 2372 list_add_tail(&new_smi->link, &smi_infos); 2373 2374 mutex_unlock(&smi_infos_lock); 2375 2376 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]); 2377 2378 return 0; 2379 2380 out_err_stop_timer: 2381 atomic_inc(&new_smi->stop_operation); 2382 wait_for_timer_and_thread(new_smi); 2383 2384 out_err: 2385 if (new_smi->intf) 2386 ipmi_unregister_smi(new_smi->intf); 2387 2388 if (new_smi->irq_cleanup) 2389 new_smi->irq_cleanup(new_smi); 2390 2391 /* Wait until we know that we are out of any interrupt 2392 handlers might have been running before we freed the 2393 interrupt. */ 2394 synchronize_sched(); 2395 2396 if (new_smi->si_sm) { 2397 if (new_smi->handlers) 2398 new_smi->handlers->cleanup(new_smi->si_sm); 2399 kfree(new_smi->si_sm); 2400 } 2401 if (new_smi->addr_source_cleanup) 2402 new_smi->addr_source_cleanup(new_smi); 2403 if (new_smi->io_cleanup) 2404 new_smi->io_cleanup(new_smi); 2405 2406 if (new_smi->dev_registered) 2407 platform_device_unregister(new_smi->pdev); 2408 2409 kfree(new_smi); 2410 2411 mutex_unlock(&smi_infos_lock); 2412 2413 return rv; 2414 } 2415 2416 static __devinit int init_ipmi_si(void) 2417 { 2418 int i; 2419 char *str; 2420 int rv; 2421 2422 if (initialized) 2423 return 0; 2424 initialized = 1; 2425 2426 /* Register the device drivers. */ 2427 rv = driver_register(&ipmi_driver); 2428 if (rv) { 2429 printk(KERN_ERR 2430 "init_ipmi_si: Unable to register driver: %d\n", 2431 rv); 2432 return rv; 2433 } 2434 2435 2436 /* Parse out the si_type string into its components. */ 2437 str = si_type_str; 2438 if (*str != '\0') { 2439 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 2440 si_type[i] = str; 2441 str = strchr(str, ','); 2442 if (str) { 2443 *str = '\0'; 2444 str++; 2445 } else { 2446 break; 2447 } 2448 } 2449 } 2450 2451 printk(KERN_INFO "IPMI System Interface driver.\n"); 2452 2453 hardcode_find_bmc(); 2454 2455 #ifdef CONFIG_DMI 2456 dmi_find_bmc(); 2457 #endif 2458 2459 #ifdef CONFIG_ACPI 2460 if (si_trydefaults) 2461 acpi_find_bmc(); 2462 #endif 2463 2464 #ifdef CONFIG_PCI 2465 pci_module_init(&ipmi_pci_driver); 2466 #endif 2467 2468 if (si_trydefaults) { 2469 mutex_lock(&smi_infos_lock); 2470 if (list_empty(&smi_infos)) { 2471 /* No BMC was found, try defaults. */ 2472 mutex_unlock(&smi_infos_lock); 2473 default_find_bmc(); 2474 } else { 2475 mutex_unlock(&smi_infos_lock); 2476 } 2477 } 2478 2479 mutex_lock(&smi_infos_lock); 2480 if (list_empty(&smi_infos)) { 2481 mutex_unlock(&smi_infos_lock); 2482 #ifdef CONFIG_PCI 2483 pci_unregister_driver(&ipmi_pci_driver); 2484 #endif 2485 printk("ipmi_si: Unable to find any System Interface(s)\n"); 2486 return -ENODEV; 2487 } else { 2488 mutex_unlock(&smi_infos_lock); 2489 return 0; 2490 } 2491 } 2492 module_init(init_ipmi_si); 2493 2494 static void __devexit cleanup_one_si(struct smi_info *to_clean) 2495 { 2496 int rv; 2497 unsigned long flags; 2498 2499 if (!to_clean) 2500 return; 2501 2502 list_del(&to_clean->link); 2503 2504 /* Tell the timer and interrupt handlers that we are shutting 2505 down. */ 2506 spin_lock_irqsave(&(to_clean->si_lock), flags); 2507 spin_lock(&(to_clean->msg_lock)); 2508 2509 atomic_inc(&to_clean->stop_operation); 2510 2511 if (to_clean->irq_cleanup) 2512 to_clean->irq_cleanup(to_clean); 2513 2514 spin_unlock(&(to_clean->msg_lock)); 2515 spin_unlock_irqrestore(&(to_clean->si_lock), flags); 2516 2517 /* Wait until we know that we are out of any interrupt 2518 handlers might have been running before we freed the 2519 interrupt. */ 2520 synchronize_sched(); 2521 2522 wait_for_timer_and_thread(to_clean); 2523 2524 /* Interrupts and timeouts are stopped, now make sure the 2525 interface is in a clean state. */ 2526 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 2527 poll(to_clean); 2528 schedule_timeout_uninterruptible(1); 2529 } 2530 2531 rv = ipmi_unregister_smi(to_clean->intf); 2532 if (rv) { 2533 printk(KERN_ERR 2534 "ipmi_si: Unable to unregister device: errno=%d\n", 2535 rv); 2536 } 2537 2538 to_clean->handlers->cleanup(to_clean->si_sm); 2539 2540 kfree(to_clean->si_sm); 2541 2542 if (to_clean->addr_source_cleanup) 2543 to_clean->addr_source_cleanup(to_clean); 2544 if (to_clean->io_cleanup) 2545 to_clean->io_cleanup(to_clean); 2546 2547 if (to_clean->dev_registered) 2548 platform_device_unregister(to_clean->pdev); 2549 2550 kfree(to_clean); 2551 } 2552 2553 static __exit void cleanup_ipmi_si(void) 2554 { 2555 struct smi_info *e, *tmp_e; 2556 2557 if (!initialized) 2558 return; 2559 2560 #ifdef CONFIG_PCI 2561 pci_unregister_driver(&ipmi_pci_driver); 2562 #endif 2563 2564 mutex_lock(&smi_infos_lock); 2565 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2566 cleanup_one_si(e); 2567 mutex_unlock(&smi_infos_lock); 2568 2569 driver_unregister(&ipmi_driver); 2570 } 2571 module_exit(cleanup_ipmi_si); 2572 2573 MODULE_LICENSE("GPL"); 2574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); 2576