1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_QUIESCING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion quiescing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static const struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 636 struct rbd_image_header *header); 637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 638 u64 snap_id); 639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 640 u8 *order, u64 *snap_size); 641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 642 643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 645 646 /* 647 * Return true if nothing else is pending. 648 */ 649 static bool pending_result_dec(struct pending_result *pending, int *result) 650 { 651 rbd_assert(pending->num_pending > 0); 652 653 if (*result && !pending->result) 654 pending->result = *result; 655 if (--pending->num_pending) 656 return false; 657 658 *result = pending->result; 659 return true; 660 } 661 662 static int rbd_open(struct gendisk *disk, blk_mode_t mode) 663 { 664 struct rbd_device *rbd_dev = disk->private_data; 665 bool removing = false; 666 667 spin_lock_irq(&rbd_dev->lock); 668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 669 removing = true; 670 else 671 rbd_dev->open_count++; 672 spin_unlock_irq(&rbd_dev->lock); 673 if (removing) 674 return -ENOENT; 675 676 (void) get_device(&rbd_dev->dev); 677 678 return 0; 679 } 680 681 static void rbd_release(struct gendisk *disk) 682 { 683 struct rbd_device *rbd_dev = disk->private_data; 684 unsigned long open_count_before; 685 686 spin_lock_irq(&rbd_dev->lock); 687 open_count_before = rbd_dev->open_count--; 688 spin_unlock_irq(&rbd_dev->lock); 689 rbd_assert(open_count_before > 0); 690 691 put_device(&rbd_dev->dev); 692 } 693 694 static const struct block_device_operations rbd_bd_ops = { 695 .owner = THIS_MODULE, 696 .open = rbd_open, 697 .release = rbd_release, 698 }; 699 700 /* 701 * Initialize an rbd client instance. Success or not, this function 702 * consumes ceph_opts. Caller holds client_mutex. 703 */ 704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *rbdc; 707 int ret = -ENOMEM; 708 709 dout("%s:\n", __func__); 710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 711 if (!rbdc) 712 goto out_opt; 713 714 kref_init(&rbdc->kref); 715 INIT_LIST_HEAD(&rbdc->node); 716 717 rbdc->client = ceph_create_client(ceph_opts, rbdc); 718 if (IS_ERR(rbdc->client)) 719 goto out_rbdc; 720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 721 722 ret = ceph_open_session(rbdc->client); 723 if (ret < 0) 724 goto out_client; 725 726 spin_lock(&rbd_client_list_lock); 727 list_add_tail(&rbdc->node, &rbd_client_list); 728 spin_unlock(&rbd_client_list_lock); 729 730 dout("%s: rbdc %p\n", __func__, rbdc); 731 732 return rbdc; 733 out_client: 734 ceph_destroy_client(rbdc->client); 735 out_rbdc: 736 kfree(rbdc); 737 out_opt: 738 if (ceph_opts) 739 ceph_destroy_options(ceph_opts); 740 dout("%s: error %d\n", __func__, ret); 741 742 return ERR_PTR(ret); 743 } 744 745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 746 { 747 kref_get(&rbdc->kref); 748 749 return rbdc; 750 } 751 752 /* 753 * Find a ceph client with specific addr and configuration. If 754 * found, bump its reference count. 755 */ 756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 757 { 758 struct rbd_client *rbdc = NULL, *iter; 759 760 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 761 return NULL; 762 763 spin_lock(&rbd_client_list_lock); 764 list_for_each_entry(iter, &rbd_client_list, node) { 765 if (!ceph_compare_options(ceph_opts, iter->client)) { 766 __rbd_get_client(iter); 767 768 rbdc = iter; 769 break; 770 } 771 } 772 spin_unlock(&rbd_client_list_lock); 773 774 return rbdc; 775 } 776 777 /* 778 * (Per device) rbd map options 779 */ 780 enum { 781 Opt_queue_depth, 782 Opt_alloc_size, 783 Opt_lock_timeout, 784 /* int args above */ 785 Opt_pool_ns, 786 Opt_compression_hint, 787 /* string args above */ 788 Opt_read_only, 789 Opt_read_write, 790 Opt_lock_on_read, 791 Opt_exclusive, 792 Opt_notrim, 793 }; 794 795 enum { 796 Opt_compression_hint_none, 797 Opt_compression_hint_compressible, 798 Opt_compression_hint_incompressible, 799 }; 800 801 static const struct constant_table rbd_param_compression_hint[] = { 802 {"none", Opt_compression_hint_none}, 803 {"compressible", Opt_compression_hint_compressible}, 804 {"incompressible", Opt_compression_hint_incompressible}, 805 {} 806 }; 807 808 static const struct fs_parameter_spec rbd_parameters[] = { 809 fsparam_u32 ("alloc_size", Opt_alloc_size), 810 fsparam_enum ("compression_hint", Opt_compression_hint, 811 rbd_param_compression_hint), 812 fsparam_flag ("exclusive", Opt_exclusive), 813 fsparam_flag ("lock_on_read", Opt_lock_on_read), 814 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 815 fsparam_flag ("notrim", Opt_notrim), 816 fsparam_string ("_pool_ns", Opt_pool_ns), 817 fsparam_u32 ("queue_depth", Opt_queue_depth), 818 fsparam_flag ("read_only", Opt_read_only), 819 fsparam_flag ("read_write", Opt_read_write), 820 fsparam_flag ("ro", Opt_read_only), 821 fsparam_flag ("rw", Opt_read_write), 822 {} 823 }; 824 825 struct rbd_options { 826 int queue_depth; 827 int alloc_size; 828 unsigned long lock_timeout; 829 bool read_only; 830 bool lock_on_read; 831 bool exclusive; 832 bool trim; 833 834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 835 }; 836 837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 838 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 839 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 840 #define RBD_READ_ONLY_DEFAULT false 841 #define RBD_LOCK_ON_READ_DEFAULT false 842 #define RBD_EXCLUSIVE_DEFAULT false 843 #define RBD_TRIM_DEFAULT true 844 845 struct rbd_parse_opts_ctx { 846 struct rbd_spec *spec; 847 struct ceph_options *copts; 848 struct rbd_options *opts; 849 }; 850 851 static char* obj_op_name(enum obj_operation_type op_type) 852 { 853 switch (op_type) { 854 case OBJ_OP_READ: 855 return "read"; 856 case OBJ_OP_WRITE: 857 return "write"; 858 case OBJ_OP_DISCARD: 859 return "discard"; 860 case OBJ_OP_ZEROOUT: 861 return "zeroout"; 862 default: 863 return "???"; 864 } 865 } 866 867 /* 868 * Destroy ceph client 869 * 870 * Caller must hold rbd_client_list_lock. 871 */ 872 static void rbd_client_release(struct kref *kref) 873 { 874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 875 876 dout("%s: rbdc %p\n", __func__, rbdc); 877 spin_lock(&rbd_client_list_lock); 878 list_del(&rbdc->node); 879 spin_unlock(&rbd_client_list_lock); 880 881 ceph_destroy_client(rbdc->client); 882 kfree(rbdc); 883 } 884 885 /* 886 * Drop reference to ceph client node. If it's not referenced anymore, release 887 * it. 888 */ 889 static void rbd_put_client(struct rbd_client *rbdc) 890 { 891 if (rbdc) 892 kref_put(&rbdc->kref, rbd_client_release); 893 } 894 895 /* 896 * Get a ceph client with specific addr and configuration, if one does 897 * not exist create it. Either way, ceph_opts is consumed by this 898 * function. 899 */ 900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 901 { 902 struct rbd_client *rbdc; 903 int ret; 904 905 mutex_lock(&client_mutex); 906 rbdc = rbd_client_find(ceph_opts); 907 if (rbdc) { 908 ceph_destroy_options(ceph_opts); 909 910 /* 911 * Using an existing client. Make sure ->pg_pools is up to 912 * date before we look up the pool id in do_rbd_add(). 913 */ 914 ret = ceph_wait_for_latest_osdmap(rbdc->client, 915 rbdc->client->options->mount_timeout); 916 if (ret) { 917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 918 rbd_put_client(rbdc); 919 rbdc = ERR_PTR(ret); 920 } 921 } else { 922 rbdc = rbd_client_create(ceph_opts); 923 } 924 mutex_unlock(&client_mutex); 925 926 return rbdc; 927 } 928 929 static bool rbd_image_format_valid(u32 image_format) 930 { 931 return image_format == 1 || image_format == 2; 932 } 933 934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 935 { 936 size_t size; 937 u32 snap_count; 938 939 /* The header has to start with the magic rbd header text */ 940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 941 return false; 942 943 /* The bio layer requires at least sector-sized I/O */ 944 945 if (ondisk->options.order < SECTOR_SHIFT) 946 return false; 947 948 /* If we use u64 in a few spots we may be able to loosen this */ 949 950 if (ondisk->options.order > 8 * sizeof (int) - 1) 951 return false; 952 953 /* 954 * The size of a snapshot header has to fit in a size_t, and 955 * that limits the number of snapshots. 956 */ 957 snap_count = le32_to_cpu(ondisk->snap_count); 958 size = SIZE_MAX - sizeof (struct ceph_snap_context); 959 if (snap_count > size / sizeof (__le64)) 960 return false; 961 962 /* 963 * Not only that, but the size of the entire the snapshot 964 * header must also be representable in a size_t. 965 */ 966 size -= snap_count * sizeof (__le64); 967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 968 return false; 969 970 return true; 971 } 972 973 /* 974 * returns the size of an object in the image 975 */ 976 static u32 rbd_obj_bytes(struct rbd_image_header *header) 977 { 978 return 1U << header->obj_order; 979 } 980 981 static void rbd_init_layout(struct rbd_device *rbd_dev) 982 { 983 if (rbd_dev->header.stripe_unit == 0 || 984 rbd_dev->header.stripe_count == 0) { 985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 986 rbd_dev->header.stripe_count = 1; 987 } 988 989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 995 } 996 997 static void rbd_image_header_cleanup(struct rbd_image_header *header) 998 { 999 kfree(header->object_prefix); 1000 ceph_put_snap_context(header->snapc); 1001 kfree(header->snap_sizes); 1002 kfree(header->snap_names); 1003 1004 memset(header, 0, sizeof(*header)); 1005 } 1006 1007 /* 1008 * Fill an rbd image header with information from the given format 1 1009 * on-disk header. 1010 */ 1011 static int rbd_header_from_disk(struct rbd_image_header *header, 1012 struct rbd_image_header_ondisk *ondisk, 1013 bool first_time) 1014 { 1015 struct ceph_snap_context *snapc; 1016 char *object_prefix = NULL; 1017 char *snap_names = NULL; 1018 u64 *snap_sizes = NULL; 1019 u32 snap_count; 1020 int ret = -ENOMEM; 1021 u32 i; 1022 1023 /* Allocate this now to avoid having to handle failure below */ 1024 1025 if (first_time) { 1026 object_prefix = kstrndup(ondisk->object_prefix, 1027 sizeof(ondisk->object_prefix), 1028 GFP_KERNEL); 1029 if (!object_prefix) 1030 return -ENOMEM; 1031 } 1032 1033 /* Allocate the snapshot context and fill it in */ 1034 1035 snap_count = le32_to_cpu(ondisk->snap_count); 1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1037 if (!snapc) 1038 goto out_err; 1039 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1040 if (snap_count) { 1041 struct rbd_image_snap_ondisk *snaps; 1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1043 1044 /* We'll keep a copy of the snapshot names... */ 1045 1046 if (snap_names_len > (u64)SIZE_MAX) 1047 goto out_2big; 1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1049 if (!snap_names) 1050 goto out_err; 1051 1052 /* ...as well as the array of their sizes. */ 1053 snap_sizes = kmalloc_array(snap_count, 1054 sizeof(*header->snap_sizes), 1055 GFP_KERNEL); 1056 if (!snap_sizes) 1057 goto out_err; 1058 1059 /* 1060 * Copy the names, and fill in each snapshot's id 1061 * and size. 1062 * 1063 * Note that rbd_dev_v1_header_info() guarantees the 1064 * ondisk buffer we're working with has 1065 * snap_names_len bytes beyond the end of the 1066 * snapshot id array, this memcpy() is safe. 1067 */ 1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1069 snaps = ondisk->snaps; 1070 for (i = 0; i < snap_count; i++) { 1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1073 } 1074 } 1075 1076 /* We won't fail any more, fill in the header */ 1077 1078 if (first_time) { 1079 header->object_prefix = object_prefix; 1080 header->obj_order = ondisk->options.order; 1081 } 1082 1083 /* The remaining fields always get updated (when we refresh) */ 1084 1085 header->image_size = le64_to_cpu(ondisk->image_size); 1086 header->snapc = snapc; 1087 header->snap_names = snap_names; 1088 header->snap_sizes = snap_sizes; 1089 1090 return 0; 1091 out_2big: 1092 ret = -EIO; 1093 out_err: 1094 kfree(snap_sizes); 1095 kfree(snap_names); 1096 ceph_put_snap_context(snapc); 1097 kfree(object_prefix); 1098 1099 return ret; 1100 } 1101 1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1103 { 1104 const char *snap_name; 1105 1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1107 1108 /* Skip over names until we find the one we are looking for */ 1109 1110 snap_name = rbd_dev->header.snap_names; 1111 while (which--) 1112 snap_name += strlen(snap_name) + 1; 1113 1114 return kstrdup(snap_name, GFP_KERNEL); 1115 } 1116 1117 /* 1118 * Snapshot id comparison function for use with qsort()/bsearch(). 1119 * Note that result is for snapshots in *descending* order. 1120 */ 1121 static int snapid_compare_reverse(const void *s1, const void *s2) 1122 { 1123 u64 snap_id1 = *(u64 *)s1; 1124 u64 snap_id2 = *(u64 *)s2; 1125 1126 if (snap_id1 < snap_id2) 1127 return 1; 1128 return snap_id1 == snap_id2 ? 0 : -1; 1129 } 1130 1131 /* 1132 * Search a snapshot context to see if the given snapshot id is 1133 * present. 1134 * 1135 * Returns the position of the snapshot id in the array if it's found, 1136 * or BAD_SNAP_INDEX otherwise. 1137 * 1138 * Note: The snapshot array is in kept sorted (by the osd) in 1139 * reverse order, highest snapshot id first. 1140 */ 1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1142 { 1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1144 u64 *found; 1145 1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1147 sizeof (snap_id), snapid_compare_reverse); 1148 1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1150 } 1151 1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1153 u64 snap_id) 1154 { 1155 u32 which; 1156 const char *snap_name; 1157 1158 which = rbd_dev_snap_index(rbd_dev, snap_id); 1159 if (which == BAD_SNAP_INDEX) 1160 return ERR_PTR(-ENOENT); 1161 1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1164 } 1165 1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1167 { 1168 if (snap_id == CEPH_NOSNAP) 1169 return RBD_SNAP_HEAD_NAME; 1170 1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1172 if (rbd_dev->image_format == 1) 1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1174 1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1176 } 1177 1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1179 u64 *snap_size) 1180 { 1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1182 if (snap_id == CEPH_NOSNAP) { 1183 *snap_size = rbd_dev->header.image_size; 1184 } else if (rbd_dev->image_format == 1) { 1185 u32 which; 1186 1187 which = rbd_dev_snap_index(rbd_dev, snap_id); 1188 if (which == BAD_SNAP_INDEX) 1189 return -ENOENT; 1190 1191 *snap_size = rbd_dev->header.snap_sizes[which]; 1192 } else { 1193 u64 size = 0; 1194 int ret; 1195 1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1197 if (ret) 1198 return ret; 1199 1200 *snap_size = size; 1201 } 1202 return 0; 1203 } 1204 1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1206 { 1207 u64 snap_id = rbd_dev->spec->snap_id; 1208 u64 size = 0; 1209 int ret; 1210 1211 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1212 if (ret) 1213 return ret; 1214 1215 rbd_dev->mapping.size = size; 1216 return 0; 1217 } 1218 1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1220 { 1221 rbd_dev->mapping.size = 0; 1222 } 1223 1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1225 { 1226 struct ceph_bio_iter it = *bio_pos; 1227 1228 ceph_bio_iter_advance(&it, off); 1229 ceph_bio_iter_advance_step(&it, bytes, ({ 1230 memzero_bvec(&bv); 1231 })); 1232 } 1233 1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1235 { 1236 struct ceph_bvec_iter it = *bvec_pos; 1237 1238 ceph_bvec_iter_advance(&it, off); 1239 ceph_bvec_iter_advance_step(&it, bytes, ({ 1240 memzero_bvec(&bv); 1241 })); 1242 } 1243 1244 /* 1245 * Zero a range in @obj_req data buffer defined by a bio (list) or 1246 * (private) bio_vec array. 1247 * 1248 * @off is relative to the start of the data buffer. 1249 */ 1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1251 u32 bytes) 1252 { 1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1254 1255 switch (obj_req->img_request->data_type) { 1256 case OBJ_REQUEST_BIO: 1257 zero_bios(&obj_req->bio_pos, off, bytes); 1258 break; 1259 case OBJ_REQUEST_BVECS: 1260 case OBJ_REQUEST_OWN_BVECS: 1261 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1262 break; 1263 default: 1264 BUG(); 1265 } 1266 } 1267 1268 static void rbd_obj_request_destroy(struct kref *kref); 1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1270 { 1271 rbd_assert(obj_request != NULL); 1272 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1273 kref_read(&obj_request->kref)); 1274 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1275 } 1276 1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1278 struct rbd_obj_request *obj_request) 1279 { 1280 rbd_assert(obj_request->img_request == NULL); 1281 1282 /* Image request now owns object's original reference */ 1283 obj_request->img_request = img_request; 1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1285 } 1286 1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1288 struct rbd_obj_request *obj_request) 1289 { 1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1291 list_del(&obj_request->ex.oe_item); 1292 rbd_assert(obj_request->img_request == img_request); 1293 rbd_obj_request_put(obj_request); 1294 } 1295 1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1297 { 1298 struct rbd_obj_request *obj_req = osd_req->r_priv; 1299 1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1302 obj_req->ex.oe_off, obj_req->ex.oe_len); 1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1304 } 1305 1306 /* 1307 * The default/initial value for all image request flags is 0. Each 1308 * is conditionally set to 1 at image request initialization time 1309 * and currently never change thereafter. 1310 */ 1311 static void img_request_layered_set(struct rbd_img_request *img_request) 1312 { 1313 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1314 } 1315 1316 static bool img_request_layered_test(struct rbd_img_request *img_request) 1317 { 1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1319 } 1320 1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1322 { 1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1324 1325 return !obj_req->ex.oe_off && 1326 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1327 } 1328 1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1330 { 1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1332 1333 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1334 rbd_dev->layout.object_size; 1335 } 1336 1337 /* 1338 * Must be called after rbd_obj_calc_img_extents(). 1339 */ 1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1341 { 1342 rbd_assert(obj_req->img_request->snapc); 1343 1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1345 dout("%s %p objno %llu discard\n", __func__, obj_req, 1346 obj_req->ex.oe_objno); 1347 return; 1348 } 1349 1350 if (!obj_req->num_img_extents) { 1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1352 obj_req->ex.oe_objno); 1353 return; 1354 } 1355 1356 if (rbd_obj_is_entire(obj_req) && 1357 !obj_req->img_request->snapc->num_snaps) { 1358 dout("%s %p objno %llu entire\n", __func__, obj_req, 1359 obj_req->ex.oe_objno); 1360 return; 1361 } 1362 1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1364 } 1365 1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1367 { 1368 return ceph_file_extents_bytes(obj_req->img_extents, 1369 obj_req->num_img_extents); 1370 } 1371 1372 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1373 { 1374 switch (img_req->op_type) { 1375 case OBJ_OP_READ: 1376 return false; 1377 case OBJ_OP_WRITE: 1378 case OBJ_OP_DISCARD: 1379 case OBJ_OP_ZEROOUT: 1380 return true; 1381 default: 1382 BUG(); 1383 } 1384 } 1385 1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1387 { 1388 struct rbd_obj_request *obj_req = osd_req->r_priv; 1389 int result; 1390 1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1392 osd_req->r_result, obj_req); 1393 1394 /* 1395 * Writes aren't allowed to return a data payload. In some 1396 * guarded write cases (e.g. stat + zero on an empty object) 1397 * a stat response makes it through, but we don't care. 1398 */ 1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1400 result = 0; 1401 else 1402 result = osd_req->r_result; 1403 1404 rbd_obj_handle_request(obj_req, result); 1405 } 1406 1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1408 { 1409 struct rbd_obj_request *obj_request = osd_req->r_priv; 1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1412 1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1414 osd_req->r_snapid = obj_request->img_request->snap_id; 1415 } 1416 1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1418 { 1419 struct rbd_obj_request *obj_request = osd_req->r_priv; 1420 1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1422 ktime_get_real_ts64(&osd_req->r_mtime); 1423 osd_req->r_data_offset = obj_request->ex.oe_off; 1424 } 1425 1426 static struct ceph_osd_request * 1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1428 struct ceph_snap_context *snapc, int num_ops) 1429 { 1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1432 struct ceph_osd_request *req; 1433 const char *name_format = rbd_dev->image_format == 1 ? 1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1435 int ret; 1436 1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1438 if (!req) 1439 return ERR_PTR(-ENOMEM); 1440 1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1442 req->r_callback = rbd_osd_req_callback; 1443 req->r_priv = obj_req; 1444 1445 /* 1446 * Data objects may be stored in a separate pool, but always in 1447 * the same namespace in that pool as the header in its pool. 1448 */ 1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1451 1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1453 rbd_dev->header.object_prefix, 1454 obj_req->ex.oe_objno); 1455 if (ret) 1456 return ERR_PTR(ret); 1457 1458 return req; 1459 } 1460 1461 static struct ceph_osd_request * 1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1463 { 1464 rbd_assert(obj_req->img_request->snapc); 1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1466 num_ops); 1467 } 1468 1469 static struct rbd_obj_request *rbd_obj_request_create(void) 1470 { 1471 struct rbd_obj_request *obj_request; 1472 1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1474 if (!obj_request) 1475 return NULL; 1476 1477 ceph_object_extent_init(&obj_request->ex); 1478 INIT_LIST_HEAD(&obj_request->osd_reqs); 1479 mutex_init(&obj_request->state_mutex); 1480 kref_init(&obj_request->kref); 1481 1482 dout("%s %p\n", __func__, obj_request); 1483 return obj_request; 1484 } 1485 1486 static void rbd_obj_request_destroy(struct kref *kref) 1487 { 1488 struct rbd_obj_request *obj_request; 1489 struct ceph_osd_request *osd_req; 1490 u32 i; 1491 1492 obj_request = container_of(kref, struct rbd_obj_request, kref); 1493 1494 dout("%s: obj %p\n", __func__, obj_request); 1495 1496 while (!list_empty(&obj_request->osd_reqs)) { 1497 osd_req = list_first_entry(&obj_request->osd_reqs, 1498 struct ceph_osd_request, r_private_item); 1499 list_del_init(&osd_req->r_private_item); 1500 ceph_osdc_put_request(osd_req); 1501 } 1502 1503 switch (obj_request->img_request->data_type) { 1504 case OBJ_REQUEST_NODATA: 1505 case OBJ_REQUEST_BIO: 1506 case OBJ_REQUEST_BVECS: 1507 break; /* Nothing to do */ 1508 case OBJ_REQUEST_OWN_BVECS: 1509 kfree(obj_request->bvec_pos.bvecs); 1510 break; 1511 default: 1512 BUG(); 1513 } 1514 1515 kfree(obj_request->img_extents); 1516 if (obj_request->copyup_bvecs) { 1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1518 if (obj_request->copyup_bvecs[i].bv_page) 1519 __free_page(obj_request->copyup_bvecs[i].bv_page); 1520 } 1521 kfree(obj_request->copyup_bvecs); 1522 } 1523 1524 kmem_cache_free(rbd_obj_request_cache, obj_request); 1525 } 1526 1527 /* It's OK to call this for a device with no parent */ 1528 1529 static void rbd_spec_put(struct rbd_spec *spec); 1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1531 { 1532 rbd_dev_remove_parent(rbd_dev); 1533 rbd_spec_put(rbd_dev->parent_spec); 1534 rbd_dev->parent_spec = NULL; 1535 rbd_dev->parent_overlap = 0; 1536 } 1537 1538 /* 1539 * Parent image reference counting is used to determine when an 1540 * image's parent fields can be safely torn down--after there are no 1541 * more in-flight requests to the parent image. When the last 1542 * reference is dropped, cleaning them up is safe. 1543 */ 1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1545 { 1546 int counter; 1547 1548 if (!rbd_dev->parent_spec) 1549 return; 1550 1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1552 if (counter > 0) 1553 return; 1554 1555 /* Last reference; clean up parent data structures */ 1556 1557 if (!counter) 1558 rbd_dev_unparent(rbd_dev); 1559 else 1560 rbd_warn(rbd_dev, "parent reference underflow"); 1561 } 1562 1563 /* 1564 * If an image has a non-zero parent overlap, get a reference to its 1565 * parent. 1566 * 1567 * Returns true if the rbd device has a parent with a non-zero 1568 * overlap and a reference for it was successfully taken, or 1569 * false otherwise. 1570 */ 1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1572 { 1573 int counter = 0; 1574 1575 if (!rbd_dev->parent_spec) 1576 return false; 1577 1578 if (rbd_dev->parent_overlap) 1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1580 1581 if (counter < 0) 1582 rbd_warn(rbd_dev, "parent reference overflow"); 1583 1584 return counter > 0; 1585 } 1586 1587 static void rbd_img_request_init(struct rbd_img_request *img_request, 1588 struct rbd_device *rbd_dev, 1589 enum obj_operation_type op_type) 1590 { 1591 memset(img_request, 0, sizeof(*img_request)); 1592 1593 img_request->rbd_dev = rbd_dev; 1594 img_request->op_type = op_type; 1595 1596 INIT_LIST_HEAD(&img_request->lock_item); 1597 INIT_LIST_HEAD(&img_request->object_extents); 1598 mutex_init(&img_request->state_mutex); 1599 } 1600 1601 /* 1602 * Only snap_id is captured here, for reads. For writes, snapshot 1603 * context is captured in rbd_img_object_requests() after exclusive 1604 * lock is ensured to be held. 1605 */ 1606 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1607 { 1608 struct rbd_device *rbd_dev = img_req->rbd_dev; 1609 1610 lockdep_assert_held(&rbd_dev->header_rwsem); 1611 1612 if (!rbd_img_is_write(img_req)) 1613 img_req->snap_id = rbd_dev->spec->snap_id; 1614 1615 if (rbd_dev_parent_get(rbd_dev)) 1616 img_request_layered_set(img_req); 1617 } 1618 1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1620 { 1621 struct rbd_obj_request *obj_request; 1622 struct rbd_obj_request *next_obj_request; 1623 1624 dout("%s: img %p\n", __func__, img_request); 1625 1626 WARN_ON(!list_empty(&img_request->lock_item)); 1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1628 rbd_img_obj_request_del(img_request, obj_request); 1629 1630 if (img_request_layered_test(img_request)) 1631 rbd_dev_parent_put(img_request->rbd_dev); 1632 1633 if (rbd_img_is_write(img_request)) 1634 ceph_put_snap_context(img_request->snapc); 1635 1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1637 kmem_cache_free(rbd_img_request_cache, img_request); 1638 } 1639 1640 #define BITS_PER_OBJ 2 1641 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1642 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1643 1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1645 u64 *index, u8 *shift) 1646 { 1647 u32 off; 1648 1649 rbd_assert(objno < rbd_dev->object_map_size); 1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1652 } 1653 1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1655 { 1656 u64 index; 1657 u8 shift; 1658 1659 lockdep_assert_held(&rbd_dev->object_map_lock); 1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1662 } 1663 1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1665 { 1666 u64 index; 1667 u8 shift; 1668 u8 *p; 1669 1670 lockdep_assert_held(&rbd_dev->object_map_lock); 1671 rbd_assert(!(val & ~OBJ_MASK)); 1672 1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1674 p = &rbd_dev->object_map[index]; 1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1676 } 1677 1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1679 { 1680 u8 state; 1681 1682 spin_lock(&rbd_dev->object_map_lock); 1683 state = __rbd_object_map_get(rbd_dev, objno); 1684 spin_unlock(&rbd_dev->object_map_lock); 1685 return state; 1686 } 1687 1688 static bool use_object_map(struct rbd_device *rbd_dev) 1689 { 1690 /* 1691 * An image mapped read-only can't use the object map -- it isn't 1692 * loaded because the header lock isn't acquired. Someone else can 1693 * write to the image and update the object map behind our back. 1694 * 1695 * A snapshot can't be written to, so using the object map is always 1696 * safe. 1697 */ 1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1699 return false; 1700 1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1703 } 1704 1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1706 { 1707 u8 state; 1708 1709 /* fall back to default logic if object map is disabled or invalid */ 1710 if (!use_object_map(rbd_dev)) 1711 return true; 1712 1713 state = rbd_object_map_get(rbd_dev, objno); 1714 return state != OBJECT_NONEXISTENT; 1715 } 1716 1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1718 struct ceph_object_id *oid) 1719 { 1720 if (snap_id == CEPH_NOSNAP) 1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id); 1723 else 1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1725 rbd_dev->spec->image_id, snap_id); 1726 } 1727 1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1729 { 1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1731 CEPH_DEFINE_OID_ONSTACK(oid); 1732 u8 lock_type; 1733 char *lock_tag; 1734 struct ceph_locker *lockers; 1735 u32 num_lockers; 1736 bool broke_lock = false; 1737 int ret; 1738 1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1740 1741 again: 1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1744 if (ret != -EBUSY || broke_lock) { 1745 if (ret == -EEXIST) 1746 ret = 0; /* already locked by myself */ 1747 if (ret) 1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1749 return ret; 1750 } 1751 1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1753 RBD_LOCK_NAME, &lock_type, &lock_tag, 1754 &lockers, &num_lockers); 1755 if (ret) { 1756 if (ret == -ENOENT) 1757 goto again; 1758 1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1760 return ret; 1761 } 1762 1763 kfree(lock_tag); 1764 if (num_lockers == 0) 1765 goto again; 1766 1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1768 ENTITY_NAME(lockers[0].id.name)); 1769 1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1771 RBD_LOCK_NAME, lockers[0].id.cookie, 1772 &lockers[0].id.name); 1773 ceph_free_lockers(lockers, num_lockers); 1774 if (ret) { 1775 if (ret == -ENOENT) 1776 goto again; 1777 1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1779 return ret; 1780 } 1781 1782 broke_lock = true; 1783 goto again; 1784 } 1785 1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1787 { 1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1789 CEPH_DEFINE_OID_ONSTACK(oid); 1790 int ret; 1791 1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1793 1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1795 ""); 1796 if (ret && ret != -ENOENT) 1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1798 } 1799 1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1801 { 1802 u8 struct_v; 1803 u32 struct_len; 1804 u32 header_len; 1805 void *header_end; 1806 int ret; 1807 1808 ceph_decode_32_safe(p, end, header_len, e_inval); 1809 header_end = *p + header_len; 1810 1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1812 &struct_len); 1813 if (ret) 1814 return ret; 1815 1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1817 1818 *p = header_end; 1819 return 0; 1820 1821 e_inval: 1822 return -EINVAL; 1823 } 1824 1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1826 { 1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1828 CEPH_DEFINE_OID_ONSTACK(oid); 1829 struct page **pages; 1830 void *p, *end; 1831 size_t reply_len; 1832 u64 num_objects; 1833 u64 object_map_bytes; 1834 u64 object_map_size; 1835 int num_pages; 1836 int ret; 1837 1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1839 1840 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1841 rbd_dev->mapping.size); 1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1843 BITS_PER_BYTE); 1844 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1846 if (IS_ERR(pages)) 1847 return PTR_ERR(pages); 1848 1849 reply_len = num_pages * PAGE_SIZE; 1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1853 NULL, 0, pages, &reply_len); 1854 if (ret) 1855 goto out; 1856 1857 p = page_address(pages[0]); 1858 end = p + min(reply_len, (size_t)PAGE_SIZE); 1859 ret = decode_object_map_header(&p, end, &object_map_size); 1860 if (ret) 1861 goto out; 1862 1863 if (object_map_size != num_objects) { 1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1865 object_map_size, num_objects); 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 if (offset_in_page(p) + object_map_bytes > reply_len) { 1871 ret = -EINVAL; 1872 goto out; 1873 } 1874 1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1876 if (!rbd_dev->object_map) { 1877 ret = -ENOMEM; 1878 goto out; 1879 } 1880 1881 rbd_dev->object_map_size = object_map_size; 1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1883 offset_in_page(p), object_map_bytes); 1884 1885 out: 1886 ceph_release_page_vector(pages, num_pages); 1887 return ret; 1888 } 1889 1890 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1891 { 1892 kvfree(rbd_dev->object_map); 1893 rbd_dev->object_map = NULL; 1894 rbd_dev->object_map_size = 0; 1895 } 1896 1897 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1898 { 1899 int ret; 1900 1901 ret = __rbd_object_map_load(rbd_dev); 1902 if (ret) 1903 return ret; 1904 1905 ret = rbd_dev_v2_get_flags(rbd_dev); 1906 if (ret) { 1907 rbd_object_map_free(rbd_dev); 1908 return ret; 1909 } 1910 1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1912 rbd_warn(rbd_dev, "object map is invalid"); 1913 1914 return 0; 1915 } 1916 1917 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1918 { 1919 int ret; 1920 1921 ret = rbd_object_map_lock(rbd_dev); 1922 if (ret) 1923 return ret; 1924 1925 ret = rbd_object_map_load(rbd_dev); 1926 if (ret) { 1927 rbd_object_map_unlock(rbd_dev); 1928 return ret; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1935 { 1936 rbd_object_map_free(rbd_dev); 1937 rbd_object_map_unlock(rbd_dev); 1938 } 1939 1940 /* 1941 * This function needs snap_id (or more precisely just something to 1942 * distinguish between HEAD and snapshot object maps), new_state and 1943 * current_state that were passed to rbd_object_map_update(). 1944 * 1945 * To avoid allocating and stashing a context we piggyback on the OSD 1946 * request. A HEAD update has two ops (assert_locked). For new_state 1947 * and current_state we decode our own object_map_update op, encoded in 1948 * rbd_cls_object_map_update(). 1949 */ 1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1951 struct ceph_osd_request *osd_req) 1952 { 1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1954 struct ceph_osd_data *osd_data; 1955 u64 objno; 1956 u8 state, new_state, current_state; 1957 bool has_current_state; 1958 void *p; 1959 1960 if (osd_req->r_result) 1961 return osd_req->r_result; 1962 1963 /* 1964 * Nothing to do for a snapshot object map. 1965 */ 1966 if (osd_req->r_num_ops == 1) 1967 return 0; 1968 1969 /* 1970 * Update in-memory HEAD object map. 1971 */ 1972 rbd_assert(osd_req->r_num_ops == 2); 1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1975 1976 p = page_address(osd_data->pages[0]); 1977 objno = ceph_decode_64(&p); 1978 rbd_assert(objno == obj_req->ex.oe_objno); 1979 rbd_assert(ceph_decode_64(&p) == objno + 1); 1980 new_state = ceph_decode_8(&p); 1981 has_current_state = ceph_decode_8(&p); 1982 if (has_current_state) 1983 current_state = ceph_decode_8(&p); 1984 1985 spin_lock(&rbd_dev->object_map_lock); 1986 state = __rbd_object_map_get(rbd_dev, objno); 1987 if (!has_current_state || current_state == state || 1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1989 __rbd_object_map_set(rbd_dev, objno, new_state); 1990 spin_unlock(&rbd_dev->object_map_lock); 1991 1992 return 0; 1993 } 1994 1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1996 { 1997 struct rbd_obj_request *obj_req = osd_req->r_priv; 1998 int result; 1999 2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2001 osd_req->r_result, obj_req); 2002 2003 result = rbd_object_map_update_finish(obj_req, osd_req); 2004 rbd_obj_handle_request(obj_req, result); 2005 } 2006 2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2008 { 2009 u8 state = rbd_object_map_get(rbd_dev, objno); 2010 2011 if (state == new_state || 2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2020 int which, u64 objno, u8 new_state, 2021 const u8 *current_state) 2022 { 2023 struct page **pages; 2024 void *p, *start; 2025 int ret; 2026 2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2028 if (ret) 2029 return ret; 2030 2031 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2032 if (IS_ERR(pages)) 2033 return PTR_ERR(pages); 2034 2035 p = start = page_address(pages[0]); 2036 ceph_encode_64(&p, objno); 2037 ceph_encode_64(&p, objno + 1); 2038 ceph_encode_8(&p, new_state); 2039 if (current_state) { 2040 ceph_encode_8(&p, 1); 2041 ceph_encode_8(&p, *current_state); 2042 } else { 2043 ceph_encode_8(&p, 0); 2044 } 2045 2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2047 false, true); 2048 return 0; 2049 } 2050 2051 /* 2052 * Return: 2053 * 0 - object map update sent 2054 * 1 - object map update isn't needed 2055 * <0 - error 2056 */ 2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2058 u8 new_state, const u8 *current_state) 2059 { 2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2062 struct ceph_osd_request *req; 2063 int num_ops = 1; 2064 int which = 0; 2065 int ret; 2066 2067 if (snap_id == CEPH_NOSNAP) { 2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2069 return 1; 2070 2071 num_ops++; /* assert_locked */ 2072 } 2073 2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2075 if (!req) 2076 return -ENOMEM; 2077 2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2079 req->r_callback = rbd_object_map_callback; 2080 req->r_priv = obj_req; 2081 2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2084 req->r_flags = CEPH_OSD_FLAG_WRITE; 2085 ktime_get_real_ts64(&req->r_mtime); 2086 2087 if (snap_id == CEPH_NOSNAP) { 2088 /* 2089 * Protect against possible race conditions during lock 2090 * ownership transitions. 2091 */ 2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2093 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2094 if (ret) 2095 return ret; 2096 } 2097 2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2099 new_state, current_state); 2100 if (ret) 2101 return ret; 2102 2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2104 if (ret) 2105 return ret; 2106 2107 ceph_osdc_start_request(osdc, req); 2108 return 0; 2109 } 2110 2111 static void prune_extents(struct ceph_file_extent *img_extents, 2112 u32 *num_img_extents, u64 overlap) 2113 { 2114 u32 cnt = *num_img_extents; 2115 2116 /* drop extents completely beyond the overlap */ 2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2118 cnt--; 2119 2120 if (cnt) { 2121 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2122 2123 /* trim final overlapping extent */ 2124 if (ex->fe_off + ex->fe_len > overlap) 2125 ex->fe_len = overlap - ex->fe_off; 2126 } 2127 2128 *num_img_extents = cnt; 2129 } 2130 2131 /* 2132 * Determine the byte range(s) covered by either just the object extent 2133 * or the entire object in the parent image. 2134 */ 2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2136 bool entire) 2137 { 2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2139 int ret; 2140 2141 if (!rbd_dev->parent_overlap) 2142 return 0; 2143 2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2145 entire ? 0 : obj_req->ex.oe_off, 2146 entire ? rbd_dev->layout.object_size : 2147 obj_req->ex.oe_len, 2148 &obj_req->img_extents, 2149 &obj_req->num_img_extents); 2150 if (ret) 2151 return ret; 2152 2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2154 rbd_dev->parent_overlap); 2155 return 0; 2156 } 2157 2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2159 { 2160 struct rbd_obj_request *obj_req = osd_req->r_priv; 2161 2162 switch (obj_req->img_request->data_type) { 2163 case OBJ_REQUEST_BIO: 2164 osd_req_op_extent_osd_data_bio(osd_req, which, 2165 &obj_req->bio_pos, 2166 obj_req->ex.oe_len); 2167 break; 2168 case OBJ_REQUEST_BVECS: 2169 case OBJ_REQUEST_OWN_BVECS: 2170 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2171 obj_req->ex.oe_len); 2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2174 &obj_req->bvec_pos); 2175 break; 2176 default: 2177 BUG(); 2178 } 2179 } 2180 2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2182 { 2183 struct page **pages; 2184 2185 /* 2186 * The response data for a STAT call consists of: 2187 * le64 length; 2188 * struct { 2189 * le32 tv_sec; 2190 * le32 tv_nsec; 2191 * } mtime; 2192 */ 2193 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2194 if (IS_ERR(pages)) 2195 return PTR_ERR(pages); 2196 2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2198 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2199 8 + sizeof(struct ceph_timespec), 2200 0, false, true); 2201 return 0; 2202 } 2203 2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2205 u32 bytes) 2206 { 2207 struct rbd_obj_request *obj_req = osd_req->r_priv; 2208 int ret; 2209 2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2211 if (ret) 2212 return ret; 2213 2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2215 obj_req->copyup_bvec_count, bytes); 2216 return 0; 2217 } 2218 2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2220 { 2221 obj_req->read_state = RBD_OBJ_READ_START; 2222 return 0; 2223 } 2224 2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2226 int which) 2227 { 2228 struct rbd_obj_request *obj_req = osd_req->r_priv; 2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2230 u16 opcode; 2231 2232 if (!use_object_map(rbd_dev) || 2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2234 osd_req_op_alloc_hint_init(osd_req, which++, 2235 rbd_dev->layout.object_size, 2236 rbd_dev->layout.object_size, 2237 rbd_dev->opts->alloc_hint_flags); 2238 } 2239 2240 if (rbd_obj_is_entire(obj_req)) 2241 opcode = CEPH_OSD_OP_WRITEFULL; 2242 else 2243 opcode = CEPH_OSD_OP_WRITE; 2244 2245 osd_req_op_extent_init(osd_req, which, opcode, 2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2247 rbd_osd_setup_data(osd_req, which); 2248 } 2249 2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2251 { 2252 int ret; 2253 2254 /* reverse map the entire object onto the parent */ 2255 ret = rbd_obj_calc_img_extents(obj_req, true); 2256 if (ret) 2257 return ret; 2258 2259 obj_req->write_state = RBD_OBJ_WRITE_START; 2260 return 0; 2261 } 2262 2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2264 { 2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2266 CEPH_OSD_OP_ZERO; 2267 } 2268 2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2270 int which) 2271 { 2272 struct rbd_obj_request *obj_req = osd_req->r_priv; 2273 2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2277 } else { 2278 osd_req_op_extent_init(osd_req, which, 2279 truncate_or_zero_opcode(obj_req), 2280 obj_req->ex.oe_off, obj_req->ex.oe_len, 2281 0, 0); 2282 } 2283 } 2284 2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2286 { 2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2288 u64 off, next_off; 2289 int ret; 2290 2291 /* 2292 * Align the range to alloc_size boundary and punt on discards 2293 * that are too small to free up any space. 2294 * 2295 * alloc_size == object_size && is_tail() is a special case for 2296 * filestore with filestore_punch_hole = false, needed to allow 2297 * truncate (in addition to delete). 2298 */ 2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2300 !rbd_obj_is_tail(obj_req)) { 2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2303 rbd_dev->opts->alloc_size); 2304 if (off >= next_off) 2305 return 1; 2306 2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2309 off, next_off - off); 2310 obj_req->ex.oe_off = off; 2311 obj_req->ex.oe_len = next_off - off; 2312 } 2313 2314 /* reverse map the entire object onto the parent */ 2315 ret = rbd_obj_calc_img_extents(obj_req, true); 2316 if (ret) 2317 return ret; 2318 2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2322 2323 obj_req->write_state = RBD_OBJ_WRITE_START; 2324 return 0; 2325 } 2326 2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2328 int which) 2329 { 2330 struct rbd_obj_request *obj_req = osd_req->r_priv; 2331 u16 opcode; 2332 2333 if (rbd_obj_is_entire(obj_req)) { 2334 if (obj_req->num_img_extents) { 2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2336 osd_req_op_init(osd_req, which++, 2337 CEPH_OSD_OP_CREATE, 0); 2338 opcode = CEPH_OSD_OP_TRUNCATE; 2339 } else { 2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2341 osd_req_op_init(osd_req, which++, 2342 CEPH_OSD_OP_DELETE, 0); 2343 opcode = 0; 2344 } 2345 } else { 2346 opcode = truncate_or_zero_opcode(obj_req); 2347 } 2348 2349 if (opcode) 2350 osd_req_op_extent_init(osd_req, which, opcode, 2351 obj_req->ex.oe_off, obj_req->ex.oe_len, 2352 0, 0); 2353 } 2354 2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2356 { 2357 int ret; 2358 2359 /* reverse map the entire object onto the parent */ 2360 ret = rbd_obj_calc_img_extents(obj_req, true); 2361 if (ret) 2362 return ret; 2363 2364 if (!obj_req->num_img_extents) { 2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2366 if (rbd_obj_is_entire(obj_req)) 2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2368 } 2369 2370 obj_req->write_state = RBD_OBJ_WRITE_START; 2371 return 0; 2372 } 2373 2374 static int count_write_ops(struct rbd_obj_request *obj_req) 2375 { 2376 struct rbd_img_request *img_req = obj_req->img_request; 2377 2378 switch (img_req->op_type) { 2379 case OBJ_OP_WRITE: 2380 if (!use_object_map(img_req->rbd_dev) || 2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2382 return 2; /* setallochint + write/writefull */ 2383 2384 return 1; /* write/writefull */ 2385 case OBJ_OP_DISCARD: 2386 return 1; /* delete/truncate/zero */ 2387 case OBJ_OP_ZEROOUT: 2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2390 return 2; /* create + truncate */ 2391 2392 return 1; /* delete/truncate/zero */ 2393 default: 2394 BUG(); 2395 } 2396 } 2397 2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2399 int which) 2400 { 2401 struct rbd_obj_request *obj_req = osd_req->r_priv; 2402 2403 switch (obj_req->img_request->op_type) { 2404 case OBJ_OP_WRITE: 2405 __rbd_osd_setup_write_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_DISCARD: 2408 __rbd_osd_setup_discard_ops(osd_req, which); 2409 break; 2410 case OBJ_OP_ZEROOUT: 2411 __rbd_osd_setup_zeroout_ops(osd_req, which); 2412 break; 2413 default: 2414 BUG(); 2415 } 2416 } 2417 2418 /* 2419 * Prune the list of object requests (adjust offset and/or length, drop 2420 * redundant requests). Prepare object request state machines and image 2421 * request state machine for execution. 2422 */ 2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2424 { 2425 struct rbd_obj_request *obj_req, *next_obj_req; 2426 int ret; 2427 2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2429 switch (img_req->op_type) { 2430 case OBJ_OP_READ: 2431 ret = rbd_obj_init_read(obj_req); 2432 break; 2433 case OBJ_OP_WRITE: 2434 ret = rbd_obj_init_write(obj_req); 2435 break; 2436 case OBJ_OP_DISCARD: 2437 ret = rbd_obj_init_discard(obj_req); 2438 break; 2439 case OBJ_OP_ZEROOUT: 2440 ret = rbd_obj_init_zeroout(obj_req); 2441 break; 2442 default: 2443 BUG(); 2444 } 2445 if (ret < 0) 2446 return ret; 2447 if (ret > 0) { 2448 rbd_img_obj_request_del(img_req, obj_req); 2449 continue; 2450 } 2451 } 2452 2453 img_req->state = RBD_IMG_START; 2454 return 0; 2455 } 2456 2457 union rbd_img_fill_iter { 2458 struct ceph_bio_iter bio_iter; 2459 struct ceph_bvec_iter bvec_iter; 2460 }; 2461 2462 struct rbd_img_fill_ctx { 2463 enum obj_request_type pos_type; 2464 union rbd_img_fill_iter *pos; 2465 union rbd_img_fill_iter iter; 2466 ceph_object_extent_fn_t set_pos_fn; 2467 ceph_object_extent_fn_t count_fn; 2468 ceph_object_extent_fn_t copy_fn; 2469 }; 2470 2471 static struct ceph_object_extent *alloc_object_extent(void *arg) 2472 { 2473 struct rbd_img_request *img_req = arg; 2474 struct rbd_obj_request *obj_req; 2475 2476 obj_req = rbd_obj_request_create(); 2477 if (!obj_req) 2478 return NULL; 2479 2480 rbd_img_obj_request_add(img_req, obj_req); 2481 return &obj_req->ex; 2482 } 2483 2484 /* 2485 * While su != os && sc == 1 is technically not fancy (it's the same 2486 * layout as su == os && sc == 1), we can't use the nocopy path for it 2487 * because ->set_pos_fn() should be called only once per object. 2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2489 * treat su != os && sc == 1 as fancy. 2490 */ 2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2492 { 2493 return l->stripe_unit != l->object_size; 2494 } 2495 2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2497 struct ceph_file_extent *img_extents, 2498 u32 num_img_extents, 2499 struct rbd_img_fill_ctx *fctx) 2500 { 2501 u32 i; 2502 int ret; 2503 2504 img_req->data_type = fctx->pos_type; 2505 2506 /* 2507 * Create object requests and set each object request's starting 2508 * position in the provided bio (list) or bio_vec array. 2509 */ 2510 fctx->iter = *fctx->pos; 2511 for (i = 0; i < num_img_extents; i++) { 2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2513 img_extents[i].fe_off, 2514 img_extents[i].fe_len, 2515 &img_req->object_extents, 2516 alloc_object_extent, img_req, 2517 fctx->set_pos_fn, &fctx->iter); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return __rbd_img_fill_request(img_req); 2523 } 2524 2525 /* 2526 * Map a list of image extents to a list of object extents, create the 2527 * corresponding object requests (normally each to a different object, 2528 * but not always) and add them to @img_req. For each object request, 2529 * set up its data descriptor to point to the corresponding chunk(s) of 2530 * @fctx->pos data buffer. 2531 * 2532 * Because ceph_file_to_extents() will merge adjacent object extents 2533 * together, each object request's data descriptor may point to multiple 2534 * different chunks of @fctx->pos data buffer. 2535 * 2536 * @fctx->pos data buffer is assumed to be large enough. 2537 */ 2538 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2539 struct ceph_file_extent *img_extents, 2540 u32 num_img_extents, 2541 struct rbd_img_fill_ctx *fctx) 2542 { 2543 struct rbd_device *rbd_dev = img_req->rbd_dev; 2544 struct rbd_obj_request *obj_req; 2545 u32 i; 2546 int ret; 2547 2548 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2549 !rbd_layout_is_fancy(&rbd_dev->layout)) 2550 return rbd_img_fill_request_nocopy(img_req, img_extents, 2551 num_img_extents, fctx); 2552 2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2554 2555 /* 2556 * Create object requests and determine ->bvec_count for each object 2557 * request. Note that ->bvec_count sum over all object requests may 2558 * be greater than the number of bio_vecs in the provided bio (list) 2559 * or bio_vec array because when mapped, those bio_vecs can straddle 2560 * stripe unit boundaries. 2561 */ 2562 fctx->iter = *fctx->pos; 2563 for (i = 0; i < num_img_extents; i++) { 2564 ret = ceph_file_to_extents(&rbd_dev->layout, 2565 img_extents[i].fe_off, 2566 img_extents[i].fe_len, 2567 &img_req->object_extents, 2568 alloc_object_extent, img_req, 2569 fctx->count_fn, &fctx->iter); 2570 if (ret) 2571 return ret; 2572 } 2573 2574 for_each_obj_request(img_req, obj_req) { 2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2576 sizeof(*obj_req->bvec_pos.bvecs), 2577 GFP_NOIO); 2578 if (!obj_req->bvec_pos.bvecs) 2579 return -ENOMEM; 2580 } 2581 2582 /* 2583 * Fill in each object request's private bio_vec array, splitting and 2584 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2585 */ 2586 fctx->iter = *fctx->pos; 2587 for (i = 0; i < num_img_extents; i++) { 2588 ret = ceph_iterate_extents(&rbd_dev->layout, 2589 img_extents[i].fe_off, 2590 img_extents[i].fe_len, 2591 &img_req->object_extents, 2592 fctx->copy_fn, &fctx->iter); 2593 if (ret) 2594 return ret; 2595 } 2596 2597 return __rbd_img_fill_request(img_req); 2598 } 2599 2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2601 u64 off, u64 len) 2602 { 2603 struct ceph_file_extent ex = { off, len }; 2604 union rbd_img_fill_iter dummy = {}; 2605 struct rbd_img_fill_ctx fctx = { 2606 .pos_type = OBJ_REQUEST_NODATA, 2607 .pos = &dummy, 2608 }; 2609 2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2611 } 2612 2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2614 { 2615 struct rbd_obj_request *obj_req = 2616 container_of(ex, struct rbd_obj_request, ex); 2617 struct ceph_bio_iter *it = arg; 2618 2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2620 obj_req->bio_pos = *it; 2621 ceph_bio_iter_advance(it, bytes); 2622 } 2623 2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2625 { 2626 struct rbd_obj_request *obj_req = 2627 container_of(ex, struct rbd_obj_request, ex); 2628 struct ceph_bio_iter *it = arg; 2629 2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2631 ceph_bio_iter_advance_step(it, bytes, ({ 2632 obj_req->bvec_count++; 2633 })); 2634 2635 } 2636 2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2638 { 2639 struct rbd_obj_request *obj_req = 2640 container_of(ex, struct rbd_obj_request, ex); 2641 struct ceph_bio_iter *it = arg; 2642 2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2644 ceph_bio_iter_advance_step(it, bytes, ({ 2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2647 })); 2648 } 2649 2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2651 struct ceph_file_extent *img_extents, 2652 u32 num_img_extents, 2653 struct ceph_bio_iter *bio_pos) 2654 { 2655 struct rbd_img_fill_ctx fctx = { 2656 .pos_type = OBJ_REQUEST_BIO, 2657 .pos = (union rbd_img_fill_iter *)bio_pos, 2658 .set_pos_fn = set_bio_pos, 2659 .count_fn = count_bio_bvecs, 2660 .copy_fn = copy_bio_bvecs, 2661 }; 2662 2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2664 &fctx); 2665 } 2666 2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2668 u64 off, u64 len, struct bio *bio) 2669 { 2670 struct ceph_file_extent ex = { off, len }; 2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2672 2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2674 } 2675 2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2677 { 2678 struct rbd_obj_request *obj_req = 2679 container_of(ex, struct rbd_obj_request, ex); 2680 struct ceph_bvec_iter *it = arg; 2681 2682 obj_req->bvec_pos = *it; 2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2684 ceph_bvec_iter_advance(it, bytes); 2685 } 2686 2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2688 { 2689 struct rbd_obj_request *obj_req = 2690 container_of(ex, struct rbd_obj_request, ex); 2691 struct ceph_bvec_iter *it = arg; 2692 2693 ceph_bvec_iter_advance_step(it, bytes, ({ 2694 obj_req->bvec_count++; 2695 })); 2696 } 2697 2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2699 { 2700 struct rbd_obj_request *obj_req = 2701 container_of(ex, struct rbd_obj_request, ex); 2702 struct ceph_bvec_iter *it = arg; 2703 2704 ceph_bvec_iter_advance_step(it, bytes, ({ 2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2707 })); 2708 } 2709 2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2711 struct ceph_file_extent *img_extents, 2712 u32 num_img_extents, 2713 struct ceph_bvec_iter *bvec_pos) 2714 { 2715 struct rbd_img_fill_ctx fctx = { 2716 .pos_type = OBJ_REQUEST_BVECS, 2717 .pos = (union rbd_img_fill_iter *)bvec_pos, 2718 .set_pos_fn = set_bvec_pos, 2719 .count_fn = count_bvecs, 2720 .copy_fn = copy_bvecs, 2721 }; 2722 2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2724 &fctx); 2725 } 2726 2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2728 struct ceph_file_extent *img_extents, 2729 u32 num_img_extents, 2730 struct bio_vec *bvecs) 2731 { 2732 struct ceph_bvec_iter it = { 2733 .bvecs = bvecs, 2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2735 num_img_extents) }, 2736 }; 2737 2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2739 &it); 2740 } 2741 2742 static void rbd_img_handle_request_work(struct work_struct *work) 2743 { 2744 struct rbd_img_request *img_req = 2745 container_of(work, struct rbd_img_request, work); 2746 2747 rbd_img_handle_request(img_req, img_req->work_result); 2748 } 2749 2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2751 { 2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2753 img_req->work_result = result; 2754 queue_work(rbd_wq, &img_req->work); 2755 } 2756 2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2758 { 2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2760 2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2763 return true; 2764 } 2765 2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2767 obj_req->ex.oe_objno); 2768 return false; 2769 } 2770 2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2772 { 2773 struct ceph_osd_request *osd_req; 2774 int ret; 2775 2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2777 if (IS_ERR(osd_req)) 2778 return PTR_ERR(osd_req); 2779 2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2782 rbd_osd_setup_data(osd_req, 0); 2783 rbd_osd_format_read(osd_req); 2784 2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2786 if (ret) 2787 return ret; 2788 2789 rbd_osd_submit(osd_req); 2790 return 0; 2791 } 2792 2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2794 { 2795 struct rbd_img_request *img_req = obj_req->img_request; 2796 struct rbd_device *parent = img_req->rbd_dev->parent; 2797 struct rbd_img_request *child_img_req; 2798 int ret; 2799 2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2801 if (!child_img_req) 2802 return -ENOMEM; 2803 2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2806 child_img_req->obj_request = obj_req; 2807 2808 down_read(&parent->header_rwsem); 2809 rbd_img_capture_header(child_img_req); 2810 up_read(&parent->header_rwsem); 2811 2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2813 obj_req); 2814 2815 if (!rbd_img_is_write(img_req)) { 2816 switch (img_req->data_type) { 2817 case OBJ_REQUEST_BIO: 2818 ret = __rbd_img_fill_from_bio(child_img_req, 2819 obj_req->img_extents, 2820 obj_req->num_img_extents, 2821 &obj_req->bio_pos); 2822 break; 2823 case OBJ_REQUEST_BVECS: 2824 case OBJ_REQUEST_OWN_BVECS: 2825 ret = __rbd_img_fill_from_bvecs(child_img_req, 2826 obj_req->img_extents, 2827 obj_req->num_img_extents, 2828 &obj_req->bvec_pos); 2829 break; 2830 default: 2831 BUG(); 2832 } 2833 } else { 2834 ret = rbd_img_fill_from_bvecs(child_img_req, 2835 obj_req->img_extents, 2836 obj_req->num_img_extents, 2837 obj_req->copyup_bvecs); 2838 } 2839 if (ret) { 2840 rbd_img_request_destroy(child_img_req); 2841 return ret; 2842 } 2843 2844 /* avoid parent chain recursion */ 2845 rbd_img_schedule(child_img_req, 0); 2846 return 0; 2847 } 2848 2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2850 { 2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2852 int ret; 2853 2854 again: 2855 switch (obj_req->read_state) { 2856 case RBD_OBJ_READ_START: 2857 rbd_assert(!*result); 2858 2859 if (!rbd_obj_may_exist(obj_req)) { 2860 *result = -ENOENT; 2861 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2862 goto again; 2863 } 2864 2865 ret = rbd_obj_read_object(obj_req); 2866 if (ret) { 2867 *result = ret; 2868 return true; 2869 } 2870 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2871 return false; 2872 case RBD_OBJ_READ_OBJECT: 2873 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2874 /* reverse map this object extent onto the parent */ 2875 ret = rbd_obj_calc_img_extents(obj_req, false); 2876 if (ret) { 2877 *result = ret; 2878 return true; 2879 } 2880 if (obj_req->num_img_extents) { 2881 ret = rbd_obj_read_from_parent(obj_req); 2882 if (ret) { 2883 *result = ret; 2884 return true; 2885 } 2886 obj_req->read_state = RBD_OBJ_READ_PARENT; 2887 return false; 2888 } 2889 } 2890 2891 /* 2892 * -ENOENT means a hole in the image -- zero-fill the entire 2893 * length of the request. A short read also implies zero-fill 2894 * to the end of the request. 2895 */ 2896 if (*result == -ENOENT) { 2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2898 *result = 0; 2899 } else if (*result >= 0) { 2900 if (*result < obj_req->ex.oe_len) 2901 rbd_obj_zero_range(obj_req, *result, 2902 obj_req->ex.oe_len - *result); 2903 else 2904 rbd_assert(*result == obj_req->ex.oe_len); 2905 *result = 0; 2906 } 2907 return true; 2908 case RBD_OBJ_READ_PARENT: 2909 /* 2910 * The parent image is read only up to the overlap -- zero-fill 2911 * from the overlap to the end of the request. 2912 */ 2913 if (!*result) { 2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2915 2916 if (obj_overlap < obj_req->ex.oe_len) 2917 rbd_obj_zero_range(obj_req, obj_overlap, 2918 obj_req->ex.oe_len - obj_overlap); 2919 } 2920 return true; 2921 default: 2922 BUG(); 2923 } 2924 } 2925 2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2927 { 2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2929 2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2932 2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2935 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2936 return true; 2937 } 2938 2939 return false; 2940 } 2941 2942 /* 2943 * Return: 2944 * 0 - object map update sent 2945 * 1 - object map update isn't needed 2946 * <0 - error 2947 */ 2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2949 { 2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2951 u8 new_state; 2952 2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2954 return 1; 2955 2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2957 new_state = OBJECT_PENDING; 2958 else 2959 new_state = OBJECT_EXISTS; 2960 2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2962 } 2963 2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2965 { 2966 struct ceph_osd_request *osd_req; 2967 int num_ops = count_write_ops(obj_req); 2968 int which = 0; 2969 int ret; 2970 2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2972 num_ops++; /* stat */ 2973 2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2975 if (IS_ERR(osd_req)) 2976 return PTR_ERR(osd_req); 2977 2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2979 ret = rbd_osd_setup_stat(osd_req, which++); 2980 if (ret) 2981 return ret; 2982 } 2983 2984 rbd_osd_setup_write_ops(osd_req, which); 2985 rbd_osd_format_write(osd_req); 2986 2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2988 if (ret) 2989 return ret; 2990 2991 rbd_osd_submit(osd_req); 2992 return 0; 2993 } 2994 2995 /* 2996 * copyup_bvecs pages are never highmem pages 2997 */ 2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2999 { 3000 struct ceph_bvec_iter it = { 3001 .bvecs = bvecs, 3002 .iter = { .bi_size = bytes }, 3003 }; 3004 3005 ceph_bvec_iter_advance_step(&it, bytes, ({ 3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3007 return false; 3008 })); 3009 return true; 3010 } 3011 3012 #define MODS_ONLY U32_MAX 3013 3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3015 u32 bytes) 3016 { 3017 struct ceph_osd_request *osd_req; 3018 int ret; 3019 3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3022 3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3024 if (IS_ERR(osd_req)) 3025 return PTR_ERR(osd_req); 3026 3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3028 if (ret) 3029 return ret; 3030 3031 rbd_osd_format_write(osd_req); 3032 3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3034 if (ret) 3035 return ret; 3036 3037 rbd_osd_submit(osd_req); 3038 return 0; 3039 } 3040 3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3042 u32 bytes) 3043 { 3044 struct ceph_osd_request *osd_req; 3045 int num_ops = count_write_ops(obj_req); 3046 int which = 0; 3047 int ret; 3048 3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3050 3051 if (bytes != MODS_ONLY) 3052 num_ops++; /* copyup */ 3053 3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3055 if (IS_ERR(osd_req)) 3056 return PTR_ERR(osd_req); 3057 3058 if (bytes != MODS_ONLY) { 3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3060 if (ret) 3061 return ret; 3062 } 3063 3064 rbd_osd_setup_write_ops(osd_req, which); 3065 rbd_osd_format_write(osd_req); 3066 3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3068 if (ret) 3069 return ret; 3070 3071 rbd_osd_submit(osd_req); 3072 return 0; 3073 } 3074 3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3076 { 3077 u32 i; 3078 3079 rbd_assert(!obj_req->copyup_bvecs); 3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3082 sizeof(*obj_req->copyup_bvecs), 3083 GFP_NOIO); 3084 if (!obj_req->copyup_bvecs) 3085 return -ENOMEM; 3086 3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3089 struct page *page = alloc_page(GFP_NOIO); 3090 3091 if (!page) 3092 return -ENOMEM; 3093 3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3095 obj_overlap -= len; 3096 } 3097 3098 rbd_assert(!obj_overlap); 3099 return 0; 3100 } 3101 3102 /* 3103 * The target object doesn't exist. Read the data for the entire 3104 * target object up to the overlap point (if any) from the parent, 3105 * so we can use it for a copyup. 3106 */ 3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3108 { 3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3110 int ret; 3111 3112 rbd_assert(obj_req->num_img_extents); 3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3114 rbd_dev->parent_overlap); 3115 if (!obj_req->num_img_extents) { 3116 /* 3117 * The overlap has become 0 (most likely because the 3118 * image has been flattened). Re-submit the original write 3119 * request -- pass MODS_ONLY since the copyup isn't needed 3120 * anymore. 3121 */ 3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3123 } 3124 3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3126 if (ret) 3127 return ret; 3128 3129 return rbd_obj_read_from_parent(obj_req); 3130 } 3131 3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3133 { 3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3136 u8 new_state; 3137 u32 i; 3138 int ret; 3139 3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3141 3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3143 return; 3144 3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3146 return; 3147 3148 for (i = 0; i < snapc->num_snaps; i++) { 3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3150 i + 1 < snapc->num_snaps) 3151 new_state = OBJECT_EXISTS_CLEAN; 3152 else 3153 new_state = OBJECT_EXISTS; 3154 3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3156 new_state, NULL); 3157 if (ret < 0) { 3158 obj_req->pending.result = ret; 3159 return; 3160 } 3161 3162 rbd_assert(!ret); 3163 obj_req->pending.num_pending++; 3164 } 3165 } 3166 3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3168 { 3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3170 int ret; 3171 3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3173 3174 /* 3175 * Only send non-zero copyup data to save some I/O and network 3176 * bandwidth -- zero copyup data is equivalent to the object not 3177 * existing. 3178 */ 3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3180 bytes = 0; 3181 3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3183 /* 3184 * Send a copyup request with an empty snapshot context to 3185 * deep-copyup the object through all existing snapshots. 3186 * A second request with the current snapshot context will be 3187 * sent for the actual modification. 3188 */ 3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3190 if (ret) { 3191 obj_req->pending.result = ret; 3192 return; 3193 } 3194 3195 obj_req->pending.num_pending++; 3196 bytes = MODS_ONLY; 3197 } 3198 3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3200 if (ret) { 3201 obj_req->pending.result = ret; 3202 return; 3203 } 3204 3205 obj_req->pending.num_pending++; 3206 } 3207 3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3209 { 3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3211 int ret; 3212 3213 again: 3214 switch (obj_req->copyup_state) { 3215 case RBD_OBJ_COPYUP_START: 3216 rbd_assert(!*result); 3217 3218 ret = rbd_obj_copyup_read_parent(obj_req); 3219 if (ret) { 3220 *result = ret; 3221 return true; 3222 } 3223 if (obj_req->num_img_extents) 3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3225 else 3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3227 return false; 3228 case RBD_OBJ_COPYUP_READ_PARENT: 3229 if (*result) 3230 return true; 3231 3232 if (is_zero_bvecs(obj_req->copyup_bvecs, 3233 rbd_obj_img_extents_bytes(obj_req))) { 3234 dout("%s %p detected zeros\n", __func__, obj_req); 3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3236 } 3237 3238 rbd_obj_copyup_object_maps(obj_req); 3239 if (!obj_req->pending.num_pending) { 3240 *result = obj_req->pending.result; 3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 goto again; 3243 } 3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3245 return false; 3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3247 if (!pending_result_dec(&obj_req->pending, result)) 3248 return false; 3249 fallthrough; 3250 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3251 if (*result) { 3252 rbd_warn(rbd_dev, "snap object map update failed: %d", 3253 *result); 3254 return true; 3255 } 3256 3257 rbd_obj_copyup_write_object(obj_req); 3258 if (!obj_req->pending.num_pending) { 3259 *result = obj_req->pending.result; 3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 goto again; 3262 } 3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3264 return false; 3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3266 if (!pending_result_dec(&obj_req->pending, result)) 3267 return false; 3268 fallthrough; 3269 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3270 return true; 3271 default: 3272 BUG(); 3273 } 3274 } 3275 3276 /* 3277 * Return: 3278 * 0 - object map update sent 3279 * 1 - object map update isn't needed 3280 * <0 - error 3281 */ 3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3283 { 3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3285 u8 current_state = OBJECT_PENDING; 3286 3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3288 return 1; 3289 3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3291 return 1; 3292 3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3294 ¤t_state); 3295 } 3296 3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3298 { 3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3300 int ret; 3301 3302 again: 3303 switch (obj_req->write_state) { 3304 case RBD_OBJ_WRITE_START: 3305 rbd_assert(!*result); 3306 3307 rbd_obj_set_copyup_enabled(obj_req); 3308 if (rbd_obj_write_is_noop(obj_req)) 3309 return true; 3310 3311 ret = rbd_obj_write_pre_object_map(obj_req); 3312 if (ret < 0) { 3313 *result = ret; 3314 return true; 3315 } 3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3317 if (ret > 0) 3318 goto again; 3319 return false; 3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3321 if (*result) { 3322 rbd_warn(rbd_dev, "pre object map update failed: %d", 3323 *result); 3324 return true; 3325 } 3326 ret = rbd_obj_write_object(obj_req); 3327 if (ret) { 3328 *result = ret; 3329 return true; 3330 } 3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3332 return false; 3333 case RBD_OBJ_WRITE_OBJECT: 3334 if (*result == -ENOENT) { 3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3336 *result = 0; 3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3339 goto again; 3340 } 3341 /* 3342 * On a non-existent object: 3343 * delete - -ENOENT, truncate/zero - 0 3344 */ 3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3346 *result = 0; 3347 } 3348 if (*result) 3349 return true; 3350 3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3352 goto again; 3353 case __RBD_OBJ_WRITE_COPYUP: 3354 if (!rbd_obj_advance_copyup(obj_req, result)) 3355 return false; 3356 fallthrough; 3357 case RBD_OBJ_WRITE_COPYUP: 3358 if (*result) { 3359 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3360 return true; 3361 } 3362 ret = rbd_obj_write_post_object_map(obj_req); 3363 if (ret < 0) { 3364 *result = ret; 3365 return true; 3366 } 3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3368 if (ret > 0) 3369 goto again; 3370 return false; 3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3372 if (*result) 3373 rbd_warn(rbd_dev, "post object map update failed: %d", 3374 *result); 3375 return true; 3376 default: 3377 BUG(); 3378 } 3379 } 3380 3381 /* 3382 * Return true if @obj_req is completed. 3383 */ 3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3385 int *result) 3386 { 3387 struct rbd_img_request *img_req = obj_req->img_request; 3388 struct rbd_device *rbd_dev = img_req->rbd_dev; 3389 bool done; 3390 3391 mutex_lock(&obj_req->state_mutex); 3392 if (!rbd_img_is_write(img_req)) 3393 done = rbd_obj_advance_read(obj_req, result); 3394 else 3395 done = rbd_obj_advance_write(obj_req, result); 3396 mutex_unlock(&obj_req->state_mutex); 3397 3398 if (done && *result) { 3399 rbd_assert(*result < 0); 3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3403 } 3404 return done; 3405 } 3406 3407 /* 3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3409 * recursion. 3410 */ 3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3412 { 3413 if (__rbd_obj_handle_request(obj_req, &result)) 3414 rbd_img_handle_request(obj_req->img_request, result); 3415 } 3416 3417 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3418 { 3419 struct rbd_device *rbd_dev = img_req->rbd_dev; 3420 3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3422 return false; 3423 3424 if (rbd_is_ro(rbd_dev)) 3425 return false; 3426 3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3428 if (rbd_dev->opts->lock_on_read || 3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3430 return true; 3431 3432 return rbd_img_is_write(img_req); 3433 } 3434 3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3436 { 3437 struct rbd_device *rbd_dev = img_req->rbd_dev; 3438 bool locked; 3439 3440 lockdep_assert_held(&rbd_dev->lock_rwsem); 3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3442 spin_lock(&rbd_dev->lock_lists_lock); 3443 rbd_assert(list_empty(&img_req->lock_item)); 3444 if (!locked) 3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3446 else 3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3448 spin_unlock(&rbd_dev->lock_lists_lock); 3449 return locked; 3450 } 3451 3452 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3453 { 3454 struct rbd_device *rbd_dev = img_req->rbd_dev; 3455 bool need_wakeup = false; 3456 3457 lockdep_assert_held(&rbd_dev->lock_rwsem); 3458 spin_lock(&rbd_dev->lock_lists_lock); 3459 if (!list_empty(&img_req->lock_item)) { 3460 rbd_assert(!list_empty(&rbd_dev->running_list)); 3461 list_del_init(&img_req->lock_item); 3462 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING && 3463 list_empty(&rbd_dev->running_list)); 3464 } 3465 spin_unlock(&rbd_dev->lock_lists_lock); 3466 if (need_wakeup) 3467 complete(&rbd_dev->quiescing_wait); 3468 } 3469 3470 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3471 { 3472 struct rbd_device *rbd_dev = img_req->rbd_dev; 3473 3474 if (!need_exclusive_lock(img_req)) 3475 return 1; 3476 3477 if (rbd_lock_add_request(img_req)) 3478 return 1; 3479 3480 /* 3481 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3482 * and cancel_delayed_work() in wake_lock_waiters(). 3483 */ 3484 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3485 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3486 return 0; 3487 } 3488 3489 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3490 { 3491 struct rbd_device *rbd_dev = img_req->rbd_dev; 3492 struct rbd_obj_request *obj_req; 3493 3494 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3495 rbd_assert(!need_exclusive_lock(img_req) || 3496 __rbd_is_lock_owner(rbd_dev)); 3497 3498 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3499 rbd_assert(!rbd_img_is_write(img_req)); 3500 } else { 3501 struct request *rq = blk_mq_rq_from_pdu(img_req); 3502 u64 off = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3503 u64 len = blk_rq_bytes(rq); 3504 u64 mapping_size; 3505 3506 down_read(&rbd_dev->header_rwsem); 3507 mapping_size = rbd_dev->mapping.size; 3508 if (rbd_img_is_write(img_req)) { 3509 rbd_assert(!img_req->snapc); 3510 img_req->snapc = 3511 ceph_get_snap_context(rbd_dev->header.snapc); 3512 } 3513 up_read(&rbd_dev->header_rwsem); 3514 3515 if (unlikely(off + len > mapping_size)) { 3516 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", 3517 off, len, mapping_size); 3518 img_req->pending.result = -EIO; 3519 return; 3520 } 3521 } 3522 3523 for_each_obj_request(img_req, obj_req) { 3524 int result = 0; 3525 3526 if (__rbd_obj_handle_request(obj_req, &result)) { 3527 if (result) { 3528 img_req->pending.result = result; 3529 return; 3530 } 3531 } else { 3532 img_req->pending.num_pending++; 3533 } 3534 } 3535 } 3536 3537 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3538 { 3539 int ret; 3540 3541 again: 3542 switch (img_req->state) { 3543 case RBD_IMG_START: 3544 rbd_assert(!*result); 3545 3546 ret = rbd_img_exclusive_lock(img_req); 3547 if (ret < 0) { 3548 *result = ret; 3549 return true; 3550 } 3551 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3552 if (ret > 0) 3553 goto again; 3554 return false; 3555 case RBD_IMG_EXCLUSIVE_LOCK: 3556 if (*result) 3557 return true; 3558 3559 rbd_img_object_requests(img_req); 3560 if (!img_req->pending.num_pending) { 3561 *result = img_req->pending.result; 3562 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3563 goto again; 3564 } 3565 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3566 return false; 3567 case __RBD_IMG_OBJECT_REQUESTS: 3568 if (!pending_result_dec(&img_req->pending, result)) 3569 return false; 3570 fallthrough; 3571 case RBD_IMG_OBJECT_REQUESTS: 3572 return true; 3573 default: 3574 BUG(); 3575 } 3576 } 3577 3578 /* 3579 * Return true if @img_req is completed. 3580 */ 3581 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3582 int *result) 3583 { 3584 struct rbd_device *rbd_dev = img_req->rbd_dev; 3585 bool done; 3586 3587 if (need_exclusive_lock(img_req)) { 3588 down_read(&rbd_dev->lock_rwsem); 3589 mutex_lock(&img_req->state_mutex); 3590 done = rbd_img_advance(img_req, result); 3591 if (done) 3592 rbd_lock_del_request(img_req); 3593 mutex_unlock(&img_req->state_mutex); 3594 up_read(&rbd_dev->lock_rwsem); 3595 } else { 3596 mutex_lock(&img_req->state_mutex); 3597 done = rbd_img_advance(img_req, result); 3598 mutex_unlock(&img_req->state_mutex); 3599 } 3600 3601 if (done && *result) { 3602 rbd_assert(*result < 0); 3603 rbd_warn(rbd_dev, "%s%s result %d", 3604 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3605 obj_op_name(img_req->op_type), *result); 3606 } 3607 return done; 3608 } 3609 3610 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3611 { 3612 again: 3613 if (!__rbd_img_handle_request(img_req, &result)) 3614 return; 3615 3616 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3617 struct rbd_obj_request *obj_req = img_req->obj_request; 3618 3619 rbd_img_request_destroy(img_req); 3620 if (__rbd_obj_handle_request(obj_req, &result)) { 3621 img_req = obj_req->img_request; 3622 goto again; 3623 } 3624 } else { 3625 struct request *rq = blk_mq_rq_from_pdu(img_req); 3626 3627 rbd_img_request_destroy(img_req); 3628 blk_mq_end_request(rq, errno_to_blk_status(result)); 3629 } 3630 } 3631 3632 static const struct rbd_client_id rbd_empty_cid; 3633 3634 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3635 const struct rbd_client_id *rhs) 3636 { 3637 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3638 } 3639 3640 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3641 { 3642 struct rbd_client_id cid; 3643 3644 mutex_lock(&rbd_dev->watch_mutex); 3645 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3646 cid.handle = rbd_dev->watch_cookie; 3647 mutex_unlock(&rbd_dev->watch_mutex); 3648 return cid; 3649 } 3650 3651 /* 3652 * lock_rwsem must be held for write 3653 */ 3654 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3655 const struct rbd_client_id *cid) 3656 { 3657 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3658 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3659 cid->gid, cid->handle); 3660 rbd_dev->owner_cid = *cid; /* struct */ 3661 } 3662 3663 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3664 { 3665 mutex_lock(&rbd_dev->watch_mutex); 3666 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3667 mutex_unlock(&rbd_dev->watch_mutex); 3668 } 3669 3670 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3671 { 3672 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3673 3674 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3675 strcpy(rbd_dev->lock_cookie, cookie); 3676 rbd_set_owner_cid(rbd_dev, &cid); 3677 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3678 } 3679 3680 /* 3681 * lock_rwsem must be held for write 3682 */ 3683 static int rbd_lock(struct rbd_device *rbd_dev) 3684 { 3685 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3686 char cookie[32]; 3687 int ret; 3688 3689 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3690 rbd_dev->lock_cookie[0] != '\0'); 3691 3692 format_lock_cookie(rbd_dev, cookie); 3693 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3694 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3695 RBD_LOCK_TAG, "", 0); 3696 if (ret && ret != -EEXIST) 3697 return ret; 3698 3699 __rbd_lock(rbd_dev, cookie); 3700 return 0; 3701 } 3702 3703 /* 3704 * lock_rwsem must be held for write 3705 */ 3706 static void rbd_unlock(struct rbd_device *rbd_dev) 3707 { 3708 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3709 int ret; 3710 3711 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3712 rbd_dev->lock_cookie[0] == '\0'); 3713 3714 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3715 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3716 if (ret && ret != -ENOENT) 3717 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3718 3719 /* treat errors as the image is unlocked */ 3720 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3721 rbd_dev->lock_cookie[0] = '\0'; 3722 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3723 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3724 } 3725 3726 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3727 enum rbd_notify_op notify_op, 3728 struct page ***preply_pages, 3729 size_t *preply_len) 3730 { 3731 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3732 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3733 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3734 int buf_size = sizeof(buf); 3735 void *p = buf; 3736 3737 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3738 3739 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3740 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3741 ceph_encode_32(&p, notify_op); 3742 ceph_encode_64(&p, cid.gid); 3743 ceph_encode_64(&p, cid.handle); 3744 3745 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3746 &rbd_dev->header_oloc, buf, buf_size, 3747 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3748 } 3749 3750 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3751 enum rbd_notify_op notify_op) 3752 { 3753 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3754 } 3755 3756 static void rbd_notify_acquired_lock(struct work_struct *work) 3757 { 3758 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3759 acquired_lock_work); 3760 3761 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3762 } 3763 3764 static void rbd_notify_released_lock(struct work_struct *work) 3765 { 3766 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3767 released_lock_work); 3768 3769 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3770 } 3771 3772 static int rbd_request_lock(struct rbd_device *rbd_dev) 3773 { 3774 struct page **reply_pages; 3775 size_t reply_len; 3776 bool lock_owner_responded = false; 3777 int ret; 3778 3779 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3780 3781 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3782 &reply_pages, &reply_len); 3783 if (ret && ret != -ETIMEDOUT) { 3784 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3785 goto out; 3786 } 3787 3788 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3789 void *p = page_address(reply_pages[0]); 3790 void *const end = p + reply_len; 3791 u32 n; 3792 3793 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3794 while (n--) { 3795 u8 struct_v; 3796 u32 len; 3797 3798 ceph_decode_need(&p, end, 8 + 8, e_inval); 3799 p += 8 + 8; /* skip gid and cookie */ 3800 3801 ceph_decode_32_safe(&p, end, len, e_inval); 3802 if (!len) 3803 continue; 3804 3805 if (lock_owner_responded) { 3806 rbd_warn(rbd_dev, 3807 "duplicate lock owners detected"); 3808 ret = -EIO; 3809 goto out; 3810 } 3811 3812 lock_owner_responded = true; 3813 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3814 &struct_v, &len); 3815 if (ret) { 3816 rbd_warn(rbd_dev, 3817 "failed to decode ResponseMessage: %d", 3818 ret); 3819 goto e_inval; 3820 } 3821 3822 ret = ceph_decode_32(&p); 3823 } 3824 } 3825 3826 if (!lock_owner_responded) { 3827 rbd_warn(rbd_dev, "no lock owners detected"); 3828 ret = -ETIMEDOUT; 3829 } 3830 3831 out: 3832 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3833 return ret; 3834 3835 e_inval: 3836 ret = -EINVAL; 3837 goto out; 3838 } 3839 3840 /* 3841 * Either image request state machine(s) or rbd_add_acquire_lock() 3842 * (i.e. "rbd map"). 3843 */ 3844 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3845 { 3846 struct rbd_img_request *img_req; 3847 3848 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3849 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3850 3851 cancel_delayed_work(&rbd_dev->lock_dwork); 3852 if (!completion_done(&rbd_dev->acquire_wait)) { 3853 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3854 list_empty(&rbd_dev->running_list)); 3855 rbd_dev->acquire_err = result; 3856 complete_all(&rbd_dev->acquire_wait); 3857 return; 3858 } 3859 3860 while (!list_empty(&rbd_dev->acquiring_list)) { 3861 img_req = list_first_entry(&rbd_dev->acquiring_list, 3862 struct rbd_img_request, lock_item); 3863 mutex_lock(&img_req->state_mutex); 3864 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3865 if (!result) 3866 list_move_tail(&img_req->lock_item, 3867 &rbd_dev->running_list); 3868 else 3869 list_del_init(&img_req->lock_item); 3870 rbd_img_schedule(img_req, result); 3871 mutex_unlock(&img_req->state_mutex); 3872 } 3873 } 3874 3875 static bool locker_equal(const struct ceph_locker *lhs, 3876 const struct ceph_locker *rhs) 3877 { 3878 return lhs->id.name.type == rhs->id.name.type && 3879 lhs->id.name.num == rhs->id.name.num && 3880 !strcmp(lhs->id.cookie, rhs->id.cookie) && 3881 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr); 3882 } 3883 3884 static void free_locker(struct ceph_locker *locker) 3885 { 3886 if (locker) 3887 ceph_free_lockers(locker, 1); 3888 } 3889 3890 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev) 3891 { 3892 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3893 struct ceph_locker *lockers; 3894 u32 num_lockers; 3895 u8 lock_type; 3896 char *lock_tag; 3897 u64 handle; 3898 int ret; 3899 3900 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3901 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3902 &lock_type, &lock_tag, &lockers, &num_lockers); 3903 if (ret) { 3904 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret); 3905 return ERR_PTR(ret); 3906 } 3907 3908 if (num_lockers == 0) { 3909 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3910 lockers = NULL; 3911 goto out; 3912 } 3913 3914 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3915 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3916 lock_tag); 3917 goto err_busy; 3918 } 3919 3920 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) { 3921 rbd_warn(rbd_dev, "incompatible lock type detected"); 3922 goto err_busy; 3923 } 3924 3925 WARN_ON(num_lockers != 1); 3926 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", 3927 &handle); 3928 if (ret != 1) { 3929 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3930 lockers[0].id.cookie); 3931 goto err_busy; 3932 } 3933 if (ceph_addr_is_blank(&lockers[0].info.addr)) { 3934 rbd_warn(rbd_dev, "locker has a blank address"); 3935 goto err_busy; 3936 } 3937 3938 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n", 3939 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name), 3940 &lockers[0].info.addr.in_addr, 3941 le32_to_cpu(lockers[0].info.addr.nonce), handle); 3942 3943 out: 3944 kfree(lock_tag); 3945 return lockers; 3946 3947 err_busy: 3948 kfree(lock_tag); 3949 ceph_free_lockers(lockers, num_lockers); 3950 return ERR_PTR(-EBUSY); 3951 } 3952 3953 static int find_watcher(struct rbd_device *rbd_dev, 3954 const struct ceph_locker *locker) 3955 { 3956 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3957 struct ceph_watch_item *watchers; 3958 u32 num_watchers; 3959 u64 cookie; 3960 int i; 3961 int ret; 3962 3963 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3964 &rbd_dev->header_oloc, &watchers, 3965 &num_watchers); 3966 if (ret) { 3967 rbd_warn(rbd_dev, "failed to get watchers: %d", ret); 3968 return ret; 3969 } 3970 3971 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3972 for (i = 0; i < num_watchers; i++) { 3973 /* 3974 * Ignore addr->type while comparing. This mimics 3975 * entity_addr_t::get_legacy_str() + strcmp(). 3976 */ 3977 if (ceph_addr_equal_no_type(&watchers[i].addr, 3978 &locker->info.addr) && 3979 watchers[i].cookie == cookie) { 3980 struct rbd_client_id cid = { 3981 .gid = le64_to_cpu(watchers[i].name.num), 3982 .handle = cookie, 3983 }; 3984 3985 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3986 rbd_dev, cid.gid, cid.handle); 3987 rbd_set_owner_cid(rbd_dev, &cid); 3988 ret = 1; 3989 goto out; 3990 } 3991 } 3992 3993 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3994 ret = 0; 3995 out: 3996 kfree(watchers); 3997 return ret; 3998 } 3999 4000 /* 4001 * lock_rwsem must be held for write 4002 */ 4003 static int rbd_try_lock(struct rbd_device *rbd_dev) 4004 { 4005 struct ceph_client *client = rbd_dev->rbd_client->client; 4006 struct ceph_locker *locker, *refreshed_locker; 4007 int ret; 4008 4009 for (;;) { 4010 locker = refreshed_locker = NULL; 4011 4012 ret = rbd_lock(rbd_dev); 4013 if (!ret) 4014 goto out; 4015 if (ret != -EBUSY) { 4016 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4017 goto out; 4018 } 4019 4020 /* determine if the current lock holder is still alive */ 4021 locker = get_lock_owner_info(rbd_dev); 4022 if (IS_ERR(locker)) { 4023 ret = PTR_ERR(locker); 4024 locker = NULL; 4025 goto out; 4026 } 4027 if (!locker) 4028 goto again; 4029 4030 ret = find_watcher(rbd_dev, locker); 4031 if (ret) 4032 goto out; /* request lock or error */ 4033 4034 refreshed_locker = get_lock_owner_info(rbd_dev); 4035 if (IS_ERR(refreshed_locker)) { 4036 ret = PTR_ERR(refreshed_locker); 4037 refreshed_locker = NULL; 4038 goto out; 4039 } 4040 if (!refreshed_locker || 4041 !locker_equal(locker, refreshed_locker)) 4042 goto again; 4043 4044 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4045 ENTITY_NAME(locker->id.name)); 4046 4047 ret = ceph_monc_blocklist_add(&client->monc, 4048 &locker->info.addr); 4049 if (ret) { 4050 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d", 4051 ENTITY_NAME(locker->id.name), ret); 4052 goto out; 4053 } 4054 4055 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4056 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4057 locker->id.cookie, &locker->id.name); 4058 if (ret && ret != -ENOENT) { 4059 rbd_warn(rbd_dev, "failed to break header lock: %d", 4060 ret); 4061 goto out; 4062 } 4063 4064 again: 4065 free_locker(refreshed_locker); 4066 free_locker(locker); 4067 } 4068 4069 out: 4070 free_locker(refreshed_locker); 4071 free_locker(locker); 4072 return ret; 4073 } 4074 4075 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4076 { 4077 int ret; 4078 4079 ret = rbd_dev_refresh(rbd_dev); 4080 if (ret) 4081 return ret; 4082 4083 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4084 ret = rbd_object_map_open(rbd_dev); 4085 if (ret) 4086 return ret; 4087 } 4088 4089 return 0; 4090 } 4091 4092 /* 4093 * Return: 4094 * 0 - lock acquired 4095 * 1 - caller should call rbd_request_lock() 4096 * <0 - error 4097 */ 4098 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4099 { 4100 int ret; 4101 4102 down_read(&rbd_dev->lock_rwsem); 4103 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4104 rbd_dev->lock_state); 4105 if (__rbd_is_lock_owner(rbd_dev)) { 4106 up_read(&rbd_dev->lock_rwsem); 4107 return 0; 4108 } 4109 4110 up_read(&rbd_dev->lock_rwsem); 4111 down_write(&rbd_dev->lock_rwsem); 4112 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4113 rbd_dev->lock_state); 4114 if (__rbd_is_lock_owner(rbd_dev)) { 4115 up_write(&rbd_dev->lock_rwsem); 4116 return 0; 4117 } 4118 4119 ret = rbd_try_lock(rbd_dev); 4120 if (ret < 0) { 4121 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret); 4122 goto out; 4123 } 4124 if (ret > 0) { 4125 up_write(&rbd_dev->lock_rwsem); 4126 return ret; 4127 } 4128 4129 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4130 rbd_assert(list_empty(&rbd_dev->running_list)); 4131 4132 ret = rbd_post_acquire_action(rbd_dev); 4133 if (ret) { 4134 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4135 /* 4136 * Can't stay in RBD_LOCK_STATE_LOCKED because 4137 * rbd_lock_add_request() would let the request through, 4138 * assuming that e.g. object map is locked and loaded. 4139 */ 4140 rbd_unlock(rbd_dev); 4141 } 4142 4143 out: 4144 wake_lock_waiters(rbd_dev, ret); 4145 up_write(&rbd_dev->lock_rwsem); 4146 return ret; 4147 } 4148 4149 static void rbd_acquire_lock(struct work_struct *work) 4150 { 4151 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4152 struct rbd_device, lock_dwork); 4153 int ret; 4154 4155 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4156 again: 4157 ret = rbd_try_acquire_lock(rbd_dev); 4158 if (ret <= 0) { 4159 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4160 return; 4161 } 4162 4163 ret = rbd_request_lock(rbd_dev); 4164 if (ret == -ETIMEDOUT) { 4165 goto again; /* treat this as a dead client */ 4166 } else if (ret == -EROFS) { 4167 rbd_warn(rbd_dev, "peer will not release lock"); 4168 down_write(&rbd_dev->lock_rwsem); 4169 wake_lock_waiters(rbd_dev, ret); 4170 up_write(&rbd_dev->lock_rwsem); 4171 } else if (ret < 0) { 4172 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4173 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4174 RBD_RETRY_DELAY); 4175 } else { 4176 /* 4177 * lock owner acked, but resend if we don't see them 4178 * release the lock 4179 */ 4180 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4181 rbd_dev); 4182 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4183 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4184 } 4185 } 4186 4187 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4188 { 4189 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4190 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4191 4192 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4193 return false; 4194 4195 /* 4196 * Ensure that all in-flight IO is flushed. 4197 */ 4198 rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING; 4199 rbd_assert(!completion_done(&rbd_dev->quiescing_wait)); 4200 if (list_empty(&rbd_dev->running_list)) 4201 return true; 4202 4203 up_write(&rbd_dev->lock_rwsem); 4204 wait_for_completion(&rbd_dev->quiescing_wait); 4205 4206 down_write(&rbd_dev->lock_rwsem); 4207 if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING) 4208 return false; 4209 4210 rbd_assert(list_empty(&rbd_dev->running_list)); 4211 return true; 4212 } 4213 4214 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4215 { 4216 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4217 rbd_object_map_close(rbd_dev); 4218 } 4219 4220 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4221 { 4222 rbd_assert(list_empty(&rbd_dev->running_list)); 4223 4224 rbd_pre_release_action(rbd_dev); 4225 rbd_unlock(rbd_dev); 4226 } 4227 4228 /* 4229 * lock_rwsem must be held for write 4230 */ 4231 static void rbd_release_lock(struct rbd_device *rbd_dev) 4232 { 4233 if (!rbd_quiesce_lock(rbd_dev)) 4234 return; 4235 4236 __rbd_release_lock(rbd_dev); 4237 4238 /* 4239 * Give others a chance to grab the lock - we would re-acquire 4240 * almost immediately if we got new IO while draining the running 4241 * list otherwise. We need to ack our own notifications, so this 4242 * lock_dwork will be requeued from rbd_handle_released_lock() by 4243 * way of maybe_kick_acquire(). 4244 */ 4245 cancel_delayed_work(&rbd_dev->lock_dwork); 4246 } 4247 4248 static void rbd_release_lock_work(struct work_struct *work) 4249 { 4250 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4251 unlock_work); 4252 4253 down_write(&rbd_dev->lock_rwsem); 4254 rbd_release_lock(rbd_dev); 4255 up_write(&rbd_dev->lock_rwsem); 4256 } 4257 4258 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4259 { 4260 bool have_requests; 4261 4262 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4263 if (__rbd_is_lock_owner(rbd_dev)) 4264 return; 4265 4266 spin_lock(&rbd_dev->lock_lists_lock); 4267 have_requests = !list_empty(&rbd_dev->acquiring_list); 4268 spin_unlock(&rbd_dev->lock_lists_lock); 4269 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4270 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4271 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4272 } 4273 } 4274 4275 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4276 void **p) 4277 { 4278 struct rbd_client_id cid = { 0 }; 4279 4280 if (struct_v >= 2) { 4281 cid.gid = ceph_decode_64(p); 4282 cid.handle = ceph_decode_64(p); 4283 } 4284 4285 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4286 cid.handle); 4287 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4288 down_write(&rbd_dev->lock_rwsem); 4289 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4290 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4291 __func__, rbd_dev, cid.gid, cid.handle); 4292 } else { 4293 rbd_set_owner_cid(rbd_dev, &cid); 4294 } 4295 downgrade_write(&rbd_dev->lock_rwsem); 4296 } else { 4297 down_read(&rbd_dev->lock_rwsem); 4298 } 4299 4300 maybe_kick_acquire(rbd_dev); 4301 up_read(&rbd_dev->lock_rwsem); 4302 } 4303 4304 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4305 void **p) 4306 { 4307 struct rbd_client_id cid = { 0 }; 4308 4309 if (struct_v >= 2) { 4310 cid.gid = ceph_decode_64(p); 4311 cid.handle = ceph_decode_64(p); 4312 } 4313 4314 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4315 cid.handle); 4316 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4317 down_write(&rbd_dev->lock_rwsem); 4318 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4319 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4320 __func__, rbd_dev, cid.gid, cid.handle, 4321 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4322 } else { 4323 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4324 } 4325 downgrade_write(&rbd_dev->lock_rwsem); 4326 } else { 4327 down_read(&rbd_dev->lock_rwsem); 4328 } 4329 4330 maybe_kick_acquire(rbd_dev); 4331 up_read(&rbd_dev->lock_rwsem); 4332 } 4333 4334 /* 4335 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4336 * ResponseMessage is needed. 4337 */ 4338 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4339 void **p) 4340 { 4341 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4342 struct rbd_client_id cid = { 0 }; 4343 int result = 1; 4344 4345 if (struct_v >= 2) { 4346 cid.gid = ceph_decode_64(p); 4347 cid.handle = ceph_decode_64(p); 4348 } 4349 4350 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4351 cid.handle); 4352 if (rbd_cid_equal(&cid, &my_cid)) 4353 return result; 4354 4355 down_read(&rbd_dev->lock_rwsem); 4356 if (__rbd_is_lock_owner(rbd_dev)) { 4357 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4358 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4359 goto out_unlock; 4360 4361 /* 4362 * encode ResponseMessage(0) so the peer can detect 4363 * a missing owner 4364 */ 4365 result = 0; 4366 4367 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4368 if (!rbd_dev->opts->exclusive) { 4369 dout("%s rbd_dev %p queueing unlock_work\n", 4370 __func__, rbd_dev); 4371 queue_work(rbd_dev->task_wq, 4372 &rbd_dev->unlock_work); 4373 } else { 4374 /* refuse to release the lock */ 4375 result = -EROFS; 4376 } 4377 } 4378 } 4379 4380 out_unlock: 4381 up_read(&rbd_dev->lock_rwsem); 4382 return result; 4383 } 4384 4385 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4386 u64 notify_id, u64 cookie, s32 *result) 4387 { 4388 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4389 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4390 int buf_size = sizeof(buf); 4391 int ret; 4392 4393 if (result) { 4394 void *p = buf; 4395 4396 /* encode ResponseMessage */ 4397 ceph_start_encoding(&p, 1, 1, 4398 buf_size - CEPH_ENCODING_START_BLK_LEN); 4399 ceph_encode_32(&p, *result); 4400 } else { 4401 buf_size = 0; 4402 } 4403 4404 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4405 &rbd_dev->header_oloc, notify_id, cookie, 4406 buf, buf_size); 4407 if (ret) 4408 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4409 } 4410 4411 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4412 u64 cookie) 4413 { 4414 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4415 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4416 } 4417 4418 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4419 u64 notify_id, u64 cookie, s32 result) 4420 { 4421 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4422 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4423 } 4424 4425 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4426 u64 notifier_id, void *data, size_t data_len) 4427 { 4428 struct rbd_device *rbd_dev = arg; 4429 void *p = data; 4430 void *const end = p + data_len; 4431 u8 struct_v = 0; 4432 u32 len; 4433 u32 notify_op; 4434 int ret; 4435 4436 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4437 __func__, rbd_dev, cookie, notify_id, data_len); 4438 if (data_len) { 4439 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4440 &struct_v, &len); 4441 if (ret) { 4442 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4443 ret); 4444 return; 4445 } 4446 4447 notify_op = ceph_decode_32(&p); 4448 } else { 4449 /* legacy notification for header updates */ 4450 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4451 len = 0; 4452 } 4453 4454 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4455 switch (notify_op) { 4456 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4457 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4458 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4459 break; 4460 case RBD_NOTIFY_OP_RELEASED_LOCK: 4461 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4462 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4463 break; 4464 case RBD_NOTIFY_OP_REQUEST_LOCK: 4465 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4466 if (ret <= 0) 4467 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4468 cookie, ret); 4469 else 4470 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4471 break; 4472 case RBD_NOTIFY_OP_HEADER_UPDATE: 4473 ret = rbd_dev_refresh(rbd_dev); 4474 if (ret) 4475 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4476 4477 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4478 break; 4479 default: 4480 if (rbd_is_lock_owner(rbd_dev)) 4481 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4482 cookie, -EOPNOTSUPP); 4483 else 4484 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4485 break; 4486 } 4487 } 4488 4489 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4490 4491 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4492 { 4493 struct rbd_device *rbd_dev = arg; 4494 4495 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4496 4497 down_write(&rbd_dev->lock_rwsem); 4498 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4499 up_write(&rbd_dev->lock_rwsem); 4500 4501 mutex_lock(&rbd_dev->watch_mutex); 4502 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4503 __rbd_unregister_watch(rbd_dev); 4504 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4505 4506 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4507 } 4508 mutex_unlock(&rbd_dev->watch_mutex); 4509 } 4510 4511 /* 4512 * watch_mutex must be locked 4513 */ 4514 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4515 { 4516 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4517 struct ceph_osd_linger_request *handle; 4518 4519 rbd_assert(!rbd_dev->watch_handle); 4520 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4521 4522 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4523 &rbd_dev->header_oloc, rbd_watch_cb, 4524 rbd_watch_errcb, rbd_dev); 4525 if (IS_ERR(handle)) 4526 return PTR_ERR(handle); 4527 4528 rbd_dev->watch_handle = handle; 4529 return 0; 4530 } 4531 4532 /* 4533 * watch_mutex must be locked 4534 */ 4535 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4536 { 4537 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4538 int ret; 4539 4540 rbd_assert(rbd_dev->watch_handle); 4541 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4542 4543 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4544 if (ret) 4545 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4546 4547 rbd_dev->watch_handle = NULL; 4548 } 4549 4550 static int rbd_register_watch(struct rbd_device *rbd_dev) 4551 { 4552 int ret; 4553 4554 mutex_lock(&rbd_dev->watch_mutex); 4555 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4556 ret = __rbd_register_watch(rbd_dev); 4557 if (ret) 4558 goto out; 4559 4560 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4561 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4562 4563 out: 4564 mutex_unlock(&rbd_dev->watch_mutex); 4565 return ret; 4566 } 4567 4568 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4569 { 4570 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4571 4572 cancel_work_sync(&rbd_dev->acquired_lock_work); 4573 cancel_work_sync(&rbd_dev->released_lock_work); 4574 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4575 cancel_work_sync(&rbd_dev->unlock_work); 4576 } 4577 4578 /* 4579 * header_rwsem must not be held to avoid a deadlock with 4580 * rbd_dev_refresh() when flushing notifies. 4581 */ 4582 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4583 { 4584 cancel_tasks_sync(rbd_dev); 4585 4586 mutex_lock(&rbd_dev->watch_mutex); 4587 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4588 __rbd_unregister_watch(rbd_dev); 4589 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4590 mutex_unlock(&rbd_dev->watch_mutex); 4591 4592 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4593 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4594 } 4595 4596 /* 4597 * lock_rwsem must be held for write 4598 */ 4599 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4600 { 4601 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4602 char cookie[32]; 4603 int ret; 4604 4605 if (!rbd_quiesce_lock(rbd_dev)) 4606 return; 4607 4608 format_lock_cookie(rbd_dev, cookie); 4609 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4610 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4611 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4612 RBD_LOCK_TAG, cookie); 4613 if (ret) { 4614 if (ret != -EOPNOTSUPP) 4615 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4616 ret); 4617 4618 if (rbd_dev->opts->exclusive) 4619 rbd_warn(rbd_dev, 4620 "temporarily releasing lock on exclusive mapping"); 4621 4622 /* 4623 * Lock cookie cannot be updated on older OSDs, so do 4624 * a manual release and queue an acquire. 4625 */ 4626 __rbd_release_lock(rbd_dev); 4627 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4628 } else { 4629 __rbd_lock(rbd_dev, cookie); 4630 wake_lock_waiters(rbd_dev, 0); 4631 } 4632 } 4633 4634 static void rbd_reregister_watch(struct work_struct *work) 4635 { 4636 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4637 struct rbd_device, watch_dwork); 4638 int ret; 4639 4640 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4641 4642 mutex_lock(&rbd_dev->watch_mutex); 4643 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4644 mutex_unlock(&rbd_dev->watch_mutex); 4645 return; 4646 } 4647 4648 ret = __rbd_register_watch(rbd_dev); 4649 if (ret) { 4650 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4651 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4652 queue_delayed_work(rbd_dev->task_wq, 4653 &rbd_dev->watch_dwork, 4654 RBD_RETRY_DELAY); 4655 mutex_unlock(&rbd_dev->watch_mutex); 4656 return; 4657 } 4658 4659 mutex_unlock(&rbd_dev->watch_mutex); 4660 down_write(&rbd_dev->lock_rwsem); 4661 wake_lock_waiters(rbd_dev, ret); 4662 up_write(&rbd_dev->lock_rwsem); 4663 return; 4664 } 4665 4666 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4667 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4668 mutex_unlock(&rbd_dev->watch_mutex); 4669 4670 down_write(&rbd_dev->lock_rwsem); 4671 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4672 rbd_reacquire_lock(rbd_dev); 4673 up_write(&rbd_dev->lock_rwsem); 4674 4675 ret = rbd_dev_refresh(rbd_dev); 4676 if (ret) 4677 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4678 } 4679 4680 /* 4681 * Synchronous osd object method call. Returns the number of bytes 4682 * returned in the outbound buffer, or a negative error code. 4683 */ 4684 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4685 struct ceph_object_id *oid, 4686 struct ceph_object_locator *oloc, 4687 const char *method_name, 4688 const void *outbound, 4689 size_t outbound_size, 4690 void *inbound, 4691 size_t inbound_size) 4692 { 4693 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4694 struct page *req_page = NULL; 4695 struct page *reply_page; 4696 int ret; 4697 4698 /* 4699 * Method calls are ultimately read operations. The result 4700 * should placed into the inbound buffer provided. They 4701 * also supply outbound data--parameters for the object 4702 * method. Currently if this is present it will be a 4703 * snapshot id. 4704 */ 4705 if (outbound) { 4706 if (outbound_size > PAGE_SIZE) 4707 return -E2BIG; 4708 4709 req_page = alloc_page(GFP_KERNEL); 4710 if (!req_page) 4711 return -ENOMEM; 4712 4713 memcpy(page_address(req_page), outbound, outbound_size); 4714 } 4715 4716 reply_page = alloc_page(GFP_KERNEL); 4717 if (!reply_page) { 4718 if (req_page) 4719 __free_page(req_page); 4720 return -ENOMEM; 4721 } 4722 4723 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4724 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4725 &reply_page, &inbound_size); 4726 if (!ret) { 4727 memcpy(inbound, page_address(reply_page), inbound_size); 4728 ret = inbound_size; 4729 } 4730 4731 if (req_page) 4732 __free_page(req_page); 4733 __free_page(reply_page); 4734 return ret; 4735 } 4736 4737 static void rbd_queue_workfn(struct work_struct *work) 4738 { 4739 struct rbd_img_request *img_request = 4740 container_of(work, struct rbd_img_request, work); 4741 struct rbd_device *rbd_dev = img_request->rbd_dev; 4742 enum obj_operation_type op_type = img_request->op_type; 4743 struct request *rq = blk_mq_rq_from_pdu(img_request); 4744 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4745 u64 length = blk_rq_bytes(rq); 4746 int result; 4747 4748 /* Ignore/skip any zero-length requests */ 4749 if (!length) { 4750 dout("%s: zero-length request\n", __func__); 4751 result = 0; 4752 goto err_img_request; 4753 } 4754 4755 blk_mq_start_request(rq); 4756 4757 down_read(&rbd_dev->header_rwsem); 4758 rbd_img_capture_header(img_request); 4759 up_read(&rbd_dev->header_rwsem); 4760 4761 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4762 img_request, obj_op_name(op_type), offset, length); 4763 4764 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4765 result = rbd_img_fill_nodata(img_request, offset, length); 4766 else 4767 result = rbd_img_fill_from_bio(img_request, offset, length, 4768 rq->bio); 4769 if (result) 4770 goto err_img_request; 4771 4772 rbd_img_handle_request(img_request, 0); 4773 return; 4774 4775 err_img_request: 4776 rbd_img_request_destroy(img_request); 4777 if (result) 4778 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4779 obj_op_name(op_type), length, offset, result); 4780 blk_mq_end_request(rq, errno_to_blk_status(result)); 4781 } 4782 4783 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4784 const struct blk_mq_queue_data *bd) 4785 { 4786 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4787 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4788 enum obj_operation_type op_type; 4789 4790 switch (req_op(bd->rq)) { 4791 case REQ_OP_DISCARD: 4792 op_type = OBJ_OP_DISCARD; 4793 break; 4794 case REQ_OP_WRITE_ZEROES: 4795 op_type = OBJ_OP_ZEROOUT; 4796 break; 4797 case REQ_OP_WRITE: 4798 op_type = OBJ_OP_WRITE; 4799 break; 4800 case REQ_OP_READ: 4801 op_type = OBJ_OP_READ; 4802 break; 4803 default: 4804 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4805 return BLK_STS_IOERR; 4806 } 4807 4808 rbd_img_request_init(img_req, rbd_dev, op_type); 4809 4810 if (rbd_img_is_write(img_req)) { 4811 if (rbd_is_ro(rbd_dev)) { 4812 rbd_warn(rbd_dev, "%s on read-only mapping", 4813 obj_op_name(img_req->op_type)); 4814 return BLK_STS_IOERR; 4815 } 4816 rbd_assert(!rbd_is_snap(rbd_dev)); 4817 } 4818 4819 INIT_WORK(&img_req->work, rbd_queue_workfn); 4820 queue_work(rbd_wq, &img_req->work); 4821 return BLK_STS_OK; 4822 } 4823 4824 static void rbd_free_disk(struct rbd_device *rbd_dev) 4825 { 4826 put_disk(rbd_dev->disk); 4827 blk_mq_free_tag_set(&rbd_dev->tag_set); 4828 rbd_dev->disk = NULL; 4829 } 4830 4831 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4832 struct ceph_object_id *oid, 4833 struct ceph_object_locator *oloc, 4834 void *buf, int buf_len) 4835 4836 { 4837 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4838 struct ceph_osd_request *req; 4839 struct page **pages; 4840 int num_pages = calc_pages_for(0, buf_len); 4841 int ret; 4842 4843 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4844 if (!req) 4845 return -ENOMEM; 4846 4847 ceph_oid_copy(&req->r_base_oid, oid); 4848 ceph_oloc_copy(&req->r_base_oloc, oloc); 4849 req->r_flags = CEPH_OSD_FLAG_READ; 4850 4851 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4852 if (IS_ERR(pages)) { 4853 ret = PTR_ERR(pages); 4854 goto out_req; 4855 } 4856 4857 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4858 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4859 true); 4860 4861 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4862 if (ret) 4863 goto out_req; 4864 4865 ceph_osdc_start_request(osdc, req); 4866 ret = ceph_osdc_wait_request(osdc, req); 4867 if (ret >= 0) 4868 ceph_copy_from_page_vector(pages, buf, 0, ret); 4869 4870 out_req: 4871 ceph_osdc_put_request(req); 4872 return ret; 4873 } 4874 4875 /* 4876 * Read the complete header for the given rbd device. On successful 4877 * return, the rbd_dev->header field will contain up-to-date 4878 * information about the image. 4879 */ 4880 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev, 4881 struct rbd_image_header *header, 4882 bool first_time) 4883 { 4884 struct rbd_image_header_ondisk *ondisk = NULL; 4885 u32 snap_count = 0; 4886 u64 names_size = 0; 4887 u32 want_count; 4888 int ret; 4889 4890 /* 4891 * The complete header will include an array of its 64-bit 4892 * snapshot ids, followed by the names of those snapshots as 4893 * a contiguous block of NUL-terminated strings. Note that 4894 * the number of snapshots could change by the time we read 4895 * it in, in which case we re-read it. 4896 */ 4897 do { 4898 size_t size; 4899 4900 kfree(ondisk); 4901 4902 size = sizeof (*ondisk); 4903 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4904 size += names_size; 4905 ondisk = kmalloc(size, GFP_KERNEL); 4906 if (!ondisk) 4907 return -ENOMEM; 4908 4909 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4910 &rbd_dev->header_oloc, ondisk, size); 4911 if (ret < 0) 4912 goto out; 4913 if ((size_t)ret < size) { 4914 ret = -ENXIO; 4915 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4916 size, ret); 4917 goto out; 4918 } 4919 if (!rbd_dev_ondisk_valid(ondisk)) { 4920 ret = -ENXIO; 4921 rbd_warn(rbd_dev, "invalid header"); 4922 goto out; 4923 } 4924 4925 names_size = le64_to_cpu(ondisk->snap_names_len); 4926 want_count = snap_count; 4927 snap_count = le32_to_cpu(ondisk->snap_count); 4928 } while (snap_count != want_count); 4929 4930 ret = rbd_header_from_disk(header, ondisk, first_time); 4931 out: 4932 kfree(ondisk); 4933 4934 return ret; 4935 } 4936 4937 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4938 { 4939 sector_t size; 4940 4941 /* 4942 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4943 * try to update its size. If REMOVING is set, updating size 4944 * is just useless work since the device can't be opened. 4945 */ 4946 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4947 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4948 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4949 dout("setting size to %llu sectors", (unsigned long long)size); 4950 set_capacity_and_notify(rbd_dev->disk, size); 4951 } 4952 } 4953 4954 static const struct blk_mq_ops rbd_mq_ops = { 4955 .queue_rq = rbd_queue_rq, 4956 }; 4957 4958 static int rbd_init_disk(struct rbd_device *rbd_dev) 4959 { 4960 struct gendisk *disk; 4961 unsigned int objset_bytes = 4962 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4963 struct queue_limits lim = { 4964 .max_hw_sectors = objset_bytes >> SECTOR_SHIFT, 4965 .io_opt = objset_bytes, 4966 .io_min = rbd_dev->opts->alloc_size, 4967 .max_segments = USHRT_MAX, 4968 .max_segment_size = UINT_MAX, 4969 }; 4970 int err; 4971 4972 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4973 rbd_dev->tag_set.ops = &rbd_mq_ops; 4974 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4975 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4976 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4977 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4978 4979 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4980 if (err) 4981 return err; 4982 4983 if (rbd_dev->opts->trim) { 4984 lim.discard_granularity = rbd_dev->opts->alloc_size; 4985 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT; 4986 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT; 4987 } 4988 4989 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4990 lim.features |= BLK_FEAT_STABLE_WRITES; 4991 4992 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev); 4993 if (IS_ERR(disk)) { 4994 err = PTR_ERR(disk); 4995 goto out_tag_set; 4996 } 4997 4998 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4999 rbd_dev->dev_id); 5000 disk->major = rbd_dev->major; 5001 disk->first_minor = rbd_dev->minor; 5002 if (single_major) 5003 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 5004 else 5005 disk->minors = RBD_MINORS_PER_MAJOR; 5006 disk->fops = &rbd_bd_ops; 5007 disk->private_data = rbd_dev; 5008 rbd_dev->disk = disk; 5009 5010 return 0; 5011 out_tag_set: 5012 blk_mq_free_tag_set(&rbd_dev->tag_set); 5013 return err; 5014 } 5015 5016 /* 5017 sysfs 5018 */ 5019 5020 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5021 { 5022 return container_of(dev, struct rbd_device, dev); 5023 } 5024 5025 static ssize_t rbd_size_show(struct device *dev, 5026 struct device_attribute *attr, char *buf) 5027 { 5028 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5029 5030 return sprintf(buf, "%llu\n", 5031 (unsigned long long)rbd_dev->mapping.size); 5032 } 5033 5034 static ssize_t rbd_features_show(struct device *dev, 5035 struct device_attribute *attr, char *buf) 5036 { 5037 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5038 5039 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5040 } 5041 5042 static ssize_t rbd_major_show(struct device *dev, 5043 struct device_attribute *attr, char *buf) 5044 { 5045 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5046 5047 if (rbd_dev->major) 5048 return sprintf(buf, "%d\n", rbd_dev->major); 5049 5050 return sprintf(buf, "(none)\n"); 5051 } 5052 5053 static ssize_t rbd_minor_show(struct device *dev, 5054 struct device_attribute *attr, char *buf) 5055 { 5056 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5057 5058 return sprintf(buf, "%d\n", rbd_dev->minor); 5059 } 5060 5061 static ssize_t rbd_client_addr_show(struct device *dev, 5062 struct device_attribute *attr, char *buf) 5063 { 5064 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5065 struct ceph_entity_addr *client_addr = 5066 ceph_client_addr(rbd_dev->rbd_client->client); 5067 5068 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5069 le32_to_cpu(client_addr->nonce)); 5070 } 5071 5072 static ssize_t rbd_client_id_show(struct device *dev, 5073 struct device_attribute *attr, char *buf) 5074 { 5075 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5076 5077 return sprintf(buf, "client%lld\n", 5078 ceph_client_gid(rbd_dev->rbd_client->client)); 5079 } 5080 5081 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5082 struct device_attribute *attr, char *buf) 5083 { 5084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5085 5086 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5087 } 5088 5089 static ssize_t rbd_config_info_show(struct device *dev, 5090 struct device_attribute *attr, char *buf) 5091 { 5092 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5093 5094 if (!capable(CAP_SYS_ADMIN)) 5095 return -EPERM; 5096 5097 return sprintf(buf, "%s\n", rbd_dev->config_info); 5098 } 5099 5100 static ssize_t rbd_pool_show(struct device *dev, 5101 struct device_attribute *attr, char *buf) 5102 { 5103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5104 5105 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5106 } 5107 5108 static ssize_t rbd_pool_id_show(struct device *dev, 5109 struct device_attribute *attr, char *buf) 5110 { 5111 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5112 5113 return sprintf(buf, "%llu\n", 5114 (unsigned long long) rbd_dev->spec->pool_id); 5115 } 5116 5117 static ssize_t rbd_pool_ns_show(struct device *dev, 5118 struct device_attribute *attr, char *buf) 5119 { 5120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5121 5122 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5123 } 5124 5125 static ssize_t rbd_name_show(struct device *dev, 5126 struct device_attribute *attr, char *buf) 5127 { 5128 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5129 5130 if (rbd_dev->spec->image_name) 5131 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5132 5133 return sprintf(buf, "(unknown)\n"); 5134 } 5135 5136 static ssize_t rbd_image_id_show(struct device *dev, 5137 struct device_attribute *attr, char *buf) 5138 { 5139 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5140 5141 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5142 } 5143 5144 /* 5145 * Shows the name of the currently-mapped snapshot (or 5146 * RBD_SNAP_HEAD_NAME for the base image). 5147 */ 5148 static ssize_t rbd_snap_show(struct device *dev, 5149 struct device_attribute *attr, 5150 char *buf) 5151 { 5152 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5153 5154 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5155 } 5156 5157 static ssize_t rbd_snap_id_show(struct device *dev, 5158 struct device_attribute *attr, char *buf) 5159 { 5160 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5161 5162 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5163 } 5164 5165 /* 5166 * For a v2 image, shows the chain of parent images, separated by empty 5167 * lines. For v1 images or if there is no parent, shows "(no parent 5168 * image)". 5169 */ 5170 static ssize_t rbd_parent_show(struct device *dev, 5171 struct device_attribute *attr, 5172 char *buf) 5173 { 5174 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5175 ssize_t count = 0; 5176 5177 if (!rbd_dev->parent) 5178 return sprintf(buf, "(no parent image)\n"); 5179 5180 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5181 struct rbd_spec *spec = rbd_dev->parent_spec; 5182 5183 count += sprintf(&buf[count], "%s" 5184 "pool_id %llu\npool_name %s\n" 5185 "pool_ns %s\n" 5186 "image_id %s\nimage_name %s\n" 5187 "snap_id %llu\nsnap_name %s\n" 5188 "overlap %llu\n", 5189 !count ? "" : "\n", /* first? */ 5190 spec->pool_id, spec->pool_name, 5191 spec->pool_ns ?: "", 5192 spec->image_id, spec->image_name ?: "(unknown)", 5193 spec->snap_id, spec->snap_name, 5194 rbd_dev->parent_overlap); 5195 } 5196 5197 return count; 5198 } 5199 5200 static ssize_t rbd_image_refresh(struct device *dev, 5201 struct device_attribute *attr, 5202 const char *buf, 5203 size_t size) 5204 { 5205 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5206 int ret; 5207 5208 if (!capable(CAP_SYS_ADMIN)) 5209 return -EPERM; 5210 5211 ret = rbd_dev_refresh(rbd_dev); 5212 if (ret) 5213 return ret; 5214 5215 return size; 5216 } 5217 5218 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5219 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5220 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5221 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5222 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5223 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5224 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5225 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5226 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5227 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5228 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5229 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5230 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5231 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5232 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5233 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5234 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5235 5236 static struct attribute *rbd_attrs[] = { 5237 &dev_attr_size.attr, 5238 &dev_attr_features.attr, 5239 &dev_attr_major.attr, 5240 &dev_attr_minor.attr, 5241 &dev_attr_client_addr.attr, 5242 &dev_attr_client_id.attr, 5243 &dev_attr_cluster_fsid.attr, 5244 &dev_attr_config_info.attr, 5245 &dev_attr_pool.attr, 5246 &dev_attr_pool_id.attr, 5247 &dev_attr_pool_ns.attr, 5248 &dev_attr_name.attr, 5249 &dev_attr_image_id.attr, 5250 &dev_attr_current_snap.attr, 5251 &dev_attr_snap_id.attr, 5252 &dev_attr_parent.attr, 5253 &dev_attr_refresh.attr, 5254 NULL 5255 }; 5256 5257 static struct attribute_group rbd_attr_group = { 5258 .attrs = rbd_attrs, 5259 }; 5260 5261 static const struct attribute_group *rbd_attr_groups[] = { 5262 &rbd_attr_group, 5263 NULL 5264 }; 5265 5266 static void rbd_dev_release(struct device *dev); 5267 5268 static const struct device_type rbd_device_type = { 5269 .name = "rbd", 5270 .groups = rbd_attr_groups, 5271 .release = rbd_dev_release, 5272 }; 5273 5274 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5275 { 5276 kref_get(&spec->kref); 5277 5278 return spec; 5279 } 5280 5281 static void rbd_spec_free(struct kref *kref); 5282 static void rbd_spec_put(struct rbd_spec *spec) 5283 { 5284 if (spec) 5285 kref_put(&spec->kref, rbd_spec_free); 5286 } 5287 5288 static struct rbd_spec *rbd_spec_alloc(void) 5289 { 5290 struct rbd_spec *spec; 5291 5292 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5293 if (!spec) 5294 return NULL; 5295 5296 spec->pool_id = CEPH_NOPOOL; 5297 spec->snap_id = CEPH_NOSNAP; 5298 kref_init(&spec->kref); 5299 5300 return spec; 5301 } 5302 5303 static void rbd_spec_free(struct kref *kref) 5304 { 5305 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5306 5307 kfree(spec->pool_name); 5308 kfree(spec->pool_ns); 5309 kfree(spec->image_id); 5310 kfree(spec->image_name); 5311 kfree(spec->snap_name); 5312 kfree(spec); 5313 } 5314 5315 static void rbd_dev_free(struct rbd_device *rbd_dev) 5316 { 5317 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5318 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5319 5320 ceph_oid_destroy(&rbd_dev->header_oid); 5321 ceph_oloc_destroy(&rbd_dev->header_oloc); 5322 kfree(rbd_dev->config_info); 5323 5324 rbd_put_client(rbd_dev->rbd_client); 5325 rbd_spec_put(rbd_dev->spec); 5326 kfree(rbd_dev->opts); 5327 kfree(rbd_dev); 5328 } 5329 5330 static void rbd_dev_release(struct device *dev) 5331 { 5332 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5333 bool need_put = !!rbd_dev->opts; 5334 5335 if (need_put) { 5336 destroy_workqueue(rbd_dev->task_wq); 5337 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5338 } 5339 5340 rbd_dev_free(rbd_dev); 5341 5342 /* 5343 * This is racy, but way better than putting module outside of 5344 * the release callback. The race window is pretty small, so 5345 * doing something similar to dm (dm-builtin.c) is overkill. 5346 */ 5347 if (need_put) 5348 module_put(THIS_MODULE); 5349 } 5350 5351 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5352 { 5353 struct rbd_device *rbd_dev; 5354 5355 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5356 if (!rbd_dev) 5357 return NULL; 5358 5359 spin_lock_init(&rbd_dev->lock); 5360 INIT_LIST_HEAD(&rbd_dev->node); 5361 init_rwsem(&rbd_dev->header_rwsem); 5362 5363 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5364 ceph_oid_init(&rbd_dev->header_oid); 5365 rbd_dev->header_oloc.pool = spec->pool_id; 5366 if (spec->pool_ns) { 5367 WARN_ON(!*spec->pool_ns); 5368 rbd_dev->header_oloc.pool_ns = 5369 ceph_find_or_create_string(spec->pool_ns, 5370 strlen(spec->pool_ns)); 5371 } 5372 5373 mutex_init(&rbd_dev->watch_mutex); 5374 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5375 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5376 5377 init_rwsem(&rbd_dev->lock_rwsem); 5378 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5379 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5380 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5381 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5382 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5383 spin_lock_init(&rbd_dev->lock_lists_lock); 5384 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5385 INIT_LIST_HEAD(&rbd_dev->running_list); 5386 init_completion(&rbd_dev->acquire_wait); 5387 init_completion(&rbd_dev->quiescing_wait); 5388 5389 spin_lock_init(&rbd_dev->object_map_lock); 5390 5391 rbd_dev->dev.bus = &rbd_bus_type; 5392 rbd_dev->dev.type = &rbd_device_type; 5393 rbd_dev->dev.parent = &rbd_root_dev; 5394 device_initialize(&rbd_dev->dev); 5395 5396 return rbd_dev; 5397 } 5398 5399 /* 5400 * Create a mapping rbd_dev. 5401 */ 5402 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5403 struct rbd_spec *spec, 5404 struct rbd_options *opts) 5405 { 5406 struct rbd_device *rbd_dev; 5407 5408 rbd_dev = __rbd_dev_create(spec); 5409 if (!rbd_dev) 5410 return NULL; 5411 5412 /* get an id and fill in device name */ 5413 rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida, 5414 minor_to_rbd_dev_id(1 << MINORBITS) - 1, 5415 GFP_KERNEL); 5416 if (rbd_dev->dev_id < 0) 5417 goto fail_rbd_dev; 5418 5419 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5420 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5421 rbd_dev->name); 5422 if (!rbd_dev->task_wq) 5423 goto fail_dev_id; 5424 5425 /* we have a ref from do_rbd_add() */ 5426 __module_get(THIS_MODULE); 5427 5428 rbd_dev->rbd_client = rbdc; 5429 rbd_dev->spec = spec; 5430 rbd_dev->opts = opts; 5431 5432 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5433 return rbd_dev; 5434 5435 fail_dev_id: 5436 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5437 fail_rbd_dev: 5438 rbd_dev_free(rbd_dev); 5439 return NULL; 5440 } 5441 5442 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5443 { 5444 if (rbd_dev) 5445 put_device(&rbd_dev->dev); 5446 } 5447 5448 /* 5449 * Get the size and object order for an image snapshot, or if 5450 * snap_id is CEPH_NOSNAP, gets this information for the base 5451 * image. 5452 */ 5453 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5454 u8 *order, u64 *snap_size) 5455 { 5456 __le64 snapid = cpu_to_le64(snap_id); 5457 int ret; 5458 struct { 5459 u8 order; 5460 __le64 size; 5461 } __attribute__ ((packed)) size_buf = { 0 }; 5462 5463 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5464 &rbd_dev->header_oloc, "get_size", 5465 &snapid, sizeof(snapid), 5466 &size_buf, sizeof(size_buf)); 5467 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5468 if (ret < 0) 5469 return ret; 5470 if (ret < sizeof (size_buf)) 5471 return -ERANGE; 5472 5473 if (order) { 5474 *order = size_buf.order; 5475 dout(" order %u", (unsigned int)*order); 5476 } 5477 *snap_size = le64_to_cpu(size_buf.size); 5478 5479 dout(" snap_id 0x%016llx snap_size = %llu\n", 5480 (unsigned long long)snap_id, 5481 (unsigned long long)*snap_size); 5482 5483 return 0; 5484 } 5485 5486 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev, 5487 char **pobject_prefix) 5488 { 5489 size_t size; 5490 void *reply_buf; 5491 char *object_prefix; 5492 int ret; 5493 void *p; 5494 5495 /* Response will be an encoded string, which includes a length */ 5496 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5497 reply_buf = kzalloc(size, GFP_KERNEL); 5498 if (!reply_buf) 5499 return -ENOMEM; 5500 5501 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5502 &rbd_dev->header_oloc, "get_object_prefix", 5503 NULL, 0, reply_buf, size); 5504 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5505 if (ret < 0) 5506 goto out; 5507 5508 p = reply_buf; 5509 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL, 5510 GFP_NOIO); 5511 if (IS_ERR(object_prefix)) { 5512 ret = PTR_ERR(object_prefix); 5513 goto out; 5514 } 5515 ret = 0; 5516 5517 *pobject_prefix = object_prefix; 5518 dout(" object_prefix = %s\n", object_prefix); 5519 out: 5520 kfree(reply_buf); 5521 5522 return ret; 5523 } 5524 5525 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5526 bool read_only, u64 *snap_features) 5527 { 5528 struct { 5529 __le64 snap_id; 5530 u8 read_only; 5531 } features_in; 5532 struct { 5533 __le64 features; 5534 __le64 incompat; 5535 } __attribute__ ((packed)) features_buf = { 0 }; 5536 u64 unsup; 5537 int ret; 5538 5539 features_in.snap_id = cpu_to_le64(snap_id); 5540 features_in.read_only = read_only; 5541 5542 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5543 &rbd_dev->header_oloc, "get_features", 5544 &features_in, sizeof(features_in), 5545 &features_buf, sizeof(features_buf)); 5546 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5547 if (ret < 0) 5548 return ret; 5549 if (ret < sizeof (features_buf)) 5550 return -ERANGE; 5551 5552 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5553 if (unsup) { 5554 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5555 unsup); 5556 return -ENXIO; 5557 } 5558 5559 *snap_features = le64_to_cpu(features_buf.features); 5560 5561 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5562 (unsigned long long)snap_id, 5563 (unsigned long long)*snap_features, 5564 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5565 5566 return 0; 5567 } 5568 5569 /* 5570 * These are generic image flags, but since they are used only for 5571 * object map, store them in rbd_dev->object_map_flags. 5572 * 5573 * For the same reason, this function is called only on object map 5574 * (re)load and not on header refresh. 5575 */ 5576 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5577 { 5578 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5579 __le64 flags; 5580 int ret; 5581 5582 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5583 &rbd_dev->header_oloc, "get_flags", 5584 &snapid, sizeof(snapid), 5585 &flags, sizeof(flags)); 5586 if (ret < 0) 5587 return ret; 5588 if (ret < sizeof(flags)) 5589 return -EBADMSG; 5590 5591 rbd_dev->object_map_flags = le64_to_cpu(flags); 5592 return 0; 5593 } 5594 5595 struct parent_image_info { 5596 u64 pool_id; 5597 const char *pool_ns; 5598 const char *image_id; 5599 u64 snap_id; 5600 5601 bool has_overlap; 5602 u64 overlap; 5603 }; 5604 5605 static void rbd_parent_info_cleanup(struct parent_image_info *pii) 5606 { 5607 kfree(pii->pool_ns); 5608 kfree(pii->image_id); 5609 5610 memset(pii, 0, sizeof(*pii)); 5611 } 5612 5613 /* 5614 * The caller is responsible for @pii. 5615 */ 5616 static int decode_parent_image_spec(void **p, void *end, 5617 struct parent_image_info *pii) 5618 { 5619 u8 struct_v; 5620 u32 struct_len; 5621 int ret; 5622 5623 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5624 &struct_v, &struct_len); 5625 if (ret) 5626 return ret; 5627 5628 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5629 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5630 if (IS_ERR(pii->pool_ns)) { 5631 ret = PTR_ERR(pii->pool_ns); 5632 pii->pool_ns = NULL; 5633 return ret; 5634 } 5635 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5636 if (IS_ERR(pii->image_id)) { 5637 ret = PTR_ERR(pii->image_id); 5638 pii->image_id = NULL; 5639 return ret; 5640 } 5641 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5642 return 0; 5643 5644 e_inval: 5645 return -EINVAL; 5646 } 5647 5648 static int __get_parent_info(struct rbd_device *rbd_dev, 5649 struct page *req_page, 5650 struct page *reply_page, 5651 struct parent_image_info *pii) 5652 { 5653 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5654 size_t reply_len = PAGE_SIZE; 5655 void *p, *end; 5656 int ret; 5657 5658 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5659 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5660 req_page, sizeof(u64), &reply_page, &reply_len); 5661 if (ret) 5662 return ret == -EOPNOTSUPP ? 1 : ret; 5663 5664 p = page_address(reply_page); 5665 end = p + reply_len; 5666 ret = decode_parent_image_spec(&p, end, pii); 5667 if (ret) 5668 return ret; 5669 5670 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5671 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5672 req_page, sizeof(u64), &reply_page, &reply_len); 5673 if (ret) 5674 return ret; 5675 5676 p = page_address(reply_page); 5677 end = p + reply_len; 5678 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5679 if (pii->has_overlap) 5680 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5681 5682 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5683 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5684 pii->has_overlap, pii->overlap); 5685 return 0; 5686 5687 e_inval: 5688 return -EINVAL; 5689 } 5690 5691 /* 5692 * The caller is responsible for @pii. 5693 */ 5694 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5695 struct page *req_page, 5696 struct page *reply_page, 5697 struct parent_image_info *pii) 5698 { 5699 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5700 size_t reply_len = PAGE_SIZE; 5701 void *p, *end; 5702 int ret; 5703 5704 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5705 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5706 req_page, sizeof(u64), &reply_page, &reply_len); 5707 if (ret) 5708 return ret; 5709 5710 p = page_address(reply_page); 5711 end = p + reply_len; 5712 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5713 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5714 if (IS_ERR(pii->image_id)) { 5715 ret = PTR_ERR(pii->image_id); 5716 pii->image_id = NULL; 5717 return ret; 5718 } 5719 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5720 pii->has_overlap = true; 5721 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5722 5723 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5724 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5725 pii->has_overlap, pii->overlap); 5726 return 0; 5727 5728 e_inval: 5729 return -EINVAL; 5730 } 5731 5732 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev, 5733 struct parent_image_info *pii) 5734 { 5735 struct page *req_page, *reply_page; 5736 void *p; 5737 int ret; 5738 5739 req_page = alloc_page(GFP_KERNEL); 5740 if (!req_page) 5741 return -ENOMEM; 5742 5743 reply_page = alloc_page(GFP_KERNEL); 5744 if (!reply_page) { 5745 __free_page(req_page); 5746 return -ENOMEM; 5747 } 5748 5749 p = page_address(req_page); 5750 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5751 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5752 if (ret > 0) 5753 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5754 pii); 5755 5756 __free_page(req_page); 5757 __free_page(reply_page); 5758 return ret; 5759 } 5760 5761 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev) 5762 { 5763 struct rbd_spec *parent_spec; 5764 struct parent_image_info pii = { 0 }; 5765 int ret; 5766 5767 parent_spec = rbd_spec_alloc(); 5768 if (!parent_spec) 5769 return -ENOMEM; 5770 5771 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 5772 if (ret) 5773 goto out_err; 5774 5775 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) 5776 goto out; /* No parent? No problem. */ 5777 5778 /* The ceph file layout needs to fit pool id in 32 bits */ 5779 5780 ret = -EIO; 5781 if (pii.pool_id > (u64)U32_MAX) { 5782 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5783 (unsigned long long)pii.pool_id, U32_MAX); 5784 goto out_err; 5785 } 5786 5787 /* 5788 * The parent won't change except when the clone is flattened, 5789 * so we only need to record the parent image spec once. 5790 */ 5791 parent_spec->pool_id = pii.pool_id; 5792 if (pii.pool_ns && *pii.pool_ns) { 5793 parent_spec->pool_ns = pii.pool_ns; 5794 pii.pool_ns = NULL; 5795 } 5796 parent_spec->image_id = pii.image_id; 5797 pii.image_id = NULL; 5798 parent_spec->snap_id = pii.snap_id; 5799 5800 rbd_assert(!rbd_dev->parent_spec); 5801 rbd_dev->parent_spec = parent_spec; 5802 parent_spec = NULL; /* rbd_dev now owns this */ 5803 5804 /* 5805 * Record the parent overlap. If it's zero, issue a warning as 5806 * we will proceed as if there is no parent. 5807 */ 5808 if (!pii.overlap) 5809 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5810 rbd_dev->parent_overlap = pii.overlap; 5811 5812 out: 5813 ret = 0; 5814 out_err: 5815 rbd_parent_info_cleanup(&pii); 5816 rbd_spec_put(parent_spec); 5817 return ret; 5818 } 5819 5820 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev, 5821 u64 *stripe_unit, u64 *stripe_count) 5822 { 5823 struct { 5824 __le64 stripe_unit; 5825 __le64 stripe_count; 5826 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5827 size_t size = sizeof (striping_info_buf); 5828 int ret; 5829 5830 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5831 &rbd_dev->header_oloc, "get_stripe_unit_count", 5832 NULL, 0, &striping_info_buf, size); 5833 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5834 if (ret < 0) 5835 return ret; 5836 if (ret < size) 5837 return -ERANGE; 5838 5839 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit); 5840 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count); 5841 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit, 5842 *stripe_count); 5843 5844 return 0; 5845 } 5846 5847 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id) 5848 { 5849 __le64 data_pool_buf; 5850 int ret; 5851 5852 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5853 &rbd_dev->header_oloc, "get_data_pool", 5854 NULL, 0, &data_pool_buf, 5855 sizeof(data_pool_buf)); 5856 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5857 if (ret < 0) 5858 return ret; 5859 if (ret < sizeof(data_pool_buf)) 5860 return -EBADMSG; 5861 5862 *data_pool_id = le64_to_cpu(data_pool_buf); 5863 dout(" data_pool_id = %lld\n", *data_pool_id); 5864 WARN_ON(*data_pool_id == CEPH_NOPOOL); 5865 5866 return 0; 5867 } 5868 5869 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5870 { 5871 CEPH_DEFINE_OID_ONSTACK(oid); 5872 size_t image_id_size; 5873 char *image_id; 5874 void *p; 5875 void *end; 5876 size_t size; 5877 void *reply_buf = NULL; 5878 size_t len = 0; 5879 char *image_name = NULL; 5880 int ret; 5881 5882 rbd_assert(!rbd_dev->spec->image_name); 5883 5884 len = strlen(rbd_dev->spec->image_id); 5885 image_id_size = sizeof (__le32) + len; 5886 image_id = kmalloc(image_id_size, GFP_KERNEL); 5887 if (!image_id) 5888 return NULL; 5889 5890 p = image_id; 5891 end = image_id + image_id_size; 5892 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5893 5894 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5895 reply_buf = kmalloc(size, GFP_KERNEL); 5896 if (!reply_buf) 5897 goto out; 5898 5899 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5900 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5901 "dir_get_name", image_id, image_id_size, 5902 reply_buf, size); 5903 if (ret < 0) 5904 goto out; 5905 p = reply_buf; 5906 end = reply_buf + ret; 5907 5908 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5909 if (IS_ERR(image_name)) 5910 image_name = NULL; 5911 else 5912 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5913 out: 5914 kfree(reply_buf); 5915 kfree(image_id); 5916 5917 return image_name; 5918 } 5919 5920 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5921 { 5922 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5923 const char *snap_name; 5924 u32 which = 0; 5925 5926 /* Skip over names until we find the one we are looking for */ 5927 5928 snap_name = rbd_dev->header.snap_names; 5929 while (which < snapc->num_snaps) { 5930 if (!strcmp(name, snap_name)) 5931 return snapc->snaps[which]; 5932 snap_name += strlen(snap_name) + 1; 5933 which++; 5934 } 5935 return CEPH_NOSNAP; 5936 } 5937 5938 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5939 { 5940 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5941 u32 which; 5942 bool found = false; 5943 u64 snap_id; 5944 5945 for (which = 0; !found && which < snapc->num_snaps; which++) { 5946 const char *snap_name; 5947 5948 snap_id = snapc->snaps[which]; 5949 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5950 if (IS_ERR(snap_name)) { 5951 /* ignore no-longer existing snapshots */ 5952 if (PTR_ERR(snap_name) == -ENOENT) 5953 continue; 5954 else 5955 break; 5956 } 5957 found = !strcmp(name, snap_name); 5958 kfree(snap_name); 5959 } 5960 return found ? snap_id : CEPH_NOSNAP; 5961 } 5962 5963 /* 5964 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5965 * no snapshot by that name is found, or if an error occurs. 5966 */ 5967 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5968 { 5969 if (rbd_dev->image_format == 1) 5970 return rbd_v1_snap_id_by_name(rbd_dev, name); 5971 5972 return rbd_v2_snap_id_by_name(rbd_dev, name); 5973 } 5974 5975 /* 5976 * An image being mapped will have everything but the snap id. 5977 */ 5978 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5979 { 5980 struct rbd_spec *spec = rbd_dev->spec; 5981 5982 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5983 rbd_assert(spec->image_id && spec->image_name); 5984 rbd_assert(spec->snap_name); 5985 5986 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5987 u64 snap_id; 5988 5989 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5990 if (snap_id == CEPH_NOSNAP) 5991 return -ENOENT; 5992 5993 spec->snap_id = snap_id; 5994 } else { 5995 spec->snap_id = CEPH_NOSNAP; 5996 } 5997 5998 return 0; 5999 } 6000 6001 /* 6002 * A parent image will have all ids but none of the names. 6003 * 6004 * All names in an rbd spec are dynamically allocated. It's OK if we 6005 * can't figure out the name for an image id. 6006 */ 6007 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6008 { 6009 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6010 struct rbd_spec *spec = rbd_dev->spec; 6011 const char *pool_name; 6012 const char *image_name; 6013 const char *snap_name; 6014 int ret; 6015 6016 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6017 rbd_assert(spec->image_id); 6018 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6019 6020 /* Get the pool name; we have to make our own copy of this */ 6021 6022 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6023 if (!pool_name) { 6024 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6025 return -EIO; 6026 } 6027 pool_name = kstrdup(pool_name, GFP_KERNEL); 6028 if (!pool_name) 6029 return -ENOMEM; 6030 6031 /* Fetch the image name; tolerate failure here */ 6032 6033 image_name = rbd_dev_image_name(rbd_dev); 6034 if (!image_name) 6035 rbd_warn(rbd_dev, "unable to get image name"); 6036 6037 /* Fetch the snapshot name */ 6038 6039 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6040 if (IS_ERR(snap_name)) { 6041 ret = PTR_ERR(snap_name); 6042 goto out_err; 6043 } 6044 6045 spec->pool_name = pool_name; 6046 spec->image_name = image_name; 6047 spec->snap_name = snap_name; 6048 6049 return 0; 6050 6051 out_err: 6052 kfree(image_name); 6053 kfree(pool_name); 6054 return ret; 6055 } 6056 6057 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, 6058 struct ceph_snap_context **psnapc) 6059 { 6060 size_t size; 6061 int ret; 6062 void *reply_buf; 6063 void *p; 6064 void *end; 6065 u64 seq; 6066 u32 snap_count; 6067 struct ceph_snap_context *snapc; 6068 u32 i; 6069 6070 /* 6071 * We'll need room for the seq value (maximum snapshot id), 6072 * snapshot count, and array of that many snapshot ids. 6073 * For now we have a fixed upper limit on the number we're 6074 * prepared to receive. 6075 */ 6076 size = sizeof (__le64) + sizeof (__le32) + 6077 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6078 reply_buf = kzalloc(size, GFP_KERNEL); 6079 if (!reply_buf) 6080 return -ENOMEM; 6081 6082 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6083 &rbd_dev->header_oloc, "get_snapcontext", 6084 NULL, 0, reply_buf, size); 6085 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6086 if (ret < 0) 6087 goto out; 6088 6089 p = reply_buf; 6090 end = reply_buf + ret; 6091 ret = -ERANGE; 6092 ceph_decode_64_safe(&p, end, seq, out); 6093 ceph_decode_32_safe(&p, end, snap_count, out); 6094 6095 /* 6096 * Make sure the reported number of snapshot ids wouldn't go 6097 * beyond the end of our buffer. But before checking that, 6098 * make sure the computed size of the snapshot context we 6099 * allocate is representable in a size_t. 6100 */ 6101 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6102 / sizeof (u64)) { 6103 ret = -EINVAL; 6104 goto out; 6105 } 6106 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6107 goto out; 6108 ret = 0; 6109 6110 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6111 if (!snapc) { 6112 ret = -ENOMEM; 6113 goto out; 6114 } 6115 snapc->seq = seq; 6116 for (i = 0; i < snap_count; i++) 6117 snapc->snaps[i] = ceph_decode_64(&p); 6118 6119 *psnapc = snapc; 6120 dout(" snap context seq = %llu, snap_count = %u\n", 6121 (unsigned long long)seq, (unsigned int)snap_count); 6122 out: 6123 kfree(reply_buf); 6124 6125 return ret; 6126 } 6127 6128 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6129 u64 snap_id) 6130 { 6131 size_t size; 6132 void *reply_buf; 6133 __le64 snapid; 6134 int ret; 6135 void *p; 6136 void *end; 6137 char *snap_name; 6138 6139 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6140 reply_buf = kmalloc(size, GFP_KERNEL); 6141 if (!reply_buf) 6142 return ERR_PTR(-ENOMEM); 6143 6144 snapid = cpu_to_le64(snap_id); 6145 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6146 &rbd_dev->header_oloc, "get_snapshot_name", 6147 &snapid, sizeof(snapid), reply_buf, size); 6148 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6149 if (ret < 0) { 6150 snap_name = ERR_PTR(ret); 6151 goto out; 6152 } 6153 6154 p = reply_buf; 6155 end = reply_buf + ret; 6156 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6157 if (IS_ERR(snap_name)) 6158 goto out; 6159 6160 dout(" snap_id 0x%016llx snap_name = %s\n", 6161 (unsigned long long)snap_id, snap_name); 6162 out: 6163 kfree(reply_buf); 6164 6165 return snap_name; 6166 } 6167 6168 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev, 6169 struct rbd_image_header *header, 6170 bool first_time) 6171 { 6172 int ret; 6173 6174 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 6175 first_time ? &header->obj_order : NULL, 6176 &header->image_size); 6177 if (ret) 6178 return ret; 6179 6180 if (first_time) { 6181 ret = rbd_dev_v2_header_onetime(rbd_dev, header); 6182 if (ret) 6183 return ret; 6184 } 6185 6186 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc); 6187 if (ret) 6188 return ret; 6189 6190 return 0; 6191 } 6192 6193 static int rbd_dev_header_info(struct rbd_device *rbd_dev, 6194 struct rbd_image_header *header, 6195 bool first_time) 6196 { 6197 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6198 rbd_assert(!header->object_prefix && !header->snapc); 6199 6200 if (rbd_dev->image_format == 1) 6201 return rbd_dev_v1_header_info(rbd_dev, header, first_time); 6202 6203 return rbd_dev_v2_header_info(rbd_dev, header, first_time); 6204 } 6205 6206 /* 6207 * Skips over white space at *buf, and updates *buf to point to the 6208 * first found non-space character (if any). Returns the length of 6209 * the token (string of non-white space characters) found. Note 6210 * that *buf must be terminated with '\0'. 6211 */ 6212 static inline size_t next_token(const char **buf) 6213 { 6214 /* 6215 * These are the characters that produce nonzero for 6216 * isspace() in the "C" and "POSIX" locales. 6217 */ 6218 static const char spaces[] = " \f\n\r\t\v"; 6219 6220 *buf += strspn(*buf, spaces); /* Find start of token */ 6221 6222 return strcspn(*buf, spaces); /* Return token length */ 6223 } 6224 6225 /* 6226 * Finds the next token in *buf, dynamically allocates a buffer big 6227 * enough to hold a copy of it, and copies the token into the new 6228 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6229 * that a duplicate buffer is created even for a zero-length token. 6230 * 6231 * Returns a pointer to the newly-allocated duplicate, or a null 6232 * pointer if memory for the duplicate was not available. If 6233 * the lenp argument is a non-null pointer, the length of the token 6234 * (not including the '\0') is returned in *lenp. 6235 * 6236 * If successful, the *buf pointer will be updated to point beyond 6237 * the end of the found token. 6238 * 6239 * Note: uses GFP_KERNEL for allocation. 6240 */ 6241 static inline char *dup_token(const char **buf, size_t *lenp) 6242 { 6243 char *dup; 6244 size_t len; 6245 6246 len = next_token(buf); 6247 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6248 if (!dup) 6249 return NULL; 6250 *(dup + len) = '\0'; 6251 *buf += len; 6252 6253 if (lenp) 6254 *lenp = len; 6255 6256 return dup; 6257 } 6258 6259 static int rbd_parse_param(struct fs_parameter *param, 6260 struct rbd_parse_opts_ctx *pctx) 6261 { 6262 struct rbd_options *opt = pctx->opts; 6263 struct fs_parse_result result; 6264 struct p_log log = {.prefix = "rbd"}; 6265 int token, ret; 6266 6267 ret = ceph_parse_param(param, pctx->copts, NULL); 6268 if (ret != -ENOPARAM) 6269 return ret; 6270 6271 token = __fs_parse(&log, rbd_parameters, param, &result); 6272 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6273 if (token < 0) { 6274 if (token == -ENOPARAM) 6275 return inval_plog(&log, "Unknown parameter '%s'", 6276 param->key); 6277 return token; 6278 } 6279 6280 switch (token) { 6281 case Opt_queue_depth: 6282 if (result.uint_32 < 1) 6283 goto out_of_range; 6284 opt->queue_depth = result.uint_32; 6285 break; 6286 case Opt_alloc_size: 6287 if (result.uint_32 < SECTOR_SIZE) 6288 goto out_of_range; 6289 if (!is_power_of_2(result.uint_32)) 6290 return inval_plog(&log, "alloc_size must be a power of 2"); 6291 opt->alloc_size = result.uint_32; 6292 break; 6293 case Opt_lock_timeout: 6294 /* 0 is "wait forever" (i.e. infinite timeout) */ 6295 if (result.uint_32 > INT_MAX / 1000) 6296 goto out_of_range; 6297 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6298 break; 6299 case Opt_pool_ns: 6300 kfree(pctx->spec->pool_ns); 6301 pctx->spec->pool_ns = param->string; 6302 param->string = NULL; 6303 break; 6304 case Opt_compression_hint: 6305 switch (result.uint_32) { 6306 case Opt_compression_hint_none: 6307 opt->alloc_hint_flags &= 6308 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6309 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6310 break; 6311 case Opt_compression_hint_compressible: 6312 opt->alloc_hint_flags |= 6313 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6314 opt->alloc_hint_flags &= 6315 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6316 break; 6317 case Opt_compression_hint_incompressible: 6318 opt->alloc_hint_flags |= 6319 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6320 opt->alloc_hint_flags &= 6321 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6322 break; 6323 default: 6324 BUG(); 6325 } 6326 break; 6327 case Opt_read_only: 6328 opt->read_only = true; 6329 break; 6330 case Opt_read_write: 6331 opt->read_only = false; 6332 break; 6333 case Opt_lock_on_read: 6334 opt->lock_on_read = true; 6335 break; 6336 case Opt_exclusive: 6337 opt->exclusive = true; 6338 break; 6339 case Opt_notrim: 6340 opt->trim = false; 6341 break; 6342 default: 6343 BUG(); 6344 } 6345 6346 return 0; 6347 6348 out_of_range: 6349 return inval_plog(&log, "%s out of range", param->key); 6350 } 6351 6352 /* 6353 * This duplicates most of generic_parse_monolithic(), untying it from 6354 * fs_context and skipping standard superblock and security options. 6355 */ 6356 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6357 { 6358 char *key; 6359 int ret = 0; 6360 6361 dout("%s '%s'\n", __func__, options); 6362 while ((key = strsep(&options, ",")) != NULL) { 6363 if (*key) { 6364 struct fs_parameter param = { 6365 .key = key, 6366 .type = fs_value_is_flag, 6367 }; 6368 char *value = strchr(key, '='); 6369 size_t v_len = 0; 6370 6371 if (value) { 6372 if (value == key) 6373 continue; 6374 *value++ = 0; 6375 v_len = strlen(value); 6376 param.string = kmemdup_nul(value, v_len, 6377 GFP_KERNEL); 6378 if (!param.string) 6379 return -ENOMEM; 6380 param.type = fs_value_is_string; 6381 } 6382 param.size = v_len; 6383 6384 ret = rbd_parse_param(¶m, pctx); 6385 kfree(param.string); 6386 if (ret) 6387 break; 6388 } 6389 } 6390 6391 return ret; 6392 } 6393 6394 /* 6395 * Parse the options provided for an "rbd add" (i.e., rbd image 6396 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6397 * and the data written is passed here via a NUL-terminated buffer. 6398 * Returns 0 if successful or an error code otherwise. 6399 * 6400 * The information extracted from these options is recorded in 6401 * the other parameters which return dynamically-allocated 6402 * structures: 6403 * ceph_opts 6404 * The address of a pointer that will refer to a ceph options 6405 * structure. Caller must release the returned pointer using 6406 * ceph_destroy_options() when it is no longer needed. 6407 * rbd_opts 6408 * Address of an rbd options pointer. Fully initialized by 6409 * this function; caller must release with kfree(). 6410 * spec 6411 * Address of an rbd image specification pointer. Fully 6412 * initialized by this function based on parsed options. 6413 * Caller must release with rbd_spec_put(). 6414 * 6415 * The options passed take this form: 6416 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6417 * where: 6418 * <mon_addrs> 6419 * A comma-separated list of one or more monitor addresses. 6420 * A monitor address is an ip address, optionally followed 6421 * by a port number (separated by a colon). 6422 * I.e.: ip1[:port1][,ip2[:port2]...] 6423 * <options> 6424 * A comma-separated list of ceph and/or rbd options. 6425 * <pool_name> 6426 * The name of the rados pool containing the rbd image. 6427 * <image_name> 6428 * The name of the image in that pool to map. 6429 * <snap_id> 6430 * An optional snapshot id. If provided, the mapping will 6431 * present data from the image at the time that snapshot was 6432 * created. The image head is used if no snapshot id is 6433 * provided. Snapshot mappings are always read-only. 6434 */ 6435 static int rbd_add_parse_args(const char *buf, 6436 struct ceph_options **ceph_opts, 6437 struct rbd_options **opts, 6438 struct rbd_spec **rbd_spec) 6439 { 6440 size_t len; 6441 char *options; 6442 const char *mon_addrs; 6443 char *snap_name; 6444 size_t mon_addrs_size; 6445 struct rbd_parse_opts_ctx pctx = { 0 }; 6446 int ret; 6447 6448 /* The first four tokens are required */ 6449 6450 len = next_token(&buf); 6451 if (!len) { 6452 rbd_warn(NULL, "no monitor address(es) provided"); 6453 return -EINVAL; 6454 } 6455 mon_addrs = buf; 6456 mon_addrs_size = len; 6457 buf += len; 6458 6459 ret = -EINVAL; 6460 options = dup_token(&buf, NULL); 6461 if (!options) 6462 return -ENOMEM; 6463 if (!*options) { 6464 rbd_warn(NULL, "no options provided"); 6465 goto out_err; 6466 } 6467 6468 pctx.spec = rbd_spec_alloc(); 6469 if (!pctx.spec) 6470 goto out_mem; 6471 6472 pctx.spec->pool_name = dup_token(&buf, NULL); 6473 if (!pctx.spec->pool_name) 6474 goto out_mem; 6475 if (!*pctx.spec->pool_name) { 6476 rbd_warn(NULL, "no pool name provided"); 6477 goto out_err; 6478 } 6479 6480 pctx.spec->image_name = dup_token(&buf, NULL); 6481 if (!pctx.spec->image_name) 6482 goto out_mem; 6483 if (!*pctx.spec->image_name) { 6484 rbd_warn(NULL, "no image name provided"); 6485 goto out_err; 6486 } 6487 6488 /* 6489 * Snapshot name is optional; default is to use "-" 6490 * (indicating the head/no snapshot). 6491 */ 6492 len = next_token(&buf); 6493 if (!len) { 6494 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6495 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6496 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6497 ret = -ENAMETOOLONG; 6498 goto out_err; 6499 } 6500 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6501 if (!snap_name) 6502 goto out_mem; 6503 *(snap_name + len) = '\0'; 6504 pctx.spec->snap_name = snap_name; 6505 6506 pctx.copts = ceph_alloc_options(); 6507 if (!pctx.copts) 6508 goto out_mem; 6509 6510 /* Initialize all rbd options to the defaults */ 6511 6512 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6513 if (!pctx.opts) 6514 goto out_mem; 6515 6516 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6517 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6518 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6519 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6520 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6521 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6522 pctx.opts->trim = RBD_TRIM_DEFAULT; 6523 6524 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6525 ','); 6526 if (ret) 6527 goto out_err; 6528 6529 ret = rbd_parse_options(options, &pctx); 6530 if (ret) 6531 goto out_err; 6532 6533 *ceph_opts = pctx.copts; 6534 *opts = pctx.opts; 6535 *rbd_spec = pctx.spec; 6536 kfree(options); 6537 return 0; 6538 6539 out_mem: 6540 ret = -ENOMEM; 6541 out_err: 6542 kfree(pctx.opts); 6543 ceph_destroy_options(pctx.copts); 6544 rbd_spec_put(pctx.spec); 6545 kfree(options); 6546 return ret; 6547 } 6548 6549 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6550 { 6551 down_write(&rbd_dev->lock_rwsem); 6552 if (__rbd_is_lock_owner(rbd_dev)) 6553 __rbd_release_lock(rbd_dev); 6554 up_write(&rbd_dev->lock_rwsem); 6555 } 6556 6557 /* 6558 * If the wait is interrupted, an error is returned even if the lock 6559 * was successfully acquired. rbd_dev_image_unlock() will release it 6560 * if needed. 6561 */ 6562 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6563 { 6564 long ret; 6565 6566 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6567 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6568 return 0; 6569 6570 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6571 return -EINVAL; 6572 } 6573 6574 if (rbd_is_ro(rbd_dev)) 6575 return 0; 6576 6577 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6578 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6579 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6580 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6581 if (ret > 0) { 6582 ret = rbd_dev->acquire_err; 6583 } else { 6584 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6585 if (!ret) 6586 ret = -ETIMEDOUT; 6587 6588 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret); 6589 } 6590 if (ret) 6591 return ret; 6592 6593 return 0; 6594 } 6595 6596 /* 6597 * An rbd format 2 image has a unique identifier, distinct from the 6598 * name given to it by the user. Internally, that identifier is 6599 * what's used to specify the names of objects related to the image. 6600 * 6601 * A special "rbd id" object is used to map an rbd image name to its 6602 * id. If that object doesn't exist, then there is no v2 rbd image 6603 * with the supplied name. 6604 * 6605 * This function will record the given rbd_dev's image_id field if 6606 * it can be determined, and in that case will return 0. If any 6607 * errors occur a negative errno will be returned and the rbd_dev's 6608 * image_id field will be unchanged (and should be NULL). 6609 */ 6610 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6611 { 6612 int ret; 6613 size_t size; 6614 CEPH_DEFINE_OID_ONSTACK(oid); 6615 void *response; 6616 char *image_id; 6617 6618 /* 6619 * When probing a parent image, the image id is already 6620 * known (and the image name likely is not). There's no 6621 * need to fetch the image id again in this case. We 6622 * do still need to set the image format though. 6623 */ 6624 if (rbd_dev->spec->image_id) { 6625 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6626 6627 return 0; 6628 } 6629 6630 /* 6631 * First, see if the format 2 image id file exists, and if 6632 * so, get the image's persistent id from it. 6633 */ 6634 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6635 rbd_dev->spec->image_name); 6636 if (ret) 6637 return ret; 6638 6639 dout("rbd id object name is %s\n", oid.name); 6640 6641 /* Response will be an encoded string, which includes a length */ 6642 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6643 response = kzalloc(size, GFP_NOIO); 6644 if (!response) { 6645 ret = -ENOMEM; 6646 goto out; 6647 } 6648 6649 /* If it doesn't exist we'll assume it's a format 1 image */ 6650 6651 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6652 "get_id", NULL, 0, 6653 response, size); 6654 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6655 if (ret == -ENOENT) { 6656 image_id = kstrdup("", GFP_KERNEL); 6657 ret = image_id ? 0 : -ENOMEM; 6658 if (!ret) 6659 rbd_dev->image_format = 1; 6660 } else if (ret >= 0) { 6661 void *p = response; 6662 6663 image_id = ceph_extract_encoded_string(&p, p + ret, 6664 NULL, GFP_NOIO); 6665 ret = PTR_ERR_OR_ZERO(image_id); 6666 if (!ret) 6667 rbd_dev->image_format = 2; 6668 } 6669 6670 if (!ret) { 6671 rbd_dev->spec->image_id = image_id; 6672 dout("image_id is %s\n", image_id); 6673 } 6674 out: 6675 kfree(response); 6676 ceph_oid_destroy(&oid); 6677 return ret; 6678 } 6679 6680 /* 6681 * Undo whatever state changes are made by v1 or v2 header info 6682 * call. 6683 */ 6684 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6685 { 6686 rbd_dev_parent_put(rbd_dev); 6687 rbd_object_map_free(rbd_dev); 6688 rbd_dev_mapping_clear(rbd_dev); 6689 6690 /* Free dynamic fields from the header, then zero it out */ 6691 6692 rbd_image_header_cleanup(&rbd_dev->header); 6693 } 6694 6695 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 6696 struct rbd_image_header *header) 6697 { 6698 int ret; 6699 6700 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix); 6701 if (ret) 6702 return ret; 6703 6704 /* 6705 * Get the and check features for the image. Currently the 6706 * features are assumed to never change. 6707 */ 6708 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 6709 rbd_is_ro(rbd_dev), &header->features); 6710 if (ret) 6711 return ret; 6712 6713 /* If the image supports fancy striping, get its parameters */ 6714 6715 if (header->features & RBD_FEATURE_STRIPINGV2) { 6716 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit, 6717 &header->stripe_count); 6718 if (ret) 6719 return ret; 6720 } 6721 6722 if (header->features & RBD_FEATURE_DATA_POOL) { 6723 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id); 6724 if (ret) 6725 return ret; 6726 } 6727 6728 return 0; 6729 } 6730 6731 /* 6732 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6733 * rbd_dev_image_probe() recursion depth, which means it's also the 6734 * length of the already discovered part of the parent chain. 6735 */ 6736 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6737 { 6738 struct rbd_device *parent = NULL; 6739 int ret; 6740 6741 if (!rbd_dev->parent_spec) 6742 return 0; 6743 6744 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6745 pr_info("parent chain is too long (%d)\n", depth); 6746 ret = -EINVAL; 6747 goto out_err; 6748 } 6749 6750 parent = __rbd_dev_create(rbd_dev->parent_spec); 6751 if (!parent) { 6752 ret = -ENOMEM; 6753 goto out_err; 6754 } 6755 6756 /* 6757 * Images related by parent/child relationships always share 6758 * rbd_client and spec/parent_spec, so bump their refcounts. 6759 */ 6760 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6761 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6762 6763 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6764 6765 ret = rbd_dev_image_probe(parent, depth); 6766 if (ret < 0) 6767 goto out_err; 6768 6769 rbd_dev->parent = parent; 6770 atomic_set(&rbd_dev->parent_ref, 1); 6771 return 0; 6772 6773 out_err: 6774 rbd_dev_unparent(rbd_dev); 6775 rbd_dev_destroy(parent); 6776 return ret; 6777 } 6778 6779 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6780 { 6781 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6782 rbd_free_disk(rbd_dev); 6783 if (!single_major) 6784 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6785 } 6786 6787 /* 6788 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6789 * upon return. 6790 */ 6791 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6792 { 6793 int ret; 6794 6795 /* Record our major and minor device numbers. */ 6796 6797 if (!single_major) { 6798 ret = register_blkdev(0, rbd_dev->name); 6799 if (ret < 0) 6800 goto err_out_unlock; 6801 6802 rbd_dev->major = ret; 6803 rbd_dev->minor = 0; 6804 } else { 6805 rbd_dev->major = rbd_major; 6806 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6807 } 6808 6809 /* Set up the blkdev mapping. */ 6810 6811 ret = rbd_init_disk(rbd_dev); 6812 if (ret) 6813 goto err_out_blkdev; 6814 6815 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6816 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6817 6818 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6819 if (ret) 6820 goto err_out_disk; 6821 6822 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6823 up_write(&rbd_dev->header_rwsem); 6824 return 0; 6825 6826 err_out_disk: 6827 rbd_free_disk(rbd_dev); 6828 err_out_blkdev: 6829 if (!single_major) 6830 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6831 err_out_unlock: 6832 up_write(&rbd_dev->header_rwsem); 6833 return ret; 6834 } 6835 6836 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6837 { 6838 struct rbd_spec *spec = rbd_dev->spec; 6839 int ret; 6840 6841 /* Record the header object name for this rbd image. */ 6842 6843 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6844 if (rbd_dev->image_format == 1) 6845 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6846 spec->image_name, RBD_SUFFIX); 6847 else 6848 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6849 RBD_HEADER_PREFIX, spec->image_id); 6850 6851 return ret; 6852 } 6853 6854 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6855 { 6856 if (!is_snap) { 6857 pr_info("image %s/%s%s%s does not exist\n", 6858 rbd_dev->spec->pool_name, 6859 rbd_dev->spec->pool_ns ?: "", 6860 rbd_dev->spec->pool_ns ? "/" : "", 6861 rbd_dev->spec->image_name); 6862 } else { 6863 pr_info("snap %s/%s%s%s@%s does not exist\n", 6864 rbd_dev->spec->pool_name, 6865 rbd_dev->spec->pool_ns ?: "", 6866 rbd_dev->spec->pool_ns ? "/" : "", 6867 rbd_dev->spec->image_name, 6868 rbd_dev->spec->snap_name); 6869 } 6870 } 6871 6872 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6873 { 6874 if (!rbd_is_ro(rbd_dev)) 6875 rbd_unregister_watch(rbd_dev); 6876 6877 rbd_dev_unprobe(rbd_dev); 6878 rbd_dev->image_format = 0; 6879 kfree(rbd_dev->spec->image_id); 6880 rbd_dev->spec->image_id = NULL; 6881 } 6882 6883 /* 6884 * Probe for the existence of the header object for the given rbd 6885 * device. If this image is the one being mapped (i.e., not a 6886 * parent), initiate a watch on its header object before using that 6887 * object to get detailed information about the rbd image. 6888 * 6889 * On success, returns with header_rwsem held for write if called 6890 * with @depth == 0. 6891 */ 6892 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6893 { 6894 bool need_watch = !rbd_is_ro(rbd_dev); 6895 int ret; 6896 6897 /* 6898 * Get the id from the image id object. Unless there's an 6899 * error, rbd_dev->spec->image_id will be filled in with 6900 * a dynamically-allocated string, and rbd_dev->image_format 6901 * will be set to either 1 or 2. 6902 */ 6903 ret = rbd_dev_image_id(rbd_dev); 6904 if (ret) 6905 return ret; 6906 6907 ret = rbd_dev_header_name(rbd_dev); 6908 if (ret) 6909 goto err_out_format; 6910 6911 if (need_watch) { 6912 ret = rbd_register_watch(rbd_dev); 6913 if (ret) { 6914 if (ret == -ENOENT) 6915 rbd_print_dne(rbd_dev, false); 6916 goto err_out_format; 6917 } 6918 } 6919 6920 if (!depth) 6921 down_write(&rbd_dev->header_rwsem); 6922 6923 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true); 6924 if (ret) { 6925 if (ret == -ENOENT && !need_watch) 6926 rbd_print_dne(rbd_dev, false); 6927 goto err_out_probe; 6928 } 6929 6930 rbd_init_layout(rbd_dev); 6931 6932 /* 6933 * If this image is the one being mapped, we have pool name and 6934 * id, image name and id, and snap name - need to fill snap id. 6935 * Otherwise this is a parent image, identified by pool, image 6936 * and snap ids - need to fill in names for those ids. 6937 */ 6938 if (!depth) 6939 ret = rbd_spec_fill_snap_id(rbd_dev); 6940 else 6941 ret = rbd_spec_fill_names(rbd_dev); 6942 if (ret) { 6943 if (ret == -ENOENT) 6944 rbd_print_dne(rbd_dev, true); 6945 goto err_out_probe; 6946 } 6947 6948 ret = rbd_dev_mapping_set(rbd_dev); 6949 if (ret) 6950 goto err_out_probe; 6951 6952 if (rbd_is_snap(rbd_dev) && 6953 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6954 ret = rbd_object_map_load(rbd_dev); 6955 if (ret) 6956 goto err_out_probe; 6957 } 6958 6959 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6960 ret = rbd_dev_setup_parent(rbd_dev); 6961 if (ret) 6962 goto err_out_probe; 6963 } 6964 6965 ret = rbd_dev_probe_parent(rbd_dev, depth); 6966 if (ret) 6967 goto err_out_probe; 6968 6969 dout("discovered format %u image, header name is %s\n", 6970 rbd_dev->image_format, rbd_dev->header_oid.name); 6971 return 0; 6972 6973 err_out_probe: 6974 if (!depth) 6975 up_write(&rbd_dev->header_rwsem); 6976 if (need_watch) 6977 rbd_unregister_watch(rbd_dev); 6978 rbd_dev_unprobe(rbd_dev); 6979 err_out_format: 6980 rbd_dev->image_format = 0; 6981 kfree(rbd_dev->spec->image_id); 6982 rbd_dev->spec->image_id = NULL; 6983 return ret; 6984 } 6985 6986 static void rbd_dev_update_header(struct rbd_device *rbd_dev, 6987 struct rbd_image_header *header) 6988 { 6989 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6990 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */ 6991 6992 if (rbd_dev->header.image_size != header->image_size) { 6993 rbd_dev->header.image_size = header->image_size; 6994 6995 if (!rbd_is_snap(rbd_dev)) { 6996 rbd_dev->mapping.size = header->image_size; 6997 rbd_dev_update_size(rbd_dev); 6998 } 6999 } 7000 7001 ceph_put_snap_context(rbd_dev->header.snapc); 7002 rbd_dev->header.snapc = header->snapc; 7003 header->snapc = NULL; 7004 7005 if (rbd_dev->image_format == 1) { 7006 kfree(rbd_dev->header.snap_names); 7007 rbd_dev->header.snap_names = header->snap_names; 7008 header->snap_names = NULL; 7009 7010 kfree(rbd_dev->header.snap_sizes); 7011 rbd_dev->header.snap_sizes = header->snap_sizes; 7012 header->snap_sizes = NULL; 7013 } 7014 } 7015 7016 static void rbd_dev_update_parent(struct rbd_device *rbd_dev, 7017 struct parent_image_info *pii) 7018 { 7019 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) { 7020 /* 7021 * Either the parent never existed, or we have 7022 * record of it but the image got flattened so it no 7023 * longer has a parent. When the parent of a 7024 * layered image disappears we immediately set the 7025 * overlap to 0. The effect of this is that all new 7026 * requests will be treated as if the image had no 7027 * parent. 7028 * 7029 * If !pii.has_overlap, the parent image spec is not 7030 * applicable. It's there to avoid duplication in each 7031 * snapshot record. 7032 */ 7033 if (rbd_dev->parent_overlap) { 7034 rbd_dev->parent_overlap = 0; 7035 rbd_dev_parent_put(rbd_dev); 7036 pr_info("%s: clone has been flattened\n", 7037 rbd_dev->disk->disk_name); 7038 } 7039 } else { 7040 rbd_assert(rbd_dev->parent_spec); 7041 7042 /* 7043 * Update the parent overlap. If it became zero, issue 7044 * a warning as we will proceed as if there is no parent. 7045 */ 7046 if (!pii->overlap && rbd_dev->parent_overlap) 7047 rbd_warn(rbd_dev, 7048 "clone has become standalone (overlap 0)"); 7049 rbd_dev->parent_overlap = pii->overlap; 7050 } 7051 } 7052 7053 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 7054 { 7055 struct rbd_image_header header = { 0 }; 7056 struct parent_image_info pii = { 0 }; 7057 int ret; 7058 7059 dout("%s rbd_dev %p\n", __func__, rbd_dev); 7060 7061 ret = rbd_dev_header_info(rbd_dev, &header, false); 7062 if (ret) 7063 goto out; 7064 7065 /* 7066 * If there is a parent, see if it has disappeared due to the 7067 * mapped image getting flattened. 7068 */ 7069 if (rbd_dev->parent) { 7070 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 7071 if (ret) 7072 goto out; 7073 } 7074 7075 down_write(&rbd_dev->header_rwsem); 7076 rbd_dev_update_header(rbd_dev, &header); 7077 if (rbd_dev->parent) 7078 rbd_dev_update_parent(rbd_dev, &pii); 7079 up_write(&rbd_dev->header_rwsem); 7080 7081 out: 7082 rbd_parent_info_cleanup(&pii); 7083 rbd_image_header_cleanup(&header); 7084 return ret; 7085 } 7086 7087 static ssize_t do_rbd_add(const char *buf, size_t count) 7088 { 7089 struct rbd_device *rbd_dev = NULL; 7090 struct ceph_options *ceph_opts = NULL; 7091 struct rbd_options *rbd_opts = NULL; 7092 struct rbd_spec *spec = NULL; 7093 struct rbd_client *rbdc; 7094 int rc; 7095 7096 if (!capable(CAP_SYS_ADMIN)) 7097 return -EPERM; 7098 7099 if (!try_module_get(THIS_MODULE)) 7100 return -ENODEV; 7101 7102 /* parse add command */ 7103 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7104 if (rc < 0) 7105 goto out; 7106 7107 rbdc = rbd_get_client(ceph_opts); 7108 if (IS_ERR(rbdc)) { 7109 rc = PTR_ERR(rbdc); 7110 goto err_out_args; 7111 } 7112 7113 /* pick the pool */ 7114 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7115 if (rc < 0) { 7116 if (rc == -ENOENT) 7117 pr_info("pool %s does not exist\n", spec->pool_name); 7118 goto err_out_client; 7119 } 7120 spec->pool_id = (u64)rc; 7121 7122 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7123 if (!rbd_dev) { 7124 rc = -ENOMEM; 7125 goto err_out_client; 7126 } 7127 rbdc = NULL; /* rbd_dev now owns this */ 7128 spec = NULL; /* rbd_dev now owns this */ 7129 rbd_opts = NULL; /* rbd_dev now owns this */ 7130 7131 /* if we are mapping a snapshot it will be a read-only mapping */ 7132 if (rbd_dev->opts->read_only || 7133 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7134 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7135 7136 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7137 if (!rbd_dev->config_info) { 7138 rc = -ENOMEM; 7139 goto err_out_rbd_dev; 7140 } 7141 7142 rc = rbd_dev_image_probe(rbd_dev, 0); 7143 if (rc < 0) 7144 goto err_out_rbd_dev; 7145 7146 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7147 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7148 rbd_dev->layout.object_size); 7149 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7150 } 7151 7152 rc = rbd_dev_device_setup(rbd_dev); 7153 if (rc) 7154 goto err_out_image_probe; 7155 7156 rc = rbd_add_acquire_lock(rbd_dev); 7157 if (rc) 7158 goto err_out_image_lock; 7159 7160 /* Everything's ready. Announce the disk to the world. */ 7161 7162 rc = device_add(&rbd_dev->dev); 7163 if (rc) 7164 goto err_out_image_lock; 7165 7166 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7167 if (rc) 7168 goto err_out_cleanup_disk; 7169 7170 spin_lock(&rbd_dev_list_lock); 7171 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7172 spin_unlock(&rbd_dev_list_lock); 7173 7174 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7175 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7176 rbd_dev->header.features); 7177 rc = count; 7178 out: 7179 module_put(THIS_MODULE); 7180 return rc; 7181 7182 err_out_cleanup_disk: 7183 rbd_free_disk(rbd_dev); 7184 err_out_image_lock: 7185 rbd_dev_image_unlock(rbd_dev); 7186 rbd_dev_device_release(rbd_dev); 7187 err_out_image_probe: 7188 rbd_dev_image_release(rbd_dev); 7189 err_out_rbd_dev: 7190 rbd_dev_destroy(rbd_dev); 7191 err_out_client: 7192 rbd_put_client(rbdc); 7193 err_out_args: 7194 rbd_spec_put(spec); 7195 kfree(rbd_opts); 7196 goto out; 7197 } 7198 7199 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7200 { 7201 if (single_major) 7202 return -EINVAL; 7203 7204 return do_rbd_add(buf, count); 7205 } 7206 7207 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7208 size_t count) 7209 { 7210 return do_rbd_add(buf, count); 7211 } 7212 7213 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7214 { 7215 while (rbd_dev->parent) { 7216 struct rbd_device *first = rbd_dev; 7217 struct rbd_device *second = first->parent; 7218 struct rbd_device *third; 7219 7220 /* 7221 * Follow to the parent with no grandparent and 7222 * remove it. 7223 */ 7224 while (second && (third = second->parent)) { 7225 first = second; 7226 second = third; 7227 } 7228 rbd_assert(second); 7229 rbd_dev_image_release(second); 7230 rbd_dev_destroy(second); 7231 first->parent = NULL; 7232 first->parent_overlap = 0; 7233 7234 rbd_assert(first->parent_spec); 7235 rbd_spec_put(first->parent_spec); 7236 first->parent_spec = NULL; 7237 } 7238 } 7239 7240 static ssize_t do_rbd_remove(const char *buf, size_t count) 7241 { 7242 struct rbd_device *rbd_dev = NULL; 7243 int dev_id; 7244 char opt_buf[6]; 7245 bool force = false; 7246 int ret; 7247 7248 if (!capable(CAP_SYS_ADMIN)) 7249 return -EPERM; 7250 7251 dev_id = -1; 7252 opt_buf[0] = '\0'; 7253 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7254 if (dev_id < 0) { 7255 pr_err("dev_id out of range\n"); 7256 return -EINVAL; 7257 } 7258 if (opt_buf[0] != '\0') { 7259 if (!strcmp(opt_buf, "force")) { 7260 force = true; 7261 } else { 7262 pr_err("bad remove option at '%s'\n", opt_buf); 7263 return -EINVAL; 7264 } 7265 } 7266 7267 ret = -ENOENT; 7268 spin_lock(&rbd_dev_list_lock); 7269 list_for_each_entry(rbd_dev, &rbd_dev_list, node) { 7270 if (rbd_dev->dev_id == dev_id) { 7271 ret = 0; 7272 break; 7273 } 7274 } 7275 if (!ret) { 7276 spin_lock_irq(&rbd_dev->lock); 7277 if (rbd_dev->open_count && !force) 7278 ret = -EBUSY; 7279 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7280 &rbd_dev->flags)) 7281 ret = -EINPROGRESS; 7282 spin_unlock_irq(&rbd_dev->lock); 7283 } 7284 spin_unlock(&rbd_dev_list_lock); 7285 if (ret) 7286 return ret; 7287 7288 if (force) { 7289 /* 7290 * Prevent new IO from being queued and wait for existing 7291 * IO to complete/fail. 7292 */ 7293 unsigned int memflags = blk_mq_freeze_queue(rbd_dev->disk->queue); 7294 7295 blk_mark_disk_dead(rbd_dev->disk); 7296 blk_mq_unfreeze_queue(rbd_dev->disk->queue, memflags); 7297 } 7298 7299 del_gendisk(rbd_dev->disk); 7300 spin_lock(&rbd_dev_list_lock); 7301 list_del_init(&rbd_dev->node); 7302 spin_unlock(&rbd_dev_list_lock); 7303 device_del(&rbd_dev->dev); 7304 7305 rbd_dev_image_unlock(rbd_dev); 7306 rbd_dev_device_release(rbd_dev); 7307 rbd_dev_image_release(rbd_dev); 7308 rbd_dev_destroy(rbd_dev); 7309 return count; 7310 } 7311 7312 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7313 { 7314 if (single_major) 7315 return -EINVAL; 7316 7317 return do_rbd_remove(buf, count); 7318 } 7319 7320 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7321 size_t count) 7322 { 7323 return do_rbd_remove(buf, count); 7324 } 7325 7326 /* 7327 * create control files in sysfs 7328 * /sys/bus/rbd/... 7329 */ 7330 static int __init rbd_sysfs_init(void) 7331 { 7332 int ret; 7333 7334 ret = device_register(&rbd_root_dev); 7335 if (ret < 0) { 7336 put_device(&rbd_root_dev); 7337 return ret; 7338 } 7339 7340 ret = bus_register(&rbd_bus_type); 7341 if (ret < 0) 7342 device_unregister(&rbd_root_dev); 7343 7344 return ret; 7345 } 7346 7347 static void __exit rbd_sysfs_cleanup(void) 7348 { 7349 bus_unregister(&rbd_bus_type); 7350 device_unregister(&rbd_root_dev); 7351 } 7352 7353 static int __init rbd_slab_init(void) 7354 { 7355 rbd_assert(!rbd_img_request_cache); 7356 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7357 if (!rbd_img_request_cache) 7358 return -ENOMEM; 7359 7360 rbd_assert(!rbd_obj_request_cache); 7361 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7362 if (!rbd_obj_request_cache) 7363 goto out_err; 7364 7365 return 0; 7366 7367 out_err: 7368 kmem_cache_destroy(rbd_img_request_cache); 7369 rbd_img_request_cache = NULL; 7370 return -ENOMEM; 7371 } 7372 7373 static void rbd_slab_exit(void) 7374 { 7375 rbd_assert(rbd_obj_request_cache); 7376 kmem_cache_destroy(rbd_obj_request_cache); 7377 rbd_obj_request_cache = NULL; 7378 7379 rbd_assert(rbd_img_request_cache); 7380 kmem_cache_destroy(rbd_img_request_cache); 7381 rbd_img_request_cache = NULL; 7382 } 7383 7384 static int __init rbd_init(void) 7385 { 7386 int rc; 7387 7388 if (!libceph_compatible(NULL)) { 7389 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7390 return -EINVAL; 7391 } 7392 7393 rc = rbd_slab_init(); 7394 if (rc) 7395 return rc; 7396 7397 /* 7398 * The number of active work items is limited by the number of 7399 * rbd devices * queue depth, so leave @max_active at default. 7400 */ 7401 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM | WQ_PERCPU, 0); 7402 if (!rbd_wq) { 7403 rc = -ENOMEM; 7404 goto err_out_slab; 7405 } 7406 7407 if (single_major) { 7408 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7409 if (rbd_major < 0) { 7410 rc = rbd_major; 7411 goto err_out_wq; 7412 } 7413 } 7414 7415 rc = rbd_sysfs_init(); 7416 if (rc) 7417 goto err_out_blkdev; 7418 7419 if (single_major) 7420 pr_info("loaded (major %d)\n", rbd_major); 7421 else 7422 pr_info("loaded\n"); 7423 7424 return 0; 7425 7426 err_out_blkdev: 7427 if (single_major) 7428 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7429 err_out_wq: 7430 destroy_workqueue(rbd_wq); 7431 err_out_slab: 7432 rbd_slab_exit(); 7433 return rc; 7434 } 7435 7436 static void __exit rbd_exit(void) 7437 { 7438 ida_destroy(&rbd_dev_id_ida); 7439 rbd_sysfs_cleanup(); 7440 if (single_major) 7441 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7442 destroy_workqueue(rbd_wq); 7443 rbd_slab_exit(); 7444 } 7445 7446 module_init(rbd_init); 7447 module_exit(rbd_exit); 7448 7449 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7450 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7451 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7452 /* following authorship retained from original osdblk.c */ 7453 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7454 7455 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7456 MODULE_LICENSE("GPL"); 7457