xref: /linux/drivers/block/loop.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 
78 #include <asm/uaccess.h>
79 
80 static int max_loop = 8;
81 static struct loop_device *loop_dev;
82 static struct gendisk **disks;
83 
84 /*
85  * Transfer functions
86  */
87 static int transfer_none(struct loop_device *lo, int cmd,
88 			 struct page *raw_page, unsigned raw_off,
89 			 struct page *loop_page, unsigned loop_off,
90 			 int size, sector_t real_block)
91 {
92 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
93 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
94 
95 	if (cmd == READ)
96 		memcpy(loop_buf, raw_buf, size);
97 	else
98 		memcpy(raw_buf, loop_buf, size);
99 
100 	kunmap_atomic(raw_buf, KM_USER0);
101 	kunmap_atomic(loop_buf, KM_USER1);
102 	cond_resched();
103 	return 0;
104 }
105 
106 static int transfer_xor(struct loop_device *lo, int cmd,
107 			struct page *raw_page, unsigned raw_off,
108 			struct page *loop_page, unsigned loop_off,
109 			int size, sector_t real_block)
110 {
111 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
112 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
113 	char *in, *out, *key;
114 	int i, keysize;
115 
116 	if (cmd == READ) {
117 		in = raw_buf;
118 		out = loop_buf;
119 	} else {
120 		in = loop_buf;
121 		out = raw_buf;
122 	}
123 
124 	key = lo->lo_encrypt_key;
125 	keysize = lo->lo_encrypt_key_size;
126 	for (i = 0; i < size; i++)
127 		*out++ = *in++ ^ key[(i & 511) % keysize];
128 
129 	kunmap_atomic(raw_buf, KM_USER0);
130 	kunmap_atomic(loop_buf, KM_USER1);
131 	cond_resched();
132 	return 0;
133 }
134 
135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 {
137 	if (unlikely(info->lo_encrypt_key_size <= 0))
138 		return -EINVAL;
139 	return 0;
140 }
141 
142 static struct loop_func_table none_funcs = {
143 	.number = LO_CRYPT_NONE,
144 	.transfer = transfer_none,
145 };
146 
147 static struct loop_func_table xor_funcs = {
148 	.number = LO_CRYPT_XOR,
149 	.transfer = transfer_xor,
150 	.init = xor_init
151 };
152 
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
155 	&none_funcs,
156 	&xor_funcs
157 };
158 
159 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 {
161 	loff_t size, offset, loopsize;
162 
163 	/* Compute loopsize in bytes */
164 	size = i_size_read(file->f_mapping->host);
165 	offset = lo->lo_offset;
166 	loopsize = size - offset;
167 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 		loopsize = lo->lo_sizelimit;
169 
170 	/*
171 	 * Unfortunately, if we want to do I/O on the device,
172 	 * the number of 512-byte sectors has to fit into a sector_t.
173 	 */
174 	return loopsize >> 9;
175 }
176 
177 static int
178 figure_loop_size(struct loop_device *lo)
179 {
180 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
181 	sector_t x = (sector_t)size;
182 
183 	if (unlikely((loff_t)x != size))
184 		return -EFBIG;
185 
186 	set_capacity(disks[lo->lo_number], x);
187 	return 0;
188 }
189 
190 static inline int
191 lo_do_transfer(struct loop_device *lo, int cmd,
192 	       struct page *rpage, unsigned roffs,
193 	       struct page *lpage, unsigned loffs,
194 	       int size, sector_t rblock)
195 {
196 	if (unlikely(!lo->transfer))
197 		return 0;
198 
199 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
200 }
201 
202 /**
203  * do_lo_send_aops - helper for writing data to a loop device
204  *
205  * This is the fast version for backing filesystems which implement the address
206  * space operations prepare_write and commit_write.
207  */
208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
209 		int bsize, loff_t pos, struct page *page)
210 {
211 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
212 	struct address_space *mapping = file->f_mapping;
213 	const struct address_space_operations *aops = mapping->a_ops;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret;
217 
218 	mutex_lock(&mapping->host->i_mutex);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size;
226 		int transfer_result;
227 
228 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
229 		size = PAGE_CACHE_SIZE - offset;
230 		if (size > len)
231 			size = len;
232 		page = grab_cache_page(mapping, index);
233 		if (unlikely(!page))
234 			goto fail;
235 		ret = aops->prepare_write(file, page, offset,
236 					  offset + size);
237 		if (unlikely(ret)) {
238 			if (ret == AOP_TRUNCATED_PAGE) {
239 				page_cache_release(page);
240 				continue;
241 			}
242 			goto unlock;
243 		}
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		if (unlikely(transfer_result)) {
247 			char *kaddr;
248 
249 			/*
250 			 * The transfer failed, but we still write the data to
251 			 * keep prepare/commit calls balanced.
252 			 */
253 			printk(KERN_ERR "loop: transfer error block %llu\n",
254 			       (unsigned long long)index);
255 			kaddr = kmap_atomic(page, KM_USER0);
256 			memset(kaddr + offset, 0, size);
257 			kunmap_atomic(kaddr, KM_USER0);
258 		}
259 		flush_dcache_page(page);
260 		ret = aops->commit_write(file, page, offset,
261 					 offset + size);
262 		if (unlikely(ret)) {
263 			if (ret == AOP_TRUNCATED_PAGE) {
264 				page_cache_release(page);
265 				continue;
266 			}
267 			goto unlock;
268 		}
269 		if (unlikely(transfer_result))
270 			goto unlock;
271 		bv_offs += size;
272 		len -= size;
273 		offset = 0;
274 		index++;
275 		pos += size;
276 		unlock_page(page);
277 		page_cache_release(page);
278 	}
279 	ret = 0;
280 out:
281 	mutex_unlock(&mapping->host->i_mutex);
282 	return ret;
283 unlock:
284 	unlock_page(page);
285 	page_cache_release(page);
286 fail:
287 	ret = -1;
288 	goto out;
289 }
290 
291 /**
292  * __do_lo_send_write - helper for writing data to a loop device
293  *
294  * This helper just factors out common code between do_lo_send_direct_write()
295  * and do_lo_send_write().
296  */
297 static int __do_lo_send_write(struct file *file,
298 		u8 *buf, const int len, loff_t pos)
299 {
300 	ssize_t bw;
301 	mm_segment_t old_fs = get_fs();
302 
303 	set_fs(get_ds());
304 	bw = file->f_op->write(file, buf, len, &pos);
305 	set_fs(old_fs);
306 	if (likely(bw == len))
307 		return 0;
308 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
309 			(unsigned long long)pos, len);
310 	if (bw >= 0)
311 		bw = -EIO;
312 	return bw;
313 }
314 
315 /**
316  * do_lo_send_direct_write - helper for writing data to a loop device
317  *
318  * This is the fast, non-transforming version for backing filesystems which do
319  * not implement the address space operations prepare_write and commit_write.
320  * It uses the write file operation which should be present on all writeable
321  * filesystems.
322  */
323 static int do_lo_send_direct_write(struct loop_device *lo,
324 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
325 {
326 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
327 			kmap(bvec->bv_page) + bvec->bv_offset,
328 			bvec->bv_len, pos);
329 	kunmap(bvec->bv_page);
330 	cond_resched();
331 	return bw;
332 }
333 
334 /**
335  * do_lo_send_write - helper for writing data to a loop device
336  *
337  * This is the slow, transforming version for filesystems which do not
338  * implement the address space operations prepare_write and commit_write.  It
339  * uses the write file operation which should be present on all writeable
340  * filesystems.
341  *
342  * Using fops->write is slower than using aops->{prepare,commit}_write in the
343  * transforming case because we need to double buffer the data as we cannot do
344  * the transformations in place as we do not have direct access to the
345  * destination pages of the backing file.
346  */
347 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
348 		int bsize, loff_t pos, struct page *page)
349 {
350 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
351 			bvec->bv_offset, bvec->bv_len, pos >> 9);
352 	if (likely(!ret))
353 		return __do_lo_send_write(lo->lo_backing_file,
354 				page_address(page), bvec->bv_len,
355 				pos);
356 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
357 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
358 	if (ret > 0)
359 		ret = -EIO;
360 	return ret;
361 }
362 
363 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
364 		loff_t pos)
365 {
366 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
367 			struct page *page);
368 	struct bio_vec *bvec;
369 	struct page *page = NULL;
370 	int i, ret = 0;
371 
372 	do_lo_send = do_lo_send_aops;
373 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
374 		do_lo_send = do_lo_send_direct_write;
375 		if (lo->transfer != transfer_none) {
376 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
377 			if (unlikely(!page))
378 				goto fail;
379 			kmap(page);
380 			do_lo_send = do_lo_send_write;
381 		}
382 	}
383 	bio_for_each_segment(bvec, bio, i) {
384 		ret = do_lo_send(lo, bvec, bsize, pos, page);
385 		if (ret < 0)
386 			break;
387 		pos += bvec->bv_len;
388 	}
389 	if (page) {
390 		kunmap(page);
391 		__free_page(page);
392 	}
393 out:
394 	return ret;
395 fail:
396 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
397 	ret = -ENOMEM;
398 	goto out;
399 }
400 
401 struct lo_read_data {
402 	struct loop_device *lo;
403 	struct page *page;
404 	unsigned offset;
405 	int bsize;
406 };
407 
408 static int
409 lo_read_actor(read_descriptor_t *desc, struct page *page,
410 	      unsigned long offset, unsigned long size)
411 {
412 	unsigned long count = desc->count;
413 	struct lo_read_data *p = desc->arg.data;
414 	struct loop_device *lo = p->lo;
415 	sector_t IV;
416 
417 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
418 
419 	if (size > count)
420 		size = count;
421 
422 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
423 		size = 0;
424 		printk(KERN_ERR "loop: transfer error block %ld\n",
425 		       page->index);
426 		desc->error = -EINVAL;
427 	}
428 
429 	flush_dcache_page(p->page);
430 
431 	desc->count = count - size;
432 	desc->written += size;
433 	p->offset += size;
434 	return size;
435 }
436 
437 static int
438 do_lo_receive(struct loop_device *lo,
439 	      struct bio_vec *bvec, int bsize, loff_t pos)
440 {
441 	struct lo_read_data cookie;
442 	struct file *file;
443 	int retval;
444 
445 	cookie.lo = lo;
446 	cookie.page = bvec->bv_page;
447 	cookie.offset = bvec->bv_offset;
448 	cookie.bsize = bsize;
449 	file = lo->lo_backing_file;
450 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
451 			lo_read_actor, &cookie);
452 	return (retval < 0)? retval: 0;
453 }
454 
455 static int
456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 {
458 	struct bio_vec *bvec;
459 	int i, ret = 0;
460 
461 	bio_for_each_segment(bvec, bio, i) {
462 		ret = do_lo_receive(lo, bvec, bsize, pos);
463 		if (ret < 0)
464 			break;
465 		pos += bvec->bv_len;
466 	}
467 	return ret;
468 }
469 
470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 {
472 	loff_t pos;
473 	int ret;
474 
475 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 	if (bio_rw(bio) == WRITE)
477 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
478 	else
479 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
480 	return ret;
481 }
482 
483 /*
484  * Add bio to back of pending list
485  */
486 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
487 {
488 	if (lo->lo_biotail) {
489 		lo->lo_biotail->bi_next = bio;
490 		lo->lo_biotail = bio;
491 	} else
492 		lo->lo_bio = lo->lo_biotail = bio;
493 }
494 
495 /*
496  * Grab first pending buffer
497  */
498 static struct bio *loop_get_bio(struct loop_device *lo)
499 {
500 	struct bio *bio;
501 
502 	if ((bio = lo->lo_bio)) {
503 		if (bio == lo->lo_biotail)
504 			lo->lo_biotail = NULL;
505 		lo->lo_bio = bio->bi_next;
506 		bio->bi_next = NULL;
507 	}
508 
509 	return bio;
510 }
511 
512 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
513 {
514 	struct loop_device *lo = q->queuedata;
515 	int rw = bio_rw(old_bio);
516 
517 	if (rw == READA)
518 		rw = READ;
519 
520 	BUG_ON(!lo || (rw != READ && rw != WRITE));
521 
522 	spin_lock_irq(&lo->lo_lock);
523 	if (lo->lo_state != Lo_bound)
524 		goto out;
525 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
526 		goto out;
527 	loop_add_bio(lo, old_bio);
528 	wake_up(&lo->lo_event);
529 	spin_unlock_irq(&lo->lo_lock);
530 	return 0;
531 
532 out:
533 	spin_unlock_irq(&lo->lo_lock);
534 	bio_io_error(old_bio, old_bio->bi_size);
535 	return 0;
536 }
537 
538 /*
539  * kick off io on the underlying address space
540  */
541 static void loop_unplug(request_queue_t *q)
542 {
543 	struct loop_device *lo = q->queuedata;
544 
545 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
546 	blk_run_address_space(lo->lo_backing_file->f_mapping);
547 }
548 
549 struct switch_request {
550 	struct file *file;
551 	struct completion wait;
552 };
553 
554 static void do_loop_switch(struct loop_device *, struct switch_request *);
555 
556 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
557 {
558 	if (unlikely(!bio->bi_bdev)) {
559 		do_loop_switch(lo, bio->bi_private);
560 		bio_put(bio);
561 	} else {
562 		int ret = do_bio_filebacked(lo, bio);
563 		bio_endio(bio, bio->bi_size, ret);
564 	}
565 }
566 
567 /*
568  * worker thread that handles reads/writes to file backed loop devices,
569  * to avoid blocking in our make_request_fn. it also does loop decrypting
570  * on reads for block backed loop, as that is too heavy to do from
571  * b_end_io context where irqs may be disabled.
572  *
573  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
574  * calling kthread_stop().  Therefore once kthread_should_stop() is
575  * true, make_request will not place any more requests.  Therefore
576  * once kthread_should_stop() is true and lo_bio is NULL, we are
577  * done with the loop.
578  */
579 static int loop_thread(void *data)
580 {
581 	struct loop_device *lo = data;
582 	struct bio *bio;
583 
584 	/*
585 	 * loop can be used in an encrypted device,
586 	 * hence, it mustn't be stopped at all
587 	 * because it could be indirectly used during suspension
588 	 */
589 	current->flags |= PF_NOFREEZE;
590 
591 	set_user_nice(current, -20);
592 
593 	while (!kthread_should_stop() || lo->lo_bio) {
594 
595 		wait_event_interruptible(lo->lo_event,
596 				lo->lo_bio || kthread_should_stop());
597 
598 		if (!lo->lo_bio)
599 			continue;
600 		spin_lock_irq(&lo->lo_lock);
601 		bio = loop_get_bio(lo);
602 		spin_unlock_irq(&lo->lo_lock);
603 
604 		BUG_ON(!bio);
605 		loop_handle_bio(lo, bio);
606 	}
607 
608 	return 0;
609 }
610 
611 /*
612  * loop_switch performs the hard work of switching a backing store.
613  * First it needs to flush existing IO, it does this by sending a magic
614  * BIO down the pipe. The completion of this BIO does the actual switch.
615  */
616 static int loop_switch(struct loop_device *lo, struct file *file)
617 {
618 	struct switch_request w;
619 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
620 	if (!bio)
621 		return -ENOMEM;
622 	init_completion(&w.wait);
623 	w.file = file;
624 	bio->bi_private = &w;
625 	bio->bi_bdev = NULL;
626 	loop_make_request(lo->lo_queue, bio);
627 	wait_for_completion(&w.wait);
628 	return 0;
629 }
630 
631 /*
632  * Do the actual switch; called from the BIO completion routine
633  */
634 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
635 {
636 	struct file *file = p->file;
637 	struct file *old_file = lo->lo_backing_file;
638 	struct address_space *mapping = file->f_mapping;
639 
640 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
641 	lo->lo_backing_file = file;
642 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
643 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
644 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
645 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
646 	complete(&p->wait);
647 }
648 
649 
650 /*
651  * loop_change_fd switched the backing store of a loopback device to
652  * a new file. This is useful for operating system installers to free up
653  * the original file and in High Availability environments to switch to
654  * an alternative location for the content in case of server meltdown.
655  * This can only work if the loop device is used read-only, and if the
656  * new backing store is the same size and type as the old backing store.
657  */
658 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
659 		       struct block_device *bdev, unsigned int arg)
660 {
661 	struct file	*file, *old_file;
662 	struct inode	*inode;
663 	int		error;
664 
665 	error = -ENXIO;
666 	if (lo->lo_state != Lo_bound)
667 		goto out;
668 
669 	/* the loop device has to be read-only */
670 	error = -EINVAL;
671 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
672 		goto out;
673 
674 	error = -EBADF;
675 	file = fget(arg);
676 	if (!file)
677 		goto out;
678 
679 	inode = file->f_mapping->host;
680 	old_file = lo->lo_backing_file;
681 
682 	error = -EINVAL;
683 
684 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
685 		goto out_putf;
686 
687 	/* new backing store needs to support loop (eg sendfile) */
688 	if (!inode->i_fop->sendfile)
689 		goto out_putf;
690 
691 	/* size of the new backing store needs to be the same */
692 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
693 		goto out_putf;
694 
695 	/* and ... switch */
696 	error = loop_switch(lo, file);
697 	if (error)
698 		goto out_putf;
699 
700 	fput(old_file);
701 	return 0;
702 
703  out_putf:
704 	fput(file);
705  out:
706 	return error;
707 }
708 
709 static inline int is_loop_device(struct file *file)
710 {
711 	struct inode *i = file->f_mapping->host;
712 
713 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
714 }
715 
716 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
717 		       struct block_device *bdev, unsigned int arg)
718 {
719 	struct file	*file, *f;
720 	struct inode	*inode;
721 	struct address_space *mapping;
722 	unsigned lo_blocksize;
723 	int		lo_flags = 0;
724 	int		error;
725 	loff_t		size;
726 
727 	/* This is safe, since we have a reference from open(). */
728 	__module_get(THIS_MODULE);
729 
730 	error = -EBADF;
731 	file = fget(arg);
732 	if (!file)
733 		goto out;
734 
735 	error = -EBUSY;
736 	if (lo->lo_state != Lo_unbound)
737 		goto out_putf;
738 
739 	/* Avoid recursion */
740 	f = file;
741 	while (is_loop_device(f)) {
742 		struct loop_device *l;
743 
744 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
745 			goto out_putf;
746 
747 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
748 		if (l->lo_state == Lo_unbound) {
749 			error = -EINVAL;
750 			goto out_putf;
751 		}
752 		f = l->lo_backing_file;
753 	}
754 
755 	mapping = file->f_mapping;
756 	inode = mapping->host;
757 
758 	if (!(file->f_mode & FMODE_WRITE))
759 		lo_flags |= LO_FLAGS_READ_ONLY;
760 
761 	error = -EINVAL;
762 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
763 		const struct address_space_operations *aops = mapping->a_ops;
764 		/*
765 		 * If we can't read - sorry. If we only can't write - well,
766 		 * it's going to be read-only.
767 		 */
768 		if (!file->f_op->sendfile)
769 			goto out_putf;
770 		if (aops->prepare_write && aops->commit_write)
771 			lo_flags |= LO_FLAGS_USE_AOPS;
772 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
773 			lo_flags |= LO_FLAGS_READ_ONLY;
774 
775 		lo_blocksize = S_ISBLK(inode->i_mode) ?
776 			inode->i_bdev->bd_block_size : PAGE_SIZE;
777 
778 		error = 0;
779 	} else {
780 		goto out_putf;
781 	}
782 
783 	size = get_loop_size(lo, file);
784 
785 	if ((loff_t)(sector_t)size != size) {
786 		error = -EFBIG;
787 		goto out_putf;
788 	}
789 
790 	if (!(lo_file->f_mode & FMODE_WRITE))
791 		lo_flags |= LO_FLAGS_READ_ONLY;
792 
793 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
794 
795 	lo->lo_blocksize = lo_blocksize;
796 	lo->lo_device = bdev;
797 	lo->lo_flags = lo_flags;
798 	lo->lo_backing_file = file;
799 	lo->transfer = transfer_none;
800 	lo->ioctl = NULL;
801 	lo->lo_sizelimit = 0;
802 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
803 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
804 
805 	lo->lo_bio = lo->lo_biotail = NULL;
806 
807 	/*
808 	 * set queue make_request_fn, and add limits based on lower level
809 	 * device
810 	 */
811 	blk_queue_make_request(lo->lo_queue, loop_make_request);
812 	lo->lo_queue->queuedata = lo;
813 	lo->lo_queue->unplug_fn = loop_unplug;
814 
815 	set_capacity(disks[lo->lo_number], size);
816 	bd_set_size(bdev, size << 9);
817 
818 	set_blocksize(bdev, lo_blocksize);
819 
820 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
821 						lo->lo_number);
822 	if (IS_ERR(lo->lo_thread)) {
823 		error = PTR_ERR(lo->lo_thread);
824 		goto out_clr;
825 	}
826 	lo->lo_state = Lo_bound;
827 	wake_up_process(lo->lo_thread);
828 	return 0;
829 
830 out_clr:
831 	lo->lo_thread = NULL;
832 	lo->lo_device = NULL;
833 	lo->lo_backing_file = NULL;
834 	lo->lo_flags = 0;
835 	set_capacity(disks[lo->lo_number], 0);
836 	invalidate_bdev(bdev, 0);
837 	bd_set_size(bdev, 0);
838 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
839 	lo->lo_state = Lo_unbound;
840  out_putf:
841 	fput(file);
842  out:
843 	/* This is safe: open() is still holding a reference. */
844 	module_put(THIS_MODULE);
845 	return error;
846 }
847 
848 static int
849 loop_release_xfer(struct loop_device *lo)
850 {
851 	int err = 0;
852 	struct loop_func_table *xfer = lo->lo_encryption;
853 
854 	if (xfer) {
855 		if (xfer->release)
856 			err = xfer->release(lo);
857 		lo->transfer = NULL;
858 		lo->lo_encryption = NULL;
859 		module_put(xfer->owner);
860 	}
861 	return err;
862 }
863 
864 static int
865 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
866 	       const struct loop_info64 *i)
867 {
868 	int err = 0;
869 
870 	if (xfer) {
871 		struct module *owner = xfer->owner;
872 
873 		if (!try_module_get(owner))
874 			return -EINVAL;
875 		if (xfer->init)
876 			err = xfer->init(lo, i);
877 		if (err)
878 			module_put(owner);
879 		else
880 			lo->lo_encryption = xfer;
881 	}
882 	return err;
883 }
884 
885 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
886 {
887 	struct file *filp = lo->lo_backing_file;
888 	gfp_t gfp = lo->old_gfp_mask;
889 
890 	if (lo->lo_state != Lo_bound)
891 		return -ENXIO;
892 
893 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
894 		return -EBUSY;
895 
896 	if (filp == NULL)
897 		return -EINVAL;
898 
899 	spin_lock_irq(&lo->lo_lock);
900 	lo->lo_state = Lo_rundown;
901 	spin_unlock_irq(&lo->lo_lock);
902 
903 	kthread_stop(lo->lo_thread);
904 
905 	lo->lo_backing_file = NULL;
906 
907 	loop_release_xfer(lo);
908 	lo->transfer = NULL;
909 	lo->ioctl = NULL;
910 	lo->lo_device = NULL;
911 	lo->lo_encryption = NULL;
912 	lo->lo_offset = 0;
913 	lo->lo_sizelimit = 0;
914 	lo->lo_encrypt_key_size = 0;
915 	lo->lo_flags = 0;
916 	lo->lo_thread = NULL;
917 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
918 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
919 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
920 	invalidate_bdev(bdev, 0);
921 	set_capacity(disks[lo->lo_number], 0);
922 	bd_set_size(bdev, 0);
923 	mapping_set_gfp_mask(filp->f_mapping, gfp);
924 	lo->lo_state = Lo_unbound;
925 	fput(filp);
926 	/* This is safe: open() is still holding a reference. */
927 	module_put(THIS_MODULE);
928 	return 0;
929 }
930 
931 static int
932 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
933 {
934 	int err;
935 	struct loop_func_table *xfer;
936 
937 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
938 	    !capable(CAP_SYS_ADMIN))
939 		return -EPERM;
940 	if (lo->lo_state != Lo_bound)
941 		return -ENXIO;
942 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
943 		return -EINVAL;
944 
945 	err = loop_release_xfer(lo);
946 	if (err)
947 		return err;
948 
949 	if (info->lo_encrypt_type) {
950 		unsigned int type = info->lo_encrypt_type;
951 
952 		if (type >= MAX_LO_CRYPT)
953 			return -EINVAL;
954 		xfer = xfer_funcs[type];
955 		if (xfer == NULL)
956 			return -EINVAL;
957 	} else
958 		xfer = NULL;
959 
960 	err = loop_init_xfer(lo, xfer, info);
961 	if (err)
962 		return err;
963 
964 	if (lo->lo_offset != info->lo_offset ||
965 	    lo->lo_sizelimit != info->lo_sizelimit) {
966 		lo->lo_offset = info->lo_offset;
967 		lo->lo_sizelimit = info->lo_sizelimit;
968 		if (figure_loop_size(lo))
969 			return -EFBIG;
970 	}
971 
972 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
973 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
974 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
975 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
976 
977 	if (!xfer)
978 		xfer = &none_funcs;
979 	lo->transfer = xfer->transfer;
980 	lo->ioctl = xfer->ioctl;
981 
982 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
983 	lo->lo_init[0] = info->lo_init[0];
984 	lo->lo_init[1] = info->lo_init[1];
985 	if (info->lo_encrypt_key_size) {
986 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
987 		       info->lo_encrypt_key_size);
988 		lo->lo_key_owner = current->uid;
989 	}
990 
991 	return 0;
992 }
993 
994 static int
995 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
996 {
997 	struct file *file = lo->lo_backing_file;
998 	struct kstat stat;
999 	int error;
1000 
1001 	if (lo->lo_state != Lo_bound)
1002 		return -ENXIO;
1003 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1004 	if (error)
1005 		return error;
1006 	memset(info, 0, sizeof(*info));
1007 	info->lo_number = lo->lo_number;
1008 	info->lo_device = huge_encode_dev(stat.dev);
1009 	info->lo_inode = stat.ino;
1010 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1011 	info->lo_offset = lo->lo_offset;
1012 	info->lo_sizelimit = lo->lo_sizelimit;
1013 	info->lo_flags = lo->lo_flags;
1014 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1015 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1016 	info->lo_encrypt_type =
1017 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1018 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1019 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1020 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1021 		       lo->lo_encrypt_key_size);
1022 	}
1023 	return 0;
1024 }
1025 
1026 static void
1027 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1028 {
1029 	memset(info64, 0, sizeof(*info64));
1030 	info64->lo_number = info->lo_number;
1031 	info64->lo_device = info->lo_device;
1032 	info64->lo_inode = info->lo_inode;
1033 	info64->lo_rdevice = info->lo_rdevice;
1034 	info64->lo_offset = info->lo_offset;
1035 	info64->lo_sizelimit = 0;
1036 	info64->lo_encrypt_type = info->lo_encrypt_type;
1037 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1038 	info64->lo_flags = info->lo_flags;
1039 	info64->lo_init[0] = info->lo_init[0];
1040 	info64->lo_init[1] = info->lo_init[1];
1041 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1042 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1043 	else
1044 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1045 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1046 }
1047 
1048 static int
1049 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1050 {
1051 	memset(info, 0, sizeof(*info));
1052 	info->lo_number = info64->lo_number;
1053 	info->lo_device = info64->lo_device;
1054 	info->lo_inode = info64->lo_inode;
1055 	info->lo_rdevice = info64->lo_rdevice;
1056 	info->lo_offset = info64->lo_offset;
1057 	info->lo_encrypt_type = info64->lo_encrypt_type;
1058 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1059 	info->lo_flags = info64->lo_flags;
1060 	info->lo_init[0] = info64->lo_init[0];
1061 	info->lo_init[1] = info64->lo_init[1];
1062 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1063 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1064 	else
1065 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1066 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1067 
1068 	/* error in case values were truncated */
1069 	if (info->lo_device != info64->lo_device ||
1070 	    info->lo_rdevice != info64->lo_rdevice ||
1071 	    info->lo_inode != info64->lo_inode ||
1072 	    info->lo_offset != info64->lo_offset)
1073 		return -EOVERFLOW;
1074 
1075 	return 0;
1076 }
1077 
1078 static int
1079 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1080 {
1081 	struct loop_info info;
1082 	struct loop_info64 info64;
1083 
1084 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1085 		return -EFAULT;
1086 	loop_info64_from_old(&info, &info64);
1087 	return loop_set_status(lo, &info64);
1088 }
1089 
1090 static int
1091 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1092 {
1093 	struct loop_info64 info64;
1094 
1095 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1096 		return -EFAULT;
1097 	return loop_set_status(lo, &info64);
1098 }
1099 
1100 static int
1101 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1102 	struct loop_info info;
1103 	struct loop_info64 info64;
1104 	int err = 0;
1105 
1106 	if (!arg)
1107 		err = -EINVAL;
1108 	if (!err)
1109 		err = loop_get_status(lo, &info64);
1110 	if (!err)
1111 		err = loop_info64_to_old(&info64, &info);
1112 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1113 		err = -EFAULT;
1114 
1115 	return err;
1116 }
1117 
1118 static int
1119 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1120 	struct loop_info64 info64;
1121 	int err = 0;
1122 
1123 	if (!arg)
1124 		err = -EINVAL;
1125 	if (!err)
1126 		err = loop_get_status(lo, &info64);
1127 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1128 		err = -EFAULT;
1129 
1130 	return err;
1131 }
1132 
1133 static int lo_ioctl(struct inode * inode, struct file * file,
1134 	unsigned int cmd, unsigned long arg)
1135 {
1136 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1137 	int err;
1138 
1139 	mutex_lock(&lo->lo_ctl_mutex);
1140 	switch (cmd) {
1141 	case LOOP_SET_FD:
1142 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1143 		break;
1144 	case LOOP_CHANGE_FD:
1145 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1146 		break;
1147 	case LOOP_CLR_FD:
1148 		err = loop_clr_fd(lo, inode->i_bdev);
1149 		break;
1150 	case LOOP_SET_STATUS:
1151 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1152 		break;
1153 	case LOOP_GET_STATUS:
1154 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1155 		break;
1156 	case LOOP_SET_STATUS64:
1157 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1158 		break;
1159 	case LOOP_GET_STATUS64:
1160 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1161 		break;
1162 	default:
1163 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1164 	}
1165 	mutex_unlock(&lo->lo_ctl_mutex);
1166 	return err;
1167 }
1168 
1169 #ifdef CONFIG_COMPAT
1170 struct compat_loop_info {
1171 	compat_int_t	lo_number;      /* ioctl r/o */
1172 	compat_dev_t	lo_device;      /* ioctl r/o */
1173 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1174 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1175 	compat_int_t	lo_offset;
1176 	compat_int_t	lo_encrypt_type;
1177 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1178 	compat_int_t	lo_flags;       /* ioctl r/o */
1179 	char		lo_name[LO_NAME_SIZE];
1180 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1181 	compat_ulong_t	lo_init[2];
1182 	char		reserved[4];
1183 };
1184 
1185 /*
1186  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1187  * - noinlined to reduce stack space usage in main part of driver
1188  */
1189 static noinline int
1190 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1191 			struct loop_info64 *info64)
1192 {
1193 	struct compat_loop_info info;
1194 
1195 	if (copy_from_user(&info, arg, sizeof(info)))
1196 		return -EFAULT;
1197 
1198 	memset(info64, 0, sizeof(*info64));
1199 	info64->lo_number = info.lo_number;
1200 	info64->lo_device = info.lo_device;
1201 	info64->lo_inode = info.lo_inode;
1202 	info64->lo_rdevice = info.lo_rdevice;
1203 	info64->lo_offset = info.lo_offset;
1204 	info64->lo_sizelimit = 0;
1205 	info64->lo_encrypt_type = info.lo_encrypt_type;
1206 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1207 	info64->lo_flags = info.lo_flags;
1208 	info64->lo_init[0] = info.lo_init[0];
1209 	info64->lo_init[1] = info.lo_init[1];
1210 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1211 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1212 	else
1213 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1214 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1220  * - noinlined to reduce stack space usage in main part of driver
1221  */
1222 static noinline int
1223 loop_info64_to_compat(const struct loop_info64 *info64,
1224 		      struct compat_loop_info __user *arg)
1225 {
1226 	struct compat_loop_info info;
1227 
1228 	memset(&info, 0, sizeof(info));
1229 	info.lo_number = info64->lo_number;
1230 	info.lo_device = info64->lo_device;
1231 	info.lo_inode = info64->lo_inode;
1232 	info.lo_rdevice = info64->lo_rdevice;
1233 	info.lo_offset = info64->lo_offset;
1234 	info.lo_encrypt_type = info64->lo_encrypt_type;
1235 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1236 	info.lo_flags = info64->lo_flags;
1237 	info.lo_init[0] = info64->lo_init[0];
1238 	info.lo_init[1] = info64->lo_init[1];
1239 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1240 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1241 	else
1242 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1243 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1244 
1245 	/* error in case values were truncated */
1246 	if (info.lo_device != info64->lo_device ||
1247 	    info.lo_rdevice != info64->lo_rdevice ||
1248 	    info.lo_inode != info64->lo_inode ||
1249 	    info.lo_offset != info64->lo_offset ||
1250 	    info.lo_init[0] != info64->lo_init[0] ||
1251 	    info.lo_init[1] != info64->lo_init[1])
1252 		return -EOVERFLOW;
1253 
1254 	if (copy_to_user(arg, &info, sizeof(info)))
1255 		return -EFAULT;
1256 	return 0;
1257 }
1258 
1259 static int
1260 loop_set_status_compat(struct loop_device *lo,
1261 		       const struct compat_loop_info __user *arg)
1262 {
1263 	struct loop_info64 info64;
1264 	int ret;
1265 
1266 	ret = loop_info64_from_compat(arg, &info64);
1267 	if (ret < 0)
1268 		return ret;
1269 	return loop_set_status(lo, &info64);
1270 }
1271 
1272 static int
1273 loop_get_status_compat(struct loop_device *lo,
1274 		       struct compat_loop_info __user *arg)
1275 {
1276 	struct loop_info64 info64;
1277 	int err = 0;
1278 
1279 	if (!arg)
1280 		err = -EINVAL;
1281 	if (!err)
1282 		err = loop_get_status(lo, &info64);
1283 	if (!err)
1284 		err = loop_info64_to_compat(&info64, arg);
1285 	return err;
1286 }
1287 
1288 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1289 {
1290 	struct inode *inode = file->f_path.dentry->d_inode;
1291 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1292 	int err;
1293 
1294 	lock_kernel();
1295 	switch(cmd) {
1296 	case LOOP_SET_STATUS:
1297 		mutex_lock(&lo->lo_ctl_mutex);
1298 		err = loop_set_status_compat(
1299 			lo, (const struct compat_loop_info __user *) arg);
1300 		mutex_unlock(&lo->lo_ctl_mutex);
1301 		break;
1302 	case LOOP_GET_STATUS:
1303 		mutex_lock(&lo->lo_ctl_mutex);
1304 		err = loop_get_status_compat(
1305 			lo, (struct compat_loop_info __user *) arg);
1306 		mutex_unlock(&lo->lo_ctl_mutex);
1307 		break;
1308 	case LOOP_CLR_FD:
1309 	case LOOP_GET_STATUS64:
1310 	case LOOP_SET_STATUS64:
1311 		arg = (unsigned long) compat_ptr(arg);
1312 	case LOOP_SET_FD:
1313 	case LOOP_CHANGE_FD:
1314 		err = lo_ioctl(inode, file, cmd, arg);
1315 		break;
1316 	default:
1317 		err = -ENOIOCTLCMD;
1318 		break;
1319 	}
1320 	unlock_kernel();
1321 	return err;
1322 }
1323 #endif
1324 
1325 static int lo_open(struct inode *inode, struct file *file)
1326 {
1327 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1328 
1329 	mutex_lock(&lo->lo_ctl_mutex);
1330 	lo->lo_refcnt++;
1331 	mutex_unlock(&lo->lo_ctl_mutex);
1332 
1333 	return 0;
1334 }
1335 
1336 static int lo_release(struct inode *inode, struct file *file)
1337 {
1338 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1339 
1340 	mutex_lock(&lo->lo_ctl_mutex);
1341 	--lo->lo_refcnt;
1342 	mutex_unlock(&lo->lo_ctl_mutex);
1343 
1344 	return 0;
1345 }
1346 
1347 static struct block_device_operations lo_fops = {
1348 	.owner =	THIS_MODULE,
1349 	.open =		lo_open,
1350 	.release =	lo_release,
1351 	.ioctl =	lo_ioctl,
1352 #ifdef CONFIG_COMPAT
1353 	.compat_ioctl =	lo_compat_ioctl,
1354 #endif
1355 };
1356 
1357 /*
1358  * And now the modules code and kernel interface.
1359  */
1360 module_param(max_loop, int, 0);
1361 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1362 MODULE_LICENSE("GPL");
1363 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1364 
1365 int loop_register_transfer(struct loop_func_table *funcs)
1366 {
1367 	unsigned int n = funcs->number;
1368 
1369 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1370 		return -EINVAL;
1371 	xfer_funcs[n] = funcs;
1372 	return 0;
1373 }
1374 
1375 int loop_unregister_transfer(int number)
1376 {
1377 	unsigned int n = number;
1378 	struct loop_device *lo;
1379 	struct loop_func_table *xfer;
1380 
1381 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1382 		return -EINVAL;
1383 
1384 	xfer_funcs[n] = NULL;
1385 
1386 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1387 		mutex_lock(&lo->lo_ctl_mutex);
1388 
1389 		if (lo->lo_encryption == xfer)
1390 			loop_release_xfer(lo);
1391 
1392 		mutex_unlock(&lo->lo_ctl_mutex);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 EXPORT_SYMBOL(loop_register_transfer);
1399 EXPORT_SYMBOL(loop_unregister_transfer);
1400 
1401 static int __init loop_init(void)
1402 {
1403 	int	i;
1404 
1405 	if (max_loop < 1 || max_loop > 256) {
1406 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1407 				    " 1 and 256), using default (8)\n");
1408 		max_loop = 8;
1409 	}
1410 
1411 	if (register_blkdev(LOOP_MAJOR, "loop"))
1412 		return -EIO;
1413 
1414 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1415 	if (!loop_dev)
1416 		goto out_mem1;
1417 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1418 
1419 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1420 	if (!disks)
1421 		goto out_mem2;
1422 
1423 	for (i = 0; i < max_loop; i++) {
1424 		disks[i] = alloc_disk(1);
1425 		if (!disks[i])
1426 			goto out_mem3;
1427 	}
1428 
1429 	for (i = 0; i < max_loop; i++) {
1430 		struct loop_device *lo = &loop_dev[i];
1431 		struct gendisk *disk = disks[i];
1432 
1433 		memset(lo, 0, sizeof(*lo));
1434 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1435 		if (!lo->lo_queue)
1436 			goto out_mem4;
1437 		mutex_init(&lo->lo_ctl_mutex);
1438 		lo->lo_number = i;
1439 		lo->lo_thread = NULL;
1440 		init_waitqueue_head(&lo->lo_event);
1441 		spin_lock_init(&lo->lo_lock);
1442 		disk->major = LOOP_MAJOR;
1443 		disk->first_minor = i;
1444 		disk->fops = &lo_fops;
1445 		sprintf(disk->disk_name, "loop%d", i);
1446 		disk->private_data = lo;
1447 		disk->queue = lo->lo_queue;
1448 	}
1449 
1450 	/* We cannot fail after we call this, so another loop!*/
1451 	for (i = 0; i < max_loop; i++)
1452 		add_disk(disks[i]);
1453 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1454 	return 0;
1455 
1456 out_mem4:
1457 	while (i--)
1458 		blk_cleanup_queue(loop_dev[i].lo_queue);
1459 	i = max_loop;
1460 out_mem3:
1461 	while (i--)
1462 		put_disk(disks[i]);
1463 	kfree(disks);
1464 out_mem2:
1465 	kfree(loop_dev);
1466 out_mem1:
1467 	unregister_blkdev(LOOP_MAJOR, "loop");
1468 	printk(KERN_ERR "loop: ran out of memory\n");
1469 	return -ENOMEM;
1470 }
1471 
1472 static void loop_exit(void)
1473 {
1474 	int i;
1475 
1476 	for (i = 0; i < max_loop; i++) {
1477 		del_gendisk(disks[i]);
1478 		blk_cleanup_queue(loop_dev[i].lo_queue);
1479 		put_disk(disks[i]);
1480 	}
1481 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1482 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1483 
1484 	kfree(disks);
1485 	kfree(loop_dev);
1486 }
1487 
1488 module_init(loop_init);
1489 module_exit(loop_exit);
1490 
1491 #ifndef MODULE
1492 static int __init max_loop_setup(char *str)
1493 {
1494 	max_loop = simple_strtol(str, NULL, 0);
1495 	return 1;
1496 }
1497 
1498 __setup("max_loop=", max_loop_setup);
1499 #endif
1500