xref: /linux/drivers/block/loop.c (revision 6ab3d5624e172c553004ecc862bfeac16d9d68b7)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/suspend.h>
70 #include <linux/writeback.h>
71 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/gfp.h>
75 
76 #include <asm/uaccess.h>
77 
78 static int max_loop = 8;
79 static struct loop_device *loop_dev;
80 static struct gendisk **disks;
81 
82 /*
83  * Transfer functions
84  */
85 static int transfer_none(struct loop_device *lo, int cmd,
86 			 struct page *raw_page, unsigned raw_off,
87 			 struct page *loop_page, unsigned loop_off,
88 			 int size, sector_t real_block)
89 {
90 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
91 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
92 
93 	if (cmd == READ)
94 		memcpy(loop_buf, raw_buf, size);
95 	else
96 		memcpy(raw_buf, loop_buf, size);
97 
98 	kunmap_atomic(raw_buf, KM_USER0);
99 	kunmap_atomic(loop_buf, KM_USER1);
100 	cond_resched();
101 	return 0;
102 }
103 
104 static int transfer_xor(struct loop_device *lo, int cmd,
105 			struct page *raw_page, unsigned raw_off,
106 			struct page *loop_page, unsigned loop_off,
107 			int size, sector_t real_block)
108 {
109 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
110 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
111 	char *in, *out, *key;
112 	int i, keysize;
113 
114 	if (cmd == READ) {
115 		in = raw_buf;
116 		out = loop_buf;
117 	} else {
118 		in = loop_buf;
119 		out = raw_buf;
120 	}
121 
122 	key = lo->lo_encrypt_key;
123 	keysize = lo->lo_encrypt_key_size;
124 	for (i = 0; i < size; i++)
125 		*out++ = *in++ ^ key[(i & 511) % keysize];
126 
127 	kunmap_atomic(raw_buf, KM_USER0);
128 	kunmap_atomic(loop_buf, KM_USER1);
129 	cond_resched();
130 	return 0;
131 }
132 
133 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
134 {
135 	if (unlikely(info->lo_encrypt_key_size <= 0))
136 		return -EINVAL;
137 	return 0;
138 }
139 
140 static struct loop_func_table none_funcs = {
141 	.number = LO_CRYPT_NONE,
142 	.transfer = transfer_none,
143 };
144 
145 static struct loop_func_table xor_funcs = {
146 	.number = LO_CRYPT_XOR,
147 	.transfer = transfer_xor,
148 	.init = xor_init
149 };
150 
151 /* xfer_funcs[0] is special - its release function is never called */
152 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
153 	&none_funcs,
154 	&xor_funcs
155 };
156 
157 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
158 {
159 	loff_t size, offset, loopsize;
160 
161 	/* Compute loopsize in bytes */
162 	size = i_size_read(file->f_mapping->host);
163 	offset = lo->lo_offset;
164 	loopsize = size - offset;
165 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
166 		loopsize = lo->lo_sizelimit;
167 
168 	/*
169 	 * Unfortunately, if we want to do I/O on the device,
170 	 * the number of 512-byte sectors has to fit into a sector_t.
171 	 */
172 	return loopsize >> 9;
173 }
174 
175 static int
176 figure_loop_size(struct loop_device *lo)
177 {
178 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
179 	sector_t x = (sector_t)size;
180 
181 	if (unlikely((loff_t)x != size))
182 		return -EFBIG;
183 
184 	set_capacity(disks[lo->lo_number], x);
185 	return 0;
186 }
187 
188 static inline int
189 lo_do_transfer(struct loop_device *lo, int cmd,
190 	       struct page *rpage, unsigned roffs,
191 	       struct page *lpage, unsigned loffs,
192 	       int size, sector_t rblock)
193 {
194 	if (unlikely(!lo->transfer))
195 		return 0;
196 
197 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
198 }
199 
200 /**
201  * do_lo_send_aops - helper for writing data to a loop device
202  *
203  * This is the fast version for backing filesystems which implement the address
204  * space operations prepare_write and commit_write.
205  */
206 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
207 		int bsize, loff_t pos, struct page *page)
208 {
209 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
210 	struct address_space *mapping = file->f_mapping;
211 	const struct address_space_operations *aops = mapping->a_ops;
212 	pgoff_t index;
213 	unsigned offset, bv_offs;
214 	int len, ret;
215 
216 	mutex_lock(&mapping->host->i_mutex);
217 	index = pos >> PAGE_CACHE_SHIFT;
218 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
219 	bv_offs = bvec->bv_offset;
220 	len = bvec->bv_len;
221 	while (len > 0) {
222 		sector_t IV;
223 		unsigned size;
224 		int transfer_result;
225 
226 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
227 		size = PAGE_CACHE_SIZE - offset;
228 		if (size > len)
229 			size = len;
230 		page = grab_cache_page(mapping, index);
231 		if (unlikely(!page))
232 			goto fail;
233 		ret = aops->prepare_write(file, page, offset,
234 					  offset + size);
235 		if (unlikely(ret)) {
236 			if (ret == AOP_TRUNCATED_PAGE) {
237 				page_cache_release(page);
238 				continue;
239 			}
240 			goto unlock;
241 		}
242 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 				bvec->bv_page, bv_offs, size, IV);
244 		if (unlikely(transfer_result)) {
245 			char *kaddr;
246 
247 			/*
248 			 * The transfer failed, but we still write the data to
249 			 * keep prepare/commit calls balanced.
250 			 */
251 			printk(KERN_ERR "loop: transfer error block %llu\n",
252 			       (unsigned long long)index);
253 			kaddr = kmap_atomic(page, KM_USER0);
254 			memset(kaddr + offset, 0, size);
255 			kunmap_atomic(kaddr, KM_USER0);
256 		}
257 		flush_dcache_page(page);
258 		ret = aops->commit_write(file, page, offset,
259 					 offset + size);
260 		if (unlikely(ret)) {
261 			if (ret == AOP_TRUNCATED_PAGE) {
262 				page_cache_release(page);
263 				continue;
264 			}
265 			goto unlock;
266 		}
267 		if (unlikely(transfer_result))
268 			goto unlock;
269 		bv_offs += size;
270 		len -= size;
271 		offset = 0;
272 		index++;
273 		pos += size;
274 		unlock_page(page);
275 		page_cache_release(page);
276 	}
277 	ret = 0;
278 out:
279 	mutex_unlock(&mapping->host->i_mutex);
280 	return ret;
281 unlock:
282 	unlock_page(page);
283 	page_cache_release(page);
284 fail:
285 	ret = -1;
286 	goto out;
287 }
288 
289 /**
290  * __do_lo_send_write - helper for writing data to a loop device
291  *
292  * This helper just factors out common code between do_lo_send_direct_write()
293  * and do_lo_send_write().
294  */
295 static int __do_lo_send_write(struct file *file,
296 		u8 __user *buf, const int len, loff_t pos)
297 {
298 	ssize_t bw;
299 	mm_segment_t old_fs = get_fs();
300 
301 	set_fs(get_ds());
302 	bw = file->f_op->write(file, buf, len, &pos);
303 	set_fs(old_fs);
304 	if (likely(bw == len))
305 		return 0;
306 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
307 			(unsigned long long)pos, len);
308 	if (bw >= 0)
309 		bw = -EIO;
310 	return bw;
311 }
312 
313 /**
314  * do_lo_send_direct_write - helper for writing data to a loop device
315  *
316  * This is the fast, non-transforming version for backing filesystems which do
317  * not implement the address space operations prepare_write and commit_write.
318  * It uses the write file operation which should be present on all writeable
319  * filesystems.
320  */
321 static int do_lo_send_direct_write(struct loop_device *lo,
322 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
323 {
324 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
325 			(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
326 			bvec->bv_len, pos);
327 	kunmap(bvec->bv_page);
328 	cond_resched();
329 	return bw;
330 }
331 
332 /**
333  * do_lo_send_write - helper for writing data to a loop device
334  *
335  * This is the slow, transforming version for filesystems which do not
336  * implement the address space operations prepare_write and commit_write.  It
337  * uses the write file operation which should be present on all writeable
338  * filesystems.
339  *
340  * Using fops->write is slower than using aops->{prepare,commit}_write in the
341  * transforming case because we need to double buffer the data as we cannot do
342  * the transformations in place as we do not have direct access to the
343  * destination pages of the backing file.
344  */
345 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
346 		int bsize, loff_t pos, struct page *page)
347 {
348 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
349 			bvec->bv_offset, bvec->bv_len, pos >> 9);
350 	if (likely(!ret))
351 		return __do_lo_send_write(lo->lo_backing_file,
352 				(u8 __user *)page_address(page), bvec->bv_len,
353 				pos);
354 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
355 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
356 	if (ret > 0)
357 		ret = -EIO;
358 	return ret;
359 }
360 
361 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
362 		loff_t pos)
363 {
364 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
365 			struct page *page);
366 	struct bio_vec *bvec;
367 	struct page *page = NULL;
368 	int i, ret = 0;
369 
370 	do_lo_send = do_lo_send_aops;
371 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
372 		do_lo_send = do_lo_send_direct_write;
373 		if (lo->transfer != transfer_none) {
374 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
375 			if (unlikely(!page))
376 				goto fail;
377 			kmap(page);
378 			do_lo_send = do_lo_send_write;
379 		}
380 	}
381 	bio_for_each_segment(bvec, bio, i) {
382 		ret = do_lo_send(lo, bvec, bsize, pos, page);
383 		if (ret < 0)
384 			break;
385 		pos += bvec->bv_len;
386 	}
387 	if (page) {
388 		kunmap(page);
389 		__free_page(page);
390 	}
391 out:
392 	return ret;
393 fail:
394 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
395 	ret = -ENOMEM;
396 	goto out;
397 }
398 
399 struct lo_read_data {
400 	struct loop_device *lo;
401 	struct page *page;
402 	unsigned offset;
403 	int bsize;
404 };
405 
406 static int
407 lo_read_actor(read_descriptor_t *desc, struct page *page,
408 	      unsigned long offset, unsigned long size)
409 {
410 	unsigned long count = desc->count;
411 	struct lo_read_data *p = desc->arg.data;
412 	struct loop_device *lo = p->lo;
413 	sector_t IV;
414 
415 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
416 
417 	if (size > count)
418 		size = count;
419 
420 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
421 		size = 0;
422 		printk(KERN_ERR "loop: transfer error block %ld\n",
423 		       page->index);
424 		desc->error = -EINVAL;
425 	}
426 
427 	flush_dcache_page(p->page);
428 
429 	desc->count = count - size;
430 	desc->written += size;
431 	p->offset += size;
432 	return size;
433 }
434 
435 static int
436 do_lo_receive(struct loop_device *lo,
437 	      struct bio_vec *bvec, int bsize, loff_t pos)
438 {
439 	struct lo_read_data cookie;
440 	struct file *file;
441 	int retval;
442 
443 	cookie.lo = lo;
444 	cookie.page = bvec->bv_page;
445 	cookie.offset = bvec->bv_offset;
446 	cookie.bsize = bsize;
447 	file = lo->lo_backing_file;
448 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
449 			lo_read_actor, &cookie);
450 	return (retval < 0)? retval: 0;
451 }
452 
453 static int
454 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
455 {
456 	struct bio_vec *bvec;
457 	int i, ret = 0;
458 
459 	bio_for_each_segment(bvec, bio, i) {
460 		ret = do_lo_receive(lo, bvec, bsize, pos);
461 		if (ret < 0)
462 			break;
463 		pos += bvec->bv_len;
464 	}
465 	return ret;
466 }
467 
468 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
469 {
470 	loff_t pos;
471 	int ret;
472 
473 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
474 	if (bio_rw(bio) == WRITE)
475 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
476 	else
477 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
478 	return ret;
479 }
480 
481 /*
482  * Add bio to back of pending list
483  */
484 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
485 {
486 	if (lo->lo_biotail) {
487 		lo->lo_biotail->bi_next = bio;
488 		lo->lo_biotail = bio;
489 	} else
490 		lo->lo_bio = lo->lo_biotail = bio;
491 }
492 
493 /*
494  * Grab first pending buffer
495  */
496 static struct bio *loop_get_bio(struct loop_device *lo)
497 {
498 	struct bio *bio;
499 
500 	if ((bio = lo->lo_bio)) {
501 		if (bio == lo->lo_biotail)
502 			lo->lo_biotail = NULL;
503 		lo->lo_bio = bio->bi_next;
504 		bio->bi_next = NULL;
505 	}
506 
507 	return bio;
508 }
509 
510 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
511 {
512 	struct loop_device *lo = q->queuedata;
513 	int rw = bio_rw(old_bio);
514 
515 	if (rw == READA)
516 		rw = READ;
517 
518 	BUG_ON(!lo || (rw != READ && rw != WRITE));
519 
520 	spin_lock_irq(&lo->lo_lock);
521 	if (lo->lo_state != Lo_bound)
522 		goto out;
523 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
524 		goto out;
525 	lo->lo_pending++;
526 	loop_add_bio(lo, old_bio);
527 	spin_unlock_irq(&lo->lo_lock);
528 	complete(&lo->lo_bh_done);
529 	return 0;
530 
531 out:
532 	if (lo->lo_pending == 0)
533 		complete(&lo->lo_bh_done);
534 	spin_unlock_irq(&lo->lo_lock);
535 	bio_io_error(old_bio, old_bio->bi_size);
536 	return 0;
537 }
538 
539 /*
540  * kick off io on the underlying address space
541  */
542 static void loop_unplug(request_queue_t *q)
543 {
544 	struct loop_device *lo = q->queuedata;
545 
546 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
547 	blk_run_address_space(lo->lo_backing_file->f_mapping);
548 }
549 
550 struct switch_request {
551 	struct file *file;
552 	struct completion wait;
553 };
554 
555 static void do_loop_switch(struct loop_device *, struct switch_request *);
556 
557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
558 {
559 	if (unlikely(!bio->bi_bdev)) {
560 		do_loop_switch(lo, bio->bi_private);
561 		bio_put(bio);
562 	} else {
563 		int ret = do_bio_filebacked(lo, bio);
564 		bio_endio(bio, bio->bi_size, ret);
565 	}
566 }
567 
568 /*
569  * worker thread that handles reads/writes to file backed loop devices,
570  * to avoid blocking in our make_request_fn. it also does loop decrypting
571  * on reads for block backed loop, as that is too heavy to do from
572  * b_end_io context where irqs may be disabled.
573  */
574 static int loop_thread(void *data)
575 {
576 	struct loop_device *lo = data;
577 	struct bio *bio;
578 
579 	daemonize("loop%d", lo->lo_number);
580 
581 	/*
582 	 * loop can be used in an encrypted device,
583 	 * hence, it mustn't be stopped at all
584 	 * because it could be indirectly used during suspension
585 	 */
586 	current->flags |= PF_NOFREEZE;
587 
588 	set_user_nice(current, -20);
589 
590 	lo->lo_state = Lo_bound;
591 	lo->lo_pending = 1;
592 
593 	/*
594 	 * complete it, we are running
595 	 */
596 	complete(&lo->lo_done);
597 
598 	for (;;) {
599 		int pending;
600 
601 		if (wait_for_completion_interruptible(&lo->lo_bh_done))
602 			continue;
603 
604 		spin_lock_irq(&lo->lo_lock);
605 
606 		/*
607 		 * could be completed because of tear-down, not pending work
608 		 */
609 		if (unlikely(!lo->lo_pending)) {
610 			spin_unlock_irq(&lo->lo_lock);
611 			break;
612 		}
613 
614 		bio = loop_get_bio(lo);
615 		lo->lo_pending--;
616 		pending = lo->lo_pending;
617 		spin_unlock_irq(&lo->lo_lock);
618 
619 		BUG_ON(!bio);
620 		loop_handle_bio(lo, bio);
621 
622 		/*
623 		 * upped both for pending work and tear-down, lo_pending
624 		 * will hit zero then
625 		 */
626 		if (unlikely(!pending))
627 			break;
628 	}
629 
630 	complete(&lo->lo_done);
631 	return 0;
632 }
633 
634 /*
635  * loop_switch performs the hard work of switching a backing store.
636  * First it needs to flush existing IO, it does this by sending a magic
637  * BIO down the pipe. The completion of this BIO does the actual switch.
638  */
639 static int loop_switch(struct loop_device *lo, struct file *file)
640 {
641 	struct switch_request w;
642 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
643 	if (!bio)
644 		return -ENOMEM;
645 	init_completion(&w.wait);
646 	w.file = file;
647 	bio->bi_private = &w;
648 	bio->bi_bdev = NULL;
649 	loop_make_request(lo->lo_queue, bio);
650 	wait_for_completion(&w.wait);
651 	return 0;
652 }
653 
654 /*
655  * Do the actual switch; called from the BIO completion routine
656  */
657 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
658 {
659 	struct file *file = p->file;
660 	struct file *old_file = lo->lo_backing_file;
661 	struct address_space *mapping = file->f_mapping;
662 
663 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
664 	lo->lo_backing_file = file;
665 	lo->lo_blocksize = mapping->host->i_blksize;
666 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
667 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
668 	complete(&p->wait);
669 }
670 
671 
672 /*
673  * loop_change_fd switched the backing store of a loopback device to
674  * a new file. This is useful for operating system installers to free up
675  * the original file and in High Availability environments to switch to
676  * an alternative location for the content in case of server meltdown.
677  * This can only work if the loop device is used read-only, and if the
678  * new backing store is the same size and type as the old backing store.
679  */
680 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
681 		       struct block_device *bdev, unsigned int arg)
682 {
683 	struct file	*file, *old_file;
684 	struct inode	*inode;
685 	int		error;
686 
687 	error = -ENXIO;
688 	if (lo->lo_state != Lo_bound)
689 		goto out;
690 
691 	/* the loop device has to be read-only */
692 	error = -EINVAL;
693 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
694 		goto out;
695 
696 	error = -EBADF;
697 	file = fget(arg);
698 	if (!file)
699 		goto out;
700 
701 	inode = file->f_mapping->host;
702 	old_file = lo->lo_backing_file;
703 
704 	error = -EINVAL;
705 
706 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
707 		goto out_putf;
708 
709 	/* new backing store needs to support loop (eg sendfile) */
710 	if (!inode->i_fop->sendfile)
711 		goto out_putf;
712 
713 	/* size of the new backing store needs to be the same */
714 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
715 		goto out_putf;
716 
717 	/* and ... switch */
718 	error = loop_switch(lo, file);
719 	if (error)
720 		goto out_putf;
721 
722 	fput(old_file);
723 	return 0;
724 
725  out_putf:
726 	fput(file);
727  out:
728 	return error;
729 }
730 
731 static inline int is_loop_device(struct file *file)
732 {
733 	struct inode *i = file->f_mapping->host;
734 
735 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
736 }
737 
738 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
739 		       struct block_device *bdev, unsigned int arg)
740 {
741 	struct file	*file, *f;
742 	struct inode	*inode;
743 	struct address_space *mapping;
744 	unsigned lo_blocksize;
745 	int		lo_flags = 0;
746 	int		error;
747 	loff_t		size;
748 
749 	/* This is safe, since we have a reference from open(). */
750 	__module_get(THIS_MODULE);
751 
752 	error = -EBADF;
753 	file = fget(arg);
754 	if (!file)
755 		goto out;
756 
757 	error = -EBUSY;
758 	if (lo->lo_state != Lo_unbound)
759 		goto out_putf;
760 
761 	/* Avoid recursion */
762 	f = file;
763 	while (is_loop_device(f)) {
764 		struct loop_device *l;
765 
766 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
767 			goto out_putf;
768 
769 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
770 		if (l->lo_state == Lo_unbound) {
771 			error = -EINVAL;
772 			goto out_putf;
773 		}
774 		f = l->lo_backing_file;
775 	}
776 
777 	mapping = file->f_mapping;
778 	inode = mapping->host;
779 
780 	if (!(file->f_mode & FMODE_WRITE))
781 		lo_flags |= LO_FLAGS_READ_ONLY;
782 
783 	error = -EINVAL;
784 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
785 		const struct address_space_operations *aops = mapping->a_ops;
786 		/*
787 		 * If we can't read - sorry. If we only can't write - well,
788 		 * it's going to be read-only.
789 		 */
790 		if (!file->f_op->sendfile)
791 			goto out_putf;
792 		if (aops->prepare_write && aops->commit_write)
793 			lo_flags |= LO_FLAGS_USE_AOPS;
794 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
795 			lo_flags |= LO_FLAGS_READ_ONLY;
796 
797 		lo_blocksize = inode->i_blksize;
798 		error = 0;
799 	} else {
800 		goto out_putf;
801 	}
802 
803 	size = get_loop_size(lo, file);
804 
805 	if ((loff_t)(sector_t)size != size) {
806 		error = -EFBIG;
807 		goto out_putf;
808 	}
809 
810 	if (!(lo_file->f_mode & FMODE_WRITE))
811 		lo_flags |= LO_FLAGS_READ_ONLY;
812 
813 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
814 
815 	lo->lo_blocksize = lo_blocksize;
816 	lo->lo_device = bdev;
817 	lo->lo_flags = lo_flags;
818 	lo->lo_backing_file = file;
819 	lo->transfer = transfer_none;
820 	lo->ioctl = NULL;
821 	lo->lo_sizelimit = 0;
822 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
823 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
824 
825 	lo->lo_bio = lo->lo_biotail = NULL;
826 
827 	/*
828 	 * set queue make_request_fn, and add limits based on lower level
829 	 * device
830 	 */
831 	blk_queue_make_request(lo->lo_queue, loop_make_request);
832 	lo->lo_queue->queuedata = lo;
833 	lo->lo_queue->unplug_fn = loop_unplug;
834 
835 	set_capacity(disks[lo->lo_number], size);
836 	bd_set_size(bdev, size << 9);
837 
838 	set_blocksize(bdev, lo_blocksize);
839 
840 	error = kernel_thread(loop_thread, lo, CLONE_KERNEL);
841 	if (error < 0)
842 		goto out_putf;
843 	wait_for_completion(&lo->lo_done);
844 	return 0;
845 
846  out_putf:
847 	fput(file);
848  out:
849 	/* This is safe: open() is still holding a reference. */
850 	module_put(THIS_MODULE);
851 	return error;
852 }
853 
854 static int
855 loop_release_xfer(struct loop_device *lo)
856 {
857 	int err = 0;
858 	struct loop_func_table *xfer = lo->lo_encryption;
859 
860 	if (xfer) {
861 		if (xfer->release)
862 			err = xfer->release(lo);
863 		lo->transfer = NULL;
864 		lo->lo_encryption = NULL;
865 		module_put(xfer->owner);
866 	}
867 	return err;
868 }
869 
870 static int
871 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
872 	       const struct loop_info64 *i)
873 {
874 	int err = 0;
875 
876 	if (xfer) {
877 		struct module *owner = xfer->owner;
878 
879 		if (!try_module_get(owner))
880 			return -EINVAL;
881 		if (xfer->init)
882 			err = xfer->init(lo, i);
883 		if (err)
884 			module_put(owner);
885 		else
886 			lo->lo_encryption = xfer;
887 	}
888 	return err;
889 }
890 
891 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
892 {
893 	struct file *filp = lo->lo_backing_file;
894 	gfp_t gfp = lo->old_gfp_mask;
895 
896 	if (lo->lo_state != Lo_bound)
897 		return -ENXIO;
898 
899 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
900 		return -EBUSY;
901 
902 	if (filp == NULL)
903 		return -EINVAL;
904 
905 	spin_lock_irq(&lo->lo_lock);
906 	lo->lo_state = Lo_rundown;
907 	lo->lo_pending--;
908 	if (!lo->lo_pending)
909 		complete(&lo->lo_bh_done);
910 	spin_unlock_irq(&lo->lo_lock);
911 
912 	wait_for_completion(&lo->lo_done);
913 
914 	lo->lo_backing_file = NULL;
915 
916 	loop_release_xfer(lo);
917 	lo->transfer = NULL;
918 	lo->ioctl = NULL;
919 	lo->lo_device = NULL;
920 	lo->lo_encryption = NULL;
921 	lo->lo_offset = 0;
922 	lo->lo_sizelimit = 0;
923 	lo->lo_encrypt_key_size = 0;
924 	lo->lo_flags = 0;
925 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
926 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
927 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
928 	invalidate_bdev(bdev, 0);
929 	set_capacity(disks[lo->lo_number], 0);
930 	bd_set_size(bdev, 0);
931 	mapping_set_gfp_mask(filp->f_mapping, gfp);
932 	lo->lo_state = Lo_unbound;
933 	fput(filp);
934 	/* This is safe: open() is still holding a reference. */
935 	module_put(THIS_MODULE);
936 	return 0;
937 }
938 
939 static int
940 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
941 {
942 	int err;
943 	struct loop_func_table *xfer;
944 
945 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
946 	    !capable(CAP_SYS_ADMIN))
947 		return -EPERM;
948 	if (lo->lo_state != Lo_bound)
949 		return -ENXIO;
950 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
951 		return -EINVAL;
952 
953 	err = loop_release_xfer(lo);
954 	if (err)
955 		return err;
956 
957 	if (info->lo_encrypt_type) {
958 		unsigned int type = info->lo_encrypt_type;
959 
960 		if (type >= MAX_LO_CRYPT)
961 			return -EINVAL;
962 		xfer = xfer_funcs[type];
963 		if (xfer == NULL)
964 			return -EINVAL;
965 	} else
966 		xfer = NULL;
967 
968 	err = loop_init_xfer(lo, xfer, info);
969 	if (err)
970 		return err;
971 
972 	if (lo->lo_offset != info->lo_offset ||
973 	    lo->lo_sizelimit != info->lo_sizelimit) {
974 		lo->lo_offset = info->lo_offset;
975 		lo->lo_sizelimit = info->lo_sizelimit;
976 		if (figure_loop_size(lo))
977 			return -EFBIG;
978 	}
979 
980 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
981 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
982 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
983 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
984 
985 	if (!xfer)
986 		xfer = &none_funcs;
987 	lo->transfer = xfer->transfer;
988 	lo->ioctl = xfer->ioctl;
989 
990 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
991 	lo->lo_init[0] = info->lo_init[0];
992 	lo->lo_init[1] = info->lo_init[1];
993 	if (info->lo_encrypt_key_size) {
994 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
995 		       info->lo_encrypt_key_size);
996 		lo->lo_key_owner = current->uid;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int
1003 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1004 {
1005 	struct file *file = lo->lo_backing_file;
1006 	struct kstat stat;
1007 	int error;
1008 
1009 	if (lo->lo_state != Lo_bound)
1010 		return -ENXIO;
1011 	error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
1012 	if (error)
1013 		return error;
1014 	memset(info, 0, sizeof(*info));
1015 	info->lo_number = lo->lo_number;
1016 	info->lo_device = huge_encode_dev(stat.dev);
1017 	info->lo_inode = stat.ino;
1018 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1019 	info->lo_offset = lo->lo_offset;
1020 	info->lo_sizelimit = lo->lo_sizelimit;
1021 	info->lo_flags = lo->lo_flags;
1022 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1023 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1024 	info->lo_encrypt_type =
1025 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1026 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1027 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1028 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1029 		       lo->lo_encrypt_key_size);
1030 	}
1031 	return 0;
1032 }
1033 
1034 static void
1035 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1036 {
1037 	memset(info64, 0, sizeof(*info64));
1038 	info64->lo_number = info->lo_number;
1039 	info64->lo_device = info->lo_device;
1040 	info64->lo_inode = info->lo_inode;
1041 	info64->lo_rdevice = info->lo_rdevice;
1042 	info64->lo_offset = info->lo_offset;
1043 	info64->lo_sizelimit = 0;
1044 	info64->lo_encrypt_type = info->lo_encrypt_type;
1045 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1046 	info64->lo_flags = info->lo_flags;
1047 	info64->lo_init[0] = info->lo_init[0];
1048 	info64->lo_init[1] = info->lo_init[1];
1049 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1050 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1051 	else
1052 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1053 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1054 }
1055 
1056 static int
1057 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1058 {
1059 	memset(info, 0, sizeof(*info));
1060 	info->lo_number = info64->lo_number;
1061 	info->lo_device = info64->lo_device;
1062 	info->lo_inode = info64->lo_inode;
1063 	info->lo_rdevice = info64->lo_rdevice;
1064 	info->lo_offset = info64->lo_offset;
1065 	info->lo_encrypt_type = info64->lo_encrypt_type;
1066 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1067 	info->lo_flags = info64->lo_flags;
1068 	info->lo_init[0] = info64->lo_init[0];
1069 	info->lo_init[1] = info64->lo_init[1];
1070 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1071 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1072 	else
1073 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1074 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1075 
1076 	/* error in case values were truncated */
1077 	if (info->lo_device != info64->lo_device ||
1078 	    info->lo_rdevice != info64->lo_rdevice ||
1079 	    info->lo_inode != info64->lo_inode ||
1080 	    info->lo_offset != info64->lo_offset)
1081 		return -EOVERFLOW;
1082 
1083 	return 0;
1084 }
1085 
1086 static int
1087 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1088 {
1089 	struct loop_info info;
1090 	struct loop_info64 info64;
1091 
1092 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1093 		return -EFAULT;
1094 	loop_info64_from_old(&info, &info64);
1095 	return loop_set_status(lo, &info64);
1096 }
1097 
1098 static int
1099 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1100 {
1101 	struct loop_info64 info64;
1102 
1103 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1104 		return -EFAULT;
1105 	return loop_set_status(lo, &info64);
1106 }
1107 
1108 static int
1109 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1110 	struct loop_info info;
1111 	struct loop_info64 info64;
1112 	int err = 0;
1113 
1114 	if (!arg)
1115 		err = -EINVAL;
1116 	if (!err)
1117 		err = loop_get_status(lo, &info64);
1118 	if (!err)
1119 		err = loop_info64_to_old(&info64, &info);
1120 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1121 		err = -EFAULT;
1122 
1123 	return err;
1124 }
1125 
1126 static int
1127 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1128 	struct loop_info64 info64;
1129 	int err = 0;
1130 
1131 	if (!arg)
1132 		err = -EINVAL;
1133 	if (!err)
1134 		err = loop_get_status(lo, &info64);
1135 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1136 		err = -EFAULT;
1137 
1138 	return err;
1139 }
1140 
1141 static int lo_ioctl(struct inode * inode, struct file * file,
1142 	unsigned int cmd, unsigned long arg)
1143 {
1144 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1145 	int err;
1146 
1147 	mutex_lock(&lo->lo_ctl_mutex);
1148 	switch (cmd) {
1149 	case LOOP_SET_FD:
1150 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1151 		break;
1152 	case LOOP_CHANGE_FD:
1153 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1154 		break;
1155 	case LOOP_CLR_FD:
1156 		err = loop_clr_fd(lo, inode->i_bdev);
1157 		break;
1158 	case LOOP_SET_STATUS:
1159 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1160 		break;
1161 	case LOOP_GET_STATUS:
1162 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1163 		break;
1164 	case LOOP_SET_STATUS64:
1165 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1166 		break;
1167 	case LOOP_GET_STATUS64:
1168 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1169 		break;
1170 	default:
1171 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1172 	}
1173 	mutex_unlock(&lo->lo_ctl_mutex);
1174 	return err;
1175 }
1176 
1177 static int lo_open(struct inode *inode, struct file *file)
1178 {
1179 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1180 
1181 	mutex_lock(&lo->lo_ctl_mutex);
1182 	lo->lo_refcnt++;
1183 	mutex_unlock(&lo->lo_ctl_mutex);
1184 
1185 	return 0;
1186 }
1187 
1188 static int lo_release(struct inode *inode, struct file *file)
1189 {
1190 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1191 
1192 	mutex_lock(&lo->lo_ctl_mutex);
1193 	--lo->lo_refcnt;
1194 	mutex_unlock(&lo->lo_ctl_mutex);
1195 
1196 	return 0;
1197 }
1198 
1199 static struct block_device_operations lo_fops = {
1200 	.owner =	THIS_MODULE,
1201 	.open =		lo_open,
1202 	.release =	lo_release,
1203 	.ioctl =	lo_ioctl,
1204 };
1205 
1206 /*
1207  * And now the modules code and kernel interface.
1208  */
1209 module_param(max_loop, int, 0);
1210 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1211 MODULE_LICENSE("GPL");
1212 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1213 
1214 int loop_register_transfer(struct loop_func_table *funcs)
1215 {
1216 	unsigned int n = funcs->number;
1217 
1218 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1219 		return -EINVAL;
1220 	xfer_funcs[n] = funcs;
1221 	return 0;
1222 }
1223 
1224 int loop_unregister_transfer(int number)
1225 {
1226 	unsigned int n = number;
1227 	struct loop_device *lo;
1228 	struct loop_func_table *xfer;
1229 
1230 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1231 		return -EINVAL;
1232 
1233 	xfer_funcs[n] = NULL;
1234 
1235 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1236 		mutex_lock(&lo->lo_ctl_mutex);
1237 
1238 		if (lo->lo_encryption == xfer)
1239 			loop_release_xfer(lo);
1240 
1241 		mutex_unlock(&lo->lo_ctl_mutex);
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 EXPORT_SYMBOL(loop_register_transfer);
1248 EXPORT_SYMBOL(loop_unregister_transfer);
1249 
1250 static int __init loop_init(void)
1251 {
1252 	int	i;
1253 
1254 	if (max_loop < 1 || max_loop > 256) {
1255 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1256 				    " 1 and 256), using default (8)\n");
1257 		max_loop = 8;
1258 	}
1259 
1260 	if (register_blkdev(LOOP_MAJOR, "loop"))
1261 		return -EIO;
1262 
1263 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1264 	if (!loop_dev)
1265 		goto out_mem1;
1266 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1267 
1268 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1269 	if (!disks)
1270 		goto out_mem2;
1271 
1272 	for (i = 0; i < max_loop; i++) {
1273 		disks[i] = alloc_disk(1);
1274 		if (!disks[i])
1275 			goto out_mem3;
1276 	}
1277 
1278 	for (i = 0; i < max_loop; i++) {
1279 		struct loop_device *lo = &loop_dev[i];
1280 		struct gendisk *disk = disks[i];
1281 
1282 		memset(lo, 0, sizeof(*lo));
1283 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1284 		if (!lo->lo_queue)
1285 			goto out_mem4;
1286 		mutex_init(&lo->lo_ctl_mutex);
1287 		init_completion(&lo->lo_done);
1288 		init_completion(&lo->lo_bh_done);
1289 		lo->lo_number = i;
1290 		spin_lock_init(&lo->lo_lock);
1291 		disk->major = LOOP_MAJOR;
1292 		disk->first_minor = i;
1293 		disk->fops = &lo_fops;
1294 		sprintf(disk->disk_name, "loop%d", i);
1295 		disk->private_data = lo;
1296 		disk->queue = lo->lo_queue;
1297 	}
1298 
1299 	/* We cannot fail after we call this, so another loop!*/
1300 	for (i = 0; i < max_loop; i++)
1301 		add_disk(disks[i]);
1302 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1303 	return 0;
1304 
1305 out_mem4:
1306 	while (i--)
1307 		blk_cleanup_queue(loop_dev[i].lo_queue);
1308 	i = max_loop;
1309 out_mem3:
1310 	while (i--)
1311 		put_disk(disks[i]);
1312 	kfree(disks);
1313 out_mem2:
1314 	kfree(loop_dev);
1315 out_mem1:
1316 	unregister_blkdev(LOOP_MAJOR, "loop");
1317 	printk(KERN_ERR "loop: ran out of memory\n");
1318 	return -ENOMEM;
1319 }
1320 
1321 static void loop_exit(void)
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < max_loop; i++) {
1326 		del_gendisk(disks[i]);
1327 		blk_cleanup_queue(loop_dev[i].lo_queue);
1328 		put_disk(disks[i]);
1329 	}
1330 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1331 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1332 
1333 	kfree(disks);
1334 	kfree(loop_dev);
1335 }
1336 
1337 module_init(loop_init);
1338 module_exit(loop_exit);
1339 
1340 #ifndef MODULE
1341 static int __init max_loop_setup(char *str)
1342 {
1343 	max_loop = simple_strtol(str, NULL, 0);
1344 	return 1;
1345 }
1346 
1347 __setup("max_loop=", max_loop_setup);
1348 #endif
1349