1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 78 #include <asm/uaccess.h> 79 80 static int max_loop = 8; 81 static struct loop_device *loop_dev; 82 static struct gendisk **disks; 83 84 /* 85 * Transfer functions 86 */ 87 static int transfer_none(struct loop_device *lo, int cmd, 88 struct page *raw_page, unsigned raw_off, 89 struct page *loop_page, unsigned loop_off, 90 int size, sector_t real_block) 91 { 92 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 93 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 94 95 if (cmd == READ) 96 memcpy(loop_buf, raw_buf, size); 97 else 98 memcpy(raw_buf, loop_buf, size); 99 100 kunmap_atomic(raw_buf, KM_USER0); 101 kunmap_atomic(loop_buf, KM_USER1); 102 cond_resched(); 103 return 0; 104 } 105 106 static int transfer_xor(struct loop_device *lo, int cmd, 107 struct page *raw_page, unsigned raw_off, 108 struct page *loop_page, unsigned loop_off, 109 int size, sector_t real_block) 110 { 111 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 112 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 113 char *in, *out, *key; 114 int i, keysize; 115 116 if (cmd == READ) { 117 in = raw_buf; 118 out = loop_buf; 119 } else { 120 in = loop_buf; 121 out = raw_buf; 122 } 123 124 key = lo->lo_encrypt_key; 125 keysize = lo->lo_encrypt_key_size; 126 for (i = 0; i < size; i++) 127 *out++ = *in++ ^ key[(i & 511) % keysize]; 128 129 kunmap_atomic(raw_buf, KM_USER0); 130 kunmap_atomic(loop_buf, KM_USER1); 131 cond_resched(); 132 return 0; 133 } 134 135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 136 { 137 if (unlikely(info->lo_encrypt_key_size <= 0)) 138 return -EINVAL; 139 return 0; 140 } 141 142 static struct loop_func_table none_funcs = { 143 .number = LO_CRYPT_NONE, 144 .transfer = transfer_none, 145 }; 146 147 static struct loop_func_table xor_funcs = { 148 .number = LO_CRYPT_XOR, 149 .transfer = transfer_xor, 150 .init = xor_init 151 }; 152 153 /* xfer_funcs[0] is special - its release function is never called */ 154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 155 &none_funcs, 156 &xor_funcs 157 }; 158 159 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 160 { 161 loff_t size, offset, loopsize; 162 163 /* Compute loopsize in bytes */ 164 size = i_size_read(file->f_mapping->host); 165 offset = lo->lo_offset; 166 loopsize = size - offset; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 170 /* 171 * Unfortunately, if we want to do I/O on the device, 172 * the number of 512-byte sectors has to fit into a sector_t. 173 */ 174 return loopsize >> 9; 175 } 176 177 static int 178 figure_loop_size(struct loop_device *lo) 179 { 180 loff_t size = get_loop_size(lo, lo->lo_backing_file); 181 sector_t x = (sector_t)size; 182 183 if (unlikely((loff_t)x != size)) 184 return -EFBIG; 185 186 set_capacity(disks[lo->lo_number], x); 187 return 0; 188 } 189 190 static inline int 191 lo_do_transfer(struct loop_device *lo, int cmd, 192 struct page *rpage, unsigned roffs, 193 struct page *lpage, unsigned loffs, 194 int size, sector_t rblock) 195 { 196 if (unlikely(!lo->transfer)) 197 return 0; 198 199 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 200 } 201 202 /** 203 * do_lo_send_aops - helper for writing data to a loop device 204 * 205 * This is the fast version for backing filesystems which implement the address 206 * space operations prepare_write and commit_write. 207 */ 208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 209 int bsize, loff_t pos, struct page *page) 210 { 211 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 212 struct address_space *mapping = file->f_mapping; 213 const struct address_space_operations *aops = mapping->a_ops; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret; 217 218 mutex_lock(&mapping->host->i_mutex); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size; 226 int transfer_result; 227 228 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 229 size = PAGE_CACHE_SIZE - offset; 230 if (size > len) 231 size = len; 232 page = grab_cache_page(mapping, index); 233 if (unlikely(!page)) 234 goto fail; 235 ret = aops->prepare_write(file, page, offset, 236 offset + size); 237 if (unlikely(ret)) { 238 if (ret == AOP_TRUNCATED_PAGE) { 239 page_cache_release(page); 240 continue; 241 } 242 goto unlock; 243 } 244 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 245 bvec->bv_page, bv_offs, size, IV); 246 if (unlikely(transfer_result)) { 247 char *kaddr; 248 249 /* 250 * The transfer failed, but we still write the data to 251 * keep prepare/commit calls balanced. 252 */ 253 printk(KERN_ERR "loop: transfer error block %llu\n", 254 (unsigned long long)index); 255 kaddr = kmap_atomic(page, KM_USER0); 256 memset(kaddr + offset, 0, size); 257 kunmap_atomic(kaddr, KM_USER0); 258 } 259 flush_dcache_page(page); 260 ret = aops->commit_write(file, page, offset, 261 offset + size); 262 if (unlikely(ret)) { 263 if (ret == AOP_TRUNCATED_PAGE) { 264 page_cache_release(page); 265 continue; 266 } 267 goto unlock; 268 } 269 if (unlikely(transfer_result)) 270 goto unlock; 271 bv_offs += size; 272 len -= size; 273 offset = 0; 274 index++; 275 pos += size; 276 unlock_page(page); 277 page_cache_release(page); 278 } 279 ret = 0; 280 out: 281 mutex_unlock(&mapping->host->i_mutex); 282 return ret; 283 unlock: 284 unlock_page(page); 285 page_cache_release(page); 286 fail: 287 ret = -1; 288 goto out; 289 } 290 291 /** 292 * __do_lo_send_write - helper for writing data to a loop device 293 * 294 * This helper just factors out common code between do_lo_send_direct_write() 295 * and do_lo_send_write(). 296 */ 297 static int __do_lo_send_write(struct file *file, 298 u8 *buf, const int len, loff_t pos) 299 { 300 ssize_t bw; 301 mm_segment_t old_fs = get_fs(); 302 303 set_fs(get_ds()); 304 bw = file->f_op->write(file, buf, len, &pos); 305 set_fs(old_fs); 306 if (likely(bw == len)) 307 return 0; 308 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 309 (unsigned long long)pos, len); 310 if (bw >= 0) 311 bw = -EIO; 312 return bw; 313 } 314 315 /** 316 * do_lo_send_direct_write - helper for writing data to a loop device 317 * 318 * This is the fast, non-transforming version for backing filesystems which do 319 * not implement the address space operations prepare_write and commit_write. 320 * It uses the write file operation which should be present on all writeable 321 * filesystems. 322 */ 323 static int do_lo_send_direct_write(struct loop_device *lo, 324 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 325 { 326 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 327 kmap(bvec->bv_page) + bvec->bv_offset, 328 bvec->bv_len, pos); 329 kunmap(bvec->bv_page); 330 cond_resched(); 331 return bw; 332 } 333 334 /** 335 * do_lo_send_write - helper for writing data to a loop device 336 * 337 * This is the slow, transforming version for filesystems which do not 338 * implement the address space operations prepare_write and commit_write. It 339 * uses the write file operation which should be present on all writeable 340 * filesystems. 341 * 342 * Using fops->write is slower than using aops->{prepare,commit}_write in the 343 * transforming case because we need to double buffer the data as we cannot do 344 * the transformations in place as we do not have direct access to the 345 * destination pages of the backing file. 346 */ 347 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 348 int bsize, loff_t pos, struct page *page) 349 { 350 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 351 bvec->bv_offset, bvec->bv_len, pos >> 9); 352 if (likely(!ret)) 353 return __do_lo_send_write(lo->lo_backing_file, 354 page_address(page), bvec->bv_len, 355 pos); 356 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 357 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 358 if (ret > 0) 359 ret = -EIO; 360 return ret; 361 } 362 363 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 364 loff_t pos) 365 { 366 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 367 struct page *page); 368 struct bio_vec *bvec; 369 struct page *page = NULL; 370 int i, ret = 0; 371 372 do_lo_send = do_lo_send_aops; 373 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 374 do_lo_send = do_lo_send_direct_write; 375 if (lo->transfer != transfer_none) { 376 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 377 if (unlikely(!page)) 378 goto fail; 379 kmap(page); 380 do_lo_send = do_lo_send_write; 381 } 382 } 383 bio_for_each_segment(bvec, bio, i) { 384 ret = do_lo_send(lo, bvec, bsize, pos, page); 385 if (ret < 0) 386 break; 387 pos += bvec->bv_len; 388 } 389 if (page) { 390 kunmap(page); 391 __free_page(page); 392 } 393 out: 394 return ret; 395 fail: 396 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 397 ret = -ENOMEM; 398 goto out; 399 } 400 401 struct lo_read_data { 402 struct loop_device *lo; 403 struct page *page; 404 unsigned offset; 405 int bsize; 406 }; 407 408 static int 409 lo_read_actor(read_descriptor_t *desc, struct page *page, 410 unsigned long offset, unsigned long size) 411 { 412 unsigned long count = desc->count; 413 struct lo_read_data *p = desc->arg.data; 414 struct loop_device *lo = p->lo; 415 sector_t IV; 416 417 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 418 419 if (size > count) 420 size = count; 421 422 if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) { 423 size = 0; 424 printk(KERN_ERR "loop: transfer error block %ld\n", 425 page->index); 426 desc->error = -EINVAL; 427 } 428 429 flush_dcache_page(p->page); 430 431 desc->count = count - size; 432 desc->written += size; 433 p->offset += size; 434 return size; 435 } 436 437 static int 438 do_lo_receive(struct loop_device *lo, 439 struct bio_vec *bvec, int bsize, loff_t pos) 440 { 441 struct lo_read_data cookie; 442 struct file *file; 443 int retval; 444 445 cookie.lo = lo; 446 cookie.page = bvec->bv_page; 447 cookie.offset = bvec->bv_offset; 448 cookie.bsize = bsize; 449 file = lo->lo_backing_file; 450 retval = file->f_op->sendfile(file, &pos, bvec->bv_len, 451 lo_read_actor, &cookie); 452 return (retval < 0)? retval: 0; 453 } 454 455 static int 456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 457 { 458 struct bio_vec *bvec; 459 int i, ret = 0; 460 461 bio_for_each_segment(bvec, bio, i) { 462 ret = do_lo_receive(lo, bvec, bsize, pos); 463 if (ret < 0) 464 break; 465 pos += bvec->bv_len; 466 } 467 return ret; 468 } 469 470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 471 { 472 loff_t pos; 473 int ret; 474 475 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 476 if (bio_rw(bio) == WRITE) 477 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 478 else 479 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 480 return ret; 481 } 482 483 /* 484 * Add bio to back of pending list 485 */ 486 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 487 { 488 if (lo->lo_biotail) { 489 lo->lo_biotail->bi_next = bio; 490 lo->lo_biotail = bio; 491 } else 492 lo->lo_bio = lo->lo_biotail = bio; 493 } 494 495 /* 496 * Grab first pending buffer 497 */ 498 static struct bio *loop_get_bio(struct loop_device *lo) 499 { 500 struct bio *bio; 501 502 if ((bio = lo->lo_bio)) { 503 if (bio == lo->lo_biotail) 504 lo->lo_biotail = NULL; 505 lo->lo_bio = bio->bi_next; 506 bio->bi_next = NULL; 507 } 508 509 return bio; 510 } 511 512 static int loop_make_request(request_queue_t *q, struct bio *old_bio) 513 { 514 struct loop_device *lo = q->queuedata; 515 int rw = bio_rw(old_bio); 516 517 if (rw == READA) 518 rw = READ; 519 520 BUG_ON(!lo || (rw != READ && rw != WRITE)); 521 522 spin_lock_irq(&lo->lo_lock); 523 if (lo->lo_state != Lo_bound) 524 goto out; 525 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 526 goto out; 527 loop_add_bio(lo, old_bio); 528 wake_up(&lo->lo_event); 529 spin_unlock_irq(&lo->lo_lock); 530 return 0; 531 532 out: 533 spin_unlock_irq(&lo->lo_lock); 534 bio_io_error(old_bio, old_bio->bi_size); 535 return 0; 536 } 537 538 /* 539 * kick off io on the underlying address space 540 */ 541 static void loop_unplug(request_queue_t *q) 542 { 543 struct loop_device *lo = q->queuedata; 544 545 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 546 blk_run_address_space(lo->lo_backing_file->f_mapping); 547 } 548 549 struct switch_request { 550 struct file *file; 551 struct completion wait; 552 }; 553 554 static void do_loop_switch(struct loop_device *, struct switch_request *); 555 556 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 557 { 558 if (unlikely(!bio->bi_bdev)) { 559 do_loop_switch(lo, bio->bi_private); 560 bio_put(bio); 561 } else { 562 int ret = do_bio_filebacked(lo, bio); 563 bio_endio(bio, bio->bi_size, ret); 564 } 565 } 566 567 /* 568 * worker thread that handles reads/writes to file backed loop devices, 569 * to avoid blocking in our make_request_fn. it also does loop decrypting 570 * on reads for block backed loop, as that is too heavy to do from 571 * b_end_io context where irqs may be disabled. 572 * 573 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 574 * calling kthread_stop(). Therefore once kthread_should_stop() is 575 * true, make_request will not place any more requests. Therefore 576 * once kthread_should_stop() is true and lo_bio is NULL, we are 577 * done with the loop. 578 */ 579 static int loop_thread(void *data) 580 { 581 struct loop_device *lo = data; 582 struct bio *bio; 583 584 /* 585 * loop can be used in an encrypted device, 586 * hence, it mustn't be stopped at all 587 * because it could be indirectly used during suspension 588 */ 589 current->flags |= PF_NOFREEZE; 590 591 set_user_nice(current, -20); 592 593 while (!kthread_should_stop() || lo->lo_bio) { 594 595 wait_event_interruptible(lo->lo_event, 596 lo->lo_bio || kthread_should_stop()); 597 598 if (!lo->lo_bio) 599 continue; 600 spin_lock_irq(&lo->lo_lock); 601 bio = loop_get_bio(lo); 602 spin_unlock_irq(&lo->lo_lock); 603 604 BUG_ON(!bio); 605 loop_handle_bio(lo, bio); 606 } 607 608 return 0; 609 } 610 611 /* 612 * loop_switch performs the hard work of switching a backing store. 613 * First it needs to flush existing IO, it does this by sending a magic 614 * BIO down the pipe. The completion of this BIO does the actual switch. 615 */ 616 static int loop_switch(struct loop_device *lo, struct file *file) 617 { 618 struct switch_request w; 619 struct bio *bio = bio_alloc(GFP_KERNEL, 1); 620 if (!bio) 621 return -ENOMEM; 622 init_completion(&w.wait); 623 w.file = file; 624 bio->bi_private = &w; 625 bio->bi_bdev = NULL; 626 loop_make_request(lo->lo_queue, bio); 627 wait_for_completion(&w.wait); 628 return 0; 629 } 630 631 /* 632 * Do the actual switch; called from the BIO completion routine 633 */ 634 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 635 { 636 struct file *file = p->file; 637 struct file *old_file = lo->lo_backing_file; 638 struct address_space *mapping = file->f_mapping; 639 640 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 641 lo->lo_backing_file = file; 642 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 643 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 644 lo->old_gfp_mask = mapping_gfp_mask(mapping); 645 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 646 complete(&p->wait); 647 } 648 649 650 /* 651 * loop_change_fd switched the backing store of a loopback device to 652 * a new file. This is useful for operating system installers to free up 653 * the original file and in High Availability environments to switch to 654 * an alternative location for the content in case of server meltdown. 655 * This can only work if the loop device is used read-only, and if the 656 * new backing store is the same size and type as the old backing store. 657 */ 658 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 659 struct block_device *bdev, unsigned int arg) 660 { 661 struct file *file, *old_file; 662 struct inode *inode; 663 int error; 664 665 error = -ENXIO; 666 if (lo->lo_state != Lo_bound) 667 goto out; 668 669 /* the loop device has to be read-only */ 670 error = -EINVAL; 671 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 672 goto out; 673 674 error = -EBADF; 675 file = fget(arg); 676 if (!file) 677 goto out; 678 679 inode = file->f_mapping->host; 680 old_file = lo->lo_backing_file; 681 682 error = -EINVAL; 683 684 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 685 goto out_putf; 686 687 /* new backing store needs to support loop (eg sendfile) */ 688 if (!inode->i_fop->sendfile) 689 goto out_putf; 690 691 /* size of the new backing store needs to be the same */ 692 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 693 goto out_putf; 694 695 /* and ... switch */ 696 error = loop_switch(lo, file); 697 if (error) 698 goto out_putf; 699 700 fput(old_file); 701 return 0; 702 703 out_putf: 704 fput(file); 705 out: 706 return error; 707 } 708 709 static inline int is_loop_device(struct file *file) 710 { 711 struct inode *i = file->f_mapping->host; 712 713 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 714 } 715 716 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 717 struct block_device *bdev, unsigned int arg) 718 { 719 struct file *file, *f; 720 struct inode *inode; 721 struct address_space *mapping; 722 unsigned lo_blocksize; 723 int lo_flags = 0; 724 int error; 725 loff_t size; 726 727 /* This is safe, since we have a reference from open(). */ 728 __module_get(THIS_MODULE); 729 730 error = -EBADF; 731 file = fget(arg); 732 if (!file) 733 goto out; 734 735 error = -EBUSY; 736 if (lo->lo_state != Lo_unbound) 737 goto out_putf; 738 739 /* Avoid recursion */ 740 f = file; 741 while (is_loop_device(f)) { 742 struct loop_device *l; 743 744 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 745 goto out_putf; 746 747 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 748 if (l->lo_state == Lo_unbound) { 749 error = -EINVAL; 750 goto out_putf; 751 } 752 f = l->lo_backing_file; 753 } 754 755 mapping = file->f_mapping; 756 inode = mapping->host; 757 758 if (!(file->f_mode & FMODE_WRITE)) 759 lo_flags |= LO_FLAGS_READ_ONLY; 760 761 error = -EINVAL; 762 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 763 const struct address_space_operations *aops = mapping->a_ops; 764 /* 765 * If we can't read - sorry. If we only can't write - well, 766 * it's going to be read-only. 767 */ 768 if (!file->f_op->sendfile) 769 goto out_putf; 770 if (aops->prepare_write && aops->commit_write) 771 lo_flags |= LO_FLAGS_USE_AOPS; 772 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 773 lo_flags |= LO_FLAGS_READ_ONLY; 774 775 lo_blocksize = S_ISBLK(inode->i_mode) ? 776 inode->i_bdev->bd_block_size : PAGE_SIZE; 777 778 error = 0; 779 } else { 780 goto out_putf; 781 } 782 783 size = get_loop_size(lo, file); 784 785 if ((loff_t)(sector_t)size != size) { 786 error = -EFBIG; 787 goto out_putf; 788 } 789 790 if (!(lo_file->f_mode & FMODE_WRITE)) 791 lo_flags |= LO_FLAGS_READ_ONLY; 792 793 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 794 795 lo->lo_blocksize = lo_blocksize; 796 lo->lo_device = bdev; 797 lo->lo_flags = lo_flags; 798 lo->lo_backing_file = file; 799 lo->transfer = transfer_none; 800 lo->ioctl = NULL; 801 lo->lo_sizelimit = 0; 802 lo->old_gfp_mask = mapping_gfp_mask(mapping); 803 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 804 805 lo->lo_bio = lo->lo_biotail = NULL; 806 807 /* 808 * set queue make_request_fn, and add limits based on lower level 809 * device 810 */ 811 blk_queue_make_request(lo->lo_queue, loop_make_request); 812 lo->lo_queue->queuedata = lo; 813 lo->lo_queue->unplug_fn = loop_unplug; 814 815 set_capacity(disks[lo->lo_number], size); 816 bd_set_size(bdev, size << 9); 817 818 set_blocksize(bdev, lo_blocksize); 819 820 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 821 lo->lo_number); 822 if (IS_ERR(lo->lo_thread)) { 823 error = PTR_ERR(lo->lo_thread); 824 goto out_clr; 825 } 826 lo->lo_state = Lo_bound; 827 wake_up_process(lo->lo_thread); 828 return 0; 829 830 out_clr: 831 lo->lo_thread = NULL; 832 lo->lo_device = NULL; 833 lo->lo_backing_file = NULL; 834 lo->lo_flags = 0; 835 set_capacity(disks[lo->lo_number], 0); 836 invalidate_bdev(bdev, 0); 837 bd_set_size(bdev, 0); 838 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 839 lo->lo_state = Lo_unbound; 840 out_putf: 841 fput(file); 842 out: 843 /* This is safe: open() is still holding a reference. */ 844 module_put(THIS_MODULE); 845 return error; 846 } 847 848 static int 849 loop_release_xfer(struct loop_device *lo) 850 { 851 int err = 0; 852 struct loop_func_table *xfer = lo->lo_encryption; 853 854 if (xfer) { 855 if (xfer->release) 856 err = xfer->release(lo); 857 lo->transfer = NULL; 858 lo->lo_encryption = NULL; 859 module_put(xfer->owner); 860 } 861 return err; 862 } 863 864 static int 865 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 866 const struct loop_info64 *i) 867 { 868 int err = 0; 869 870 if (xfer) { 871 struct module *owner = xfer->owner; 872 873 if (!try_module_get(owner)) 874 return -EINVAL; 875 if (xfer->init) 876 err = xfer->init(lo, i); 877 if (err) 878 module_put(owner); 879 else 880 lo->lo_encryption = xfer; 881 } 882 return err; 883 } 884 885 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 886 { 887 struct file *filp = lo->lo_backing_file; 888 gfp_t gfp = lo->old_gfp_mask; 889 890 if (lo->lo_state != Lo_bound) 891 return -ENXIO; 892 893 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 894 return -EBUSY; 895 896 if (filp == NULL) 897 return -EINVAL; 898 899 spin_lock_irq(&lo->lo_lock); 900 lo->lo_state = Lo_rundown; 901 spin_unlock_irq(&lo->lo_lock); 902 903 kthread_stop(lo->lo_thread); 904 905 lo->lo_backing_file = NULL; 906 907 loop_release_xfer(lo); 908 lo->transfer = NULL; 909 lo->ioctl = NULL; 910 lo->lo_device = NULL; 911 lo->lo_encryption = NULL; 912 lo->lo_offset = 0; 913 lo->lo_sizelimit = 0; 914 lo->lo_encrypt_key_size = 0; 915 lo->lo_flags = 0; 916 lo->lo_thread = NULL; 917 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 918 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 919 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 920 invalidate_bdev(bdev, 0); 921 set_capacity(disks[lo->lo_number], 0); 922 bd_set_size(bdev, 0); 923 mapping_set_gfp_mask(filp->f_mapping, gfp); 924 lo->lo_state = Lo_unbound; 925 fput(filp); 926 /* This is safe: open() is still holding a reference. */ 927 module_put(THIS_MODULE); 928 return 0; 929 } 930 931 static int 932 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 933 { 934 int err; 935 struct loop_func_table *xfer; 936 937 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 938 !capable(CAP_SYS_ADMIN)) 939 return -EPERM; 940 if (lo->lo_state != Lo_bound) 941 return -ENXIO; 942 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 943 return -EINVAL; 944 945 err = loop_release_xfer(lo); 946 if (err) 947 return err; 948 949 if (info->lo_encrypt_type) { 950 unsigned int type = info->lo_encrypt_type; 951 952 if (type >= MAX_LO_CRYPT) 953 return -EINVAL; 954 xfer = xfer_funcs[type]; 955 if (xfer == NULL) 956 return -EINVAL; 957 } else 958 xfer = NULL; 959 960 err = loop_init_xfer(lo, xfer, info); 961 if (err) 962 return err; 963 964 if (lo->lo_offset != info->lo_offset || 965 lo->lo_sizelimit != info->lo_sizelimit) { 966 lo->lo_offset = info->lo_offset; 967 lo->lo_sizelimit = info->lo_sizelimit; 968 if (figure_loop_size(lo)) 969 return -EFBIG; 970 } 971 972 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 973 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 974 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 975 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 976 977 if (!xfer) 978 xfer = &none_funcs; 979 lo->transfer = xfer->transfer; 980 lo->ioctl = xfer->ioctl; 981 982 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 983 lo->lo_init[0] = info->lo_init[0]; 984 lo->lo_init[1] = info->lo_init[1]; 985 if (info->lo_encrypt_key_size) { 986 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 987 info->lo_encrypt_key_size); 988 lo->lo_key_owner = current->uid; 989 } 990 991 return 0; 992 } 993 994 static int 995 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 996 { 997 struct file *file = lo->lo_backing_file; 998 struct kstat stat; 999 int error; 1000 1001 if (lo->lo_state != Lo_bound) 1002 return -ENXIO; 1003 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1004 if (error) 1005 return error; 1006 memset(info, 0, sizeof(*info)); 1007 info->lo_number = lo->lo_number; 1008 info->lo_device = huge_encode_dev(stat.dev); 1009 info->lo_inode = stat.ino; 1010 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1011 info->lo_offset = lo->lo_offset; 1012 info->lo_sizelimit = lo->lo_sizelimit; 1013 info->lo_flags = lo->lo_flags; 1014 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1015 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1016 info->lo_encrypt_type = 1017 lo->lo_encryption ? lo->lo_encryption->number : 0; 1018 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1019 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1020 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1021 lo->lo_encrypt_key_size); 1022 } 1023 return 0; 1024 } 1025 1026 static void 1027 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1028 { 1029 memset(info64, 0, sizeof(*info64)); 1030 info64->lo_number = info->lo_number; 1031 info64->lo_device = info->lo_device; 1032 info64->lo_inode = info->lo_inode; 1033 info64->lo_rdevice = info->lo_rdevice; 1034 info64->lo_offset = info->lo_offset; 1035 info64->lo_sizelimit = 0; 1036 info64->lo_encrypt_type = info->lo_encrypt_type; 1037 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1038 info64->lo_flags = info->lo_flags; 1039 info64->lo_init[0] = info->lo_init[0]; 1040 info64->lo_init[1] = info->lo_init[1]; 1041 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1042 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1043 else 1044 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1045 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1046 } 1047 1048 static int 1049 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1050 { 1051 memset(info, 0, sizeof(*info)); 1052 info->lo_number = info64->lo_number; 1053 info->lo_device = info64->lo_device; 1054 info->lo_inode = info64->lo_inode; 1055 info->lo_rdevice = info64->lo_rdevice; 1056 info->lo_offset = info64->lo_offset; 1057 info->lo_encrypt_type = info64->lo_encrypt_type; 1058 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1059 info->lo_flags = info64->lo_flags; 1060 info->lo_init[0] = info64->lo_init[0]; 1061 info->lo_init[1] = info64->lo_init[1]; 1062 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1063 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1064 else 1065 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1066 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1067 1068 /* error in case values were truncated */ 1069 if (info->lo_device != info64->lo_device || 1070 info->lo_rdevice != info64->lo_rdevice || 1071 info->lo_inode != info64->lo_inode || 1072 info->lo_offset != info64->lo_offset) 1073 return -EOVERFLOW; 1074 1075 return 0; 1076 } 1077 1078 static int 1079 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1080 { 1081 struct loop_info info; 1082 struct loop_info64 info64; 1083 1084 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1085 return -EFAULT; 1086 loop_info64_from_old(&info, &info64); 1087 return loop_set_status(lo, &info64); 1088 } 1089 1090 static int 1091 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1092 { 1093 struct loop_info64 info64; 1094 1095 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1096 return -EFAULT; 1097 return loop_set_status(lo, &info64); 1098 } 1099 1100 static int 1101 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1102 struct loop_info info; 1103 struct loop_info64 info64; 1104 int err = 0; 1105 1106 if (!arg) 1107 err = -EINVAL; 1108 if (!err) 1109 err = loop_get_status(lo, &info64); 1110 if (!err) 1111 err = loop_info64_to_old(&info64, &info); 1112 if (!err && copy_to_user(arg, &info, sizeof(info))) 1113 err = -EFAULT; 1114 1115 return err; 1116 } 1117 1118 static int 1119 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1120 struct loop_info64 info64; 1121 int err = 0; 1122 1123 if (!arg) 1124 err = -EINVAL; 1125 if (!err) 1126 err = loop_get_status(lo, &info64); 1127 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1128 err = -EFAULT; 1129 1130 return err; 1131 } 1132 1133 static int lo_ioctl(struct inode * inode, struct file * file, 1134 unsigned int cmd, unsigned long arg) 1135 { 1136 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1137 int err; 1138 1139 mutex_lock(&lo->lo_ctl_mutex); 1140 switch (cmd) { 1141 case LOOP_SET_FD: 1142 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1143 break; 1144 case LOOP_CHANGE_FD: 1145 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1146 break; 1147 case LOOP_CLR_FD: 1148 err = loop_clr_fd(lo, inode->i_bdev); 1149 break; 1150 case LOOP_SET_STATUS: 1151 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1152 break; 1153 case LOOP_GET_STATUS: 1154 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1155 break; 1156 case LOOP_SET_STATUS64: 1157 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1158 break; 1159 case LOOP_GET_STATUS64: 1160 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1161 break; 1162 default: 1163 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1164 } 1165 mutex_unlock(&lo->lo_ctl_mutex); 1166 return err; 1167 } 1168 1169 #ifdef CONFIG_COMPAT 1170 struct compat_loop_info { 1171 compat_int_t lo_number; /* ioctl r/o */ 1172 compat_dev_t lo_device; /* ioctl r/o */ 1173 compat_ulong_t lo_inode; /* ioctl r/o */ 1174 compat_dev_t lo_rdevice; /* ioctl r/o */ 1175 compat_int_t lo_offset; 1176 compat_int_t lo_encrypt_type; 1177 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1178 compat_int_t lo_flags; /* ioctl r/o */ 1179 char lo_name[LO_NAME_SIZE]; 1180 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1181 compat_ulong_t lo_init[2]; 1182 char reserved[4]; 1183 }; 1184 1185 /* 1186 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1187 * - noinlined to reduce stack space usage in main part of driver 1188 */ 1189 static noinline int 1190 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1191 struct loop_info64 *info64) 1192 { 1193 struct compat_loop_info info; 1194 1195 if (copy_from_user(&info, arg, sizeof(info))) 1196 return -EFAULT; 1197 1198 memset(info64, 0, sizeof(*info64)); 1199 info64->lo_number = info.lo_number; 1200 info64->lo_device = info.lo_device; 1201 info64->lo_inode = info.lo_inode; 1202 info64->lo_rdevice = info.lo_rdevice; 1203 info64->lo_offset = info.lo_offset; 1204 info64->lo_sizelimit = 0; 1205 info64->lo_encrypt_type = info.lo_encrypt_type; 1206 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1207 info64->lo_flags = info.lo_flags; 1208 info64->lo_init[0] = info.lo_init[0]; 1209 info64->lo_init[1] = info.lo_init[1]; 1210 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1211 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1212 else 1213 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1214 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1215 return 0; 1216 } 1217 1218 /* 1219 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1220 * - noinlined to reduce stack space usage in main part of driver 1221 */ 1222 static noinline int 1223 loop_info64_to_compat(const struct loop_info64 *info64, 1224 struct compat_loop_info __user *arg) 1225 { 1226 struct compat_loop_info info; 1227 1228 memset(&info, 0, sizeof(info)); 1229 info.lo_number = info64->lo_number; 1230 info.lo_device = info64->lo_device; 1231 info.lo_inode = info64->lo_inode; 1232 info.lo_rdevice = info64->lo_rdevice; 1233 info.lo_offset = info64->lo_offset; 1234 info.lo_encrypt_type = info64->lo_encrypt_type; 1235 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1236 info.lo_flags = info64->lo_flags; 1237 info.lo_init[0] = info64->lo_init[0]; 1238 info.lo_init[1] = info64->lo_init[1]; 1239 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1240 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1241 else 1242 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1243 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1244 1245 /* error in case values were truncated */ 1246 if (info.lo_device != info64->lo_device || 1247 info.lo_rdevice != info64->lo_rdevice || 1248 info.lo_inode != info64->lo_inode || 1249 info.lo_offset != info64->lo_offset || 1250 info.lo_init[0] != info64->lo_init[0] || 1251 info.lo_init[1] != info64->lo_init[1]) 1252 return -EOVERFLOW; 1253 1254 if (copy_to_user(arg, &info, sizeof(info))) 1255 return -EFAULT; 1256 return 0; 1257 } 1258 1259 static int 1260 loop_set_status_compat(struct loop_device *lo, 1261 const struct compat_loop_info __user *arg) 1262 { 1263 struct loop_info64 info64; 1264 int ret; 1265 1266 ret = loop_info64_from_compat(arg, &info64); 1267 if (ret < 0) 1268 return ret; 1269 return loop_set_status(lo, &info64); 1270 } 1271 1272 static int 1273 loop_get_status_compat(struct loop_device *lo, 1274 struct compat_loop_info __user *arg) 1275 { 1276 struct loop_info64 info64; 1277 int err = 0; 1278 1279 if (!arg) 1280 err = -EINVAL; 1281 if (!err) 1282 err = loop_get_status(lo, &info64); 1283 if (!err) 1284 err = loop_info64_to_compat(&info64, arg); 1285 return err; 1286 } 1287 1288 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1289 { 1290 struct inode *inode = file->f_path.dentry->d_inode; 1291 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1292 int err; 1293 1294 lock_kernel(); 1295 switch(cmd) { 1296 case LOOP_SET_STATUS: 1297 mutex_lock(&lo->lo_ctl_mutex); 1298 err = loop_set_status_compat( 1299 lo, (const struct compat_loop_info __user *) arg); 1300 mutex_unlock(&lo->lo_ctl_mutex); 1301 break; 1302 case LOOP_GET_STATUS: 1303 mutex_lock(&lo->lo_ctl_mutex); 1304 err = loop_get_status_compat( 1305 lo, (struct compat_loop_info __user *) arg); 1306 mutex_unlock(&lo->lo_ctl_mutex); 1307 break; 1308 case LOOP_CLR_FD: 1309 case LOOP_GET_STATUS64: 1310 case LOOP_SET_STATUS64: 1311 arg = (unsigned long) compat_ptr(arg); 1312 case LOOP_SET_FD: 1313 case LOOP_CHANGE_FD: 1314 err = lo_ioctl(inode, file, cmd, arg); 1315 break; 1316 default: 1317 err = -ENOIOCTLCMD; 1318 break; 1319 } 1320 unlock_kernel(); 1321 return err; 1322 } 1323 #endif 1324 1325 static int lo_open(struct inode *inode, struct file *file) 1326 { 1327 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1328 1329 mutex_lock(&lo->lo_ctl_mutex); 1330 lo->lo_refcnt++; 1331 mutex_unlock(&lo->lo_ctl_mutex); 1332 1333 return 0; 1334 } 1335 1336 static int lo_release(struct inode *inode, struct file *file) 1337 { 1338 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1339 1340 mutex_lock(&lo->lo_ctl_mutex); 1341 --lo->lo_refcnt; 1342 mutex_unlock(&lo->lo_ctl_mutex); 1343 1344 return 0; 1345 } 1346 1347 static struct block_device_operations lo_fops = { 1348 .owner = THIS_MODULE, 1349 .open = lo_open, 1350 .release = lo_release, 1351 .ioctl = lo_ioctl, 1352 #ifdef CONFIG_COMPAT 1353 .compat_ioctl = lo_compat_ioctl, 1354 #endif 1355 }; 1356 1357 /* 1358 * And now the modules code and kernel interface. 1359 */ 1360 module_param(max_loop, int, 0); 1361 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)"); 1362 MODULE_LICENSE("GPL"); 1363 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1364 1365 int loop_register_transfer(struct loop_func_table *funcs) 1366 { 1367 unsigned int n = funcs->number; 1368 1369 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1370 return -EINVAL; 1371 xfer_funcs[n] = funcs; 1372 return 0; 1373 } 1374 1375 int loop_unregister_transfer(int number) 1376 { 1377 unsigned int n = number; 1378 struct loop_device *lo; 1379 struct loop_func_table *xfer; 1380 1381 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1382 return -EINVAL; 1383 1384 xfer_funcs[n] = NULL; 1385 1386 for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) { 1387 mutex_lock(&lo->lo_ctl_mutex); 1388 1389 if (lo->lo_encryption == xfer) 1390 loop_release_xfer(lo); 1391 1392 mutex_unlock(&lo->lo_ctl_mutex); 1393 } 1394 1395 return 0; 1396 } 1397 1398 EXPORT_SYMBOL(loop_register_transfer); 1399 EXPORT_SYMBOL(loop_unregister_transfer); 1400 1401 static int __init loop_init(void) 1402 { 1403 int i; 1404 1405 if (max_loop < 1 || max_loop > 256) { 1406 printk(KERN_WARNING "loop: invalid max_loop (must be between" 1407 " 1 and 256), using default (8)\n"); 1408 max_loop = 8; 1409 } 1410 1411 if (register_blkdev(LOOP_MAJOR, "loop")) 1412 return -EIO; 1413 1414 loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL); 1415 if (!loop_dev) 1416 goto out_mem1; 1417 memset(loop_dev, 0, max_loop * sizeof(struct loop_device)); 1418 1419 disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL); 1420 if (!disks) 1421 goto out_mem2; 1422 1423 for (i = 0; i < max_loop; i++) { 1424 disks[i] = alloc_disk(1); 1425 if (!disks[i]) 1426 goto out_mem3; 1427 } 1428 1429 for (i = 0; i < max_loop; i++) { 1430 struct loop_device *lo = &loop_dev[i]; 1431 struct gendisk *disk = disks[i]; 1432 1433 memset(lo, 0, sizeof(*lo)); 1434 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1435 if (!lo->lo_queue) 1436 goto out_mem4; 1437 mutex_init(&lo->lo_ctl_mutex); 1438 lo->lo_number = i; 1439 lo->lo_thread = NULL; 1440 init_waitqueue_head(&lo->lo_event); 1441 spin_lock_init(&lo->lo_lock); 1442 disk->major = LOOP_MAJOR; 1443 disk->first_minor = i; 1444 disk->fops = &lo_fops; 1445 sprintf(disk->disk_name, "loop%d", i); 1446 disk->private_data = lo; 1447 disk->queue = lo->lo_queue; 1448 } 1449 1450 /* We cannot fail after we call this, so another loop!*/ 1451 for (i = 0; i < max_loop; i++) 1452 add_disk(disks[i]); 1453 printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop); 1454 return 0; 1455 1456 out_mem4: 1457 while (i--) 1458 blk_cleanup_queue(loop_dev[i].lo_queue); 1459 i = max_loop; 1460 out_mem3: 1461 while (i--) 1462 put_disk(disks[i]); 1463 kfree(disks); 1464 out_mem2: 1465 kfree(loop_dev); 1466 out_mem1: 1467 unregister_blkdev(LOOP_MAJOR, "loop"); 1468 printk(KERN_ERR "loop: ran out of memory\n"); 1469 return -ENOMEM; 1470 } 1471 1472 static void loop_exit(void) 1473 { 1474 int i; 1475 1476 for (i = 0; i < max_loop; i++) { 1477 del_gendisk(disks[i]); 1478 blk_cleanup_queue(loop_dev[i].lo_queue); 1479 put_disk(disks[i]); 1480 } 1481 if (unregister_blkdev(LOOP_MAJOR, "loop")) 1482 printk(KERN_WARNING "loop: cannot unregister blkdev\n"); 1483 1484 kfree(disks); 1485 kfree(loop_dev); 1486 } 1487 1488 module_init(loop_init); 1489 module_exit(loop_exit); 1490 1491 #ifndef MODULE 1492 static int __init max_loop_setup(char *str) 1493 { 1494 max_loop = simple_strtol(str, NULL, 0); 1495 return 1; 1496 } 1497 1498 __setup("max_loop=", max_loop_setup); 1499 #endif 1500