xref: /linux/drivers/block/rbd.c (revision c5d3cdad688ed75fb311a3a671eb30ba7106d7d3)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697 	int ro;
698 
699 	if (get_user(ro, (int __user *)arg))
700 		return -EFAULT;
701 
702 	/*
703 	 * Both images mapped read-only and snapshots can't be marked
704 	 * read-write.
705 	 */
706 	if (!ro) {
707 		if (rbd_is_ro(rbd_dev))
708 			return -EROFS;
709 
710 		rbd_assert(!rbd_is_snap(rbd_dev));
711 	}
712 
713 	/* Let blkdev_roset() handle it */
714 	return -ENOTTY;
715 }
716 
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 			unsigned int cmd, unsigned long arg)
719 {
720 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721 	int ret;
722 
723 	switch (cmd) {
724 	case BLKROSET:
725 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
726 		break;
727 	default:
728 		ret = -ENOTTY;
729 	}
730 
731 	return ret;
732 }
733 
734 #ifdef CONFIG_COMPAT
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 				unsigned int cmd, unsigned long arg)
737 {
738 	return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741 
742 static const struct block_device_operations rbd_bd_ops = {
743 	.owner			= THIS_MODULE,
744 	.open			= rbd_open,
745 	.release		= rbd_release,
746 	.ioctl			= rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748 	.compat_ioctl		= rbd_compat_ioctl,
749 #endif
750 };
751 
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc;
759 	int ret = -ENOMEM;
760 
761 	dout("%s:\n", __func__);
762 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763 	if (!rbdc)
764 		goto out_opt;
765 
766 	kref_init(&rbdc->kref);
767 	INIT_LIST_HEAD(&rbdc->node);
768 
769 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 	if (IS_ERR(rbdc->client))
771 		goto out_rbdc;
772 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773 
774 	ret = ceph_open_session(rbdc->client);
775 	if (ret < 0)
776 		goto out_client;
777 
778 	spin_lock(&rbd_client_list_lock);
779 	list_add_tail(&rbdc->node, &rbd_client_list);
780 	spin_unlock(&rbd_client_list_lock);
781 
782 	dout("%s: rbdc %p\n", __func__, rbdc);
783 
784 	return rbdc;
785 out_client:
786 	ceph_destroy_client(rbdc->client);
787 out_rbdc:
788 	kfree(rbdc);
789 out_opt:
790 	if (ceph_opts)
791 		ceph_destroy_options(ceph_opts);
792 	dout("%s: error %d\n", __func__, ret);
793 
794 	return ERR_PTR(ret);
795 }
796 
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799 	kref_get(&rbdc->kref);
800 
801 	return rbdc;
802 }
803 
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810 	struct rbd_client *client_node;
811 	bool found = false;
812 
813 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814 		return NULL;
815 
816 	spin_lock(&rbd_client_list_lock);
817 	list_for_each_entry(client_node, &rbd_client_list, node) {
818 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 			__rbd_get_client(client_node);
820 
821 			found = true;
822 			break;
823 		}
824 	}
825 	spin_unlock(&rbd_client_list_lock);
826 
827 	return found ? client_node : NULL;
828 }
829 
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834 	Opt_queue_depth,
835 	Opt_alloc_size,
836 	Opt_lock_timeout,
837 	/* int args above */
838 	Opt_pool_ns,
839 	/* string args above */
840 	Opt_read_only,
841 	Opt_read_write,
842 	Opt_lock_on_read,
843 	Opt_exclusive,
844 	Opt_notrim,
845 };
846 
847 static const struct fs_parameter_spec rbd_parameters[] = {
848 	fsparam_u32	("alloc_size",			Opt_alloc_size),
849 	fsparam_flag	("exclusive",			Opt_exclusive),
850 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
851 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
852 	fsparam_flag	("notrim",			Opt_notrim),
853 	fsparam_string	("_pool_ns",			Opt_pool_ns),
854 	fsparam_u32	("queue_depth",			Opt_queue_depth),
855 	fsparam_flag	("read_only",			Opt_read_only),
856 	fsparam_flag	("read_write",			Opt_read_write),
857 	fsparam_flag	("ro",				Opt_read_only),
858 	fsparam_flag	("rw",				Opt_read_write),
859 	{}
860 };
861 
862 struct rbd_options {
863 	int	queue_depth;
864 	int	alloc_size;
865 	unsigned long	lock_timeout;
866 	bool	read_only;
867 	bool	lock_on_read;
868 	bool	exclusive;
869 	bool	trim;
870 };
871 
872 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
873 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
874 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
875 #define RBD_READ_ONLY_DEFAULT	false
876 #define RBD_LOCK_ON_READ_DEFAULT false
877 #define RBD_EXCLUSIVE_DEFAULT	false
878 #define RBD_TRIM_DEFAULT	true
879 
880 struct rbd_parse_opts_ctx {
881 	struct rbd_spec		*spec;
882 	struct ceph_options	*copts;
883 	struct rbd_options	*opts;
884 };
885 
886 static char* obj_op_name(enum obj_operation_type op_type)
887 {
888 	switch (op_type) {
889 	case OBJ_OP_READ:
890 		return "read";
891 	case OBJ_OP_WRITE:
892 		return "write";
893 	case OBJ_OP_DISCARD:
894 		return "discard";
895 	case OBJ_OP_ZEROOUT:
896 		return "zeroout";
897 	default:
898 		return "???";
899 	}
900 }
901 
902 /*
903  * Destroy ceph client
904  *
905  * Caller must hold rbd_client_list_lock.
906  */
907 static void rbd_client_release(struct kref *kref)
908 {
909 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
910 
911 	dout("%s: rbdc %p\n", __func__, rbdc);
912 	spin_lock(&rbd_client_list_lock);
913 	list_del(&rbdc->node);
914 	spin_unlock(&rbd_client_list_lock);
915 
916 	ceph_destroy_client(rbdc->client);
917 	kfree(rbdc);
918 }
919 
920 /*
921  * Drop reference to ceph client node. If it's not referenced anymore, release
922  * it.
923  */
924 static void rbd_put_client(struct rbd_client *rbdc)
925 {
926 	if (rbdc)
927 		kref_put(&rbdc->kref, rbd_client_release);
928 }
929 
930 /*
931  * Get a ceph client with specific addr and configuration, if one does
932  * not exist create it.  Either way, ceph_opts is consumed by this
933  * function.
934  */
935 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
936 {
937 	struct rbd_client *rbdc;
938 	int ret;
939 
940 	mutex_lock(&client_mutex);
941 	rbdc = rbd_client_find(ceph_opts);
942 	if (rbdc) {
943 		ceph_destroy_options(ceph_opts);
944 
945 		/*
946 		 * Using an existing client.  Make sure ->pg_pools is up to
947 		 * date before we look up the pool id in do_rbd_add().
948 		 */
949 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
950 					rbdc->client->options->mount_timeout);
951 		if (ret) {
952 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
953 			rbd_put_client(rbdc);
954 			rbdc = ERR_PTR(ret);
955 		}
956 	} else {
957 		rbdc = rbd_client_create(ceph_opts);
958 	}
959 	mutex_unlock(&client_mutex);
960 
961 	return rbdc;
962 }
963 
964 static bool rbd_image_format_valid(u32 image_format)
965 {
966 	return image_format == 1 || image_format == 2;
967 }
968 
969 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
970 {
971 	size_t size;
972 	u32 snap_count;
973 
974 	/* The header has to start with the magic rbd header text */
975 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
976 		return false;
977 
978 	/* The bio layer requires at least sector-sized I/O */
979 
980 	if (ondisk->options.order < SECTOR_SHIFT)
981 		return false;
982 
983 	/* If we use u64 in a few spots we may be able to loosen this */
984 
985 	if (ondisk->options.order > 8 * sizeof (int) - 1)
986 		return false;
987 
988 	/*
989 	 * The size of a snapshot header has to fit in a size_t, and
990 	 * that limits the number of snapshots.
991 	 */
992 	snap_count = le32_to_cpu(ondisk->snap_count);
993 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
994 	if (snap_count > size / sizeof (__le64))
995 		return false;
996 
997 	/*
998 	 * Not only that, but the size of the entire the snapshot
999 	 * header must also be representable in a size_t.
1000 	 */
1001 	size -= snap_count * sizeof (__le64);
1002 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 /*
1009  * returns the size of an object in the image
1010  */
1011 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1012 {
1013 	return 1U << header->obj_order;
1014 }
1015 
1016 static void rbd_init_layout(struct rbd_device *rbd_dev)
1017 {
1018 	if (rbd_dev->header.stripe_unit == 0 ||
1019 	    rbd_dev->header.stripe_count == 0) {
1020 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1021 		rbd_dev->header.stripe_count = 1;
1022 	}
1023 
1024 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1025 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1026 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1027 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1028 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1029 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1030 }
1031 
1032 /*
1033  * Fill an rbd image header with information from the given format 1
1034  * on-disk header.
1035  */
1036 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1037 				 struct rbd_image_header_ondisk *ondisk)
1038 {
1039 	struct rbd_image_header *header = &rbd_dev->header;
1040 	bool first_time = header->object_prefix == NULL;
1041 	struct ceph_snap_context *snapc;
1042 	char *object_prefix = NULL;
1043 	char *snap_names = NULL;
1044 	u64 *snap_sizes = NULL;
1045 	u32 snap_count;
1046 	int ret = -ENOMEM;
1047 	u32 i;
1048 
1049 	/* Allocate this now to avoid having to handle failure below */
1050 
1051 	if (first_time) {
1052 		object_prefix = kstrndup(ondisk->object_prefix,
1053 					 sizeof(ondisk->object_prefix),
1054 					 GFP_KERNEL);
1055 		if (!object_prefix)
1056 			return -ENOMEM;
1057 	}
1058 
1059 	/* Allocate the snapshot context and fill it in */
1060 
1061 	snap_count = le32_to_cpu(ondisk->snap_count);
1062 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1063 	if (!snapc)
1064 		goto out_err;
1065 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1066 	if (snap_count) {
1067 		struct rbd_image_snap_ondisk *snaps;
1068 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1069 
1070 		/* We'll keep a copy of the snapshot names... */
1071 
1072 		if (snap_names_len > (u64)SIZE_MAX)
1073 			goto out_2big;
1074 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1075 		if (!snap_names)
1076 			goto out_err;
1077 
1078 		/* ...as well as the array of their sizes. */
1079 		snap_sizes = kmalloc_array(snap_count,
1080 					   sizeof(*header->snap_sizes),
1081 					   GFP_KERNEL);
1082 		if (!snap_sizes)
1083 			goto out_err;
1084 
1085 		/*
1086 		 * Copy the names, and fill in each snapshot's id
1087 		 * and size.
1088 		 *
1089 		 * Note that rbd_dev_v1_header_info() guarantees the
1090 		 * ondisk buffer we're working with has
1091 		 * snap_names_len bytes beyond the end of the
1092 		 * snapshot id array, this memcpy() is safe.
1093 		 */
1094 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1095 		snaps = ondisk->snaps;
1096 		for (i = 0; i < snap_count; i++) {
1097 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1098 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1099 		}
1100 	}
1101 
1102 	/* We won't fail any more, fill in the header */
1103 
1104 	if (first_time) {
1105 		header->object_prefix = object_prefix;
1106 		header->obj_order = ondisk->options.order;
1107 		rbd_init_layout(rbd_dev);
1108 	} else {
1109 		ceph_put_snap_context(header->snapc);
1110 		kfree(header->snap_names);
1111 		kfree(header->snap_sizes);
1112 	}
1113 
1114 	/* The remaining fields always get updated (when we refresh) */
1115 
1116 	header->image_size = le64_to_cpu(ondisk->image_size);
1117 	header->snapc = snapc;
1118 	header->snap_names = snap_names;
1119 	header->snap_sizes = snap_sizes;
1120 
1121 	return 0;
1122 out_2big:
1123 	ret = -EIO;
1124 out_err:
1125 	kfree(snap_sizes);
1126 	kfree(snap_names);
1127 	ceph_put_snap_context(snapc);
1128 	kfree(object_prefix);
1129 
1130 	return ret;
1131 }
1132 
1133 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1134 {
1135 	const char *snap_name;
1136 
1137 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1138 
1139 	/* Skip over names until we find the one we are looking for */
1140 
1141 	snap_name = rbd_dev->header.snap_names;
1142 	while (which--)
1143 		snap_name += strlen(snap_name) + 1;
1144 
1145 	return kstrdup(snap_name, GFP_KERNEL);
1146 }
1147 
1148 /*
1149  * Snapshot id comparison function for use with qsort()/bsearch().
1150  * Note that result is for snapshots in *descending* order.
1151  */
1152 static int snapid_compare_reverse(const void *s1, const void *s2)
1153 {
1154 	u64 snap_id1 = *(u64 *)s1;
1155 	u64 snap_id2 = *(u64 *)s2;
1156 
1157 	if (snap_id1 < snap_id2)
1158 		return 1;
1159 	return snap_id1 == snap_id2 ? 0 : -1;
1160 }
1161 
1162 /*
1163  * Search a snapshot context to see if the given snapshot id is
1164  * present.
1165  *
1166  * Returns the position of the snapshot id in the array if it's found,
1167  * or BAD_SNAP_INDEX otherwise.
1168  *
1169  * Note: The snapshot array is in kept sorted (by the osd) in
1170  * reverse order, highest snapshot id first.
1171  */
1172 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1173 {
1174 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1175 	u64 *found;
1176 
1177 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1178 				sizeof (snap_id), snapid_compare_reverse);
1179 
1180 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1181 }
1182 
1183 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1184 					u64 snap_id)
1185 {
1186 	u32 which;
1187 	const char *snap_name;
1188 
1189 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1190 	if (which == BAD_SNAP_INDEX)
1191 		return ERR_PTR(-ENOENT);
1192 
1193 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1194 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1195 }
1196 
1197 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1198 {
1199 	if (snap_id == CEPH_NOSNAP)
1200 		return RBD_SNAP_HEAD_NAME;
1201 
1202 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1203 	if (rbd_dev->image_format == 1)
1204 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1205 
1206 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1207 }
1208 
1209 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1210 				u64 *snap_size)
1211 {
1212 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1213 	if (snap_id == CEPH_NOSNAP) {
1214 		*snap_size = rbd_dev->header.image_size;
1215 	} else if (rbd_dev->image_format == 1) {
1216 		u32 which;
1217 
1218 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1219 		if (which == BAD_SNAP_INDEX)
1220 			return -ENOENT;
1221 
1222 		*snap_size = rbd_dev->header.snap_sizes[which];
1223 	} else {
1224 		u64 size = 0;
1225 		int ret;
1226 
1227 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1228 		if (ret)
1229 			return ret;
1230 
1231 		*snap_size = size;
1232 	}
1233 	return 0;
1234 }
1235 
1236 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1237 {
1238 	u64 snap_id = rbd_dev->spec->snap_id;
1239 	u64 size = 0;
1240 	int ret;
1241 
1242 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1243 	if (ret)
1244 		return ret;
1245 
1246 	rbd_dev->mapping.size = size;
1247 	return 0;
1248 }
1249 
1250 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1251 {
1252 	rbd_dev->mapping.size = 0;
1253 }
1254 
1255 static void zero_bvec(struct bio_vec *bv)
1256 {
1257 	void *buf;
1258 	unsigned long flags;
1259 
1260 	buf = bvec_kmap_irq(bv, &flags);
1261 	memset(buf, 0, bv->bv_len);
1262 	flush_dcache_page(bv->bv_page);
1263 	bvec_kunmap_irq(buf, &flags);
1264 }
1265 
1266 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1267 {
1268 	struct ceph_bio_iter it = *bio_pos;
1269 
1270 	ceph_bio_iter_advance(&it, off);
1271 	ceph_bio_iter_advance_step(&it, bytes, ({
1272 		zero_bvec(&bv);
1273 	}));
1274 }
1275 
1276 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1277 {
1278 	struct ceph_bvec_iter it = *bvec_pos;
1279 
1280 	ceph_bvec_iter_advance(&it, off);
1281 	ceph_bvec_iter_advance_step(&it, bytes, ({
1282 		zero_bvec(&bv);
1283 	}));
1284 }
1285 
1286 /*
1287  * Zero a range in @obj_req data buffer defined by a bio (list) or
1288  * (private) bio_vec array.
1289  *
1290  * @off is relative to the start of the data buffer.
1291  */
1292 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1293 			       u32 bytes)
1294 {
1295 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1296 
1297 	switch (obj_req->img_request->data_type) {
1298 	case OBJ_REQUEST_BIO:
1299 		zero_bios(&obj_req->bio_pos, off, bytes);
1300 		break;
1301 	case OBJ_REQUEST_BVECS:
1302 	case OBJ_REQUEST_OWN_BVECS:
1303 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1304 		break;
1305 	default:
1306 		BUG();
1307 	}
1308 }
1309 
1310 static void rbd_obj_request_destroy(struct kref *kref);
1311 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1312 {
1313 	rbd_assert(obj_request != NULL);
1314 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1315 		kref_read(&obj_request->kref));
1316 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1317 }
1318 
1319 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1320 					struct rbd_obj_request *obj_request)
1321 {
1322 	rbd_assert(obj_request->img_request == NULL);
1323 
1324 	/* Image request now owns object's original reference */
1325 	obj_request->img_request = img_request;
1326 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1327 }
1328 
1329 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1330 					struct rbd_obj_request *obj_request)
1331 {
1332 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1333 	list_del(&obj_request->ex.oe_item);
1334 	rbd_assert(obj_request->img_request == img_request);
1335 	rbd_obj_request_put(obj_request);
1336 }
1337 
1338 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1339 {
1340 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1341 
1342 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1343 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1344 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1345 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1346 }
1347 
1348 /*
1349  * The default/initial value for all image request flags is 0.  Each
1350  * is conditionally set to 1 at image request initialization time
1351  * and currently never change thereafter.
1352  */
1353 static void img_request_layered_set(struct rbd_img_request *img_request)
1354 {
1355 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1356 }
1357 
1358 static bool img_request_layered_test(struct rbd_img_request *img_request)
1359 {
1360 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1361 }
1362 
1363 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1364 {
1365 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1366 
1367 	return !obj_req->ex.oe_off &&
1368 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1369 }
1370 
1371 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1372 {
1373 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1374 
1375 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1376 					rbd_dev->layout.object_size;
1377 }
1378 
1379 /*
1380  * Must be called after rbd_obj_calc_img_extents().
1381  */
1382 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1383 {
1384 	if (!obj_req->num_img_extents ||
1385 	    (rbd_obj_is_entire(obj_req) &&
1386 	     !obj_req->img_request->snapc->num_snaps))
1387 		return false;
1388 
1389 	return true;
1390 }
1391 
1392 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1393 {
1394 	return ceph_file_extents_bytes(obj_req->img_extents,
1395 				       obj_req->num_img_extents);
1396 }
1397 
1398 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1399 {
1400 	switch (img_req->op_type) {
1401 	case OBJ_OP_READ:
1402 		return false;
1403 	case OBJ_OP_WRITE:
1404 	case OBJ_OP_DISCARD:
1405 	case OBJ_OP_ZEROOUT:
1406 		return true;
1407 	default:
1408 		BUG();
1409 	}
1410 }
1411 
1412 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1413 {
1414 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1415 	int result;
1416 
1417 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1418 	     osd_req->r_result, obj_req);
1419 
1420 	/*
1421 	 * Writes aren't allowed to return a data payload.  In some
1422 	 * guarded write cases (e.g. stat + zero on an empty object)
1423 	 * a stat response makes it through, but we don't care.
1424 	 */
1425 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1426 		result = 0;
1427 	else
1428 		result = osd_req->r_result;
1429 
1430 	rbd_obj_handle_request(obj_req, result);
1431 }
1432 
1433 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1434 {
1435 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1436 
1437 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1438 	osd_req->r_snapid = obj_request->img_request->snap_id;
1439 }
1440 
1441 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1442 {
1443 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1444 
1445 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1446 	ktime_get_real_ts64(&osd_req->r_mtime);
1447 	osd_req->r_data_offset = obj_request->ex.oe_off;
1448 }
1449 
1450 static struct ceph_osd_request *
1451 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1452 			  struct ceph_snap_context *snapc, int num_ops)
1453 {
1454 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1455 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1456 	struct ceph_osd_request *req;
1457 	const char *name_format = rbd_dev->image_format == 1 ?
1458 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1459 	int ret;
1460 
1461 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1462 	if (!req)
1463 		return ERR_PTR(-ENOMEM);
1464 
1465 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1466 	req->r_callback = rbd_osd_req_callback;
1467 	req->r_priv = obj_req;
1468 
1469 	/*
1470 	 * Data objects may be stored in a separate pool, but always in
1471 	 * the same namespace in that pool as the header in its pool.
1472 	 */
1473 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1474 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1475 
1476 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1477 			       rbd_dev->header.object_prefix,
1478 			       obj_req->ex.oe_objno);
1479 	if (ret)
1480 		return ERR_PTR(ret);
1481 
1482 	return req;
1483 }
1484 
1485 static struct ceph_osd_request *
1486 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1487 {
1488 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1489 					 num_ops);
1490 }
1491 
1492 static struct rbd_obj_request *rbd_obj_request_create(void)
1493 {
1494 	struct rbd_obj_request *obj_request;
1495 
1496 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1497 	if (!obj_request)
1498 		return NULL;
1499 
1500 	ceph_object_extent_init(&obj_request->ex);
1501 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1502 	mutex_init(&obj_request->state_mutex);
1503 	kref_init(&obj_request->kref);
1504 
1505 	dout("%s %p\n", __func__, obj_request);
1506 	return obj_request;
1507 }
1508 
1509 static void rbd_obj_request_destroy(struct kref *kref)
1510 {
1511 	struct rbd_obj_request *obj_request;
1512 	struct ceph_osd_request *osd_req;
1513 	u32 i;
1514 
1515 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1516 
1517 	dout("%s: obj %p\n", __func__, obj_request);
1518 
1519 	while (!list_empty(&obj_request->osd_reqs)) {
1520 		osd_req = list_first_entry(&obj_request->osd_reqs,
1521 				    struct ceph_osd_request, r_private_item);
1522 		list_del_init(&osd_req->r_private_item);
1523 		ceph_osdc_put_request(osd_req);
1524 	}
1525 
1526 	switch (obj_request->img_request->data_type) {
1527 	case OBJ_REQUEST_NODATA:
1528 	case OBJ_REQUEST_BIO:
1529 	case OBJ_REQUEST_BVECS:
1530 		break;		/* Nothing to do */
1531 	case OBJ_REQUEST_OWN_BVECS:
1532 		kfree(obj_request->bvec_pos.bvecs);
1533 		break;
1534 	default:
1535 		BUG();
1536 	}
1537 
1538 	kfree(obj_request->img_extents);
1539 	if (obj_request->copyup_bvecs) {
1540 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1541 			if (obj_request->copyup_bvecs[i].bv_page)
1542 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1543 		}
1544 		kfree(obj_request->copyup_bvecs);
1545 	}
1546 
1547 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1548 }
1549 
1550 /* It's OK to call this for a device with no parent */
1551 
1552 static void rbd_spec_put(struct rbd_spec *spec);
1553 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1554 {
1555 	rbd_dev_remove_parent(rbd_dev);
1556 	rbd_spec_put(rbd_dev->parent_spec);
1557 	rbd_dev->parent_spec = NULL;
1558 	rbd_dev->parent_overlap = 0;
1559 }
1560 
1561 /*
1562  * Parent image reference counting is used to determine when an
1563  * image's parent fields can be safely torn down--after there are no
1564  * more in-flight requests to the parent image.  When the last
1565  * reference is dropped, cleaning them up is safe.
1566  */
1567 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1568 {
1569 	int counter;
1570 
1571 	if (!rbd_dev->parent_spec)
1572 		return;
1573 
1574 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1575 	if (counter > 0)
1576 		return;
1577 
1578 	/* Last reference; clean up parent data structures */
1579 
1580 	if (!counter)
1581 		rbd_dev_unparent(rbd_dev);
1582 	else
1583 		rbd_warn(rbd_dev, "parent reference underflow");
1584 }
1585 
1586 /*
1587  * If an image has a non-zero parent overlap, get a reference to its
1588  * parent.
1589  *
1590  * Returns true if the rbd device has a parent with a non-zero
1591  * overlap and a reference for it was successfully taken, or
1592  * false otherwise.
1593  */
1594 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1595 {
1596 	int counter = 0;
1597 
1598 	if (!rbd_dev->parent_spec)
1599 		return false;
1600 
1601 	if (rbd_dev->parent_overlap)
1602 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1603 
1604 	if (counter < 0)
1605 		rbd_warn(rbd_dev, "parent reference overflow");
1606 
1607 	return counter > 0;
1608 }
1609 
1610 static void rbd_img_request_init(struct rbd_img_request *img_request,
1611 				 struct rbd_device *rbd_dev,
1612 				 enum obj_operation_type op_type)
1613 {
1614 	memset(img_request, 0, sizeof(*img_request));
1615 
1616 	img_request->rbd_dev = rbd_dev;
1617 	img_request->op_type = op_type;
1618 
1619 	INIT_LIST_HEAD(&img_request->lock_item);
1620 	INIT_LIST_HEAD(&img_request->object_extents);
1621 	mutex_init(&img_request->state_mutex);
1622 }
1623 
1624 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1625 {
1626 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1627 
1628 	lockdep_assert_held(&rbd_dev->header_rwsem);
1629 
1630 	if (rbd_img_is_write(img_req))
1631 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1632 	else
1633 		img_req->snap_id = rbd_dev->spec->snap_id;
1634 
1635 	if (rbd_dev_parent_get(rbd_dev))
1636 		img_request_layered_set(img_req);
1637 }
1638 
1639 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1640 {
1641 	struct rbd_obj_request *obj_request;
1642 	struct rbd_obj_request *next_obj_request;
1643 
1644 	dout("%s: img %p\n", __func__, img_request);
1645 
1646 	WARN_ON(!list_empty(&img_request->lock_item));
1647 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1648 		rbd_img_obj_request_del(img_request, obj_request);
1649 
1650 	if (img_request_layered_test(img_request))
1651 		rbd_dev_parent_put(img_request->rbd_dev);
1652 
1653 	if (rbd_img_is_write(img_request))
1654 		ceph_put_snap_context(img_request->snapc);
1655 
1656 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1657 		kmem_cache_free(rbd_img_request_cache, img_request);
1658 }
1659 
1660 #define BITS_PER_OBJ	2
1661 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1662 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1663 
1664 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1665 				   u64 *index, u8 *shift)
1666 {
1667 	u32 off;
1668 
1669 	rbd_assert(objno < rbd_dev->object_map_size);
1670 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1671 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1672 }
1673 
1674 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1675 {
1676 	u64 index;
1677 	u8 shift;
1678 
1679 	lockdep_assert_held(&rbd_dev->object_map_lock);
1680 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1681 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1682 }
1683 
1684 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1685 {
1686 	u64 index;
1687 	u8 shift;
1688 	u8 *p;
1689 
1690 	lockdep_assert_held(&rbd_dev->object_map_lock);
1691 	rbd_assert(!(val & ~OBJ_MASK));
1692 
1693 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1694 	p = &rbd_dev->object_map[index];
1695 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1696 }
1697 
1698 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1699 {
1700 	u8 state;
1701 
1702 	spin_lock(&rbd_dev->object_map_lock);
1703 	state = __rbd_object_map_get(rbd_dev, objno);
1704 	spin_unlock(&rbd_dev->object_map_lock);
1705 	return state;
1706 }
1707 
1708 static bool use_object_map(struct rbd_device *rbd_dev)
1709 {
1710 	/*
1711 	 * An image mapped read-only can't use the object map -- it isn't
1712 	 * loaded because the header lock isn't acquired.  Someone else can
1713 	 * write to the image and update the object map behind our back.
1714 	 *
1715 	 * A snapshot can't be written to, so using the object map is always
1716 	 * safe.
1717 	 */
1718 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1719 		return false;
1720 
1721 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1722 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1723 }
1724 
1725 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1726 {
1727 	u8 state;
1728 
1729 	/* fall back to default logic if object map is disabled or invalid */
1730 	if (!use_object_map(rbd_dev))
1731 		return true;
1732 
1733 	state = rbd_object_map_get(rbd_dev, objno);
1734 	return state != OBJECT_NONEXISTENT;
1735 }
1736 
1737 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1738 				struct ceph_object_id *oid)
1739 {
1740 	if (snap_id == CEPH_NOSNAP)
1741 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1742 				rbd_dev->spec->image_id);
1743 	else
1744 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1745 				rbd_dev->spec->image_id, snap_id);
1746 }
1747 
1748 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1749 {
1750 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1751 	CEPH_DEFINE_OID_ONSTACK(oid);
1752 	u8 lock_type;
1753 	char *lock_tag;
1754 	struct ceph_locker *lockers;
1755 	u32 num_lockers;
1756 	bool broke_lock = false;
1757 	int ret;
1758 
1759 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1760 
1761 again:
1762 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1763 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1764 	if (ret != -EBUSY || broke_lock) {
1765 		if (ret == -EEXIST)
1766 			ret = 0; /* already locked by myself */
1767 		if (ret)
1768 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1769 		return ret;
1770 	}
1771 
1772 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1773 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1774 				 &lockers, &num_lockers);
1775 	if (ret) {
1776 		if (ret == -ENOENT)
1777 			goto again;
1778 
1779 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1780 		return ret;
1781 	}
1782 
1783 	kfree(lock_tag);
1784 	if (num_lockers == 0)
1785 		goto again;
1786 
1787 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1788 		 ENTITY_NAME(lockers[0].id.name));
1789 
1790 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1791 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1792 				  &lockers[0].id.name);
1793 	ceph_free_lockers(lockers, num_lockers);
1794 	if (ret) {
1795 		if (ret == -ENOENT)
1796 			goto again;
1797 
1798 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1799 		return ret;
1800 	}
1801 
1802 	broke_lock = true;
1803 	goto again;
1804 }
1805 
1806 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1807 {
1808 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1809 	CEPH_DEFINE_OID_ONSTACK(oid);
1810 	int ret;
1811 
1812 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1813 
1814 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1815 			      "");
1816 	if (ret && ret != -ENOENT)
1817 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1818 }
1819 
1820 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1821 {
1822 	u8 struct_v;
1823 	u32 struct_len;
1824 	u32 header_len;
1825 	void *header_end;
1826 	int ret;
1827 
1828 	ceph_decode_32_safe(p, end, header_len, e_inval);
1829 	header_end = *p + header_len;
1830 
1831 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1832 				  &struct_len);
1833 	if (ret)
1834 		return ret;
1835 
1836 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1837 
1838 	*p = header_end;
1839 	return 0;
1840 
1841 e_inval:
1842 	return -EINVAL;
1843 }
1844 
1845 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1846 {
1847 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1848 	CEPH_DEFINE_OID_ONSTACK(oid);
1849 	struct page **pages;
1850 	void *p, *end;
1851 	size_t reply_len;
1852 	u64 num_objects;
1853 	u64 object_map_bytes;
1854 	u64 object_map_size;
1855 	int num_pages;
1856 	int ret;
1857 
1858 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1859 
1860 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1861 					   rbd_dev->mapping.size);
1862 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1863 					    BITS_PER_BYTE);
1864 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1865 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1866 	if (IS_ERR(pages))
1867 		return PTR_ERR(pages);
1868 
1869 	reply_len = num_pages * PAGE_SIZE;
1870 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1871 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1872 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1873 			     NULL, 0, pages, &reply_len);
1874 	if (ret)
1875 		goto out;
1876 
1877 	p = page_address(pages[0]);
1878 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1879 	ret = decode_object_map_header(&p, end, &object_map_size);
1880 	if (ret)
1881 		goto out;
1882 
1883 	if (object_map_size != num_objects) {
1884 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1885 			 object_map_size, num_objects);
1886 		ret = -EINVAL;
1887 		goto out;
1888 	}
1889 
1890 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1891 		ret = -EINVAL;
1892 		goto out;
1893 	}
1894 
1895 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1896 	if (!rbd_dev->object_map) {
1897 		ret = -ENOMEM;
1898 		goto out;
1899 	}
1900 
1901 	rbd_dev->object_map_size = object_map_size;
1902 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1903 				   offset_in_page(p), object_map_bytes);
1904 
1905 out:
1906 	ceph_release_page_vector(pages, num_pages);
1907 	return ret;
1908 }
1909 
1910 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1911 {
1912 	kvfree(rbd_dev->object_map);
1913 	rbd_dev->object_map = NULL;
1914 	rbd_dev->object_map_size = 0;
1915 }
1916 
1917 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1918 {
1919 	int ret;
1920 
1921 	ret = __rbd_object_map_load(rbd_dev);
1922 	if (ret)
1923 		return ret;
1924 
1925 	ret = rbd_dev_v2_get_flags(rbd_dev);
1926 	if (ret) {
1927 		rbd_object_map_free(rbd_dev);
1928 		return ret;
1929 	}
1930 
1931 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1932 		rbd_warn(rbd_dev, "object map is invalid");
1933 
1934 	return 0;
1935 }
1936 
1937 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1938 {
1939 	int ret;
1940 
1941 	ret = rbd_object_map_lock(rbd_dev);
1942 	if (ret)
1943 		return ret;
1944 
1945 	ret = rbd_object_map_load(rbd_dev);
1946 	if (ret) {
1947 		rbd_object_map_unlock(rbd_dev);
1948 		return ret;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1955 {
1956 	rbd_object_map_free(rbd_dev);
1957 	rbd_object_map_unlock(rbd_dev);
1958 }
1959 
1960 /*
1961  * This function needs snap_id (or more precisely just something to
1962  * distinguish between HEAD and snapshot object maps), new_state and
1963  * current_state that were passed to rbd_object_map_update().
1964  *
1965  * To avoid allocating and stashing a context we piggyback on the OSD
1966  * request.  A HEAD update has two ops (assert_locked).  For new_state
1967  * and current_state we decode our own object_map_update op, encoded in
1968  * rbd_cls_object_map_update().
1969  */
1970 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1971 					struct ceph_osd_request *osd_req)
1972 {
1973 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1974 	struct ceph_osd_data *osd_data;
1975 	u64 objno;
1976 	u8 state, new_state, uninitialized_var(current_state);
1977 	bool has_current_state;
1978 	void *p;
1979 
1980 	if (osd_req->r_result)
1981 		return osd_req->r_result;
1982 
1983 	/*
1984 	 * Nothing to do for a snapshot object map.
1985 	 */
1986 	if (osd_req->r_num_ops == 1)
1987 		return 0;
1988 
1989 	/*
1990 	 * Update in-memory HEAD object map.
1991 	 */
1992 	rbd_assert(osd_req->r_num_ops == 2);
1993 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1994 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1995 
1996 	p = page_address(osd_data->pages[0]);
1997 	objno = ceph_decode_64(&p);
1998 	rbd_assert(objno == obj_req->ex.oe_objno);
1999 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2000 	new_state = ceph_decode_8(&p);
2001 	has_current_state = ceph_decode_8(&p);
2002 	if (has_current_state)
2003 		current_state = ceph_decode_8(&p);
2004 
2005 	spin_lock(&rbd_dev->object_map_lock);
2006 	state = __rbd_object_map_get(rbd_dev, objno);
2007 	if (!has_current_state || current_state == state ||
2008 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2009 		__rbd_object_map_set(rbd_dev, objno, new_state);
2010 	spin_unlock(&rbd_dev->object_map_lock);
2011 
2012 	return 0;
2013 }
2014 
2015 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2016 {
2017 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2018 	int result;
2019 
2020 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2021 	     osd_req->r_result, obj_req);
2022 
2023 	result = rbd_object_map_update_finish(obj_req, osd_req);
2024 	rbd_obj_handle_request(obj_req, result);
2025 }
2026 
2027 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2028 {
2029 	u8 state = rbd_object_map_get(rbd_dev, objno);
2030 
2031 	if (state == new_state ||
2032 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2033 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2034 		return false;
2035 
2036 	return true;
2037 }
2038 
2039 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2040 				     int which, u64 objno, u8 new_state,
2041 				     const u8 *current_state)
2042 {
2043 	struct page **pages;
2044 	void *p, *start;
2045 	int ret;
2046 
2047 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2048 	if (ret)
2049 		return ret;
2050 
2051 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2052 	if (IS_ERR(pages))
2053 		return PTR_ERR(pages);
2054 
2055 	p = start = page_address(pages[0]);
2056 	ceph_encode_64(&p, objno);
2057 	ceph_encode_64(&p, objno + 1);
2058 	ceph_encode_8(&p, new_state);
2059 	if (current_state) {
2060 		ceph_encode_8(&p, 1);
2061 		ceph_encode_8(&p, *current_state);
2062 	} else {
2063 		ceph_encode_8(&p, 0);
2064 	}
2065 
2066 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2067 					  false, true);
2068 	return 0;
2069 }
2070 
2071 /*
2072  * Return:
2073  *   0 - object map update sent
2074  *   1 - object map update isn't needed
2075  *  <0 - error
2076  */
2077 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2078 				 u8 new_state, const u8 *current_state)
2079 {
2080 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2081 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2082 	struct ceph_osd_request *req;
2083 	int num_ops = 1;
2084 	int which = 0;
2085 	int ret;
2086 
2087 	if (snap_id == CEPH_NOSNAP) {
2088 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2089 			return 1;
2090 
2091 		num_ops++; /* assert_locked */
2092 	}
2093 
2094 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2095 	if (!req)
2096 		return -ENOMEM;
2097 
2098 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2099 	req->r_callback = rbd_object_map_callback;
2100 	req->r_priv = obj_req;
2101 
2102 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2103 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2104 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2105 	ktime_get_real_ts64(&req->r_mtime);
2106 
2107 	if (snap_id == CEPH_NOSNAP) {
2108 		/*
2109 		 * Protect against possible race conditions during lock
2110 		 * ownership transitions.
2111 		 */
2112 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2113 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2114 		if (ret)
2115 			return ret;
2116 	}
2117 
2118 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2119 					new_state, current_state);
2120 	if (ret)
2121 		return ret;
2122 
2123 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2124 	if (ret)
2125 		return ret;
2126 
2127 	ceph_osdc_start_request(osdc, req, false);
2128 	return 0;
2129 }
2130 
2131 static void prune_extents(struct ceph_file_extent *img_extents,
2132 			  u32 *num_img_extents, u64 overlap)
2133 {
2134 	u32 cnt = *num_img_extents;
2135 
2136 	/* drop extents completely beyond the overlap */
2137 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2138 		cnt--;
2139 
2140 	if (cnt) {
2141 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2142 
2143 		/* trim final overlapping extent */
2144 		if (ex->fe_off + ex->fe_len > overlap)
2145 			ex->fe_len = overlap - ex->fe_off;
2146 	}
2147 
2148 	*num_img_extents = cnt;
2149 }
2150 
2151 /*
2152  * Determine the byte range(s) covered by either just the object extent
2153  * or the entire object in the parent image.
2154  */
2155 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2156 				    bool entire)
2157 {
2158 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2159 	int ret;
2160 
2161 	if (!rbd_dev->parent_overlap)
2162 		return 0;
2163 
2164 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2165 				  entire ? 0 : obj_req->ex.oe_off,
2166 				  entire ? rbd_dev->layout.object_size :
2167 							obj_req->ex.oe_len,
2168 				  &obj_req->img_extents,
2169 				  &obj_req->num_img_extents);
2170 	if (ret)
2171 		return ret;
2172 
2173 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2174 		      rbd_dev->parent_overlap);
2175 	return 0;
2176 }
2177 
2178 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2179 {
2180 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2181 
2182 	switch (obj_req->img_request->data_type) {
2183 	case OBJ_REQUEST_BIO:
2184 		osd_req_op_extent_osd_data_bio(osd_req, which,
2185 					       &obj_req->bio_pos,
2186 					       obj_req->ex.oe_len);
2187 		break;
2188 	case OBJ_REQUEST_BVECS:
2189 	case OBJ_REQUEST_OWN_BVECS:
2190 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2191 							obj_req->ex.oe_len);
2192 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2193 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2194 						    &obj_req->bvec_pos);
2195 		break;
2196 	default:
2197 		BUG();
2198 	}
2199 }
2200 
2201 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2202 {
2203 	struct page **pages;
2204 
2205 	/*
2206 	 * The response data for a STAT call consists of:
2207 	 *     le64 length;
2208 	 *     struct {
2209 	 *         le32 tv_sec;
2210 	 *         le32 tv_nsec;
2211 	 *     } mtime;
2212 	 */
2213 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2214 	if (IS_ERR(pages))
2215 		return PTR_ERR(pages);
2216 
2217 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2218 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2219 				     8 + sizeof(struct ceph_timespec),
2220 				     0, false, true);
2221 	return 0;
2222 }
2223 
2224 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2225 				u32 bytes)
2226 {
2227 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2228 	int ret;
2229 
2230 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2231 	if (ret)
2232 		return ret;
2233 
2234 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2235 					  obj_req->copyup_bvec_count, bytes);
2236 	return 0;
2237 }
2238 
2239 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2240 {
2241 	obj_req->read_state = RBD_OBJ_READ_START;
2242 	return 0;
2243 }
2244 
2245 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2246 				      int which)
2247 {
2248 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2249 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2250 	u16 opcode;
2251 
2252 	if (!use_object_map(rbd_dev) ||
2253 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2254 		osd_req_op_alloc_hint_init(osd_req, which++,
2255 					   rbd_dev->layout.object_size,
2256 					   rbd_dev->layout.object_size);
2257 	}
2258 
2259 	if (rbd_obj_is_entire(obj_req))
2260 		opcode = CEPH_OSD_OP_WRITEFULL;
2261 	else
2262 		opcode = CEPH_OSD_OP_WRITE;
2263 
2264 	osd_req_op_extent_init(osd_req, which, opcode,
2265 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2266 	rbd_osd_setup_data(osd_req, which);
2267 }
2268 
2269 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2270 {
2271 	int ret;
2272 
2273 	/* reverse map the entire object onto the parent */
2274 	ret = rbd_obj_calc_img_extents(obj_req, true);
2275 	if (ret)
2276 		return ret;
2277 
2278 	if (rbd_obj_copyup_enabled(obj_req))
2279 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2280 
2281 	obj_req->write_state = RBD_OBJ_WRITE_START;
2282 	return 0;
2283 }
2284 
2285 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2286 {
2287 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2288 					  CEPH_OSD_OP_ZERO;
2289 }
2290 
2291 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2292 					int which)
2293 {
2294 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2295 
2296 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2297 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2298 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2299 	} else {
2300 		osd_req_op_extent_init(osd_req, which,
2301 				       truncate_or_zero_opcode(obj_req),
2302 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2303 				       0, 0);
2304 	}
2305 }
2306 
2307 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2308 {
2309 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2310 	u64 off, next_off;
2311 	int ret;
2312 
2313 	/*
2314 	 * Align the range to alloc_size boundary and punt on discards
2315 	 * that are too small to free up any space.
2316 	 *
2317 	 * alloc_size == object_size && is_tail() is a special case for
2318 	 * filestore with filestore_punch_hole = false, needed to allow
2319 	 * truncate (in addition to delete).
2320 	 */
2321 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2322 	    !rbd_obj_is_tail(obj_req)) {
2323 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2324 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2325 				      rbd_dev->opts->alloc_size);
2326 		if (off >= next_off)
2327 			return 1;
2328 
2329 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2330 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2331 		     off, next_off - off);
2332 		obj_req->ex.oe_off = off;
2333 		obj_req->ex.oe_len = next_off - off;
2334 	}
2335 
2336 	/* reverse map the entire object onto the parent */
2337 	ret = rbd_obj_calc_img_extents(obj_req, true);
2338 	if (ret)
2339 		return ret;
2340 
2341 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2342 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2343 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2344 
2345 	obj_req->write_state = RBD_OBJ_WRITE_START;
2346 	return 0;
2347 }
2348 
2349 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2350 					int which)
2351 {
2352 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2353 	u16 opcode;
2354 
2355 	if (rbd_obj_is_entire(obj_req)) {
2356 		if (obj_req->num_img_extents) {
2357 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2358 				osd_req_op_init(osd_req, which++,
2359 						CEPH_OSD_OP_CREATE, 0);
2360 			opcode = CEPH_OSD_OP_TRUNCATE;
2361 		} else {
2362 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2363 			osd_req_op_init(osd_req, which++,
2364 					CEPH_OSD_OP_DELETE, 0);
2365 			opcode = 0;
2366 		}
2367 	} else {
2368 		opcode = truncate_or_zero_opcode(obj_req);
2369 	}
2370 
2371 	if (opcode)
2372 		osd_req_op_extent_init(osd_req, which, opcode,
2373 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2374 				       0, 0);
2375 }
2376 
2377 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2378 {
2379 	int ret;
2380 
2381 	/* reverse map the entire object onto the parent */
2382 	ret = rbd_obj_calc_img_extents(obj_req, true);
2383 	if (ret)
2384 		return ret;
2385 
2386 	if (rbd_obj_copyup_enabled(obj_req))
2387 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2388 	if (!obj_req->num_img_extents) {
2389 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2390 		if (rbd_obj_is_entire(obj_req))
2391 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2392 	}
2393 
2394 	obj_req->write_state = RBD_OBJ_WRITE_START;
2395 	return 0;
2396 }
2397 
2398 static int count_write_ops(struct rbd_obj_request *obj_req)
2399 {
2400 	struct rbd_img_request *img_req = obj_req->img_request;
2401 
2402 	switch (img_req->op_type) {
2403 	case OBJ_OP_WRITE:
2404 		if (!use_object_map(img_req->rbd_dev) ||
2405 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2406 			return 2; /* setallochint + write/writefull */
2407 
2408 		return 1; /* write/writefull */
2409 	case OBJ_OP_DISCARD:
2410 		return 1; /* delete/truncate/zero */
2411 	case OBJ_OP_ZEROOUT:
2412 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2413 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2414 			return 2; /* create + truncate */
2415 
2416 		return 1; /* delete/truncate/zero */
2417 	default:
2418 		BUG();
2419 	}
2420 }
2421 
2422 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2423 				    int which)
2424 {
2425 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2426 
2427 	switch (obj_req->img_request->op_type) {
2428 	case OBJ_OP_WRITE:
2429 		__rbd_osd_setup_write_ops(osd_req, which);
2430 		break;
2431 	case OBJ_OP_DISCARD:
2432 		__rbd_osd_setup_discard_ops(osd_req, which);
2433 		break;
2434 	case OBJ_OP_ZEROOUT:
2435 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2436 		break;
2437 	default:
2438 		BUG();
2439 	}
2440 }
2441 
2442 /*
2443  * Prune the list of object requests (adjust offset and/or length, drop
2444  * redundant requests).  Prepare object request state machines and image
2445  * request state machine for execution.
2446  */
2447 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2448 {
2449 	struct rbd_obj_request *obj_req, *next_obj_req;
2450 	int ret;
2451 
2452 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2453 		switch (img_req->op_type) {
2454 		case OBJ_OP_READ:
2455 			ret = rbd_obj_init_read(obj_req);
2456 			break;
2457 		case OBJ_OP_WRITE:
2458 			ret = rbd_obj_init_write(obj_req);
2459 			break;
2460 		case OBJ_OP_DISCARD:
2461 			ret = rbd_obj_init_discard(obj_req);
2462 			break;
2463 		case OBJ_OP_ZEROOUT:
2464 			ret = rbd_obj_init_zeroout(obj_req);
2465 			break;
2466 		default:
2467 			BUG();
2468 		}
2469 		if (ret < 0)
2470 			return ret;
2471 		if (ret > 0) {
2472 			rbd_img_obj_request_del(img_req, obj_req);
2473 			continue;
2474 		}
2475 	}
2476 
2477 	img_req->state = RBD_IMG_START;
2478 	return 0;
2479 }
2480 
2481 union rbd_img_fill_iter {
2482 	struct ceph_bio_iter	bio_iter;
2483 	struct ceph_bvec_iter	bvec_iter;
2484 };
2485 
2486 struct rbd_img_fill_ctx {
2487 	enum obj_request_type	pos_type;
2488 	union rbd_img_fill_iter	*pos;
2489 	union rbd_img_fill_iter	iter;
2490 	ceph_object_extent_fn_t	set_pos_fn;
2491 	ceph_object_extent_fn_t	count_fn;
2492 	ceph_object_extent_fn_t	copy_fn;
2493 };
2494 
2495 static struct ceph_object_extent *alloc_object_extent(void *arg)
2496 {
2497 	struct rbd_img_request *img_req = arg;
2498 	struct rbd_obj_request *obj_req;
2499 
2500 	obj_req = rbd_obj_request_create();
2501 	if (!obj_req)
2502 		return NULL;
2503 
2504 	rbd_img_obj_request_add(img_req, obj_req);
2505 	return &obj_req->ex;
2506 }
2507 
2508 /*
2509  * While su != os && sc == 1 is technically not fancy (it's the same
2510  * layout as su == os && sc == 1), we can't use the nocopy path for it
2511  * because ->set_pos_fn() should be called only once per object.
2512  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2513  * treat su != os && sc == 1 as fancy.
2514  */
2515 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2516 {
2517 	return l->stripe_unit != l->object_size;
2518 }
2519 
2520 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2521 				       struct ceph_file_extent *img_extents,
2522 				       u32 num_img_extents,
2523 				       struct rbd_img_fill_ctx *fctx)
2524 {
2525 	u32 i;
2526 	int ret;
2527 
2528 	img_req->data_type = fctx->pos_type;
2529 
2530 	/*
2531 	 * Create object requests and set each object request's starting
2532 	 * position in the provided bio (list) or bio_vec array.
2533 	 */
2534 	fctx->iter = *fctx->pos;
2535 	for (i = 0; i < num_img_extents; i++) {
2536 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2537 					   img_extents[i].fe_off,
2538 					   img_extents[i].fe_len,
2539 					   &img_req->object_extents,
2540 					   alloc_object_extent, img_req,
2541 					   fctx->set_pos_fn, &fctx->iter);
2542 		if (ret)
2543 			return ret;
2544 	}
2545 
2546 	return __rbd_img_fill_request(img_req);
2547 }
2548 
2549 /*
2550  * Map a list of image extents to a list of object extents, create the
2551  * corresponding object requests (normally each to a different object,
2552  * but not always) and add them to @img_req.  For each object request,
2553  * set up its data descriptor to point to the corresponding chunk(s) of
2554  * @fctx->pos data buffer.
2555  *
2556  * Because ceph_file_to_extents() will merge adjacent object extents
2557  * together, each object request's data descriptor may point to multiple
2558  * different chunks of @fctx->pos data buffer.
2559  *
2560  * @fctx->pos data buffer is assumed to be large enough.
2561  */
2562 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2563 				struct ceph_file_extent *img_extents,
2564 				u32 num_img_extents,
2565 				struct rbd_img_fill_ctx *fctx)
2566 {
2567 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2568 	struct rbd_obj_request *obj_req;
2569 	u32 i;
2570 	int ret;
2571 
2572 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2573 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2574 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2575 						   num_img_extents, fctx);
2576 
2577 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2578 
2579 	/*
2580 	 * Create object requests and determine ->bvec_count for each object
2581 	 * request.  Note that ->bvec_count sum over all object requests may
2582 	 * be greater than the number of bio_vecs in the provided bio (list)
2583 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2584 	 * stripe unit boundaries.
2585 	 */
2586 	fctx->iter = *fctx->pos;
2587 	for (i = 0; i < num_img_extents; i++) {
2588 		ret = ceph_file_to_extents(&rbd_dev->layout,
2589 					   img_extents[i].fe_off,
2590 					   img_extents[i].fe_len,
2591 					   &img_req->object_extents,
2592 					   alloc_object_extent, img_req,
2593 					   fctx->count_fn, &fctx->iter);
2594 		if (ret)
2595 			return ret;
2596 	}
2597 
2598 	for_each_obj_request(img_req, obj_req) {
2599 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2600 					      sizeof(*obj_req->bvec_pos.bvecs),
2601 					      GFP_NOIO);
2602 		if (!obj_req->bvec_pos.bvecs)
2603 			return -ENOMEM;
2604 	}
2605 
2606 	/*
2607 	 * Fill in each object request's private bio_vec array, splitting and
2608 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2609 	 */
2610 	fctx->iter = *fctx->pos;
2611 	for (i = 0; i < num_img_extents; i++) {
2612 		ret = ceph_iterate_extents(&rbd_dev->layout,
2613 					   img_extents[i].fe_off,
2614 					   img_extents[i].fe_len,
2615 					   &img_req->object_extents,
2616 					   fctx->copy_fn, &fctx->iter);
2617 		if (ret)
2618 			return ret;
2619 	}
2620 
2621 	return __rbd_img_fill_request(img_req);
2622 }
2623 
2624 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2625 			       u64 off, u64 len)
2626 {
2627 	struct ceph_file_extent ex = { off, len };
2628 	union rbd_img_fill_iter dummy = {};
2629 	struct rbd_img_fill_ctx fctx = {
2630 		.pos_type = OBJ_REQUEST_NODATA,
2631 		.pos = &dummy,
2632 	};
2633 
2634 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2635 }
2636 
2637 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 	struct rbd_obj_request *obj_req =
2640 	    container_of(ex, struct rbd_obj_request, ex);
2641 	struct ceph_bio_iter *it = arg;
2642 
2643 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 	obj_req->bio_pos = *it;
2645 	ceph_bio_iter_advance(it, bytes);
2646 }
2647 
2648 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2649 {
2650 	struct rbd_obj_request *obj_req =
2651 	    container_of(ex, struct rbd_obj_request, ex);
2652 	struct ceph_bio_iter *it = arg;
2653 
2654 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2655 	ceph_bio_iter_advance_step(it, bytes, ({
2656 		obj_req->bvec_count++;
2657 	}));
2658 
2659 }
2660 
2661 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2662 {
2663 	struct rbd_obj_request *obj_req =
2664 	    container_of(ex, struct rbd_obj_request, ex);
2665 	struct ceph_bio_iter *it = arg;
2666 
2667 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2668 	ceph_bio_iter_advance_step(it, bytes, ({
2669 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2670 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2671 	}));
2672 }
2673 
2674 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2675 				   struct ceph_file_extent *img_extents,
2676 				   u32 num_img_extents,
2677 				   struct ceph_bio_iter *bio_pos)
2678 {
2679 	struct rbd_img_fill_ctx fctx = {
2680 		.pos_type = OBJ_REQUEST_BIO,
2681 		.pos = (union rbd_img_fill_iter *)bio_pos,
2682 		.set_pos_fn = set_bio_pos,
2683 		.count_fn = count_bio_bvecs,
2684 		.copy_fn = copy_bio_bvecs,
2685 	};
2686 
2687 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2688 				    &fctx);
2689 }
2690 
2691 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2692 				 u64 off, u64 len, struct bio *bio)
2693 {
2694 	struct ceph_file_extent ex = { off, len };
2695 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2696 
2697 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2698 }
2699 
2700 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702 	struct rbd_obj_request *obj_req =
2703 	    container_of(ex, struct rbd_obj_request, ex);
2704 	struct ceph_bvec_iter *it = arg;
2705 
2706 	obj_req->bvec_pos = *it;
2707 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2708 	ceph_bvec_iter_advance(it, bytes);
2709 }
2710 
2711 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2712 {
2713 	struct rbd_obj_request *obj_req =
2714 	    container_of(ex, struct rbd_obj_request, ex);
2715 	struct ceph_bvec_iter *it = arg;
2716 
2717 	ceph_bvec_iter_advance_step(it, bytes, ({
2718 		obj_req->bvec_count++;
2719 	}));
2720 }
2721 
2722 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2723 {
2724 	struct rbd_obj_request *obj_req =
2725 	    container_of(ex, struct rbd_obj_request, ex);
2726 	struct ceph_bvec_iter *it = arg;
2727 
2728 	ceph_bvec_iter_advance_step(it, bytes, ({
2729 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2730 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2731 	}));
2732 }
2733 
2734 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2735 				     struct ceph_file_extent *img_extents,
2736 				     u32 num_img_extents,
2737 				     struct ceph_bvec_iter *bvec_pos)
2738 {
2739 	struct rbd_img_fill_ctx fctx = {
2740 		.pos_type = OBJ_REQUEST_BVECS,
2741 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2742 		.set_pos_fn = set_bvec_pos,
2743 		.count_fn = count_bvecs,
2744 		.copy_fn = copy_bvecs,
2745 	};
2746 
2747 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2748 				    &fctx);
2749 }
2750 
2751 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2752 				   struct ceph_file_extent *img_extents,
2753 				   u32 num_img_extents,
2754 				   struct bio_vec *bvecs)
2755 {
2756 	struct ceph_bvec_iter it = {
2757 		.bvecs = bvecs,
2758 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2759 							     num_img_extents) },
2760 	};
2761 
2762 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2763 					 &it);
2764 }
2765 
2766 static void rbd_img_handle_request_work(struct work_struct *work)
2767 {
2768 	struct rbd_img_request *img_req =
2769 	    container_of(work, struct rbd_img_request, work);
2770 
2771 	rbd_img_handle_request(img_req, img_req->work_result);
2772 }
2773 
2774 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2775 {
2776 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2777 	img_req->work_result = result;
2778 	queue_work(rbd_wq, &img_req->work);
2779 }
2780 
2781 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2782 {
2783 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2784 
2785 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2786 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2787 		return true;
2788 	}
2789 
2790 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2791 	     obj_req->ex.oe_objno);
2792 	return false;
2793 }
2794 
2795 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2796 {
2797 	struct ceph_osd_request *osd_req;
2798 	int ret;
2799 
2800 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2801 	if (IS_ERR(osd_req))
2802 		return PTR_ERR(osd_req);
2803 
2804 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2805 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2806 	rbd_osd_setup_data(osd_req, 0);
2807 	rbd_osd_format_read(osd_req);
2808 
2809 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2810 	if (ret)
2811 		return ret;
2812 
2813 	rbd_osd_submit(osd_req);
2814 	return 0;
2815 }
2816 
2817 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2818 {
2819 	struct rbd_img_request *img_req = obj_req->img_request;
2820 	struct rbd_device *parent = img_req->rbd_dev->parent;
2821 	struct rbd_img_request *child_img_req;
2822 	int ret;
2823 
2824 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2825 	if (!child_img_req)
2826 		return -ENOMEM;
2827 
2828 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2829 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2830 	child_img_req->obj_request = obj_req;
2831 
2832 	down_read(&parent->header_rwsem);
2833 	rbd_img_capture_header(child_img_req);
2834 	up_read(&parent->header_rwsem);
2835 
2836 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2837 	     obj_req);
2838 
2839 	if (!rbd_img_is_write(img_req)) {
2840 		switch (img_req->data_type) {
2841 		case OBJ_REQUEST_BIO:
2842 			ret = __rbd_img_fill_from_bio(child_img_req,
2843 						      obj_req->img_extents,
2844 						      obj_req->num_img_extents,
2845 						      &obj_req->bio_pos);
2846 			break;
2847 		case OBJ_REQUEST_BVECS:
2848 		case OBJ_REQUEST_OWN_BVECS:
2849 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2850 						      obj_req->img_extents,
2851 						      obj_req->num_img_extents,
2852 						      &obj_req->bvec_pos);
2853 			break;
2854 		default:
2855 			BUG();
2856 		}
2857 	} else {
2858 		ret = rbd_img_fill_from_bvecs(child_img_req,
2859 					      obj_req->img_extents,
2860 					      obj_req->num_img_extents,
2861 					      obj_req->copyup_bvecs);
2862 	}
2863 	if (ret) {
2864 		rbd_img_request_destroy(child_img_req);
2865 		return ret;
2866 	}
2867 
2868 	/* avoid parent chain recursion */
2869 	rbd_img_schedule(child_img_req, 0);
2870 	return 0;
2871 }
2872 
2873 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2874 {
2875 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2876 	int ret;
2877 
2878 again:
2879 	switch (obj_req->read_state) {
2880 	case RBD_OBJ_READ_START:
2881 		rbd_assert(!*result);
2882 
2883 		if (!rbd_obj_may_exist(obj_req)) {
2884 			*result = -ENOENT;
2885 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2886 			goto again;
2887 		}
2888 
2889 		ret = rbd_obj_read_object(obj_req);
2890 		if (ret) {
2891 			*result = ret;
2892 			return true;
2893 		}
2894 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2895 		return false;
2896 	case RBD_OBJ_READ_OBJECT:
2897 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2898 			/* reverse map this object extent onto the parent */
2899 			ret = rbd_obj_calc_img_extents(obj_req, false);
2900 			if (ret) {
2901 				*result = ret;
2902 				return true;
2903 			}
2904 			if (obj_req->num_img_extents) {
2905 				ret = rbd_obj_read_from_parent(obj_req);
2906 				if (ret) {
2907 					*result = ret;
2908 					return true;
2909 				}
2910 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2911 				return false;
2912 			}
2913 		}
2914 
2915 		/*
2916 		 * -ENOENT means a hole in the image -- zero-fill the entire
2917 		 * length of the request.  A short read also implies zero-fill
2918 		 * to the end of the request.
2919 		 */
2920 		if (*result == -ENOENT) {
2921 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2922 			*result = 0;
2923 		} else if (*result >= 0) {
2924 			if (*result < obj_req->ex.oe_len)
2925 				rbd_obj_zero_range(obj_req, *result,
2926 						obj_req->ex.oe_len - *result);
2927 			else
2928 				rbd_assert(*result == obj_req->ex.oe_len);
2929 			*result = 0;
2930 		}
2931 		return true;
2932 	case RBD_OBJ_READ_PARENT:
2933 		/*
2934 		 * The parent image is read only up to the overlap -- zero-fill
2935 		 * from the overlap to the end of the request.
2936 		 */
2937 		if (!*result) {
2938 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2939 
2940 			if (obj_overlap < obj_req->ex.oe_len)
2941 				rbd_obj_zero_range(obj_req, obj_overlap,
2942 					    obj_req->ex.oe_len - obj_overlap);
2943 		}
2944 		return true;
2945 	default:
2946 		BUG();
2947 	}
2948 }
2949 
2950 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2951 {
2952 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2953 
2954 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2955 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2956 
2957 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2958 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2959 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2960 		return true;
2961 	}
2962 
2963 	return false;
2964 }
2965 
2966 /*
2967  * Return:
2968  *   0 - object map update sent
2969  *   1 - object map update isn't needed
2970  *  <0 - error
2971  */
2972 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2973 {
2974 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2975 	u8 new_state;
2976 
2977 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2978 		return 1;
2979 
2980 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2981 		new_state = OBJECT_PENDING;
2982 	else
2983 		new_state = OBJECT_EXISTS;
2984 
2985 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2986 }
2987 
2988 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2989 {
2990 	struct ceph_osd_request *osd_req;
2991 	int num_ops = count_write_ops(obj_req);
2992 	int which = 0;
2993 	int ret;
2994 
2995 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2996 		num_ops++; /* stat */
2997 
2998 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2999 	if (IS_ERR(osd_req))
3000 		return PTR_ERR(osd_req);
3001 
3002 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3003 		ret = rbd_osd_setup_stat(osd_req, which++);
3004 		if (ret)
3005 			return ret;
3006 	}
3007 
3008 	rbd_osd_setup_write_ops(osd_req, which);
3009 	rbd_osd_format_write(osd_req);
3010 
3011 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3012 	if (ret)
3013 		return ret;
3014 
3015 	rbd_osd_submit(osd_req);
3016 	return 0;
3017 }
3018 
3019 /*
3020  * copyup_bvecs pages are never highmem pages
3021  */
3022 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3023 {
3024 	struct ceph_bvec_iter it = {
3025 		.bvecs = bvecs,
3026 		.iter = { .bi_size = bytes },
3027 	};
3028 
3029 	ceph_bvec_iter_advance_step(&it, bytes, ({
3030 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3031 			       bv.bv_len))
3032 			return false;
3033 	}));
3034 	return true;
3035 }
3036 
3037 #define MODS_ONLY	U32_MAX
3038 
3039 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3040 				      u32 bytes)
3041 {
3042 	struct ceph_osd_request *osd_req;
3043 	int ret;
3044 
3045 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3046 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3047 
3048 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3049 	if (IS_ERR(osd_req))
3050 		return PTR_ERR(osd_req);
3051 
3052 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3053 	if (ret)
3054 		return ret;
3055 
3056 	rbd_osd_format_write(osd_req);
3057 
3058 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3059 	if (ret)
3060 		return ret;
3061 
3062 	rbd_osd_submit(osd_req);
3063 	return 0;
3064 }
3065 
3066 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3067 					u32 bytes)
3068 {
3069 	struct ceph_osd_request *osd_req;
3070 	int num_ops = count_write_ops(obj_req);
3071 	int which = 0;
3072 	int ret;
3073 
3074 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3075 
3076 	if (bytes != MODS_ONLY)
3077 		num_ops++; /* copyup */
3078 
3079 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3080 	if (IS_ERR(osd_req))
3081 		return PTR_ERR(osd_req);
3082 
3083 	if (bytes != MODS_ONLY) {
3084 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3085 		if (ret)
3086 			return ret;
3087 	}
3088 
3089 	rbd_osd_setup_write_ops(osd_req, which);
3090 	rbd_osd_format_write(osd_req);
3091 
3092 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3093 	if (ret)
3094 		return ret;
3095 
3096 	rbd_osd_submit(osd_req);
3097 	return 0;
3098 }
3099 
3100 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3101 {
3102 	u32 i;
3103 
3104 	rbd_assert(!obj_req->copyup_bvecs);
3105 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3106 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3107 					sizeof(*obj_req->copyup_bvecs),
3108 					GFP_NOIO);
3109 	if (!obj_req->copyup_bvecs)
3110 		return -ENOMEM;
3111 
3112 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3113 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3114 
3115 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3116 		if (!obj_req->copyup_bvecs[i].bv_page)
3117 			return -ENOMEM;
3118 
3119 		obj_req->copyup_bvecs[i].bv_offset = 0;
3120 		obj_req->copyup_bvecs[i].bv_len = len;
3121 		obj_overlap -= len;
3122 	}
3123 
3124 	rbd_assert(!obj_overlap);
3125 	return 0;
3126 }
3127 
3128 /*
3129  * The target object doesn't exist.  Read the data for the entire
3130  * target object up to the overlap point (if any) from the parent,
3131  * so we can use it for a copyup.
3132  */
3133 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3134 {
3135 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3136 	int ret;
3137 
3138 	rbd_assert(obj_req->num_img_extents);
3139 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3140 		      rbd_dev->parent_overlap);
3141 	if (!obj_req->num_img_extents) {
3142 		/*
3143 		 * The overlap has become 0 (most likely because the
3144 		 * image has been flattened).  Re-submit the original write
3145 		 * request -- pass MODS_ONLY since the copyup isn't needed
3146 		 * anymore.
3147 		 */
3148 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3149 	}
3150 
3151 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3152 	if (ret)
3153 		return ret;
3154 
3155 	return rbd_obj_read_from_parent(obj_req);
3156 }
3157 
3158 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3159 {
3160 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3161 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3162 	u8 new_state;
3163 	u32 i;
3164 	int ret;
3165 
3166 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3167 
3168 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3169 		return;
3170 
3171 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3172 		return;
3173 
3174 	for (i = 0; i < snapc->num_snaps; i++) {
3175 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3176 		    i + 1 < snapc->num_snaps)
3177 			new_state = OBJECT_EXISTS_CLEAN;
3178 		else
3179 			new_state = OBJECT_EXISTS;
3180 
3181 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3182 					    new_state, NULL);
3183 		if (ret < 0) {
3184 			obj_req->pending.result = ret;
3185 			return;
3186 		}
3187 
3188 		rbd_assert(!ret);
3189 		obj_req->pending.num_pending++;
3190 	}
3191 }
3192 
3193 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3194 {
3195 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3196 	int ret;
3197 
3198 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3199 
3200 	/*
3201 	 * Only send non-zero copyup data to save some I/O and network
3202 	 * bandwidth -- zero copyup data is equivalent to the object not
3203 	 * existing.
3204 	 */
3205 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3206 		bytes = 0;
3207 
3208 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3209 		/*
3210 		 * Send a copyup request with an empty snapshot context to
3211 		 * deep-copyup the object through all existing snapshots.
3212 		 * A second request with the current snapshot context will be
3213 		 * sent for the actual modification.
3214 		 */
3215 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3216 		if (ret) {
3217 			obj_req->pending.result = ret;
3218 			return;
3219 		}
3220 
3221 		obj_req->pending.num_pending++;
3222 		bytes = MODS_ONLY;
3223 	}
3224 
3225 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3226 	if (ret) {
3227 		obj_req->pending.result = ret;
3228 		return;
3229 	}
3230 
3231 	obj_req->pending.num_pending++;
3232 }
3233 
3234 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3235 {
3236 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3237 	int ret;
3238 
3239 again:
3240 	switch (obj_req->copyup_state) {
3241 	case RBD_OBJ_COPYUP_START:
3242 		rbd_assert(!*result);
3243 
3244 		ret = rbd_obj_copyup_read_parent(obj_req);
3245 		if (ret) {
3246 			*result = ret;
3247 			return true;
3248 		}
3249 		if (obj_req->num_img_extents)
3250 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3251 		else
3252 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3253 		return false;
3254 	case RBD_OBJ_COPYUP_READ_PARENT:
3255 		if (*result)
3256 			return true;
3257 
3258 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3259 				  rbd_obj_img_extents_bytes(obj_req))) {
3260 			dout("%s %p detected zeros\n", __func__, obj_req);
3261 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3262 		}
3263 
3264 		rbd_obj_copyup_object_maps(obj_req);
3265 		if (!obj_req->pending.num_pending) {
3266 			*result = obj_req->pending.result;
3267 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3268 			goto again;
3269 		}
3270 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3271 		return false;
3272 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3273 		if (!pending_result_dec(&obj_req->pending, result))
3274 			return false;
3275 		/* fall through */
3276 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3277 		if (*result) {
3278 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3279 				 *result);
3280 			return true;
3281 		}
3282 
3283 		rbd_obj_copyup_write_object(obj_req);
3284 		if (!obj_req->pending.num_pending) {
3285 			*result = obj_req->pending.result;
3286 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3287 			goto again;
3288 		}
3289 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3290 		return false;
3291 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3292 		if (!pending_result_dec(&obj_req->pending, result))
3293 			return false;
3294 		/* fall through */
3295 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3296 		return true;
3297 	default:
3298 		BUG();
3299 	}
3300 }
3301 
3302 /*
3303  * Return:
3304  *   0 - object map update sent
3305  *   1 - object map update isn't needed
3306  *  <0 - error
3307  */
3308 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3309 {
3310 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3311 	u8 current_state = OBJECT_PENDING;
3312 
3313 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3314 		return 1;
3315 
3316 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3317 		return 1;
3318 
3319 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3320 				     &current_state);
3321 }
3322 
3323 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3324 {
3325 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3326 	int ret;
3327 
3328 again:
3329 	switch (obj_req->write_state) {
3330 	case RBD_OBJ_WRITE_START:
3331 		rbd_assert(!*result);
3332 
3333 		if (rbd_obj_write_is_noop(obj_req))
3334 			return true;
3335 
3336 		ret = rbd_obj_write_pre_object_map(obj_req);
3337 		if (ret < 0) {
3338 			*result = ret;
3339 			return true;
3340 		}
3341 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3342 		if (ret > 0)
3343 			goto again;
3344 		return false;
3345 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3346 		if (*result) {
3347 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3348 				 *result);
3349 			return true;
3350 		}
3351 		ret = rbd_obj_write_object(obj_req);
3352 		if (ret) {
3353 			*result = ret;
3354 			return true;
3355 		}
3356 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3357 		return false;
3358 	case RBD_OBJ_WRITE_OBJECT:
3359 		if (*result == -ENOENT) {
3360 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3361 				*result = 0;
3362 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3363 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3364 				goto again;
3365 			}
3366 			/*
3367 			 * On a non-existent object:
3368 			 *   delete - -ENOENT, truncate/zero - 0
3369 			 */
3370 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3371 				*result = 0;
3372 		}
3373 		if (*result)
3374 			return true;
3375 
3376 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3377 		goto again;
3378 	case __RBD_OBJ_WRITE_COPYUP:
3379 		if (!rbd_obj_advance_copyup(obj_req, result))
3380 			return false;
3381 		/* fall through */
3382 	case RBD_OBJ_WRITE_COPYUP:
3383 		if (*result) {
3384 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3385 			return true;
3386 		}
3387 		ret = rbd_obj_write_post_object_map(obj_req);
3388 		if (ret < 0) {
3389 			*result = ret;
3390 			return true;
3391 		}
3392 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3393 		if (ret > 0)
3394 			goto again;
3395 		return false;
3396 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3397 		if (*result)
3398 			rbd_warn(rbd_dev, "post object map update failed: %d",
3399 				 *result);
3400 		return true;
3401 	default:
3402 		BUG();
3403 	}
3404 }
3405 
3406 /*
3407  * Return true if @obj_req is completed.
3408  */
3409 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3410 				     int *result)
3411 {
3412 	struct rbd_img_request *img_req = obj_req->img_request;
3413 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3414 	bool done;
3415 
3416 	mutex_lock(&obj_req->state_mutex);
3417 	if (!rbd_img_is_write(img_req))
3418 		done = rbd_obj_advance_read(obj_req, result);
3419 	else
3420 		done = rbd_obj_advance_write(obj_req, result);
3421 	mutex_unlock(&obj_req->state_mutex);
3422 
3423 	if (done && *result) {
3424 		rbd_assert(*result < 0);
3425 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3426 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3427 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3428 	}
3429 	return done;
3430 }
3431 
3432 /*
3433  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3434  * recursion.
3435  */
3436 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3437 {
3438 	if (__rbd_obj_handle_request(obj_req, &result))
3439 		rbd_img_handle_request(obj_req->img_request, result);
3440 }
3441 
3442 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3443 {
3444 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3445 
3446 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3447 		return false;
3448 
3449 	if (rbd_is_ro(rbd_dev))
3450 		return false;
3451 
3452 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3453 	if (rbd_dev->opts->lock_on_read ||
3454 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3455 		return true;
3456 
3457 	return rbd_img_is_write(img_req);
3458 }
3459 
3460 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3461 {
3462 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3463 	bool locked;
3464 
3465 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3466 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3467 	spin_lock(&rbd_dev->lock_lists_lock);
3468 	rbd_assert(list_empty(&img_req->lock_item));
3469 	if (!locked)
3470 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3471 	else
3472 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3473 	spin_unlock(&rbd_dev->lock_lists_lock);
3474 	return locked;
3475 }
3476 
3477 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3478 {
3479 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3480 	bool need_wakeup;
3481 
3482 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3483 	spin_lock(&rbd_dev->lock_lists_lock);
3484 	rbd_assert(!list_empty(&img_req->lock_item));
3485 	list_del_init(&img_req->lock_item);
3486 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3487 		       list_empty(&rbd_dev->running_list));
3488 	spin_unlock(&rbd_dev->lock_lists_lock);
3489 	if (need_wakeup)
3490 		complete(&rbd_dev->releasing_wait);
3491 }
3492 
3493 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3494 {
3495 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3496 
3497 	if (!need_exclusive_lock(img_req))
3498 		return 1;
3499 
3500 	if (rbd_lock_add_request(img_req))
3501 		return 1;
3502 
3503 	if (rbd_dev->opts->exclusive) {
3504 		WARN_ON(1); /* lock got released? */
3505 		return -EROFS;
3506 	}
3507 
3508 	/*
3509 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3510 	 * and cancel_delayed_work() in wake_lock_waiters().
3511 	 */
3512 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3513 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3514 	return 0;
3515 }
3516 
3517 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3518 {
3519 	struct rbd_obj_request *obj_req;
3520 
3521 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3522 
3523 	for_each_obj_request(img_req, obj_req) {
3524 		int result = 0;
3525 
3526 		if (__rbd_obj_handle_request(obj_req, &result)) {
3527 			if (result) {
3528 				img_req->pending.result = result;
3529 				return;
3530 			}
3531 		} else {
3532 			img_req->pending.num_pending++;
3533 		}
3534 	}
3535 }
3536 
3537 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3538 {
3539 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3540 	int ret;
3541 
3542 again:
3543 	switch (img_req->state) {
3544 	case RBD_IMG_START:
3545 		rbd_assert(!*result);
3546 
3547 		ret = rbd_img_exclusive_lock(img_req);
3548 		if (ret < 0) {
3549 			*result = ret;
3550 			return true;
3551 		}
3552 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3553 		if (ret > 0)
3554 			goto again;
3555 		return false;
3556 	case RBD_IMG_EXCLUSIVE_LOCK:
3557 		if (*result)
3558 			return true;
3559 
3560 		rbd_assert(!need_exclusive_lock(img_req) ||
3561 			   __rbd_is_lock_owner(rbd_dev));
3562 
3563 		rbd_img_object_requests(img_req);
3564 		if (!img_req->pending.num_pending) {
3565 			*result = img_req->pending.result;
3566 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3567 			goto again;
3568 		}
3569 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3570 		return false;
3571 	case __RBD_IMG_OBJECT_REQUESTS:
3572 		if (!pending_result_dec(&img_req->pending, result))
3573 			return false;
3574 		/* fall through */
3575 	case RBD_IMG_OBJECT_REQUESTS:
3576 		return true;
3577 	default:
3578 		BUG();
3579 	}
3580 }
3581 
3582 /*
3583  * Return true if @img_req is completed.
3584  */
3585 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3586 				     int *result)
3587 {
3588 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3589 	bool done;
3590 
3591 	if (need_exclusive_lock(img_req)) {
3592 		down_read(&rbd_dev->lock_rwsem);
3593 		mutex_lock(&img_req->state_mutex);
3594 		done = rbd_img_advance(img_req, result);
3595 		if (done)
3596 			rbd_lock_del_request(img_req);
3597 		mutex_unlock(&img_req->state_mutex);
3598 		up_read(&rbd_dev->lock_rwsem);
3599 	} else {
3600 		mutex_lock(&img_req->state_mutex);
3601 		done = rbd_img_advance(img_req, result);
3602 		mutex_unlock(&img_req->state_mutex);
3603 	}
3604 
3605 	if (done && *result) {
3606 		rbd_assert(*result < 0);
3607 		rbd_warn(rbd_dev, "%s%s result %d",
3608 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3609 		      obj_op_name(img_req->op_type), *result);
3610 	}
3611 	return done;
3612 }
3613 
3614 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3615 {
3616 again:
3617 	if (!__rbd_img_handle_request(img_req, &result))
3618 		return;
3619 
3620 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3621 		struct rbd_obj_request *obj_req = img_req->obj_request;
3622 
3623 		rbd_img_request_destroy(img_req);
3624 		if (__rbd_obj_handle_request(obj_req, &result)) {
3625 			img_req = obj_req->img_request;
3626 			goto again;
3627 		}
3628 	} else {
3629 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3630 
3631 		rbd_img_request_destroy(img_req);
3632 		blk_mq_end_request(rq, errno_to_blk_status(result));
3633 	}
3634 }
3635 
3636 static const struct rbd_client_id rbd_empty_cid;
3637 
3638 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3639 			  const struct rbd_client_id *rhs)
3640 {
3641 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3642 }
3643 
3644 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3645 {
3646 	struct rbd_client_id cid;
3647 
3648 	mutex_lock(&rbd_dev->watch_mutex);
3649 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3650 	cid.handle = rbd_dev->watch_cookie;
3651 	mutex_unlock(&rbd_dev->watch_mutex);
3652 	return cid;
3653 }
3654 
3655 /*
3656  * lock_rwsem must be held for write
3657  */
3658 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3659 			      const struct rbd_client_id *cid)
3660 {
3661 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3662 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3663 	     cid->gid, cid->handle);
3664 	rbd_dev->owner_cid = *cid; /* struct */
3665 }
3666 
3667 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3668 {
3669 	mutex_lock(&rbd_dev->watch_mutex);
3670 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3671 	mutex_unlock(&rbd_dev->watch_mutex);
3672 }
3673 
3674 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3675 {
3676 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3677 
3678 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3679 	strcpy(rbd_dev->lock_cookie, cookie);
3680 	rbd_set_owner_cid(rbd_dev, &cid);
3681 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3682 }
3683 
3684 /*
3685  * lock_rwsem must be held for write
3686  */
3687 static int rbd_lock(struct rbd_device *rbd_dev)
3688 {
3689 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3690 	char cookie[32];
3691 	int ret;
3692 
3693 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3694 		rbd_dev->lock_cookie[0] != '\0');
3695 
3696 	format_lock_cookie(rbd_dev, cookie);
3697 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3698 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3699 			    RBD_LOCK_TAG, "", 0);
3700 	if (ret)
3701 		return ret;
3702 
3703 	__rbd_lock(rbd_dev, cookie);
3704 	return 0;
3705 }
3706 
3707 /*
3708  * lock_rwsem must be held for write
3709  */
3710 static void rbd_unlock(struct rbd_device *rbd_dev)
3711 {
3712 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3713 	int ret;
3714 
3715 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3716 		rbd_dev->lock_cookie[0] == '\0');
3717 
3718 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3720 	if (ret && ret != -ENOENT)
3721 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3722 
3723 	/* treat errors as the image is unlocked */
3724 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3725 	rbd_dev->lock_cookie[0] = '\0';
3726 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3727 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3728 }
3729 
3730 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3731 				enum rbd_notify_op notify_op,
3732 				struct page ***preply_pages,
3733 				size_t *preply_len)
3734 {
3735 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3736 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3737 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3738 	int buf_size = sizeof(buf);
3739 	void *p = buf;
3740 
3741 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3742 
3743 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3744 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3745 	ceph_encode_32(&p, notify_op);
3746 	ceph_encode_64(&p, cid.gid);
3747 	ceph_encode_64(&p, cid.handle);
3748 
3749 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3750 				&rbd_dev->header_oloc, buf, buf_size,
3751 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3752 }
3753 
3754 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3755 			       enum rbd_notify_op notify_op)
3756 {
3757 	struct page **reply_pages;
3758 	size_t reply_len;
3759 
3760 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3761 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3762 }
3763 
3764 static void rbd_notify_acquired_lock(struct work_struct *work)
3765 {
3766 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3767 						  acquired_lock_work);
3768 
3769 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3770 }
3771 
3772 static void rbd_notify_released_lock(struct work_struct *work)
3773 {
3774 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3775 						  released_lock_work);
3776 
3777 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3778 }
3779 
3780 static int rbd_request_lock(struct rbd_device *rbd_dev)
3781 {
3782 	struct page **reply_pages;
3783 	size_t reply_len;
3784 	bool lock_owner_responded = false;
3785 	int ret;
3786 
3787 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3788 
3789 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3790 				   &reply_pages, &reply_len);
3791 	if (ret && ret != -ETIMEDOUT) {
3792 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3793 		goto out;
3794 	}
3795 
3796 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3797 		void *p = page_address(reply_pages[0]);
3798 		void *const end = p + reply_len;
3799 		u32 n;
3800 
3801 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3802 		while (n--) {
3803 			u8 struct_v;
3804 			u32 len;
3805 
3806 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3807 			p += 8 + 8; /* skip gid and cookie */
3808 
3809 			ceph_decode_32_safe(&p, end, len, e_inval);
3810 			if (!len)
3811 				continue;
3812 
3813 			if (lock_owner_responded) {
3814 				rbd_warn(rbd_dev,
3815 					 "duplicate lock owners detected");
3816 				ret = -EIO;
3817 				goto out;
3818 			}
3819 
3820 			lock_owner_responded = true;
3821 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3822 						  &struct_v, &len);
3823 			if (ret) {
3824 				rbd_warn(rbd_dev,
3825 					 "failed to decode ResponseMessage: %d",
3826 					 ret);
3827 				goto e_inval;
3828 			}
3829 
3830 			ret = ceph_decode_32(&p);
3831 		}
3832 	}
3833 
3834 	if (!lock_owner_responded) {
3835 		rbd_warn(rbd_dev, "no lock owners detected");
3836 		ret = -ETIMEDOUT;
3837 	}
3838 
3839 out:
3840 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3841 	return ret;
3842 
3843 e_inval:
3844 	ret = -EINVAL;
3845 	goto out;
3846 }
3847 
3848 /*
3849  * Either image request state machine(s) or rbd_add_acquire_lock()
3850  * (i.e. "rbd map").
3851  */
3852 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3853 {
3854 	struct rbd_img_request *img_req;
3855 
3856 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3857 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3858 
3859 	cancel_delayed_work(&rbd_dev->lock_dwork);
3860 	if (!completion_done(&rbd_dev->acquire_wait)) {
3861 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3862 			   list_empty(&rbd_dev->running_list));
3863 		rbd_dev->acquire_err = result;
3864 		complete_all(&rbd_dev->acquire_wait);
3865 		return;
3866 	}
3867 
3868 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3869 		mutex_lock(&img_req->state_mutex);
3870 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3871 		rbd_img_schedule(img_req, result);
3872 		mutex_unlock(&img_req->state_mutex);
3873 	}
3874 
3875 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3876 }
3877 
3878 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3879 			       struct ceph_locker **lockers, u32 *num_lockers)
3880 {
3881 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3882 	u8 lock_type;
3883 	char *lock_tag;
3884 	int ret;
3885 
3886 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3887 
3888 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3889 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3890 				 &lock_type, &lock_tag, lockers, num_lockers);
3891 	if (ret)
3892 		return ret;
3893 
3894 	if (*num_lockers == 0) {
3895 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3896 		goto out;
3897 	}
3898 
3899 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3900 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3901 			 lock_tag);
3902 		ret = -EBUSY;
3903 		goto out;
3904 	}
3905 
3906 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3907 		rbd_warn(rbd_dev, "shared lock type detected");
3908 		ret = -EBUSY;
3909 		goto out;
3910 	}
3911 
3912 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3913 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3914 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3915 			 (*lockers)[0].id.cookie);
3916 		ret = -EBUSY;
3917 		goto out;
3918 	}
3919 
3920 out:
3921 	kfree(lock_tag);
3922 	return ret;
3923 }
3924 
3925 static int find_watcher(struct rbd_device *rbd_dev,
3926 			const struct ceph_locker *locker)
3927 {
3928 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3929 	struct ceph_watch_item *watchers;
3930 	u32 num_watchers;
3931 	u64 cookie;
3932 	int i;
3933 	int ret;
3934 
3935 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3936 				      &rbd_dev->header_oloc, &watchers,
3937 				      &num_watchers);
3938 	if (ret)
3939 		return ret;
3940 
3941 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3942 	for (i = 0; i < num_watchers; i++) {
3943 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3944 			    sizeof(locker->info.addr)) &&
3945 		    watchers[i].cookie == cookie) {
3946 			struct rbd_client_id cid = {
3947 				.gid = le64_to_cpu(watchers[i].name.num),
3948 				.handle = cookie,
3949 			};
3950 
3951 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3952 			     rbd_dev, cid.gid, cid.handle);
3953 			rbd_set_owner_cid(rbd_dev, &cid);
3954 			ret = 1;
3955 			goto out;
3956 		}
3957 	}
3958 
3959 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3960 	ret = 0;
3961 out:
3962 	kfree(watchers);
3963 	return ret;
3964 }
3965 
3966 /*
3967  * lock_rwsem must be held for write
3968  */
3969 static int rbd_try_lock(struct rbd_device *rbd_dev)
3970 {
3971 	struct ceph_client *client = rbd_dev->rbd_client->client;
3972 	struct ceph_locker *lockers;
3973 	u32 num_lockers;
3974 	int ret;
3975 
3976 	for (;;) {
3977 		ret = rbd_lock(rbd_dev);
3978 		if (ret != -EBUSY)
3979 			return ret;
3980 
3981 		/* determine if the current lock holder is still alive */
3982 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3983 		if (ret)
3984 			return ret;
3985 
3986 		if (num_lockers == 0)
3987 			goto again;
3988 
3989 		ret = find_watcher(rbd_dev, lockers);
3990 		if (ret)
3991 			goto out; /* request lock or error */
3992 
3993 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3994 			 ENTITY_NAME(lockers[0].id.name));
3995 
3996 		ret = ceph_monc_blacklist_add(&client->monc,
3997 					      &lockers[0].info.addr);
3998 		if (ret) {
3999 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4000 				 ENTITY_NAME(lockers[0].id.name), ret);
4001 			goto out;
4002 		}
4003 
4004 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4005 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4006 					  lockers[0].id.cookie,
4007 					  &lockers[0].id.name);
4008 		if (ret && ret != -ENOENT)
4009 			goto out;
4010 
4011 again:
4012 		ceph_free_lockers(lockers, num_lockers);
4013 	}
4014 
4015 out:
4016 	ceph_free_lockers(lockers, num_lockers);
4017 	return ret;
4018 }
4019 
4020 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4021 {
4022 	int ret;
4023 
4024 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4025 		ret = rbd_object_map_open(rbd_dev);
4026 		if (ret)
4027 			return ret;
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 /*
4034  * Return:
4035  *   0 - lock acquired
4036  *   1 - caller should call rbd_request_lock()
4037  *  <0 - error
4038  */
4039 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4040 {
4041 	int ret;
4042 
4043 	down_read(&rbd_dev->lock_rwsem);
4044 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4045 	     rbd_dev->lock_state);
4046 	if (__rbd_is_lock_owner(rbd_dev)) {
4047 		up_read(&rbd_dev->lock_rwsem);
4048 		return 0;
4049 	}
4050 
4051 	up_read(&rbd_dev->lock_rwsem);
4052 	down_write(&rbd_dev->lock_rwsem);
4053 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4054 	     rbd_dev->lock_state);
4055 	if (__rbd_is_lock_owner(rbd_dev)) {
4056 		up_write(&rbd_dev->lock_rwsem);
4057 		return 0;
4058 	}
4059 
4060 	ret = rbd_try_lock(rbd_dev);
4061 	if (ret < 0) {
4062 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4063 		if (ret == -EBLACKLISTED)
4064 			goto out;
4065 
4066 		ret = 1; /* request lock anyway */
4067 	}
4068 	if (ret > 0) {
4069 		up_write(&rbd_dev->lock_rwsem);
4070 		return ret;
4071 	}
4072 
4073 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4074 	rbd_assert(list_empty(&rbd_dev->running_list));
4075 
4076 	ret = rbd_post_acquire_action(rbd_dev);
4077 	if (ret) {
4078 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4079 		/*
4080 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4081 		 * rbd_lock_add_request() would let the request through,
4082 		 * assuming that e.g. object map is locked and loaded.
4083 		 */
4084 		rbd_unlock(rbd_dev);
4085 	}
4086 
4087 out:
4088 	wake_lock_waiters(rbd_dev, ret);
4089 	up_write(&rbd_dev->lock_rwsem);
4090 	return ret;
4091 }
4092 
4093 static void rbd_acquire_lock(struct work_struct *work)
4094 {
4095 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4096 					    struct rbd_device, lock_dwork);
4097 	int ret;
4098 
4099 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4100 again:
4101 	ret = rbd_try_acquire_lock(rbd_dev);
4102 	if (ret <= 0) {
4103 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4104 		return;
4105 	}
4106 
4107 	ret = rbd_request_lock(rbd_dev);
4108 	if (ret == -ETIMEDOUT) {
4109 		goto again; /* treat this as a dead client */
4110 	} else if (ret == -EROFS) {
4111 		rbd_warn(rbd_dev, "peer will not release lock");
4112 		down_write(&rbd_dev->lock_rwsem);
4113 		wake_lock_waiters(rbd_dev, ret);
4114 		up_write(&rbd_dev->lock_rwsem);
4115 	} else if (ret < 0) {
4116 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4117 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4118 				 RBD_RETRY_DELAY);
4119 	} else {
4120 		/*
4121 		 * lock owner acked, but resend if we don't see them
4122 		 * release the lock
4123 		 */
4124 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4125 		     rbd_dev);
4126 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4127 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4128 	}
4129 }
4130 
4131 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4132 {
4133 	bool need_wait;
4134 
4135 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4136 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4137 
4138 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4139 		return false;
4140 
4141 	/*
4142 	 * Ensure that all in-flight IO is flushed.
4143 	 */
4144 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4145 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4146 	need_wait = !list_empty(&rbd_dev->running_list);
4147 	downgrade_write(&rbd_dev->lock_rwsem);
4148 	if (need_wait)
4149 		wait_for_completion(&rbd_dev->releasing_wait);
4150 	up_read(&rbd_dev->lock_rwsem);
4151 
4152 	down_write(&rbd_dev->lock_rwsem);
4153 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4154 		return false;
4155 
4156 	rbd_assert(list_empty(&rbd_dev->running_list));
4157 	return true;
4158 }
4159 
4160 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4161 {
4162 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4163 		rbd_object_map_close(rbd_dev);
4164 }
4165 
4166 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4167 {
4168 	rbd_assert(list_empty(&rbd_dev->running_list));
4169 
4170 	rbd_pre_release_action(rbd_dev);
4171 	rbd_unlock(rbd_dev);
4172 }
4173 
4174 /*
4175  * lock_rwsem must be held for write
4176  */
4177 static void rbd_release_lock(struct rbd_device *rbd_dev)
4178 {
4179 	if (!rbd_quiesce_lock(rbd_dev))
4180 		return;
4181 
4182 	__rbd_release_lock(rbd_dev);
4183 
4184 	/*
4185 	 * Give others a chance to grab the lock - we would re-acquire
4186 	 * almost immediately if we got new IO while draining the running
4187 	 * list otherwise.  We need to ack our own notifications, so this
4188 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4189 	 * way of maybe_kick_acquire().
4190 	 */
4191 	cancel_delayed_work(&rbd_dev->lock_dwork);
4192 }
4193 
4194 static void rbd_release_lock_work(struct work_struct *work)
4195 {
4196 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4197 						  unlock_work);
4198 
4199 	down_write(&rbd_dev->lock_rwsem);
4200 	rbd_release_lock(rbd_dev);
4201 	up_write(&rbd_dev->lock_rwsem);
4202 }
4203 
4204 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4205 {
4206 	bool have_requests;
4207 
4208 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4209 	if (__rbd_is_lock_owner(rbd_dev))
4210 		return;
4211 
4212 	spin_lock(&rbd_dev->lock_lists_lock);
4213 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4214 	spin_unlock(&rbd_dev->lock_lists_lock);
4215 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4216 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4217 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4218 	}
4219 }
4220 
4221 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4222 				     void **p)
4223 {
4224 	struct rbd_client_id cid = { 0 };
4225 
4226 	if (struct_v >= 2) {
4227 		cid.gid = ceph_decode_64(p);
4228 		cid.handle = ceph_decode_64(p);
4229 	}
4230 
4231 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4232 	     cid.handle);
4233 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4234 		down_write(&rbd_dev->lock_rwsem);
4235 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4236 			/*
4237 			 * we already know that the remote client is
4238 			 * the owner
4239 			 */
4240 			up_write(&rbd_dev->lock_rwsem);
4241 			return;
4242 		}
4243 
4244 		rbd_set_owner_cid(rbd_dev, &cid);
4245 		downgrade_write(&rbd_dev->lock_rwsem);
4246 	} else {
4247 		down_read(&rbd_dev->lock_rwsem);
4248 	}
4249 
4250 	maybe_kick_acquire(rbd_dev);
4251 	up_read(&rbd_dev->lock_rwsem);
4252 }
4253 
4254 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4255 				     void **p)
4256 {
4257 	struct rbd_client_id cid = { 0 };
4258 
4259 	if (struct_v >= 2) {
4260 		cid.gid = ceph_decode_64(p);
4261 		cid.handle = ceph_decode_64(p);
4262 	}
4263 
4264 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4265 	     cid.handle);
4266 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4267 		down_write(&rbd_dev->lock_rwsem);
4268 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4269 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4270 			     __func__, rbd_dev, cid.gid, cid.handle,
4271 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4272 			up_write(&rbd_dev->lock_rwsem);
4273 			return;
4274 		}
4275 
4276 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4277 		downgrade_write(&rbd_dev->lock_rwsem);
4278 	} else {
4279 		down_read(&rbd_dev->lock_rwsem);
4280 	}
4281 
4282 	maybe_kick_acquire(rbd_dev);
4283 	up_read(&rbd_dev->lock_rwsem);
4284 }
4285 
4286 /*
4287  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4288  * ResponseMessage is needed.
4289  */
4290 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4291 				   void **p)
4292 {
4293 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4294 	struct rbd_client_id cid = { 0 };
4295 	int result = 1;
4296 
4297 	if (struct_v >= 2) {
4298 		cid.gid = ceph_decode_64(p);
4299 		cid.handle = ceph_decode_64(p);
4300 	}
4301 
4302 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4303 	     cid.handle);
4304 	if (rbd_cid_equal(&cid, &my_cid))
4305 		return result;
4306 
4307 	down_read(&rbd_dev->lock_rwsem);
4308 	if (__rbd_is_lock_owner(rbd_dev)) {
4309 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4310 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4311 			goto out_unlock;
4312 
4313 		/*
4314 		 * encode ResponseMessage(0) so the peer can detect
4315 		 * a missing owner
4316 		 */
4317 		result = 0;
4318 
4319 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4320 			if (!rbd_dev->opts->exclusive) {
4321 				dout("%s rbd_dev %p queueing unlock_work\n",
4322 				     __func__, rbd_dev);
4323 				queue_work(rbd_dev->task_wq,
4324 					   &rbd_dev->unlock_work);
4325 			} else {
4326 				/* refuse to release the lock */
4327 				result = -EROFS;
4328 			}
4329 		}
4330 	}
4331 
4332 out_unlock:
4333 	up_read(&rbd_dev->lock_rwsem);
4334 	return result;
4335 }
4336 
4337 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4338 				     u64 notify_id, u64 cookie, s32 *result)
4339 {
4340 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4341 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4342 	int buf_size = sizeof(buf);
4343 	int ret;
4344 
4345 	if (result) {
4346 		void *p = buf;
4347 
4348 		/* encode ResponseMessage */
4349 		ceph_start_encoding(&p, 1, 1,
4350 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4351 		ceph_encode_32(&p, *result);
4352 	} else {
4353 		buf_size = 0;
4354 	}
4355 
4356 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4357 				   &rbd_dev->header_oloc, notify_id, cookie,
4358 				   buf, buf_size);
4359 	if (ret)
4360 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4361 }
4362 
4363 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4364 				   u64 cookie)
4365 {
4366 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4367 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4368 }
4369 
4370 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4371 					  u64 notify_id, u64 cookie, s32 result)
4372 {
4373 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4374 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4375 }
4376 
4377 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4378 			 u64 notifier_id, void *data, size_t data_len)
4379 {
4380 	struct rbd_device *rbd_dev = arg;
4381 	void *p = data;
4382 	void *const end = p + data_len;
4383 	u8 struct_v = 0;
4384 	u32 len;
4385 	u32 notify_op;
4386 	int ret;
4387 
4388 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4389 	     __func__, rbd_dev, cookie, notify_id, data_len);
4390 	if (data_len) {
4391 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4392 					  &struct_v, &len);
4393 		if (ret) {
4394 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4395 				 ret);
4396 			return;
4397 		}
4398 
4399 		notify_op = ceph_decode_32(&p);
4400 	} else {
4401 		/* legacy notification for header updates */
4402 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4403 		len = 0;
4404 	}
4405 
4406 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4407 	switch (notify_op) {
4408 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4409 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4410 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4411 		break;
4412 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4413 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4414 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4415 		break;
4416 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4417 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4418 		if (ret <= 0)
4419 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4420 						      cookie, ret);
4421 		else
4422 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4423 		break;
4424 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4425 		ret = rbd_dev_refresh(rbd_dev);
4426 		if (ret)
4427 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4428 
4429 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4430 		break;
4431 	default:
4432 		if (rbd_is_lock_owner(rbd_dev))
4433 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4434 						      cookie, -EOPNOTSUPP);
4435 		else
4436 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4437 		break;
4438 	}
4439 }
4440 
4441 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4442 
4443 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4444 {
4445 	struct rbd_device *rbd_dev = arg;
4446 
4447 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4448 
4449 	down_write(&rbd_dev->lock_rwsem);
4450 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4451 	up_write(&rbd_dev->lock_rwsem);
4452 
4453 	mutex_lock(&rbd_dev->watch_mutex);
4454 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4455 		__rbd_unregister_watch(rbd_dev);
4456 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4457 
4458 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4459 	}
4460 	mutex_unlock(&rbd_dev->watch_mutex);
4461 }
4462 
4463 /*
4464  * watch_mutex must be locked
4465  */
4466 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4467 {
4468 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4469 	struct ceph_osd_linger_request *handle;
4470 
4471 	rbd_assert(!rbd_dev->watch_handle);
4472 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4473 
4474 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4475 				 &rbd_dev->header_oloc, rbd_watch_cb,
4476 				 rbd_watch_errcb, rbd_dev);
4477 	if (IS_ERR(handle))
4478 		return PTR_ERR(handle);
4479 
4480 	rbd_dev->watch_handle = handle;
4481 	return 0;
4482 }
4483 
4484 /*
4485  * watch_mutex must be locked
4486  */
4487 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4488 {
4489 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4490 	int ret;
4491 
4492 	rbd_assert(rbd_dev->watch_handle);
4493 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4494 
4495 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4496 	if (ret)
4497 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4498 
4499 	rbd_dev->watch_handle = NULL;
4500 }
4501 
4502 static int rbd_register_watch(struct rbd_device *rbd_dev)
4503 {
4504 	int ret;
4505 
4506 	mutex_lock(&rbd_dev->watch_mutex);
4507 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4508 	ret = __rbd_register_watch(rbd_dev);
4509 	if (ret)
4510 		goto out;
4511 
4512 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4513 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4514 
4515 out:
4516 	mutex_unlock(&rbd_dev->watch_mutex);
4517 	return ret;
4518 }
4519 
4520 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4521 {
4522 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4523 
4524 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4525 	cancel_work_sync(&rbd_dev->released_lock_work);
4526 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4527 	cancel_work_sync(&rbd_dev->unlock_work);
4528 }
4529 
4530 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4531 {
4532 	cancel_tasks_sync(rbd_dev);
4533 
4534 	mutex_lock(&rbd_dev->watch_mutex);
4535 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4536 		__rbd_unregister_watch(rbd_dev);
4537 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4538 	mutex_unlock(&rbd_dev->watch_mutex);
4539 
4540 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4541 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4542 }
4543 
4544 /*
4545  * lock_rwsem must be held for write
4546  */
4547 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4548 {
4549 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4550 	char cookie[32];
4551 	int ret;
4552 
4553 	if (!rbd_quiesce_lock(rbd_dev))
4554 		return;
4555 
4556 	format_lock_cookie(rbd_dev, cookie);
4557 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4558 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4559 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4560 				  RBD_LOCK_TAG, cookie);
4561 	if (ret) {
4562 		if (ret != -EOPNOTSUPP)
4563 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4564 				 ret);
4565 
4566 		/*
4567 		 * Lock cookie cannot be updated on older OSDs, so do
4568 		 * a manual release and queue an acquire.
4569 		 */
4570 		__rbd_release_lock(rbd_dev);
4571 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4572 	} else {
4573 		__rbd_lock(rbd_dev, cookie);
4574 		wake_lock_waiters(rbd_dev, 0);
4575 	}
4576 }
4577 
4578 static void rbd_reregister_watch(struct work_struct *work)
4579 {
4580 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4581 					    struct rbd_device, watch_dwork);
4582 	int ret;
4583 
4584 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4585 
4586 	mutex_lock(&rbd_dev->watch_mutex);
4587 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4588 		mutex_unlock(&rbd_dev->watch_mutex);
4589 		return;
4590 	}
4591 
4592 	ret = __rbd_register_watch(rbd_dev);
4593 	if (ret) {
4594 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4595 		if (ret != -EBLACKLISTED && ret != -ENOENT) {
4596 			queue_delayed_work(rbd_dev->task_wq,
4597 					   &rbd_dev->watch_dwork,
4598 					   RBD_RETRY_DELAY);
4599 			mutex_unlock(&rbd_dev->watch_mutex);
4600 			return;
4601 		}
4602 
4603 		mutex_unlock(&rbd_dev->watch_mutex);
4604 		down_write(&rbd_dev->lock_rwsem);
4605 		wake_lock_waiters(rbd_dev, ret);
4606 		up_write(&rbd_dev->lock_rwsem);
4607 		return;
4608 	}
4609 
4610 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4611 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4612 	mutex_unlock(&rbd_dev->watch_mutex);
4613 
4614 	down_write(&rbd_dev->lock_rwsem);
4615 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4616 		rbd_reacquire_lock(rbd_dev);
4617 	up_write(&rbd_dev->lock_rwsem);
4618 
4619 	ret = rbd_dev_refresh(rbd_dev);
4620 	if (ret)
4621 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4622 }
4623 
4624 /*
4625  * Synchronous osd object method call.  Returns the number of bytes
4626  * returned in the outbound buffer, or a negative error code.
4627  */
4628 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4629 			     struct ceph_object_id *oid,
4630 			     struct ceph_object_locator *oloc,
4631 			     const char *method_name,
4632 			     const void *outbound,
4633 			     size_t outbound_size,
4634 			     void *inbound,
4635 			     size_t inbound_size)
4636 {
4637 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4638 	struct page *req_page = NULL;
4639 	struct page *reply_page;
4640 	int ret;
4641 
4642 	/*
4643 	 * Method calls are ultimately read operations.  The result
4644 	 * should placed into the inbound buffer provided.  They
4645 	 * also supply outbound data--parameters for the object
4646 	 * method.  Currently if this is present it will be a
4647 	 * snapshot id.
4648 	 */
4649 	if (outbound) {
4650 		if (outbound_size > PAGE_SIZE)
4651 			return -E2BIG;
4652 
4653 		req_page = alloc_page(GFP_KERNEL);
4654 		if (!req_page)
4655 			return -ENOMEM;
4656 
4657 		memcpy(page_address(req_page), outbound, outbound_size);
4658 	}
4659 
4660 	reply_page = alloc_page(GFP_KERNEL);
4661 	if (!reply_page) {
4662 		if (req_page)
4663 			__free_page(req_page);
4664 		return -ENOMEM;
4665 	}
4666 
4667 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4668 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4669 			     &reply_page, &inbound_size);
4670 	if (!ret) {
4671 		memcpy(inbound, page_address(reply_page), inbound_size);
4672 		ret = inbound_size;
4673 	}
4674 
4675 	if (req_page)
4676 		__free_page(req_page);
4677 	__free_page(reply_page);
4678 	return ret;
4679 }
4680 
4681 static void rbd_queue_workfn(struct work_struct *work)
4682 {
4683 	struct rbd_img_request *img_request =
4684 	    container_of(work, struct rbd_img_request, work);
4685 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4686 	enum obj_operation_type op_type = img_request->op_type;
4687 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4688 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4689 	u64 length = blk_rq_bytes(rq);
4690 	u64 mapping_size;
4691 	int result;
4692 
4693 	/* Ignore/skip any zero-length requests */
4694 	if (!length) {
4695 		dout("%s: zero-length request\n", __func__);
4696 		result = 0;
4697 		goto err_img_request;
4698 	}
4699 
4700 	blk_mq_start_request(rq);
4701 
4702 	down_read(&rbd_dev->header_rwsem);
4703 	mapping_size = rbd_dev->mapping.size;
4704 	rbd_img_capture_header(img_request);
4705 	up_read(&rbd_dev->header_rwsem);
4706 
4707 	if (offset + length > mapping_size) {
4708 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4709 			 length, mapping_size);
4710 		result = -EIO;
4711 		goto err_img_request;
4712 	}
4713 
4714 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4715 	     img_request, obj_op_name(op_type), offset, length);
4716 
4717 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4718 		result = rbd_img_fill_nodata(img_request, offset, length);
4719 	else
4720 		result = rbd_img_fill_from_bio(img_request, offset, length,
4721 					       rq->bio);
4722 	if (result)
4723 		goto err_img_request;
4724 
4725 	rbd_img_handle_request(img_request, 0);
4726 	return;
4727 
4728 err_img_request:
4729 	rbd_img_request_destroy(img_request);
4730 	if (result)
4731 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4732 			 obj_op_name(op_type), length, offset, result);
4733 	blk_mq_end_request(rq, errno_to_blk_status(result));
4734 }
4735 
4736 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4737 		const struct blk_mq_queue_data *bd)
4738 {
4739 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4740 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4741 	enum obj_operation_type op_type;
4742 
4743 	switch (req_op(bd->rq)) {
4744 	case REQ_OP_DISCARD:
4745 		op_type = OBJ_OP_DISCARD;
4746 		break;
4747 	case REQ_OP_WRITE_ZEROES:
4748 		op_type = OBJ_OP_ZEROOUT;
4749 		break;
4750 	case REQ_OP_WRITE:
4751 		op_type = OBJ_OP_WRITE;
4752 		break;
4753 	case REQ_OP_READ:
4754 		op_type = OBJ_OP_READ;
4755 		break;
4756 	default:
4757 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4758 		return BLK_STS_IOERR;
4759 	}
4760 
4761 	rbd_img_request_init(img_req, rbd_dev, op_type);
4762 
4763 	if (rbd_img_is_write(img_req)) {
4764 		if (rbd_is_ro(rbd_dev)) {
4765 			rbd_warn(rbd_dev, "%s on read-only mapping",
4766 				 obj_op_name(img_req->op_type));
4767 			return BLK_STS_IOERR;
4768 		}
4769 		rbd_assert(!rbd_is_snap(rbd_dev));
4770 	}
4771 
4772 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4773 	queue_work(rbd_wq, &img_req->work);
4774 	return BLK_STS_OK;
4775 }
4776 
4777 static void rbd_free_disk(struct rbd_device *rbd_dev)
4778 {
4779 	blk_cleanup_queue(rbd_dev->disk->queue);
4780 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4781 	put_disk(rbd_dev->disk);
4782 	rbd_dev->disk = NULL;
4783 }
4784 
4785 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4786 			     struct ceph_object_id *oid,
4787 			     struct ceph_object_locator *oloc,
4788 			     void *buf, int buf_len)
4789 
4790 {
4791 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4792 	struct ceph_osd_request *req;
4793 	struct page **pages;
4794 	int num_pages = calc_pages_for(0, buf_len);
4795 	int ret;
4796 
4797 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4798 	if (!req)
4799 		return -ENOMEM;
4800 
4801 	ceph_oid_copy(&req->r_base_oid, oid);
4802 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4803 	req->r_flags = CEPH_OSD_FLAG_READ;
4804 
4805 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4806 	if (IS_ERR(pages)) {
4807 		ret = PTR_ERR(pages);
4808 		goto out_req;
4809 	}
4810 
4811 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4812 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4813 					 true);
4814 
4815 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4816 	if (ret)
4817 		goto out_req;
4818 
4819 	ceph_osdc_start_request(osdc, req, false);
4820 	ret = ceph_osdc_wait_request(osdc, req);
4821 	if (ret >= 0)
4822 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4823 
4824 out_req:
4825 	ceph_osdc_put_request(req);
4826 	return ret;
4827 }
4828 
4829 /*
4830  * Read the complete header for the given rbd device.  On successful
4831  * return, the rbd_dev->header field will contain up-to-date
4832  * information about the image.
4833  */
4834 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4835 {
4836 	struct rbd_image_header_ondisk *ondisk = NULL;
4837 	u32 snap_count = 0;
4838 	u64 names_size = 0;
4839 	u32 want_count;
4840 	int ret;
4841 
4842 	/*
4843 	 * The complete header will include an array of its 64-bit
4844 	 * snapshot ids, followed by the names of those snapshots as
4845 	 * a contiguous block of NUL-terminated strings.  Note that
4846 	 * the number of snapshots could change by the time we read
4847 	 * it in, in which case we re-read it.
4848 	 */
4849 	do {
4850 		size_t size;
4851 
4852 		kfree(ondisk);
4853 
4854 		size = sizeof (*ondisk);
4855 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4856 		size += names_size;
4857 		ondisk = kmalloc(size, GFP_KERNEL);
4858 		if (!ondisk)
4859 			return -ENOMEM;
4860 
4861 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4862 					&rbd_dev->header_oloc, ondisk, size);
4863 		if (ret < 0)
4864 			goto out;
4865 		if ((size_t)ret < size) {
4866 			ret = -ENXIO;
4867 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4868 				size, ret);
4869 			goto out;
4870 		}
4871 		if (!rbd_dev_ondisk_valid(ondisk)) {
4872 			ret = -ENXIO;
4873 			rbd_warn(rbd_dev, "invalid header");
4874 			goto out;
4875 		}
4876 
4877 		names_size = le64_to_cpu(ondisk->snap_names_len);
4878 		want_count = snap_count;
4879 		snap_count = le32_to_cpu(ondisk->snap_count);
4880 	} while (snap_count != want_count);
4881 
4882 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4883 out:
4884 	kfree(ondisk);
4885 
4886 	return ret;
4887 }
4888 
4889 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4890 {
4891 	sector_t size;
4892 
4893 	/*
4894 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4895 	 * try to update its size.  If REMOVING is set, updating size
4896 	 * is just useless work since the device can't be opened.
4897 	 */
4898 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4899 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4900 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4901 		dout("setting size to %llu sectors", (unsigned long long)size);
4902 		set_capacity(rbd_dev->disk, size);
4903 		revalidate_disk(rbd_dev->disk);
4904 	}
4905 }
4906 
4907 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4908 {
4909 	u64 mapping_size;
4910 	int ret;
4911 
4912 	down_write(&rbd_dev->header_rwsem);
4913 	mapping_size = rbd_dev->mapping.size;
4914 
4915 	ret = rbd_dev_header_info(rbd_dev);
4916 	if (ret)
4917 		goto out;
4918 
4919 	/*
4920 	 * If there is a parent, see if it has disappeared due to the
4921 	 * mapped image getting flattened.
4922 	 */
4923 	if (rbd_dev->parent) {
4924 		ret = rbd_dev_v2_parent_info(rbd_dev);
4925 		if (ret)
4926 			goto out;
4927 	}
4928 
4929 	rbd_assert(!rbd_is_snap(rbd_dev));
4930 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4931 
4932 out:
4933 	up_write(&rbd_dev->header_rwsem);
4934 	if (!ret && mapping_size != rbd_dev->mapping.size)
4935 		rbd_dev_update_size(rbd_dev);
4936 
4937 	return ret;
4938 }
4939 
4940 static const struct blk_mq_ops rbd_mq_ops = {
4941 	.queue_rq	= rbd_queue_rq,
4942 };
4943 
4944 static int rbd_init_disk(struct rbd_device *rbd_dev)
4945 {
4946 	struct gendisk *disk;
4947 	struct request_queue *q;
4948 	unsigned int objset_bytes =
4949 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4950 	int err;
4951 
4952 	/* create gendisk info */
4953 	disk = alloc_disk(single_major ?
4954 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4955 			  RBD_MINORS_PER_MAJOR);
4956 	if (!disk)
4957 		return -ENOMEM;
4958 
4959 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4960 		 rbd_dev->dev_id);
4961 	disk->major = rbd_dev->major;
4962 	disk->first_minor = rbd_dev->minor;
4963 	if (single_major)
4964 		disk->flags |= GENHD_FL_EXT_DEVT;
4965 	disk->fops = &rbd_bd_ops;
4966 	disk->private_data = rbd_dev;
4967 
4968 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4969 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4970 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4971 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4972 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4973 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4974 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4975 
4976 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4977 	if (err)
4978 		goto out_disk;
4979 
4980 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4981 	if (IS_ERR(q)) {
4982 		err = PTR_ERR(q);
4983 		goto out_tag_set;
4984 	}
4985 
4986 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4987 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4988 
4989 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4990 	q->limits.max_sectors = queue_max_hw_sectors(q);
4991 	blk_queue_max_segments(q, USHRT_MAX);
4992 	blk_queue_max_segment_size(q, UINT_MAX);
4993 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4994 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4995 
4996 	if (rbd_dev->opts->trim) {
4997 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4998 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4999 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5000 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5001 	}
5002 
5003 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5004 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5005 
5006 	/*
5007 	 * disk_release() expects a queue ref from add_disk() and will
5008 	 * put it.  Hold an extra ref until add_disk() is called.
5009 	 */
5010 	WARN_ON(!blk_get_queue(q));
5011 	disk->queue = q;
5012 	q->queuedata = rbd_dev;
5013 
5014 	rbd_dev->disk = disk;
5015 
5016 	return 0;
5017 out_tag_set:
5018 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5019 out_disk:
5020 	put_disk(disk);
5021 	return err;
5022 }
5023 
5024 /*
5025   sysfs
5026 */
5027 
5028 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5029 {
5030 	return container_of(dev, struct rbd_device, dev);
5031 }
5032 
5033 static ssize_t rbd_size_show(struct device *dev,
5034 			     struct device_attribute *attr, char *buf)
5035 {
5036 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5037 
5038 	return sprintf(buf, "%llu\n",
5039 		(unsigned long long)rbd_dev->mapping.size);
5040 }
5041 
5042 static ssize_t rbd_features_show(struct device *dev,
5043 			     struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 
5047 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5048 }
5049 
5050 static ssize_t rbd_major_show(struct device *dev,
5051 			      struct device_attribute *attr, char *buf)
5052 {
5053 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5054 
5055 	if (rbd_dev->major)
5056 		return sprintf(buf, "%d\n", rbd_dev->major);
5057 
5058 	return sprintf(buf, "(none)\n");
5059 }
5060 
5061 static ssize_t rbd_minor_show(struct device *dev,
5062 			      struct device_attribute *attr, char *buf)
5063 {
5064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065 
5066 	return sprintf(buf, "%d\n", rbd_dev->minor);
5067 }
5068 
5069 static ssize_t rbd_client_addr_show(struct device *dev,
5070 				    struct device_attribute *attr, char *buf)
5071 {
5072 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5073 	struct ceph_entity_addr *client_addr =
5074 	    ceph_client_addr(rbd_dev->rbd_client->client);
5075 
5076 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5077 		       le32_to_cpu(client_addr->nonce));
5078 }
5079 
5080 static ssize_t rbd_client_id_show(struct device *dev,
5081 				  struct device_attribute *attr, char *buf)
5082 {
5083 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084 
5085 	return sprintf(buf, "client%lld\n",
5086 		       ceph_client_gid(rbd_dev->rbd_client->client));
5087 }
5088 
5089 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5090 				     struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5095 }
5096 
5097 static ssize_t rbd_config_info_show(struct device *dev,
5098 				    struct device_attribute *attr, char *buf)
5099 {
5100 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5101 
5102 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5103 }
5104 
5105 static ssize_t rbd_pool_show(struct device *dev,
5106 			     struct device_attribute *attr, char *buf)
5107 {
5108 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5109 
5110 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5111 }
5112 
5113 static ssize_t rbd_pool_id_show(struct device *dev,
5114 			     struct device_attribute *attr, char *buf)
5115 {
5116 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117 
5118 	return sprintf(buf, "%llu\n",
5119 			(unsigned long long) rbd_dev->spec->pool_id);
5120 }
5121 
5122 static ssize_t rbd_pool_ns_show(struct device *dev,
5123 				struct device_attribute *attr, char *buf)
5124 {
5125 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5126 
5127 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5128 }
5129 
5130 static ssize_t rbd_name_show(struct device *dev,
5131 			     struct device_attribute *attr, char *buf)
5132 {
5133 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5134 
5135 	if (rbd_dev->spec->image_name)
5136 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5137 
5138 	return sprintf(buf, "(unknown)\n");
5139 }
5140 
5141 static ssize_t rbd_image_id_show(struct device *dev,
5142 			     struct device_attribute *attr, char *buf)
5143 {
5144 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145 
5146 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5147 }
5148 
5149 /*
5150  * Shows the name of the currently-mapped snapshot (or
5151  * RBD_SNAP_HEAD_NAME for the base image).
5152  */
5153 static ssize_t rbd_snap_show(struct device *dev,
5154 			     struct device_attribute *attr,
5155 			     char *buf)
5156 {
5157 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5158 
5159 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5160 }
5161 
5162 static ssize_t rbd_snap_id_show(struct device *dev,
5163 				struct device_attribute *attr, char *buf)
5164 {
5165 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5166 
5167 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5168 }
5169 
5170 /*
5171  * For a v2 image, shows the chain of parent images, separated by empty
5172  * lines.  For v1 images or if there is no parent, shows "(no parent
5173  * image)".
5174  */
5175 static ssize_t rbd_parent_show(struct device *dev,
5176 			       struct device_attribute *attr,
5177 			       char *buf)
5178 {
5179 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5180 	ssize_t count = 0;
5181 
5182 	if (!rbd_dev->parent)
5183 		return sprintf(buf, "(no parent image)\n");
5184 
5185 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5186 		struct rbd_spec *spec = rbd_dev->parent_spec;
5187 
5188 		count += sprintf(&buf[count], "%s"
5189 			    "pool_id %llu\npool_name %s\n"
5190 			    "pool_ns %s\n"
5191 			    "image_id %s\nimage_name %s\n"
5192 			    "snap_id %llu\nsnap_name %s\n"
5193 			    "overlap %llu\n",
5194 			    !count ? "" : "\n", /* first? */
5195 			    spec->pool_id, spec->pool_name,
5196 			    spec->pool_ns ?: "",
5197 			    spec->image_id, spec->image_name ?: "(unknown)",
5198 			    spec->snap_id, spec->snap_name,
5199 			    rbd_dev->parent_overlap);
5200 	}
5201 
5202 	return count;
5203 }
5204 
5205 static ssize_t rbd_image_refresh(struct device *dev,
5206 				 struct device_attribute *attr,
5207 				 const char *buf,
5208 				 size_t size)
5209 {
5210 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5211 	int ret;
5212 
5213 	ret = rbd_dev_refresh(rbd_dev);
5214 	if (ret)
5215 		return ret;
5216 
5217 	return size;
5218 }
5219 
5220 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5221 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5222 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5223 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5224 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5225 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5226 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5227 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5228 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5229 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5230 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5231 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5232 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5233 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5234 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5235 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5236 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5237 
5238 static struct attribute *rbd_attrs[] = {
5239 	&dev_attr_size.attr,
5240 	&dev_attr_features.attr,
5241 	&dev_attr_major.attr,
5242 	&dev_attr_minor.attr,
5243 	&dev_attr_client_addr.attr,
5244 	&dev_attr_client_id.attr,
5245 	&dev_attr_cluster_fsid.attr,
5246 	&dev_attr_config_info.attr,
5247 	&dev_attr_pool.attr,
5248 	&dev_attr_pool_id.attr,
5249 	&dev_attr_pool_ns.attr,
5250 	&dev_attr_name.attr,
5251 	&dev_attr_image_id.attr,
5252 	&dev_attr_current_snap.attr,
5253 	&dev_attr_snap_id.attr,
5254 	&dev_attr_parent.attr,
5255 	&dev_attr_refresh.attr,
5256 	NULL
5257 };
5258 
5259 static struct attribute_group rbd_attr_group = {
5260 	.attrs = rbd_attrs,
5261 };
5262 
5263 static const struct attribute_group *rbd_attr_groups[] = {
5264 	&rbd_attr_group,
5265 	NULL
5266 };
5267 
5268 static void rbd_dev_release(struct device *dev);
5269 
5270 static const struct device_type rbd_device_type = {
5271 	.name		= "rbd",
5272 	.groups		= rbd_attr_groups,
5273 	.release	= rbd_dev_release,
5274 };
5275 
5276 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5277 {
5278 	kref_get(&spec->kref);
5279 
5280 	return spec;
5281 }
5282 
5283 static void rbd_spec_free(struct kref *kref);
5284 static void rbd_spec_put(struct rbd_spec *spec)
5285 {
5286 	if (spec)
5287 		kref_put(&spec->kref, rbd_spec_free);
5288 }
5289 
5290 static struct rbd_spec *rbd_spec_alloc(void)
5291 {
5292 	struct rbd_spec *spec;
5293 
5294 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5295 	if (!spec)
5296 		return NULL;
5297 
5298 	spec->pool_id = CEPH_NOPOOL;
5299 	spec->snap_id = CEPH_NOSNAP;
5300 	kref_init(&spec->kref);
5301 
5302 	return spec;
5303 }
5304 
5305 static void rbd_spec_free(struct kref *kref)
5306 {
5307 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5308 
5309 	kfree(spec->pool_name);
5310 	kfree(spec->pool_ns);
5311 	kfree(spec->image_id);
5312 	kfree(spec->image_name);
5313 	kfree(spec->snap_name);
5314 	kfree(spec);
5315 }
5316 
5317 static void rbd_dev_free(struct rbd_device *rbd_dev)
5318 {
5319 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5320 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5321 
5322 	ceph_oid_destroy(&rbd_dev->header_oid);
5323 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5324 	kfree(rbd_dev->config_info);
5325 
5326 	rbd_put_client(rbd_dev->rbd_client);
5327 	rbd_spec_put(rbd_dev->spec);
5328 	kfree(rbd_dev->opts);
5329 	kfree(rbd_dev);
5330 }
5331 
5332 static void rbd_dev_release(struct device *dev)
5333 {
5334 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5335 	bool need_put = !!rbd_dev->opts;
5336 
5337 	if (need_put) {
5338 		destroy_workqueue(rbd_dev->task_wq);
5339 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5340 	}
5341 
5342 	rbd_dev_free(rbd_dev);
5343 
5344 	/*
5345 	 * This is racy, but way better than putting module outside of
5346 	 * the release callback.  The race window is pretty small, so
5347 	 * doing something similar to dm (dm-builtin.c) is overkill.
5348 	 */
5349 	if (need_put)
5350 		module_put(THIS_MODULE);
5351 }
5352 
5353 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5354 					   struct rbd_spec *spec)
5355 {
5356 	struct rbd_device *rbd_dev;
5357 
5358 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5359 	if (!rbd_dev)
5360 		return NULL;
5361 
5362 	spin_lock_init(&rbd_dev->lock);
5363 	INIT_LIST_HEAD(&rbd_dev->node);
5364 	init_rwsem(&rbd_dev->header_rwsem);
5365 
5366 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5367 	ceph_oid_init(&rbd_dev->header_oid);
5368 	rbd_dev->header_oloc.pool = spec->pool_id;
5369 	if (spec->pool_ns) {
5370 		WARN_ON(!*spec->pool_ns);
5371 		rbd_dev->header_oloc.pool_ns =
5372 		    ceph_find_or_create_string(spec->pool_ns,
5373 					       strlen(spec->pool_ns));
5374 	}
5375 
5376 	mutex_init(&rbd_dev->watch_mutex);
5377 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5378 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5379 
5380 	init_rwsem(&rbd_dev->lock_rwsem);
5381 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5382 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5383 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5384 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5385 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5386 	spin_lock_init(&rbd_dev->lock_lists_lock);
5387 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5388 	INIT_LIST_HEAD(&rbd_dev->running_list);
5389 	init_completion(&rbd_dev->acquire_wait);
5390 	init_completion(&rbd_dev->releasing_wait);
5391 
5392 	spin_lock_init(&rbd_dev->object_map_lock);
5393 
5394 	rbd_dev->dev.bus = &rbd_bus_type;
5395 	rbd_dev->dev.type = &rbd_device_type;
5396 	rbd_dev->dev.parent = &rbd_root_dev;
5397 	device_initialize(&rbd_dev->dev);
5398 
5399 	rbd_dev->rbd_client = rbdc;
5400 	rbd_dev->spec = spec;
5401 
5402 	return rbd_dev;
5403 }
5404 
5405 /*
5406  * Create a mapping rbd_dev.
5407  */
5408 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5409 					 struct rbd_spec *spec,
5410 					 struct rbd_options *opts)
5411 {
5412 	struct rbd_device *rbd_dev;
5413 
5414 	rbd_dev = __rbd_dev_create(rbdc, spec);
5415 	if (!rbd_dev)
5416 		return NULL;
5417 
5418 	rbd_dev->opts = opts;
5419 
5420 	/* get an id and fill in device name */
5421 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5422 					 minor_to_rbd_dev_id(1 << MINORBITS),
5423 					 GFP_KERNEL);
5424 	if (rbd_dev->dev_id < 0)
5425 		goto fail_rbd_dev;
5426 
5427 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5428 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5429 						   rbd_dev->name);
5430 	if (!rbd_dev->task_wq)
5431 		goto fail_dev_id;
5432 
5433 	/* we have a ref from do_rbd_add() */
5434 	__module_get(THIS_MODULE);
5435 
5436 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5437 	return rbd_dev;
5438 
5439 fail_dev_id:
5440 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5441 fail_rbd_dev:
5442 	rbd_dev_free(rbd_dev);
5443 	return NULL;
5444 }
5445 
5446 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5447 {
5448 	if (rbd_dev)
5449 		put_device(&rbd_dev->dev);
5450 }
5451 
5452 /*
5453  * Get the size and object order for an image snapshot, or if
5454  * snap_id is CEPH_NOSNAP, gets this information for the base
5455  * image.
5456  */
5457 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5458 				u8 *order, u64 *snap_size)
5459 {
5460 	__le64 snapid = cpu_to_le64(snap_id);
5461 	int ret;
5462 	struct {
5463 		u8 order;
5464 		__le64 size;
5465 	} __attribute__ ((packed)) size_buf = { 0 };
5466 
5467 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5468 				  &rbd_dev->header_oloc, "get_size",
5469 				  &snapid, sizeof(snapid),
5470 				  &size_buf, sizeof(size_buf));
5471 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5472 	if (ret < 0)
5473 		return ret;
5474 	if (ret < sizeof (size_buf))
5475 		return -ERANGE;
5476 
5477 	if (order) {
5478 		*order = size_buf.order;
5479 		dout("  order %u", (unsigned int)*order);
5480 	}
5481 	*snap_size = le64_to_cpu(size_buf.size);
5482 
5483 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5484 		(unsigned long long)snap_id,
5485 		(unsigned long long)*snap_size);
5486 
5487 	return 0;
5488 }
5489 
5490 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5491 {
5492 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5493 					&rbd_dev->header.obj_order,
5494 					&rbd_dev->header.image_size);
5495 }
5496 
5497 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5498 {
5499 	size_t size;
5500 	void *reply_buf;
5501 	int ret;
5502 	void *p;
5503 
5504 	/* Response will be an encoded string, which includes a length */
5505 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5506 	reply_buf = kzalloc(size, GFP_KERNEL);
5507 	if (!reply_buf)
5508 		return -ENOMEM;
5509 
5510 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5511 				  &rbd_dev->header_oloc, "get_object_prefix",
5512 				  NULL, 0, reply_buf, size);
5513 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5514 	if (ret < 0)
5515 		goto out;
5516 
5517 	p = reply_buf;
5518 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5519 						p + ret, NULL, GFP_NOIO);
5520 	ret = 0;
5521 
5522 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5523 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5524 		rbd_dev->header.object_prefix = NULL;
5525 	} else {
5526 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5527 	}
5528 out:
5529 	kfree(reply_buf);
5530 
5531 	return ret;
5532 }
5533 
5534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5535 				     bool read_only, u64 *snap_features)
5536 {
5537 	struct {
5538 		__le64 snap_id;
5539 		u8 read_only;
5540 	} features_in;
5541 	struct {
5542 		__le64 features;
5543 		__le64 incompat;
5544 	} __attribute__ ((packed)) features_buf = { 0 };
5545 	u64 unsup;
5546 	int ret;
5547 
5548 	features_in.snap_id = cpu_to_le64(snap_id);
5549 	features_in.read_only = read_only;
5550 
5551 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5552 				  &rbd_dev->header_oloc, "get_features",
5553 				  &features_in, sizeof(features_in),
5554 				  &features_buf, sizeof(features_buf));
5555 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5556 	if (ret < 0)
5557 		return ret;
5558 	if (ret < sizeof (features_buf))
5559 		return -ERANGE;
5560 
5561 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5562 	if (unsup) {
5563 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5564 			 unsup);
5565 		return -ENXIO;
5566 	}
5567 
5568 	*snap_features = le64_to_cpu(features_buf.features);
5569 
5570 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5571 		(unsigned long long)snap_id,
5572 		(unsigned long long)*snap_features,
5573 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5574 
5575 	return 0;
5576 }
5577 
5578 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5579 {
5580 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5581 					 rbd_is_ro(rbd_dev),
5582 					 &rbd_dev->header.features);
5583 }
5584 
5585 /*
5586  * These are generic image flags, but since they are used only for
5587  * object map, store them in rbd_dev->object_map_flags.
5588  *
5589  * For the same reason, this function is called only on object map
5590  * (re)load and not on header refresh.
5591  */
5592 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5593 {
5594 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5595 	__le64 flags;
5596 	int ret;
5597 
5598 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5599 				  &rbd_dev->header_oloc, "get_flags",
5600 				  &snapid, sizeof(snapid),
5601 				  &flags, sizeof(flags));
5602 	if (ret < 0)
5603 		return ret;
5604 	if (ret < sizeof(flags))
5605 		return -EBADMSG;
5606 
5607 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5608 	return 0;
5609 }
5610 
5611 struct parent_image_info {
5612 	u64		pool_id;
5613 	const char	*pool_ns;
5614 	const char	*image_id;
5615 	u64		snap_id;
5616 
5617 	bool		has_overlap;
5618 	u64		overlap;
5619 };
5620 
5621 /*
5622  * The caller is responsible for @pii.
5623  */
5624 static int decode_parent_image_spec(void **p, void *end,
5625 				    struct parent_image_info *pii)
5626 {
5627 	u8 struct_v;
5628 	u32 struct_len;
5629 	int ret;
5630 
5631 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5632 				  &struct_v, &struct_len);
5633 	if (ret)
5634 		return ret;
5635 
5636 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5637 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5638 	if (IS_ERR(pii->pool_ns)) {
5639 		ret = PTR_ERR(pii->pool_ns);
5640 		pii->pool_ns = NULL;
5641 		return ret;
5642 	}
5643 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5644 	if (IS_ERR(pii->image_id)) {
5645 		ret = PTR_ERR(pii->image_id);
5646 		pii->image_id = NULL;
5647 		return ret;
5648 	}
5649 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5650 	return 0;
5651 
5652 e_inval:
5653 	return -EINVAL;
5654 }
5655 
5656 static int __get_parent_info(struct rbd_device *rbd_dev,
5657 			     struct page *req_page,
5658 			     struct page *reply_page,
5659 			     struct parent_image_info *pii)
5660 {
5661 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5662 	size_t reply_len = PAGE_SIZE;
5663 	void *p, *end;
5664 	int ret;
5665 
5666 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5667 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5668 			     req_page, sizeof(u64), &reply_page, &reply_len);
5669 	if (ret)
5670 		return ret == -EOPNOTSUPP ? 1 : ret;
5671 
5672 	p = page_address(reply_page);
5673 	end = p + reply_len;
5674 	ret = decode_parent_image_spec(&p, end, pii);
5675 	if (ret)
5676 		return ret;
5677 
5678 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5679 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5680 			     req_page, sizeof(u64), &reply_page, &reply_len);
5681 	if (ret)
5682 		return ret;
5683 
5684 	p = page_address(reply_page);
5685 	end = p + reply_len;
5686 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5687 	if (pii->has_overlap)
5688 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5689 
5690 	return 0;
5691 
5692 e_inval:
5693 	return -EINVAL;
5694 }
5695 
5696 /*
5697  * The caller is responsible for @pii.
5698  */
5699 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5700 				    struct page *req_page,
5701 				    struct page *reply_page,
5702 				    struct parent_image_info *pii)
5703 {
5704 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5705 	size_t reply_len = PAGE_SIZE;
5706 	void *p, *end;
5707 	int ret;
5708 
5709 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5710 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5711 			     req_page, sizeof(u64), &reply_page, &reply_len);
5712 	if (ret)
5713 		return ret;
5714 
5715 	p = page_address(reply_page);
5716 	end = p + reply_len;
5717 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5718 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5719 	if (IS_ERR(pii->image_id)) {
5720 		ret = PTR_ERR(pii->image_id);
5721 		pii->image_id = NULL;
5722 		return ret;
5723 	}
5724 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5725 	pii->has_overlap = true;
5726 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5727 
5728 	return 0;
5729 
5730 e_inval:
5731 	return -EINVAL;
5732 }
5733 
5734 static int get_parent_info(struct rbd_device *rbd_dev,
5735 			   struct parent_image_info *pii)
5736 {
5737 	struct page *req_page, *reply_page;
5738 	void *p;
5739 	int ret;
5740 
5741 	req_page = alloc_page(GFP_KERNEL);
5742 	if (!req_page)
5743 		return -ENOMEM;
5744 
5745 	reply_page = alloc_page(GFP_KERNEL);
5746 	if (!reply_page) {
5747 		__free_page(req_page);
5748 		return -ENOMEM;
5749 	}
5750 
5751 	p = page_address(req_page);
5752 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5753 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5754 	if (ret > 0)
5755 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5756 					       pii);
5757 
5758 	__free_page(req_page);
5759 	__free_page(reply_page);
5760 	return ret;
5761 }
5762 
5763 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5764 {
5765 	struct rbd_spec *parent_spec;
5766 	struct parent_image_info pii = { 0 };
5767 	int ret;
5768 
5769 	parent_spec = rbd_spec_alloc();
5770 	if (!parent_spec)
5771 		return -ENOMEM;
5772 
5773 	ret = get_parent_info(rbd_dev, &pii);
5774 	if (ret)
5775 		goto out_err;
5776 
5777 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5778 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5779 	     pii.has_overlap, pii.overlap);
5780 
5781 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5782 		/*
5783 		 * Either the parent never existed, or we have
5784 		 * record of it but the image got flattened so it no
5785 		 * longer has a parent.  When the parent of a
5786 		 * layered image disappears we immediately set the
5787 		 * overlap to 0.  The effect of this is that all new
5788 		 * requests will be treated as if the image had no
5789 		 * parent.
5790 		 *
5791 		 * If !pii.has_overlap, the parent image spec is not
5792 		 * applicable.  It's there to avoid duplication in each
5793 		 * snapshot record.
5794 		 */
5795 		if (rbd_dev->parent_overlap) {
5796 			rbd_dev->parent_overlap = 0;
5797 			rbd_dev_parent_put(rbd_dev);
5798 			pr_info("%s: clone image has been flattened\n",
5799 				rbd_dev->disk->disk_name);
5800 		}
5801 
5802 		goto out;	/* No parent?  No problem. */
5803 	}
5804 
5805 	/* The ceph file layout needs to fit pool id in 32 bits */
5806 
5807 	ret = -EIO;
5808 	if (pii.pool_id > (u64)U32_MAX) {
5809 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5810 			(unsigned long long)pii.pool_id, U32_MAX);
5811 		goto out_err;
5812 	}
5813 
5814 	/*
5815 	 * The parent won't change (except when the clone is
5816 	 * flattened, already handled that).  So we only need to
5817 	 * record the parent spec we have not already done so.
5818 	 */
5819 	if (!rbd_dev->parent_spec) {
5820 		parent_spec->pool_id = pii.pool_id;
5821 		if (pii.pool_ns && *pii.pool_ns) {
5822 			parent_spec->pool_ns = pii.pool_ns;
5823 			pii.pool_ns = NULL;
5824 		}
5825 		parent_spec->image_id = pii.image_id;
5826 		pii.image_id = NULL;
5827 		parent_spec->snap_id = pii.snap_id;
5828 
5829 		rbd_dev->parent_spec = parent_spec;
5830 		parent_spec = NULL;	/* rbd_dev now owns this */
5831 	}
5832 
5833 	/*
5834 	 * We always update the parent overlap.  If it's zero we issue
5835 	 * a warning, as we will proceed as if there was no parent.
5836 	 */
5837 	if (!pii.overlap) {
5838 		if (parent_spec) {
5839 			/* refresh, careful to warn just once */
5840 			if (rbd_dev->parent_overlap)
5841 				rbd_warn(rbd_dev,
5842 				    "clone now standalone (overlap became 0)");
5843 		} else {
5844 			/* initial probe */
5845 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5846 		}
5847 	}
5848 	rbd_dev->parent_overlap = pii.overlap;
5849 
5850 out:
5851 	ret = 0;
5852 out_err:
5853 	kfree(pii.pool_ns);
5854 	kfree(pii.image_id);
5855 	rbd_spec_put(parent_spec);
5856 	return ret;
5857 }
5858 
5859 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5860 {
5861 	struct {
5862 		__le64 stripe_unit;
5863 		__le64 stripe_count;
5864 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5865 	size_t size = sizeof (striping_info_buf);
5866 	void *p;
5867 	int ret;
5868 
5869 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5870 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5871 				NULL, 0, &striping_info_buf, size);
5872 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5873 	if (ret < 0)
5874 		return ret;
5875 	if (ret < size)
5876 		return -ERANGE;
5877 
5878 	p = &striping_info_buf;
5879 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5880 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5881 	return 0;
5882 }
5883 
5884 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5885 {
5886 	__le64 data_pool_id;
5887 	int ret;
5888 
5889 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5890 				  &rbd_dev->header_oloc, "get_data_pool",
5891 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5892 	if (ret < 0)
5893 		return ret;
5894 	if (ret < sizeof(data_pool_id))
5895 		return -EBADMSG;
5896 
5897 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5898 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5899 	return 0;
5900 }
5901 
5902 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5903 {
5904 	CEPH_DEFINE_OID_ONSTACK(oid);
5905 	size_t image_id_size;
5906 	char *image_id;
5907 	void *p;
5908 	void *end;
5909 	size_t size;
5910 	void *reply_buf = NULL;
5911 	size_t len = 0;
5912 	char *image_name = NULL;
5913 	int ret;
5914 
5915 	rbd_assert(!rbd_dev->spec->image_name);
5916 
5917 	len = strlen(rbd_dev->spec->image_id);
5918 	image_id_size = sizeof (__le32) + len;
5919 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5920 	if (!image_id)
5921 		return NULL;
5922 
5923 	p = image_id;
5924 	end = image_id + image_id_size;
5925 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5926 
5927 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5928 	reply_buf = kmalloc(size, GFP_KERNEL);
5929 	if (!reply_buf)
5930 		goto out;
5931 
5932 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5933 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5934 				  "dir_get_name", image_id, image_id_size,
5935 				  reply_buf, size);
5936 	if (ret < 0)
5937 		goto out;
5938 	p = reply_buf;
5939 	end = reply_buf + ret;
5940 
5941 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5942 	if (IS_ERR(image_name))
5943 		image_name = NULL;
5944 	else
5945 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5946 out:
5947 	kfree(reply_buf);
5948 	kfree(image_id);
5949 
5950 	return image_name;
5951 }
5952 
5953 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5954 {
5955 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5956 	const char *snap_name;
5957 	u32 which = 0;
5958 
5959 	/* Skip over names until we find the one we are looking for */
5960 
5961 	snap_name = rbd_dev->header.snap_names;
5962 	while (which < snapc->num_snaps) {
5963 		if (!strcmp(name, snap_name))
5964 			return snapc->snaps[which];
5965 		snap_name += strlen(snap_name) + 1;
5966 		which++;
5967 	}
5968 	return CEPH_NOSNAP;
5969 }
5970 
5971 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5972 {
5973 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5974 	u32 which;
5975 	bool found = false;
5976 	u64 snap_id;
5977 
5978 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5979 		const char *snap_name;
5980 
5981 		snap_id = snapc->snaps[which];
5982 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5983 		if (IS_ERR(snap_name)) {
5984 			/* ignore no-longer existing snapshots */
5985 			if (PTR_ERR(snap_name) == -ENOENT)
5986 				continue;
5987 			else
5988 				break;
5989 		}
5990 		found = !strcmp(name, snap_name);
5991 		kfree(snap_name);
5992 	}
5993 	return found ? snap_id : CEPH_NOSNAP;
5994 }
5995 
5996 /*
5997  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5998  * no snapshot by that name is found, or if an error occurs.
5999  */
6000 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6001 {
6002 	if (rbd_dev->image_format == 1)
6003 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6004 
6005 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6006 }
6007 
6008 /*
6009  * An image being mapped will have everything but the snap id.
6010  */
6011 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6012 {
6013 	struct rbd_spec *spec = rbd_dev->spec;
6014 
6015 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6016 	rbd_assert(spec->image_id && spec->image_name);
6017 	rbd_assert(spec->snap_name);
6018 
6019 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6020 		u64 snap_id;
6021 
6022 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6023 		if (snap_id == CEPH_NOSNAP)
6024 			return -ENOENT;
6025 
6026 		spec->snap_id = snap_id;
6027 	} else {
6028 		spec->snap_id = CEPH_NOSNAP;
6029 	}
6030 
6031 	return 0;
6032 }
6033 
6034 /*
6035  * A parent image will have all ids but none of the names.
6036  *
6037  * All names in an rbd spec are dynamically allocated.  It's OK if we
6038  * can't figure out the name for an image id.
6039  */
6040 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6041 {
6042 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6043 	struct rbd_spec *spec = rbd_dev->spec;
6044 	const char *pool_name;
6045 	const char *image_name;
6046 	const char *snap_name;
6047 	int ret;
6048 
6049 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6050 	rbd_assert(spec->image_id);
6051 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6052 
6053 	/* Get the pool name; we have to make our own copy of this */
6054 
6055 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6056 	if (!pool_name) {
6057 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6058 		return -EIO;
6059 	}
6060 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6061 	if (!pool_name)
6062 		return -ENOMEM;
6063 
6064 	/* Fetch the image name; tolerate failure here */
6065 
6066 	image_name = rbd_dev_image_name(rbd_dev);
6067 	if (!image_name)
6068 		rbd_warn(rbd_dev, "unable to get image name");
6069 
6070 	/* Fetch the snapshot name */
6071 
6072 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6073 	if (IS_ERR(snap_name)) {
6074 		ret = PTR_ERR(snap_name);
6075 		goto out_err;
6076 	}
6077 
6078 	spec->pool_name = pool_name;
6079 	spec->image_name = image_name;
6080 	spec->snap_name = snap_name;
6081 
6082 	return 0;
6083 
6084 out_err:
6085 	kfree(image_name);
6086 	kfree(pool_name);
6087 	return ret;
6088 }
6089 
6090 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6091 {
6092 	size_t size;
6093 	int ret;
6094 	void *reply_buf;
6095 	void *p;
6096 	void *end;
6097 	u64 seq;
6098 	u32 snap_count;
6099 	struct ceph_snap_context *snapc;
6100 	u32 i;
6101 
6102 	/*
6103 	 * We'll need room for the seq value (maximum snapshot id),
6104 	 * snapshot count, and array of that many snapshot ids.
6105 	 * For now we have a fixed upper limit on the number we're
6106 	 * prepared to receive.
6107 	 */
6108 	size = sizeof (__le64) + sizeof (__le32) +
6109 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6110 	reply_buf = kzalloc(size, GFP_KERNEL);
6111 	if (!reply_buf)
6112 		return -ENOMEM;
6113 
6114 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6115 				  &rbd_dev->header_oloc, "get_snapcontext",
6116 				  NULL, 0, reply_buf, size);
6117 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6118 	if (ret < 0)
6119 		goto out;
6120 
6121 	p = reply_buf;
6122 	end = reply_buf + ret;
6123 	ret = -ERANGE;
6124 	ceph_decode_64_safe(&p, end, seq, out);
6125 	ceph_decode_32_safe(&p, end, snap_count, out);
6126 
6127 	/*
6128 	 * Make sure the reported number of snapshot ids wouldn't go
6129 	 * beyond the end of our buffer.  But before checking that,
6130 	 * make sure the computed size of the snapshot context we
6131 	 * allocate is representable in a size_t.
6132 	 */
6133 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6134 				 / sizeof (u64)) {
6135 		ret = -EINVAL;
6136 		goto out;
6137 	}
6138 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6139 		goto out;
6140 	ret = 0;
6141 
6142 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6143 	if (!snapc) {
6144 		ret = -ENOMEM;
6145 		goto out;
6146 	}
6147 	snapc->seq = seq;
6148 	for (i = 0; i < snap_count; i++)
6149 		snapc->snaps[i] = ceph_decode_64(&p);
6150 
6151 	ceph_put_snap_context(rbd_dev->header.snapc);
6152 	rbd_dev->header.snapc = snapc;
6153 
6154 	dout("  snap context seq = %llu, snap_count = %u\n",
6155 		(unsigned long long)seq, (unsigned int)snap_count);
6156 out:
6157 	kfree(reply_buf);
6158 
6159 	return ret;
6160 }
6161 
6162 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6163 					u64 snap_id)
6164 {
6165 	size_t size;
6166 	void *reply_buf;
6167 	__le64 snapid;
6168 	int ret;
6169 	void *p;
6170 	void *end;
6171 	char *snap_name;
6172 
6173 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6174 	reply_buf = kmalloc(size, GFP_KERNEL);
6175 	if (!reply_buf)
6176 		return ERR_PTR(-ENOMEM);
6177 
6178 	snapid = cpu_to_le64(snap_id);
6179 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6180 				  &rbd_dev->header_oloc, "get_snapshot_name",
6181 				  &snapid, sizeof(snapid), reply_buf, size);
6182 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6183 	if (ret < 0) {
6184 		snap_name = ERR_PTR(ret);
6185 		goto out;
6186 	}
6187 
6188 	p = reply_buf;
6189 	end = reply_buf + ret;
6190 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6191 	if (IS_ERR(snap_name))
6192 		goto out;
6193 
6194 	dout("  snap_id 0x%016llx snap_name = %s\n",
6195 		(unsigned long long)snap_id, snap_name);
6196 out:
6197 	kfree(reply_buf);
6198 
6199 	return snap_name;
6200 }
6201 
6202 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6203 {
6204 	bool first_time = rbd_dev->header.object_prefix == NULL;
6205 	int ret;
6206 
6207 	ret = rbd_dev_v2_image_size(rbd_dev);
6208 	if (ret)
6209 		return ret;
6210 
6211 	if (first_time) {
6212 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6213 		if (ret)
6214 			return ret;
6215 	}
6216 
6217 	ret = rbd_dev_v2_snap_context(rbd_dev);
6218 	if (ret && first_time) {
6219 		kfree(rbd_dev->header.object_prefix);
6220 		rbd_dev->header.object_prefix = NULL;
6221 	}
6222 
6223 	return ret;
6224 }
6225 
6226 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6227 {
6228 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6229 
6230 	if (rbd_dev->image_format == 1)
6231 		return rbd_dev_v1_header_info(rbd_dev);
6232 
6233 	return rbd_dev_v2_header_info(rbd_dev);
6234 }
6235 
6236 /*
6237  * Skips over white space at *buf, and updates *buf to point to the
6238  * first found non-space character (if any). Returns the length of
6239  * the token (string of non-white space characters) found.  Note
6240  * that *buf must be terminated with '\0'.
6241  */
6242 static inline size_t next_token(const char **buf)
6243 {
6244         /*
6245         * These are the characters that produce nonzero for
6246         * isspace() in the "C" and "POSIX" locales.
6247         */
6248         const char *spaces = " \f\n\r\t\v";
6249 
6250         *buf += strspn(*buf, spaces);	/* Find start of token */
6251 
6252 	return strcspn(*buf, spaces);   /* Return token length */
6253 }
6254 
6255 /*
6256  * Finds the next token in *buf, dynamically allocates a buffer big
6257  * enough to hold a copy of it, and copies the token into the new
6258  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6259  * that a duplicate buffer is created even for a zero-length token.
6260  *
6261  * Returns a pointer to the newly-allocated duplicate, or a null
6262  * pointer if memory for the duplicate was not available.  If
6263  * the lenp argument is a non-null pointer, the length of the token
6264  * (not including the '\0') is returned in *lenp.
6265  *
6266  * If successful, the *buf pointer will be updated to point beyond
6267  * the end of the found token.
6268  *
6269  * Note: uses GFP_KERNEL for allocation.
6270  */
6271 static inline char *dup_token(const char **buf, size_t *lenp)
6272 {
6273 	char *dup;
6274 	size_t len;
6275 
6276 	len = next_token(buf);
6277 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6278 	if (!dup)
6279 		return NULL;
6280 	*(dup + len) = '\0';
6281 	*buf += len;
6282 
6283 	if (lenp)
6284 		*lenp = len;
6285 
6286 	return dup;
6287 }
6288 
6289 static int rbd_parse_param(struct fs_parameter *param,
6290 			    struct rbd_parse_opts_ctx *pctx)
6291 {
6292 	struct rbd_options *opt = pctx->opts;
6293 	struct fs_parse_result result;
6294 	struct p_log log = {.prefix = "rbd"};
6295 	int token, ret;
6296 
6297 	ret = ceph_parse_param(param, pctx->copts, NULL);
6298 	if (ret != -ENOPARAM)
6299 		return ret;
6300 
6301 	token = __fs_parse(&log, rbd_parameters, param, &result);
6302 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6303 	if (token < 0) {
6304 		if (token == -ENOPARAM)
6305 			return inval_plog(&log, "Unknown parameter '%s'",
6306 					  param->key);
6307 		return token;
6308 	}
6309 
6310 	switch (token) {
6311 	case Opt_queue_depth:
6312 		if (result.uint_32 < 1)
6313 			goto out_of_range;
6314 		opt->queue_depth = result.uint_32;
6315 		break;
6316 	case Opt_alloc_size:
6317 		if (result.uint_32 < SECTOR_SIZE)
6318 			goto out_of_range;
6319 		if (!is_power_of_2(result.uint_32))
6320 			return inval_plog(&log, "alloc_size must be a power of 2");
6321 		opt->alloc_size = result.uint_32;
6322 		break;
6323 	case Opt_lock_timeout:
6324 		/* 0 is "wait forever" (i.e. infinite timeout) */
6325 		if (result.uint_32 > INT_MAX / 1000)
6326 			goto out_of_range;
6327 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6328 		break;
6329 	case Opt_pool_ns:
6330 		kfree(pctx->spec->pool_ns);
6331 		pctx->spec->pool_ns = param->string;
6332 		param->string = NULL;
6333 		break;
6334 	case Opt_read_only:
6335 		opt->read_only = true;
6336 		break;
6337 	case Opt_read_write:
6338 		opt->read_only = false;
6339 		break;
6340 	case Opt_lock_on_read:
6341 		opt->lock_on_read = true;
6342 		break;
6343 	case Opt_exclusive:
6344 		opt->exclusive = true;
6345 		break;
6346 	case Opt_notrim:
6347 		opt->trim = false;
6348 		break;
6349 	default:
6350 		BUG();
6351 	}
6352 
6353 	return 0;
6354 
6355 out_of_range:
6356 	return inval_plog(&log, "%s out of range", param->key);
6357 }
6358 
6359 /*
6360  * This duplicates most of generic_parse_monolithic(), untying it from
6361  * fs_context and skipping standard superblock and security options.
6362  */
6363 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6364 {
6365 	char *key;
6366 	int ret = 0;
6367 
6368 	dout("%s '%s'\n", __func__, options);
6369 	while ((key = strsep(&options, ",")) != NULL) {
6370 		if (*key) {
6371 			struct fs_parameter param = {
6372 				.key	= key,
6373 				.type	= fs_value_is_flag,
6374 			};
6375 			char *value = strchr(key, '=');
6376 			size_t v_len = 0;
6377 
6378 			if (value) {
6379 				if (value == key)
6380 					continue;
6381 				*value++ = 0;
6382 				v_len = strlen(value);
6383 				param.string = kmemdup_nul(value, v_len,
6384 							   GFP_KERNEL);
6385 				if (!param.string)
6386 					return -ENOMEM;
6387 				param.type = fs_value_is_string;
6388 			}
6389 			param.size = v_len;
6390 
6391 			ret = rbd_parse_param(&param, pctx);
6392 			kfree(param.string);
6393 			if (ret)
6394 				break;
6395 		}
6396 	}
6397 
6398 	return ret;
6399 }
6400 
6401 /*
6402  * Parse the options provided for an "rbd add" (i.e., rbd image
6403  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6404  * and the data written is passed here via a NUL-terminated buffer.
6405  * Returns 0 if successful or an error code otherwise.
6406  *
6407  * The information extracted from these options is recorded in
6408  * the other parameters which return dynamically-allocated
6409  * structures:
6410  *  ceph_opts
6411  *      The address of a pointer that will refer to a ceph options
6412  *      structure.  Caller must release the returned pointer using
6413  *      ceph_destroy_options() when it is no longer needed.
6414  *  rbd_opts
6415  *	Address of an rbd options pointer.  Fully initialized by
6416  *	this function; caller must release with kfree().
6417  *  spec
6418  *	Address of an rbd image specification pointer.  Fully
6419  *	initialized by this function based on parsed options.
6420  *	Caller must release with rbd_spec_put().
6421  *
6422  * The options passed take this form:
6423  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6424  * where:
6425  *  <mon_addrs>
6426  *      A comma-separated list of one or more monitor addresses.
6427  *      A monitor address is an ip address, optionally followed
6428  *      by a port number (separated by a colon).
6429  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6430  *  <options>
6431  *      A comma-separated list of ceph and/or rbd options.
6432  *  <pool_name>
6433  *      The name of the rados pool containing the rbd image.
6434  *  <image_name>
6435  *      The name of the image in that pool to map.
6436  *  <snap_id>
6437  *      An optional snapshot id.  If provided, the mapping will
6438  *      present data from the image at the time that snapshot was
6439  *      created.  The image head is used if no snapshot id is
6440  *      provided.  Snapshot mappings are always read-only.
6441  */
6442 static int rbd_add_parse_args(const char *buf,
6443 				struct ceph_options **ceph_opts,
6444 				struct rbd_options **opts,
6445 				struct rbd_spec **rbd_spec)
6446 {
6447 	size_t len;
6448 	char *options;
6449 	const char *mon_addrs;
6450 	char *snap_name;
6451 	size_t mon_addrs_size;
6452 	struct rbd_parse_opts_ctx pctx = { 0 };
6453 	int ret;
6454 
6455 	/* The first four tokens are required */
6456 
6457 	len = next_token(&buf);
6458 	if (!len) {
6459 		rbd_warn(NULL, "no monitor address(es) provided");
6460 		return -EINVAL;
6461 	}
6462 	mon_addrs = buf;
6463 	mon_addrs_size = len;
6464 	buf += len;
6465 
6466 	ret = -EINVAL;
6467 	options = dup_token(&buf, NULL);
6468 	if (!options)
6469 		return -ENOMEM;
6470 	if (!*options) {
6471 		rbd_warn(NULL, "no options provided");
6472 		goto out_err;
6473 	}
6474 
6475 	pctx.spec = rbd_spec_alloc();
6476 	if (!pctx.spec)
6477 		goto out_mem;
6478 
6479 	pctx.spec->pool_name = dup_token(&buf, NULL);
6480 	if (!pctx.spec->pool_name)
6481 		goto out_mem;
6482 	if (!*pctx.spec->pool_name) {
6483 		rbd_warn(NULL, "no pool name provided");
6484 		goto out_err;
6485 	}
6486 
6487 	pctx.spec->image_name = dup_token(&buf, NULL);
6488 	if (!pctx.spec->image_name)
6489 		goto out_mem;
6490 	if (!*pctx.spec->image_name) {
6491 		rbd_warn(NULL, "no image name provided");
6492 		goto out_err;
6493 	}
6494 
6495 	/*
6496 	 * Snapshot name is optional; default is to use "-"
6497 	 * (indicating the head/no snapshot).
6498 	 */
6499 	len = next_token(&buf);
6500 	if (!len) {
6501 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6502 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6503 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6504 		ret = -ENAMETOOLONG;
6505 		goto out_err;
6506 	}
6507 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6508 	if (!snap_name)
6509 		goto out_mem;
6510 	*(snap_name + len) = '\0';
6511 	pctx.spec->snap_name = snap_name;
6512 
6513 	pctx.copts = ceph_alloc_options();
6514 	if (!pctx.copts)
6515 		goto out_mem;
6516 
6517 	/* Initialize all rbd options to the defaults */
6518 
6519 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6520 	if (!pctx.opts)
6521 		goto out_mem;
6522 
6523 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6524 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6525 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6526 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6527 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6528 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6529 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6530 
6531 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6532 	if (ret)
6533 		goto out_err;
6534 
6535 	ret = rbd_parse_options(options, &pctx);
6536 	if (ret)
6537 		goto out_err;
6538 
6539 	*ceph_opts = pctx.copts;
6540 	*opts = pctx.opts;
6541 	*rbd_spec = pctx.spec;
6542 	kfree(options);
6543 	return 0;
6544 
6545 out_mem:
6546 	ret = -ENOMEM;
6547 out_err:
6548 	kfree(pctx.opts);
6549 	ceph_destroy_options(pctx.copts);
6550 	rbd_spec_put(pctx.spec);
6551 	kfree(options);
6552 	return ret;
6553 }
6554 
6555 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6556 {
6557 	down_write(&rbd_dev->lock_rwsem);
6558 	if (__rbd_is_lock_owner(rbd_dev))
6559 		__rbd_release_lock(rbd_dev);
6560 	up_write(&rbd_dev->lock_rwsem);
6561 }
6562 
6563 /*
6564  * If the wait is interrupted, an error is returned even if the lock
6565  * was successfully acquired.  rbd_dev_image_unlock() will release it
6566  * if needed.
6567  */
6568 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6569 {
6570 	long ret;
6571 
6572 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6573 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6574 			return 0;
6575 
6576 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6577 		return -EINVAL;
6578 	}
6579 
6580 	if (rbd_is_ro(rbd_dev))
6581 		return 0;
6582 
6583 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6584 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6585 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6586 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6587 	if (ret > 0) {
6588 		ret = rbd_dev->acquire_err;
6589 	} else {
6590 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6591 		if (!ret)
6592 			ret = -ETIMEDOUT;
6593 	}
6594 
6595 	if (ret) {
6596 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6597 		return ret;
6598 	}
6599 
6600 	/*
6601 	 * The lock may have been released by now, unless automatic lock
6602 	 * transitions are disabled.
6603 	 */
6604 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6605 	return 0;
6606 }
6607 
6608 /*
6609  * An rbd format 2 image has a unique identifier, distinct from the
6610  * name given to it by the user.  Internally, that identifier is
6611  * what's used to specify the names of objects related to the image.
6612  *
6613  * A special "rbd id" object is used to map an rbd image name to its
6614  * id.  If that object doesn't exist, then there is no v2 rbd image
6615  * with the supplied name.
6616  *
6617  * This function will record the given rbd_dev's image_id field if
6618  * it can be determined, and in that case will return 0.  If any
6619  * errors occur a negative errno will be returned and the rbd_dev's
6620  * image_id field will be unchanged (and should be NULL).
6621  */
6622 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6623 {
6624 	int ret;
6625 	size_t size;
6626 	CEPH_DEFINE_OID_ONSTACK(oid);
6627 	void *response;
6628 	char *image_id;
6629 
6630 	/*
6631 	 * When probing a parent image, the image id is already
6632 	 * known (and the image name likely is not).  There's no
6633 	 * need to fetch the image id again in this case.  We
6634 	 * do still need to set the image format though.
6635 	 */
6636 	if (rbd_dev->spec->image_id) {
6637 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6638 
6639 		return 0;
6640 	}
6641 
6642 	/*
6643 	 * First, see if the format 2 image id file exists, and if
6644 	 * so, get the image's persistent id from it.
6645 	 */
6646 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6647 			       rbd_dev->spec->image_name);
6648 	if (ret)
6649 		return ret;
6650 
6651 	dout("rbd id object name is %s\n", oid.name);
6652 
6653 	/* Response will be an encoded string, which includes a length */
6654 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6655 	response = kzalloc(size, GFP_NOIO);
6656 	if (!response) {
6657 		ret = -ENOMEM;
6658 		goto out;
6659 	}
6660 
6661 	/* If it doesn't exist we'll assume it's a format 1 image */
6662 
6663 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6664 				  "get_id", NULL, 0,
6665 				  response, size);
6666 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6667 	if (ret == -ENOENT) {
6668 		image_id = kstrdup("", GFP_KERNEL);
6669 		ret = image_id ? 0 : -ENOMEM;
6670 		if (!ret)
6671 			rbd_dev->image_format = 1;
6672 	} else if (ret >= 0) {
6673 		void *p = response;
6674 
6675 		image_id = ceph_extract_encoded_string(&p, p + ret,
6676 						NULL, GFP_NOIO);
6677 		ret = PTR_ERR_OR_ZERO(image_id);
6678 		if (!ret)
6679 			rbd_dev->image_format = 2;
6680 	}
6681 
6682 	if (!ret) {
6683 		rbd_dev->spec->image_id = image_id;
6684 		dout("image_id is %s\n", image_id);
6685 	}
6686 out:
6687 	kfree(response);
6688 	ceph_oid_destroy(&oid);
6689 	return ret;
6690 }
6691 
6692 /*
6693  * Undo whatever state changes are made by v1 or v2 header info
6694  * call.
6695  */
6696 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6697 {
6698 	struct rbd_image_header	*header;
6699 
6700 	rbd_dev_parent_put(rbd_dev);
6701 	rbd_object_map_free(rbd_dev);
6702 	rbd_dev_mapping_clear(rbd_dev);
6703 
6704 	/* Free dynamic fields from the header, then zero it out */
6705 
6706 	header = &rbd_dev->header;
6707 	ceph_put_snap_context(header->snapc);
6708 	kfree(header->snap_sizes);
6709 	kfree(header->snap_names);
6710 	kfree(header->object_prefix);
6711 	memset(header, 0, sizeof (*header));
6712 }
6713 
6714 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6715 {
6716 	int ret;
6717 
6718 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6719 	if (ret)
6720 		goto out_err;
6721 
6722 	/*
6723 	 * Get the and check features for the image.  Currently the
6724 	 * features are assumed to never change.
6725 	 */
6726 	ret = rbd_dev_v2_features(rbd_dev);
6727 	if (ret)
6728 		goto out_err;
6729 
6730 	/* If the image supports fancy striping, get its parameters */
6731 
6732 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6733 		ret = rbd_dev_v2_striping_info(rbd_dev);
6734 		if (ret < 0)
6735 			goto out_err;
6736 	}
6737 
6738 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6739 		ret = rbd_dev_v2_data_pool(rbd_dev);
6740 		if (ret)
6741 			goto out_err;
6742 	}
6743 
6744 	rbd_init_layout(rbd_dev);
6745 	return 0;
6746 
6747 out_err:
6748 	rbd_dev->header.features = 0;
6749 	kfree(rbd_dev->header.object_prefix);
6750 	rbd_dev->header.object_prefix = NULL;
6751 	return ret;
6752 }
6753 
6754 /*
6755  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6756  * rbd_dev_image_probe() recursion depth, which means it's also the
6757  * length of the already discovered part of the parent chain.
6758  */
6759 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6760 {
6761 	struct rbd_device *parent = NULL;
6762 	int ret;
6763 
6764 	if (!rbd_dev->parent_spec)
6765 		return 0;
6766 
6767 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6768 		pr_info("parent chain is too long (%d)\n", depth);
6769 		ret = -EINVAL;
6770 		goto out_err;
6771 	}
6772 
6773 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6774 	if (!parent) {
6775 		ret = -ENOMEM;
6776 		goto out_err;
6777 	}
6778 
6779 	/*
6780 	 * Images related by parent/child relationships always share
6781 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6782 	 */
6783 	__rbd_get_client(rbd_dev->rbd_client);
6784 	rbd_spec_get(rbd_dev->parent_spec);
6785 
6786 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6787 
6788 	ret = rbd_dev_image_probe(parent, depth);
6789 	if (ret < 0)
6790 		goto out_err;
6791 
6792 	rbd_dev->parent = parent;
6793 	atomic_set(&rbd_dev->parent_ref, 1);
6794 	return 0;
6795 
6796 out_err:
6797 	rbd_dev_unparent(rbd_dev);
6798 	rbd_dev_destroy(parent);
6799 	return ret;
6800 }
6801 
6802 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6803 {
6804 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6805 	rbd_free_disk(rbd_dev);
6806 	if (!single_major)
6807 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6808 }
6809 
6810 /*
6811  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6812  * upon return.
6813  */
6814 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6815 {
6816 	int ret;
6817 
6818 	/* Record our major and minor device numbers. */
6819 
6820 	if (!single_major) {
6821 		ret = register_blkdev(0, rbd_dev->name);
6822 		if (ret < 0)
6823 			goto err_out_unlock;
6824 
6825 		rbd_dev->major = ret;
6826 		rbd_dev->minor = 0;
6827 	} else {
6828 		rbd_dev->major = rbd_major;
6829 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6830 	}
6831 
6832 	/* Set up the blkdev mapping. */
6833 
6834 	ret = rbd_init_disk(rbd_dev);
6835 	if (ret)
6836 		goto err_out_blkdev;
6837 
6838 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6839 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6840 
6841 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6842 	if (ret)
6843 		goto err_out_disk;
6844 
6845 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6846 	up_write(&rbd_dev->header_rwsem);
6847 	return 0;
6848 
6849 err_out_disk:
6850 	rbd_free_disk(rbd_dev);
6851 err_out_blkdev:
6852 	if (!single_major)
6853 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6854 err_out_unlock:
6855 	up_write(&rbd_dev->header_rwsem);
6856 	return ret;
6857 }
6858 
6859 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6860 {
6861 	struct rbd_spec *spec = rbd_dev->spec;
6862 	int ret;
6863 
6864 	/* Record the header object name for this rbd image. */
6865 
6866 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6867 	if (rbd_dev->image_format == 1)
6868 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6869 				       spec->image_name, RBD_SUFFIX);
6870 	else
6871 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6872 				       RBD_HEADER_PREFIX, spec->image_id);
6873 
6874 	return ret;
6875 }
6876 
6877 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6878 {
6879 	if (!is_snap) {
6880 		pr_info("image %s/%s%s%s does not exist\n",
6881 			rbd_dev->spec->pool_name,
6882 			rbd_dev->spec->pool_ns ?: "",
6883 			rbd_dev->spec->pool_ns ? "/" : "",
6884 			rbd_dev->spec->image_name);
6885 	} else {
6886 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6887 			rbd_dev->spec->pool_name,
6888 			rbd_dev->spec->pool_ns ?: "",
6889 			rbd_dev->spec->pool_ns ? "/" : "",
6890 			rbd_dev->spec->image_name,
6891 			rbd_dev->spec->snap_name);
6892 	}
6893 }
6894 
6895 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6896 {
6897 	rbd_dev_unprobe(rbd_dev);
6898 	if (rbd_dev->opts)
6899 		rbd_unregister_watch(rbd_dev);
6900 	rbd_dev->image_format = 0;
6901 	kfree(rbd_dev->spec->image_id);
6902 	rbd_dev->spec->image_id = NULL;
6903 }
6904 
6905 /*
6906  * Probe for the existence of the header object for the given rbd
6907  * device.  If this image is the one being mapped (i.e., not a
6908  * parent), initiate a watch on its header object before using that
6909  * object to get detailed information about the rbd image.
6910  */
6911 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6912 {
6913 	bool need_watch = !rbd_is_ro(rbd_dev);
6914 	int ret;
6915 
6916 	/*
6917 	 * Get the id from the image id object.  Unless there's an
6918 	 * error, rbd_dev->spec->image_id will be filled in with
6919 	 * a dynamically-allocated string, and rbd_dev->image_format
6920 	 * will be set to either 1 or 2.
6921 	 */
6922 	ret = rbd_dev_image_id(rbd_dev);
6923 	if (ret)
6924 		return ret;
6925 
6926 	ret = rbd_dev_header_name(rbd_dev);
6927 	if (ret)
6928 		goto err_out_format;
6929 
6930 	if (need_watch) {
6931 		ret = rbd_register_watch(rbd_dev);
6932 		if (ret) {
6933 			if (ret == -ENOENT)
6934 				rbd_print_dne(rbd_dev, false);
6935 			goto err_out_format;
6936 		}
6937 	}
6938 
6939 	ret = rbd_dev_header_info(rbd_dev);
6940 	if (ret) {
6941 		if (ret == -ENOENT && !need_watch)
6942 			rbd_print_dne(rbd_dev, false);
6943 		goto err_out_watch;
6944 	}
6945 
6946 	/*
6947 	 * If this image is the one being mapped, we have pool name and
6948 	 * id, image name and id, and snap name - need to fill snap id.
6949 	 * Otherwise this is a parent image, identified by pool, image
6950 	 * and snap ids - need to fill in names for those ids.
6951 	 */
6952 	if (!depth)
6953 		ret = rbd_spec_fill_snap_id(rbd_dev);
6954 	else
6955 		ret = rbd_spec_fill_names(rbd_dev);
6956 	if (ret) {
6957 		if (ret == -ENOENT)
6958 			rbd_print_dne(rbd_dev, true);
6959 		goto err_out_probe;
6960 	}
6961 
6962 	ret = rbd_dev_mapping_set(rbd_dev);
6963 	if (ret)
6964 		goto err_out_probe;
6965 
6966 	if (rbd_is_snap(rbd_dev) &&
6967 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6968 		ret = rbd_object_map_load(rbd_dev);
6969 		if (ret)
6970 			goto err_out_probe;
6971 	}
6972 
6973 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6974 		ret = rbd_dev_v2_parent_info(rbd_dev);
6975 		if (ret)
6976 			goto err_out_probe;
6977 	}
6978 
6979 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6980 	if (ret)
6981 		goto err_out_probe;
6982 
6983 	dout("discovered format %u image, header name is %s\n",
6984 		rbd_dev->image_format, rbd_dev->header_oid.name);
6985 	return 0;
6986 
6987 err_out_probe:
6988 	rbd_dev_unprobe(rbd_dev);
6989 err_out_watch:
6990 	if (need_watch)
6991 		rbd_unregister_watch(rbd_dev);
6992 err_out_format:
6993 	rbd_dev->image_format = 0;
6994 	kfree(rbd_dev->spec->image_id);
6995 	rbd_dev->spec->image_id = NULL;
6996 	return ret;
6997 }
6998 
6999 static ssize_t do_rbd_add(struct bus_type *bus,
7000 			  const char *buf,
7001 			  size_t count)
7002 {
7003 	struct rbd_device *rbd_dev = NULL;
7004 	struct ceph_options *ceph_opts = NULL;
7005 	struct rbd_options *rbd_opts = NULL;
7006 	struct rbd_spec *spec = NULL;
7007 	struct rbd_client *rbdc;
7008 	int rc;
7009 
7010 	if (!try_module_get(THIS_MODULE))
7011 		return -ENODEV;
7012 
7013 	/* parse add command */
7014 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7015 	if (rc < 0)
7016 		goto out;
7017 
7018 	rbdc = rbd_get_client(ceph_opts);
7019 	if (IS_ERR(rbdc)) {
7020 		rc = PTR_ERR(rbdc);
7021 		goto err_out_args;
7022 	}
7023 
7024 	/* pick the pool */
7025 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7026 	if (rc < 0) {
7027 		if (rc == -ENOENT)
7028 			pr_info("pool %s does not exist\n", spec->pool_name);
7029 		goto err_out_client;
7030 	}
7031 	spec->pool_id = (u64)rc;
7032 
7033 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7034 	if (!rbd_dev) {
7035 		rc = -ENOMEM;
7036 		goto err_out_client;
7037 	}
7038 	rbdc = NULL;		/* rbd_dev now owns this */
7039 	spec = NULL;		/* rbd_dev now owns this */
7040 	rbd_opts = NULL;	/* rbd_dev now owns this */
7041 
7042 	/* if we are mapping a snapshot it will be a read-only mapping */
7043 	if (rbd_dev->opts->read_only ||
7044 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7045 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7046 
7047 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7048 	if (!rbd_dev->config_info) {
7049 		rc = -ENOMEM;
7050 		goto err_out_rbd_dev;
7051 	}
7052 
7053 	down_write(&rbd_dev->header_rwsem);
7054 	rc = rbd_dev_image_probe(rbd_dev, 0);
7055 	if (rc < 0) {
7056 		up_write(&rbd_dev->header_rwsem);
7057 		goto err_out_rbd_dev;
7058 	}
7059 
7060 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7061 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7062 			 rbd_dev->layout.object_size);
7063 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7064 	}
7065 
7066 	rc = rbd_dev_device_setup(rbd_dev);
7067 	if (rc)
7068 		goto err_out_image_probe;
7069 
7070 	rc = rbd_add_acquire_lock(rbd_dev);
7071 	if (rc)
7072 		goto err_out_image_lock;
7073 
7074 	/* Everything's ready.  Announce the disk to the world. */
7075 
7076 	rc = device_add(&rbd_dev->dev);
7077 	if (rc)
7078 		goto err_out_image_lock;
7079 
7080 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7081 	/* see rbd_init_disk() */
7082 	blk_put_queue(rbd_dev->disk->queue);
7083 
7084 	spin_lock(&rbd_dev_list_lock);
7085 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7086 	spin_unlock(&rbd_dev_list_lock);
7087 
7088 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7089 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7090 		rbd_dev->header.features);
7091 	rc = count;
7092 out:
7093 	module_put(THIS_MODULE);
7094 	return rc;
7095 
7096 err_out_image_lock:
7097 	rbd_dev_image_unlock(rbd_dev);
7098 	rbd_dev_device_release(rbd_dev);
7099 err_out_image_probe:
7100 	rbd_dev_image_release(rbd_dev);
7101 err_out_rbd_dev:
7102 	rbd_dev_destroy(rbd_dev);
7103 err_out_client:
7104 	rbd_put_client(rbdc);
7105 err_out_args:
7106 	rbd_spec_put(spec);
7107 	kfree(rbd_opts);
7108 	goto out;
7109 }
7110 
7111 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7112 {
7113 	if (single_major)
7114 		return -EINVAL;
7115 
7116 	return do_rbd_add(bus, buf, count);
7117 }
7118 
7119 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7120 				      size_t count)
7121 {
7122 	return do_rbd_add(bus, buf, count);
7123 }
7124 
7125 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7126 {
7127 	while (rbd_dev->parent) {
7128 		struct rbd_device *first = rbd_dev;
7129 		struct rbd_device *second = first->parent;
7130 		struct rbd_device *third;
7131 
7132 		/*
7133 		 * Follow to the parent with no grandparent and
7134 		 * remove it.
7135 		 */
7136 		while (second && (third = second->parent)) {
7137 			first = second;
7138 			second = third;
7139 		}
7140 		rbd_assert(second);
7141 		rbd_dev_image_release(second);
7142 		rbd_dev_destroy(second);
7143 		first->parent = NULL;
7144 		first->parent_overlap = 0;
7145 
7146 		rbd_assert(first->parent_spec);
7147 		rbd_spec_put(first->parent_spec);
7148 		first->parent_spec = NULL;
7149 	}
7150 }
7151 
7152 static ssize_t do_rbd_remove(struct bus_type *bus,
7153 			     const char *buf,
7154 			     size_t count)
7155 {
7156 	struct rbd_device *rbd_dev = NULL;
7157 	struct list_head *tmp;
7158 	int dev_id;
7159 	char opt_buf[6];
7160 	bool force = false;
7161 	int ret;
7162 
7163 	dev_id = -1;
7164 	opt_buf[0] = '\0';
7165 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7166 	if (dev_id < 0) {
7167 		pr_err("dev_id out of range\n");
7168 		return -EINVAL;
7169 	}
7170 	if (opt_buf[0] != '\0') {
7171 		if (!strcmp(opt_buf, "force")) {
7172 			force = true;
7173 		} else {
7174 			pr_err("bad remove option at '%s'\n", opt_buf);
7175 			return -EINVAL;
7176 		}
7177 	}
7178 
7179 	ret = -ENOENT;
7180 	spin_lock(&rbd_dev_list_lock);
7181 	list_for_each(tmp, &rbd_dev_list) {
7182 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7183 		if (rbd_dev->dev_id == dev_id) {
7184 			ret = 0;
7185 			break;
7186 		}
7187 	}
7188 	if (!ret) {
7189 		spin_lock_irq(&rbd_dev->lock);
7190 		if (rbd_dev->open_count && !force)
7191 			ret = -EBUSY;
7192 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7193 					  &rbd_dev->flags))
7194 			ret = -EINPROGRESS;
7195 		spin_unlock_irq(&rbd_dev->lock);
7196 	}
7197 	spin_unlock(&rbd_dev_list_lock);
7198 	if (ret)
7199 		return ret;
7200 
7201 	if (force) {
7202 		/*
7203 		 * Prevent new IO from being queued and wait for existing
7204 		 * IO to complete/fail.
7205 		 */
7206 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7207 		blk_set_queue_dying(rbd_dev->disk->queue);
7208 	}
7209 
7210 	del_gendisk(rbd_dev->disk);
7211 	spin_lock(&rbd_dev_list_lock);
7212 	list_del_init(&rbd_dev->node);
7213 	spin_unlock(&rbd_dev_list_lock);
7214 	device_del(&rbd_dev->dev);
7215 
7216 	rbd_dev_image_unlock(rbd_dev);
7217 	rbd_dev_device_release(rbd_dev);
7218 	rbd_dev_image_release(rbd_dev);
7219 	rbd_dev_destroy(rbd_dev);
7220 	return count;
7221 }
7222 
7223 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7224 {
7225 	if (single_major)
7226 		return -EINVAL;
7227 
7228 	return do_rbd_remove(bus, buf, count);
7229 }
7230 
7231 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7232 					 size_t count)
7233 {
7234 	return do_rbd_remove(bus, buf, count);
7235 }
7236 
7237 /*
7238  * create control files in sysfs
7239  * /sys/bus/rbd/...
7240  */
7241 static int __init rbd_sysfs_init(void)
7242 {
7243 	int ret;
7244 
7245 	ret = device_register(&rbd_root_dev);
7246 	if (ret < 0)
7247 		return ret;
7248 
7249 	ret = bus_register(&rbd_bus_type);
7250 	if (ret < 0)
7251 		device_unregister(&rbd_root_dev);
7252 
7253 	return ret;
7254 }
7255 
7256 static void __exit rbd_sysfs_cleanup(void)
7257 {
7258 	bus_unregister(&rbd_bus_type);
7259 	device_unregister(&rbd_root_dev);
7260 }
7261 
7262 static int __init rbd_slab_init(void)
7263 {
7264 	rbd_assert(!rbd_img_request_cache);
7265 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7266 	if (!rbd_img_request_cache)
7267 		return -ENOMEM;
7268 
7269 	rbd_assert(!rbd_obj_request_cache);
7270 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7271 	if (!rbd_obj_request_cache)
7272 		goto out_err;
7273 
7274 	return 0;
7275 
7276 out_err:
7277 	kmem_cache_destroy(rbd_img_request_cache);
7278 	rbd_img_request_cache = NULL;
7279 	return -ENOMEM;
7280 }
7281 
7282 static void rbd_slab_exit(void)
7283 {
7284 	rbd_assert(rbd_obj_request_cache);
7285 	kmem_cache_destroy(rbd_obj_request_cache);
7286 	rbd_obj_request_cache = NULL;
7287 
7288 	rbd_assert(rbd_img_request_cache);
7289 	kmem_cache_destroy(rbd_img_request_cache);
7290 	rbd_img_request_cache = NULL;
7291 }
7292 
7293 static int __init rbd_init(void)
7294 {
7295 	int rc;
7296 
7297 	if (!libceph_compatible(NULL)) {
7298 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7299 		return -EINVAL;
7300 	}
7301 
7302 	rc = rbd_slab_init();
7303 	if (rc)
7304 		return rc;
7305 
7306 	/*
7307 	 * The number of active work items is limited by the number of
7308 	 * rbd devices * queue depth, so leave @max_active at default.
7309 	 */
7310 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7311 	if (!rbd_wq) {
7312 		rc = -ENOMEM;
7313 		goto err_out_slab;
7314 	}
7315 
7316 	if (single_major) {
7317 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7318 		if (rbd_major < 0) {
7319 			rc = rbd_major;
7320 			goto err_out_wq;
7321 		}
7322 	}
7323 
7324 	rc = rbd_sysfs_init();
7325 	if (rc)
7326 		goto err_out_blkdev;
7327 
7328 	if (single_major)
7329 		pr_info("loaded (major %d)\n", rbd_major);
7330 	else
7331 		pr_info("loaded\n");
7332 
7333 	return 0;
7334 
7335 err_out_blkdev:
7336 	if (single_major)
7337 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7338 err_out_wq:
7339 	destroy_workqueue(rbd_wq);
7340 err_out_slab:
7341 	rbd_slab_exit();
7342 	return rc;
7343 }
7344 
7345 static void __exit rbd_exit(void)
7346 {
7347 	ida_destroy(&rbd_dev_id_ida);
7348 	rbd_sysfs_cleanup();
7349 	if (single_major)
7350 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7351 	destroy_workqueue(rbd_wq);
7352 	rbd_slab_exit();
7353 }
7354 
7355 module_init(rbd_init);
7356 module_exit(rbd_exit);
7357 
7358 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7359 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7360 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7361 /* following authorship retained from original osdblk.c */
7362 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7363 
7364 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7365 MODULE_LICENSE("GPL");
7366