1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <linux/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) { 217 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 } else { 220 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 222 } 223 blk_mq_unfreeze_queue(lo->lo_queue); 224 } 225 226 static int 227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 228 { 229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 230 sector_t x = (sector_t)size; 231 struct block_device *bdev = lo->lo_device; 232 233 if (unlikely((loff_t)x != size)) 234 return -EFBIG; 235 if (lo->lo_offset != offset) 236 lo->lo_offset = offset; 237 if (lo->lo_sizelimit != sizelimit) 238 lo->lo_sizelimit = sizelimit; 239 set_capacity(lo->lo_disk, x); 240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 241 /* let user-space know about the new size */ 242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 243 return 0; 244 } 245 246 static inline int 247 lo_do_transfer(struct loop_device *lo, int cmd, 248 struct page *rpage, unsigned roffs, 249 struct page *lpage, unsigned loffs, 250 int size, sector_t rblock) 251 { 252 int ret; 253 254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 255 if (likely(!ret)) 256 return 0; 257 258 printk_ratelimited(KERN_ERR 259 "loop: Transfer error at byte offset %llu, length %i.\n", 260 (unsigned long long)rblock << 9, size); 261 return ret; 262 } 263 264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 265 { 266 struct iov_iter i; 267 ssize_t bw; 268 269 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len); 270 271 file_start_write(file); 272 bw = vfs_iter_write(file, &i, ppos, 0); 273 file_end_write(file); 274 275 if (likely(bw == bvec->bv_len)) 276 return 0; 277 278 printk_ratelimited(KERN_ERR 279 "loop: Write error at byte offset %llu, length %i.\n", 280 (unsigned long long)*ppos, bvec->bv_len); 281 if (bw >= 0) 282 bw = -EIO; 283 return bw; 284 } 285 286 static int lo_write_simple(struct loop_device *lo, struct request *rq, 287 loff_t pos) 288 { 289 struct bio_vec bvec; 290 struct req_iterator iter; 291 int ret = 0; 292 293 rq_for_each_segment(bvec, rq, iter) { 294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 295 if (ret < 0) 296 break; 297 cond_resched(); 298 } 299 300 return ret; 301 } 302 303 /* 304 * This is the slow, transforming version that needs to double buffer the 305 * data as it cannot do the transformations in place without having direct 306 * access to the destination pages of the backing file. 307 */ 308 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 309 loff_t pos) 310 { 311 struct bio_vec bvec, b; 312 struct req_iterator iter; 313 struct page *page; 314 int ret = 0; 315 316 page = alloc_page(GFP_NOIO); 317 if (unlikely(!page)) 318 return -ENOMEM; 319 320 rq_for_each_segment(bvec, rq, iter) { 321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 322 bvec.bv_offset, bvec.bv_len, pos >> 9); 323 if (unlikely(ret)) 324 break; 325 326 b.bv_page = page; 327 b.bv_offset = 0; 328 b.bv_len = bvec.bv_len; 329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 330 if (ret < 0) 331 break; 332 } 333 334 __free_page(page); 335 return ret; 336 } 337 338 static int lo_read_simple(struct loop_device *lo, struct request *rq, 339 loff_t pos) 340 { 341 struct bio_vec bvec; 342 struct req_iterator iter; 343 struct iov_iter i; 344 ssize_t len; 345 346 rq_for_each_segment(bvec, rq, iter) { 347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 349 if (len < 0) 350 return len; 351 352 flush_dcache_page(bvec.bv_page); 353 354 if (len != bvec.bv_len) { 355 struct bio *bio; 356 357 __rq_for_each_bio(bio, rq) 358 zero_fill_bio(bio); 359 break; 360 } 361 cond_resched(); 362 } 363 364 return 0; 365 } 366 367 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 368 loff_t pos) 369 { 370 struct bio_vec bvec, b; 371 struct req_iterator iter; 372 struct iov_iter i; 373 struct page *page; 374 ssize_t len; 375 int ret = 0; 376 377 page = alloc_page(GFP_NOIO); 378 if (unlikely(!page)) 379 return -ENOMEM; 380 381 rq_for_each_segment(bvec, rq, iter) { 382 loff_t offset = pos; 383 384 b.bv_page = page; 385 b.bv_offset = 0; 386 b.bv_len = bvec.bv_len; 387 388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 390 if (len < 0) { 391 ret = len; 392 goto out_free_page; 393 } 394 395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 396 bvec.bv_offset, len, offset >> 9); 397 if (ret) 398 goto out_free_page; 399 400 flush_dcache_page(bvec.bv_page); 401 402 if (len != bvec.bv_len) { 403 struct bio *bio; 404 405 __rq_for_each_bio(bio, rq) 406 zero_fill_bio(bio); 407 break; 408 } 409 } 410 411 ret = 0; 412 out_free_page: 413 __free_page(page); 414 return ret; 415 } 416 417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 418 { 419 /* 420 * We use punch hole to reclaim the free space used by the 421 * image a.k.a. discard. However we do not support discard if 422 * encryption is enabled, because it may give an attacker 423 * useful information. 424 */ 425 struct file *file = lo->lo_backing_file; 426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 427 int ret; 428 429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 430 ret = -EOPNOTSUPP; 431 goto out; 432 } 433 434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 436 ret = -EIO; 437 out: 438 return ret; 439 } 440 441 static int lo_req_flush(struct loop_device *lo, struct request *rq) 442 { 443 struct file *file = lo->lo_backing_file; 444 int ret = vfs_fsync(file, 0); 445 if (unlikely(ret && ret != -EINVAL)) 446 ret = -EIO; 447 448 return ret; 449 } 450 451 static void lo_complete_rq(struct request *rq) 452 { 453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 454 blk_status_t ret = BLK_STS_OK; 455 456 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 457 req_op(rq) != REQ_OP_READ) { 458 if (cmd->ret < 0) 459 ret = BLK_STS_IOERR; 460 goto end_io; 461 } 462 463 /* 464 * Short READ - if we got some data, advance our request and 465 * retry it. If we got no data, end the rest with EIO. 466 */ 467 if (cmd->ret) { 468 blk_update_request(rq, BLK_STS_OK, cmd->ret); 469 cmd->ret = 0; 470 blk_mq_requeue_request(rq, true); 471 } else { 472 if (cmd->use_aio) { 473 struct bio *bio = rq->bio; 474 475 while (bio) { 476 zero_fill_bio(bio); 477 bio = bio->bi_next; 478 } 479 } 480 ret = BLK_STS_IOERR; 481 end_io: 482 blk_mq_end_request(rq, ret); 483 } 484 } 485 486 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 487 { 488 struct request *rq = blk_mq_rq_from_pdu(cmd); 489 490 if (!atomic_dec_and_test(&cmd->ref)) 491 return; 492 kfree(cmd->bvec); 493 cmd->bvec = NULL; 494 blk_mq_complete_request(rq); 495 } 496 497 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 498 { 499 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 500 501 if (cmd->css) 502 css_put(cmd->css); 503 cmd->ret = ret; 504 lo_rw_aio_do_completion(cmd); 505 } 506 507 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 508 loff_t pos, bool rw) 509 { 510 struct iov_iter iter; 511 struct bio_vec *bvec; 512 struct request *rq = blk_mq_rq_from_pdu(cmd); 513 struct bio *bio = rq->bio; 514 struct file *file = lo->lo_backing_file; 515 unsigned int offset; 516 int segments = 0; 517 int ret; 518 519 if (rq->bio != rq->biotail) { 520 struct req_iterator iter; 521 struct bio_vec tmp; 522 523 __rq_for_each_bio(bio, rq) 524 segments += bio_segments(bio); 525 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO); 526 if (!bvec) 527 return -EIO; 528 cmd->bvec = bvec; 529 530 /* 531 * The bios of the request may be started from the middle of 532 * the 'bvec' because of bio splitting, so we can't directly 533 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment 534 * API will take care of all details for us. 535 */ 536 rq_for_each_segment(tmp, rq, iter) { 537 *bvec = tmp; 538 bvec++; 539 } 540 bvec = cmd->bvec; 541 offset = 0; 542 } else { 543 /* 544 * Same here, this bio may be started from the middle of the 545 * 'bvec' because of bio splitting, so offset from the bvec 546 * must be passed to iov iterator 547 */ 548 offset = bio->bi_iter.bi_bvec_done; 549 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 550 segments = bio_segments(bio); 551 } 552 atomic_set(&cmd->ref, 2); 553 554 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 555 segments, blk_rq_bytes(rq)); 556 iter.iov_offset = offset; 557 558 cmd->iocb.ki_pos = pos; 559 cmd->iocb.ki_filp = file; 560 cmd->iocb.ki_complete = lo_rw_aio_complete; 561 cmd->iocb.ki_flags = IOCB_DIRECT; 562 if (cmd->css) 563 kthread_associate_blkcg(cmd->css); 564 565 if (rw == WRITE) 566 ret = call_write_iter(file, &cmd->iocb, &iter); 567 else 568 ret = call_read_iter(file, &cmd->iocb, &iter); 569 570 lo_rw_aio_do_completion(cmd); 571 kthread_associate_blkcg(NULL); 572 573 if (ret != -EIOCBQUEUED) 574 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 575 return 0; 576 } 577 578 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 579 { 580 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 581 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 582 583 /* 584 * lo_write_simple and lo_read_simple should have been covered 585 * by io submit style function like lo_rw_aio(), one blocker 586 * is that lo_read_simple() need to call flush_dcache_page after 587 * the page is written from kernel, and it isn't easy to handle 588 * this in io submit style function which submits all segments 589 * of the req at one time. And direct read IO doesn't need to 590 * run flush_dcache_page(). 591 */ 592 switch (req_op(rq)) { 593 case REQ_OP_FLUSH: 594 return lo_req_flush(lo, rq); 595 case REQ_OP_DISCARD: 596 case REQ_OP_WRITE_ZEROES: 597 return lo_discard(lo, rq, pos); 598 case REQ_OP_WRITE: 599 if (lo->transfer) 600 return lo_write_transfer(lo, rq, pos); 601 else if (cmd->use_aio) 602 return lo_rw_aio(lo, cmd, pos, WRITE); 603 else 604 return lo_write_simple(lo, rq, pos); 605 case REQ_OP_READ: 606 if (lo->transfer) 607 return lo_read_transfer(lo, rq, pos); 608 else if (cmd->use_aio) 609 return lo_rw_aio(lo, cmd, pos, READ); 610 else 611 return lo_read_simple(lo, rq, pos); 612 default: 613 WARN_ON_ONCE(1); 614 return -EIO; 615 break; 616 } 617 } 618 619 static inline void loop_update_dio(struct loop_device *lo) 620 { 621 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 622 lo->use_dio); 623 } 624 625 static void loop_reread_partitions(struct loop_device *lo, 626 struct block_device *bdev) 627 { 628 int rc; 629 630 /* 631 * bd_mutex has been held already in release path, so don't 632 * acquire it if this function is called in such case. 633 * 634 * If the reread partition isn't from release path, lo_refcnt 635 * must be at least one and it can only become zero when the 636 * current holder is released. 637 */ 638 if (!atomic_read(&lo->lo_refcnt)) 639 rc = __blkdev_reread_part(bdev); 640 else 641 rc = blkdev_reread_part(bdev); 642 if (rc) 643 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 644 __func__, lo->lo_number, lo->lo_file_name, rc); 645 } 646 647 /* 648 * loop_change_fd switched the backing store of a loopback device to 649 * a new file. This is useful for operating system installers to free up 650 * the original file and in High Availability environments to switch to 651 * an alternative location for the content in case of server meltdown. 652 * This can only work if the loop device is used read-only, and if the 653 * new backing store is the same size and type as the old backing store. 654 */ 655 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 656 unsigned int arg) 657 { 658 struct file *file, *old_file; 659 struct inode *inode; 660 int error; 661 662 error = -ENXIO; 663 if (lo->lo_state != Lo_bound) 664 goto out; 665 666 /* the loop device has to be read-only */ 667 error = -EINVAL; 668 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 669 goto out; 670 671 error = -EBADF; 672 file = fget(arg); 673 if (!file) 674 goto out; 675 676 inode = file->f_mapping->host; 677 old_file = lo->lo_backing_file; 678 679 error = -EINVAL; 680 681 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 682 goto out_putf; 683 684 /* size of the new backing store needs to be the same */ 685 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 686 goto out_putf; 687 688 /* and ... switch */ 689 blk_mq_freeze_queue(lo->lo_queue); 690 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 691 lo->lo_backing_file = file; 692 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 693 mapping_set_gfp_mask(file->f_mapping, 694 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 695 loop_update_dio(lo); 696 blk_mq_unfreeze_queue(lo->lo_queue); 697 698 fput(old_file); 699 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 700 loop_reread_partitions(lo, bdev); 701 return 0; 702 703 out_putf: 704 fput(file); 705 out: 706 return error; 707 } 708 709 static inline int is_loop_device(struct file *file) 710 { 711 struct inode *i = file->f_mapping->host; 712 713 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 714 } 715 716 /* loop sysfs attributes */ 717 718 static ssize_t loop_attr_show(struct device *dev, char *page, 719 ssize_t (*callback)(struct loop_device *, char *)) 720 { 721 struct gendisk *disk = dev_to_disk(dev); 722 struct loop_device *lo = disk->private_data; 723 724 return callback(lo, page); 725 } 726 727 #define LOOP_ATTR_RO(_name) \ 728 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 729 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 730 struct device_attribute *attr, char *b) \ 731 { \ 732 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 733 } \ 734 static struct device_attribute loop_attr_##_name = \ 735 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 736 737 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 738 { 739 ssize_t ret; 740 char *p = NULL; 741 742 spin_lock_irq(&lo->lo_lock); 743 if (lo->lo_backing_file) 744 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 745 spin_unlock_irq(&lo->lo_lock); 746 747 if (IS_ERR_OR_NULL(p)) 748 ret = PTR_ERR(p); 749 else { 750 ret = strlen(p); 751 memmove(buf, p, ret); 752 buf[ret++] = '\n'; 753 buf[ret] = 0; 754 } 755 756 return ret; 757 } 758 759 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 760 { 761 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 762 } 763 764 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 765 { 766 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 767 } 768 769 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 770 { 771 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 772 773 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 774 } 775 776 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 777 { 778 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 779 780 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 781 } 782 783 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 784 { 785 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 786 787 return sprintf(buf, "%s\n", dio ? "1" : "0"); 788 } 789 790 LOOP_ATTR_RO(backing_file); 791 LOOP_ATTR_RO(offset); 792 LOOP_ATTR_RO(sizelimit); 793 LOOP_ATTR_RO(autoclear); 794 LOOP_ATTR_RO(partscan); 795 LOOP_ATTR_RO(dio); 796 797 static struct attribute *loop_attrs[] = { 798 &loop_attr_backing_file.attr, 799 &loop_attr_offset.attr, 800 &loop_attr_sizelimit.attr, 801 &loop_attr_autoclear.attr, 802 &loop_attr_partscan.attr, 803 &loop_attr_dio.attr, 804 NULL, 805 }; 806 807 static struct attribute_group loop_attribute_group = { 808 .name = "loop", 809 .attrs= loop_attrs, 810 }; 811 812 static void loop_sysfs_init(struct loop_device *lo) 813 { 814 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 815 &loop_attribute_group); 816 } 817 818 static void loop_sysfs_exit(struct loop_device *lo) 819 { 820 if (lo->sysfs_inited) 821 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 822 &loop_attribute_group); 823 } 824 825 static void loop_config_discard(struct loop_device *lo) 826 { 827 struct file *file = lo->lo_backing_file; 828 struct inode *inode = file->f_mapping->host; 829 struct request_queue *q = lo->lo_queue; 830 831 /* 832 * We use punch hole to reclaim the free space used by the 833 * image a.k.a. discard. However we do not support discard if 834 * encryption is enabled, because it may give an attacker 835 * useful information. 836 */ 837 if ((!file->f_op->fallocate) || 838 lo->lo_encrypt_key_size) { 839 q->limits.discard_granularity = 0; 840 q->limits.discard_alignment = 0; 841 blk_queue_max_discard_sectors(q, 0); 842 blk_queue_max_write_zeroes_sectors(q, 0); 843 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 844 return; 845 } 846 847 q->limits.discard_granularity = inode->i_sb->s_blocksize; 848 q->limits.discard_alignment = 0; 849 850 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 851 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 852 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 853 } 854 855 static void loop_unprepare_queue(struct loop_device *lo) 856 { 857 kthread_flush_worker(&lo->worker); 858 kthread_stop(lo->worker_task); 859 } 860 861 static int loop_kthread_worker_fn(void *worker_ptr) 862 { 863 current->flags |= PF_LESS_THROTTLE; 864 return kthread_worker_fn(worker_ptr); 865 } 866 867 static int loop_prepare_queue(struct loop_device *lo) 868 { 869 kthread_init_worker(&lo->worker); 870 lo->worker_task = kthread_run(loop_kthread_worker_fn, 871 &lo->worker, "loop%d", lo->lo_number); 872 if (IS_ERR(lo->worker_task)) 873 return -ENOMEM; 874 set_user_nice(lo->worker_task, MIN_NICE); 875 return 0; 876 } 877 878 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 879 struct block_device *bdev, unsigned int arg) 880 { 881 struct file *file, *f; 882 struct inode *inode; 883 struct address_space *mapping; 884 int lo_flags = 0; 885 int error; 886 loff_t size; 887 888 /* This is safe, since we have a reference from open(). */ 889 __module_get(THIS_MODULE); 890 891 error = -EBADF; 892 file = fget(arg); 893 if (!file) 894 goto out; 895 896 error = -EBUSY; 897 if (lo->lo_state != Lo_unbound) 898 goto out_putf; 899 900 /* Avoid recursion */ 901 f = file; 902 while (is_loop_device(f)) { 903 struct loop_device *l; 904 905 if (f->f_mapping->host->i_bdev == bdev) 906 goto out_putf; 907 908 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 909 if (l->lo_state == Lo_unbound) { 910 error = -EINVAL; 911 goto out_putf; 912 } 913 f = l->lo_backing_file; 914 } 915 916 mapping = file->f_mapping; 917 inode = mapping->host; 918 919 error = -EINVAL; 920 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 921 goto out_putf; 922 923 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 924 !file->f_op->write_iter) 925 lo_flags |= LO_FLAGS_READ_ONLY; 926 927 error = -EFBIG; 928 size = get_loop_size(lo, file); 929 if ((loff_t)(sector_t)size != size) 930 goto out_putf; 931 error = loop_prepare_queue(lo); 932 if (error) 933 goto out_putf; 934 935 error = 0; 936 937 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 938 939 lo->use_dio = false; 940 lo->lo_device = bdev; 941 lo->lo_flags = lo_flags; 942 lo->lo_backing_file = file; 943 lo->transfer = NULL; 944 lo->ioctl = NULL; 945 lo->lo_sizelimit = 0; 946 lo->old_gfp_mask = mapping_gfp_mask(mapping); 947 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 948 949 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 950 blk_queue_write_cache(lo->lo_queue, true, false); 951 952 loop_update_dio(lo); 953 set_capacity(lo->lo_disk, size); 954 bd_set_size(bdev, size << 9); 955 loop_sysfs_init(lo); 956 /* let user-space know about the new size */ 957 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 958 959 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 960 block_size(inode->i_bdev) : PAGE_SIZE); 961 962 lo->lo_state = Lo_bound; 963 if (part_shift) 964 lo->lo_flags |= LO_FLAGS_PARTSCAN; 965 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 966 loop_reread_partitions(lo, bdev); 967 968 /* Grab the block_device to prevent its destruction after we 969 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 970 */ 971 bdgrab(bdev); 972 return 0; 973 974 out_putf: 975 fput(file); 976 out: 977 /* This is safe: open() is still holding a reference. */ 978 module_put(THIS_MODULE); 979 return error; 980 } 981 982 static int 983 loop_release_xfer(struct loop_device *lo) 984 { 985 int err = 0; 986 struct loop_func_table *xfer = lo->lo_encryption; 987 988 if (xfer) { 989 if (xfer->release) 990 err = xfer->release(lo); 991 lo->transfer = NULL; 992 lo->lo_encryption = NULL; 993 module_put(xfer->owner); 994 } 995 return err; 996 } 997 998 static int 999 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1000 const struct loop_info64 *i) 1001 { 1002 int err = 0; 1003 1004 if (xfer) { 1005 struct module *owner = xfer->owner; 1006 1007 if (!try_module_get(owner)) 1008 return -EINVAL; 1009 if (xfer->init) 1010 err = xfer->init(lo, i); 1011 if (err) 1012 module_put(owner); 1013 else 1014 lo->lo_encryption = xfer; 1015 } 1016 return err; 1017 } 1018 1019 static int loop_clr_fd(struct loop_device *lo) 1020 { 1021 struct file *filp = lo->lo_backing_file; 1022 gfp_t gfp = lo->old_gfp_mask; 1023 struct block_device *bdev = lo->lo_device; 1024 1025 if (lo->lo_state != Lo_bound) 1026 return -ENXIO; 1027 1028 /* 1029 * If we've explicitly asked to tear down the loop device, 1030 * and it has an elevated reference count, set it for auto-teardown when 1031 * the last reference goes away. This stops $!~#$@ udev from 1032 * preventing teardown because it decided that it needs to run blkid on 1033 * the loopback device whenever they appear. xfstests is notorious for 1034 * failing tests because blkid via udev races with a losetup 1035 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1036 * command to fail with EBUSY. 1037 */ 1038 if (atomic_read(&lo->lo_refcnt) > 1) { 1039 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1040 mutex_unlock(&lo->lo_ctl_mutex); 1041 return 0; 1042 } 1043 1044 if (filp == NULL) 1045 return -EINVAL; 1046 1047 /* freeze request queue during the transition */ 1048 blk_mq_freeze_queue(lo->lo_queue); 1049 1050 spin_lock_irq(&lo->lo_lock); 1051 lo->lo_state = Lo_rundown; 1052 lo->lo_backing_file = NULL; 1053 spin_unlock_irq(&lo->lo_lock); 1054 1055 loop_release_xfer(lo); 1056 lo->transfer = NULL; 1057 lo->ioctl = NULL; 1058 lo->lo_device = NULL; 1059 lo->lo_encryption = NULL; 1060 lo->lo_offset = 0; 1061 lo->lo_sizelimit = 0; 1062 lo->lo_encrypt_key_size = 0; 1063 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1064 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1065 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1066 blk_queue_logical_block_size(lo->lo_queue, 512); 1067 blk_queue_physical_block_size(lo->lo_queue, 512); 1068 blk_queue_io_min(lo->lo_queue, 512); 1069 if (bdev) { 1070 bdput(bdev); 1071 invalidate_bdev(bdev); 1072 bdev->bd_inode->i_mapping->wb_err = 0; 1073 } 1074 set_capacity(lo->lo_disk, 0); 1075 loop_sysfs_exit(lo); 1076 if (bdev) { 1077 bd_set_size(bdev, 0); 1078 /* let user-space know about this change */ 1079 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1080 } 1081 mapping_set_gfp_mask(filp->f_mapping, gfp); 1082 lo->lo_state = Lo_unbound; 1083 /* This is safe: open() is still holding a reference. */ 1084 module_put(THIS_MODULE); 1085 blk_mq_unfreeze_queue(lo->lo_queue); 1086 1087 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1088 loop_reread_partitions(lo, bdev); 1089 lo->lo_flags = 0; 1090 if (!part_shift) 1091 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1092 loop_unprepare_queue(lo); 1093 mutex_unlock(&lo->lo_ctl_mutex); 1094 /* 1095 * Need not hold lo_ctl_mutex to fput backing file. 1096 * Calling fput holding lo_ctl_mutex triggers a circular 1097 * lock dependency possibility warning as fput can take 1098 * bd_mutex which is usually taken before lo_ctl_mutex. 1099 */ 1100 fput(filp); 1101 return 0; 1102 } 1103 1104 static int 1105 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1106 { 1107 int err; 1108 struct loop_func_table *xfer; 1109 kuid_t uid = current_uid(); 1110 1111 if (lo->lo_encrypt_key_size && 1112 !uid_eq(lo->lo_key_owner, uid) && 1113 !capable(CAP_SYS_ADMIN)) 1114 return -EPERM; 1115 if (lo->lo_state != Lo_bound) 1116 return -ENXIO; 1117 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1118 return -EINVAL; 1119 1120 /* I/O need to be drained during transfer transition */ 1121 blk_mq_freeze_queue(lo->lo_queue); 1122 1123 err = loop_release_xfer(lo); 1124 if (err) 1125 goto exit; 1126 1127 if (info->lo_encrypt_type) { 1128 unsigned int type = info->lo_encrypt_type; 1129 1130 if (type >= MAX_LO_CRYPT) { 1131 err = -EINVAL; 1132 goto exit; 1133 } 1134 xfer = xfer_funcs[type]; 1135 if (xfer == NULL) { 1136 err = -EINVAL; 1137 goto exit; 1138 } 1139 } else 1140 xfer = NULL; 1141 1142 err = loop_init_xfer(lo, xfer, info); 1143 if (err) 1144 goto exit; 1145 1146 if (lo->lo_offset != info->lo_offset || 1147 lo->lo_sizelimit != info->lo_sizelimit) { 1148 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1149 err = -EFBIG; 1150 goto exit; 1151 } 1152 } 1153 1154 loop_config_discard(lo); 1155 1156 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1157 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1158 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1159 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1160 1161 if (!xfer) 1162 xfer = &none_funcs; 1163 lo->transfer = xfer->transfer; 1164 lo->ioctl = xfer->ioctl; 1165 1166 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1167 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1168 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1169 1170 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1171 lo->lo_init[0] = info->lo_init[0]; 1172 lo->lo_init[1] = info->lo_init[1]; 1173 if (info->lo_encrypt_key_size) { 1174 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1175 info->lo_encrypt_key_size); 1176 lo->lo_key_owner = uid; 1177 } 1178 1179 /* update dio if lo_offset or transfer is changed */ 1180 __loop_update_dio(lo, lo->use_dio); 1181 1182 exit: 1183 blk_mq_unfreeze_queue(lo->lo_queue); 1184 1185 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1186 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1187 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1188 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1189 loop_reread_partitions(lo, lo->lo_device); 1190 } 1191 1192 return err; 1193 } 1194 1195 static int 1196 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1197 { 1198 struct file *file; 1199 struct kstat stat; 1200 int ret; 1201 1202 if (lo->lo_state != Lo_bound) { 1203 mutex_unlock(&lo->lo_ctl_mutex); 1204 return -ENXIO; 1205 } 1206 1207 memset(info, 0, sizeof(*info)); 1208 info->lo_number = lo->lo_number; 1209 info->lo_offset = lo->lo_offset; 1210 info->lo_sizelimit = lo->lo_sizelimit; 1211 info->lo_flags = lo->lo_flags; 1212 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1213 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1214 info->lo_encrypt_type = 1215 lo->lo_encryption ? lo->lo_encryption->number : 0; 1216 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1217 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1218 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1219 lo->lo_encrypt_key_size); 1220 } 1221 1222 /* Drop lo_ctl_mutex while we call into the filesystem. */ 1223 file = get_file(lo->lo_backing_file); 1224 mutex_unlock(&lo->lo_ctl_mutex); 1225 ret = vfs_getattr(&file->f_path, &stat, STATX_INO, 1226 AT_STATX_SYNC_AS_STAT); 1227 if (!ret) { 1228 info->lo_device = huge_encode_dev(stat.dev); 1229 info->lo_inode = stat.ino; 1230 info->lo_rdevice = huge_encode_dev(stat.rdev); 1231 } 1232 fput(file); 1233 return ret; 1234 } 1235 1236 static void 1237 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1238 { 1239 memset(info64, 0, sizeof(*info64)); 1240 info64->lo_number = info->lo_number; 1241 info64->lo_device = info->lo_device; 1242 info64->lo_inode = info->lo_inode; 1243 info64->lo_rdevice = info->lo_rdevice; 1244 info64->lo_offset = info->lo_offset; 1245 info64->lo_sizelimit = 0; 1246 info64->lo_encrypt_type = info->lo_encrypt_type; 1247 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1248 info64->lo_flags = info->lo_flags; 1249 info64->lo_init[0] = info->lo_init[0]; 1250 info64->lo_init[1] = info->lo_init[1]; 1251 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1252 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1253 else 1254 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1255 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1256 } 1257 1258 static int 1259 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1260 { 1261 memset(info, 0, sizeof(*info)); 1262 info->lo_number = info64->lo_number; 1263 info->lo_device = info64->lo_device; 1264 info->lo_inode = info64->lo_inode; 1265 info->lo_rdevice = info64->lo_rdevice; 1266 info->lo_offset = info64->lo_offset; 1267 info->lo_encrypt_type = info64->lo_encrypt_type; 1268 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1269 info->lo_flags = info64->lo_flags; 1270 info->lo_init[0] = info64->lo_init[0]; 1271 info->lo_init[1] = info64->lo_init[1]; 1272 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1273 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1274 else 1275 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1276 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1277 1278 /* error in case values were truncated */ 1279 if (info->lo_device != info64->lo_device || 1280 info->lo_rdevice != info64->lo_rdevice || 1281 info->lo_inode != info64->lo_inode || 1282 info->lo_offset != info64->lo_offset) 1283 return -EOVERFLOW; 1284 1285 return 0; 1286 } 1287 1288 static int 1289 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1290 { 1291 struct loop_info info; 1292 struct loop_info64 info64; 1293 1294 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1295 return -EFAULT; 1296 loop_info64_from_old(&info, &info64); 1297 return loop_set_status(lo, &info64); 1298 } 1299 1300 static int 1301 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1302 { 1303 struct loop_info64 info64; 1304 1305 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1306 return -EFAULT; 1307 return loop_set_status(lo, &info64); 1308 } 1309 1310 static int 1311 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1312 struct loop_info info; 1313 struct loop_info64 info64; 1314 int err; 1315 1316 if (!arg) { 1317 mutex_unlock(&lo->lo_ctl_mutex); 1318 return -EINVAL; 1319 } 1320 err = loop_get_status(lo, &info64); 1321 if (!err) 1322 err = loop_info64_to_old(&info64, &info); 1323 if (!err && copy_to_user(arg, &info, sizeof(info))) 1324 err = -EFAULT; 1325 1326 return err; 1327 } 1328 1329 static int 1330 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1331 struct loop_info64 info64; 1332 int err; 1333 1334 if (!arg) { 1335 mutex_unlock(&lo->lo_ctl_mutex); 1336 return -EINVAL; 1337 } 1338 err = loop_get_status(lo, &info64); 1339 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1340 err = -EFAULT; 1341 1342 return err; 1343 } 1344 1345 static int loop_set_capacity(struct loop_device *lo) 1346 { 1347 if (unlikely(lo->lo_state != Lo_bound)) 1348 return -ENXIO; 1349 1350 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1351 } 1352 1353 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1354 { 1355 int error = -ENXIO; 1356 if (lo->lo_state != Lo_bound) 1357 goto out; 1358 1359 __loop_update_dio(lo, !!arg); 1360 if (lo->use_dio == !!arg) 1361 return 0; 1362 error = -EINVAL; 1363 out: 1364 return error; 1365 } 1366 1367 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1368 { 1369 if (lo->lo_state != Lo_bound) 1370 return -ENXIO; 1371 1372 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1373 return -EINVAL; 1374 1375 blk_mq_freeze_queue(lo->lo_queue); 1376 1377 blk_queue_logical_block_size(lo->lo_queue, arg); 1378 blk_queue_physical_block_size(lo->lo_queue, arg); 1379 blk_queue_io_min(lo->lo_queue, arg); 1380 loop_update_dio(lo); 1381 1382 blk_mq_unfreeze_queue(lo->lo_queue); 1383 1384 return 0; 1385 } 1386 1387 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1388 unsigned int cmd, unsigned long arg) 1389 { 1390 struct loop_device *lo = bdev->bd_disk->private_data; 1391 int err; 1392 1393 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1); 1394 if (err) 1395 goto out_unlocked; 1396 1397 switch (cmd) { 1398 case LOOP_SET_FD: 1399 err = loop_set_fd(lo, mode, bdev, arg); 1400 break; 1401 case LOOP_CHANGE_FD: 1402 err = loop_change_fd(lo, bdev, arg); 1403 break; 1404 case LOOP_CLR_FD: 1405 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1406 err = loop_clr_fd(lo); 1407 if (!err) 1408 goto out_unlocked; 1409 break; 1410 case LOOP_SET_STATUS: 1411 err = -EPERM; 1412 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1413 err = loop_set_status_old(lo, 1414 (struct loop_info __user *)arg); 1415 break; 1416 case LOOP_GET_STATUS: 1417 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1418 /* loop_get_status() unlocks lo_ctl_mutex */ 1419 goto out_unlocked; 1420 case LOOP_SET_STATUS64: 1421 err = -EPERM; 1422 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1423 err = loop_set_status64(lo, 1424 (struct loop_info64 __user *) arg); 1425 break; 1426 case LOOP_GET_STATUS64: 1427 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1428 /* loop_get_status() unlocks lo_ctl_mutex */ 1429 goto out_unlocked; 1430 case LOOP_SET_CAPACITY: 1431 err = -EPERM; 1432 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1433 err = loop_set_capacity(lo); 1434 break; 1435 case LOOP_SET_DIRECT_IO: 1436 err = -EPERM; 1437 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1438 err = loop_set_dio(lo, arg); 1439 break; 1440 case LOOP_SET_BLOCK_SIZE: 1441 err = -EPERM; 1442 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1443 err = loop_set_block_size(lo, arg); 1444 break; 1445 default: 1446 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1447 } 1448 mutex_unlock(&lo->lo_ctl_mutex); 1449 1450 out_unlocked: 1451 return err; 1452 } 1453 1454 #ifdef CONFIG_COMPAT 1455 struct compat_loop_info { 1456 compat_int_t lo_number; /* ioctl r/o */ 1457 compat_dev_t lo_device; /* ioctl r/o */ 1458 compat_ulong_t lo_inode; /* ioctl r/o */ 1459 compat_dev_t lo_rdevice; /* ioctl r/o */ 1460 compat_int_t lo_offset; 1461 compat_int_t lo_encrypt_type; 1462 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1463 compat_int_t lo_flags; /* ioctl r/o */ 1464 char lo_name[LO_NAME_SIZE]; 1465 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1466 compat_ulong_t lo_init[2]; 1467 char reserved[4]; 1468 }; 1469 1470 /* 1471 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1472 * - noinlined to reduce stack space usage in main part of driver 1473 */ 1474 static noinline int 1475 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1476 struct loop_info64 *info64) 1477 { 1478 struct compat_loop_info info; 1479 1480 if (copy_from_user(&info, arg, sizeof(info))) 1481 return -EFAULT; 1482 1483 memset(info64, 0, sizeof(*info64)); 1484 info64->lo_number = info.lo_number; 1485 info64->lo_device = info.lo_device; 1486 info64->lo_inode = info.lo_inode; 1487 info64->lo_rdevice = info.lo_rdevice; 1488 info64->lo_offset = info.lo_offset; 1489 info64->lo_sizelimit = 0; 1490 info64->lo_encrypt_type = info.lo_encrypt_type; 1491 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1492 info64->lo_flags = info.lo_flags; 1493 info64->lo_init[0] = info.lo_init[0]; 1494 info64->lo_init[1] = info.lo_init[1]; 1495 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1496 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1497 else 1498 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1499 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1500 return 0; 1501 } 1502 1503 /* 1504 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1505 * - noinlined to reduce stack space usage in main part of driver 1506 */ 1507 static noinline int 1508 loop_info64_to_compat(const struct loop_info64 *info64, 1509 struct compat_loop_info __user *arg) 1510 { 1511 struct compat_loop_info info; 1512 1513 memset(&info, 0, sizeof(info)); 1514 info.lo_number = info64->lo_number; 1515 info.lo_device = info64->lo_device; 1516 info.lo_inode = info64->lo_inode; 1517 info.lo_rdevice = info64->lo_rdevice; 1518 info.lo_offset = info64->lo_offset; 1519 info.lo_encrypt_type = info64->lo_encrypt_type; 1520 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1521 info.lo_flags = info64->lo_flags; 1522 info.lo_init[0] = info64->lo_init[0]; 1523 info.lo_init[1] = info64->lo_init[1]; 1524 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1525 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1526 else 1527 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1528 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1529 1530 /* error in case values were truncated */ 1531 if (info.lo_device != info64->lo_device || 1532 info.lo_rdevice != info64->lo_rdevice || 1533 info.lo_inode != info64->lo_inode || 1534 info.lo_offset != info64->lo_offset || 1535 info.lo_init[0] != info64->lo_init[0] || 1536 info.lo_init[1] != info64->lo_init[1]) 1537 return -EOVERFLOW; 1538 1539 if (copy_to_user(arg, &info, sizeof(info))) 1540 return -EFAULT; 1541 return 0; 1542 } 1543 1544 static int 1545 loop_set_status_compat(struct loop_device *lo, 1546 const struct compat_loop_info __user *arg) 1547 { 1548 struct loop_info64 info64; 1549 int ret; 1550 1551 ret = loop_info64_from_compat(arg, &info64); 1552 if (ret < 0) 1553 return ret; 1554 return loop_set_status(lo, &info64); 1555 } 1556 1557 static int 1558 loop_get_status_compat(struct loop_device *lo, 1559 struct compat_loop_info __user *arg) 1560 { 1561 struct loop_info64 info64; 1562 int err; 1563 1564 if (!arg) { 1565 mutex_unlock(&lo->lo_ctl_mutex); 1566 return -EINVAL; 1567 } 1568 err = loop_get_status(lo, &info64); 1569 if (!err) 1570 err = loop_info64_to_compat(&info64, arg); 1571 return err; 1572 } 1573 1574 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1575 unsigned int cmd, unsigned long arg) 1576 { 1577 struct loop_device *lo = bdev->bd_disk->private_data; 1578 int err; 1579 1580 switch(cmd) { 1581 case LOOP_SET_STATUS: 1582 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1583 if (!err) { 1584 err = loop_set_status_compat(lo, 1585 (const struct compat_loop_info __user *)arg); 1586 mutex_unlock(&lo->lo_ctl_mutex); 1587 } 1588 break; 1589 case LOOP_GET_STATUS: 1590 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1591 if (!err) { 1592 err = loop_get_status_compat(lo, 1593 (struct compat_loop_info __user *)arg); 1594 /* loop_get_status() unlocks lo_ctl_mutex */ 1595 } 1596 break; 1597 case LOOP_SET_CAPACITY: 1598 case LOOP_CLR_FD: 1599 case LOOP_GET_STATUS64: 1600 case LOOP_SET_STATUS64: 1601 arg = (unsigned long) compat_ptr(arg); 1602 case LOOP_SET_FD: 1603 case LOOP_CHANGE_FD: 1604 err = lo_ioctl(bdev, mode, cmd, arg); 1605 break; 1606 default: 1607 err = -ENOIOCTLCMD; 1608 break; 1609 } 1610 return err; 1611 } 1612 #endif 1613 1614 static int lo_open(struct block_device *bdev, fmode_t mode) 1615 { 1616 struct loop_device *lo; 1617 int err = 0; 1618 1619 mutex_lock(&loop_index_mutex); 1620 lo = bdev->bd_disk->private_data; 1621 if (!lo) { 1622 err = -ENXIO; 1623 goto out; 1624 } 1625 1626 atomic_inc(&lo->lo_refcnt); 1627 out: 1628 mutex_unlock(&loop_index_mutex); 1629 return err; 1630 } 1631 1632 static void __lo_release(struct loop_device *lo) 1633 { 1634 int err; 1635 1636 if (atomic_dec_return(&lo->lo_refcnt)) 1637 return; 1638 1639 mutex_lock(&lo->lo_ctl_mutex); 1640 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1641 /* 1642 * In autoclear mode, stop the loop thread 1643 * and remove configuration after last close. 1644 */ 1645 err = loop_clr_fd(lo); 1646 if (!err) 1647 return; 1648 } else if (lo->lo_state == Lo_bound) { 1649 /* 1650 * Otherwise keep thread (if running) and config, 1651 * but flush possible ongoing bios in thread. 1652 */ 1653 blk_mq_freeze_queue(lo->lo_queue); 1654 blk_mq_unfreeze_queue(lo->lo_queue); 1655 } 1656 1657 mutex_unlock(&lo->lo_ctl_mutex); 1658 } 1659 1660 static void lo_release(struct gendisk *disk, fmode_t mode) 1661 { 1662 mutex_lock(&loop_index_mutex); 1663 __lo_release(disk->private_data); 1664 mutex_unlock(&loop_index_mutex); 1665 } 1666 1667 static const struct block_device_operations lo_fops = { 1668 .owner = THIS_MODULE, 1669 .open = lo_open, 1670 .release = lo_release, 1671 .ioctl = lo_ioctl, 1672 #ifdef CONFIG_COMPAT 1673 .compat_ioctl = lo_compat_ioctl, 1674 #endif 1675 }; 1676 1677 /* 1678 * And now the modules code and kernel interface. 1679 */ 1680 static int max_loop; 1681 module_param(max_loop, int, 0444); 1682 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1683 module_param(max_part, int, 0444); 1684 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1685 MODULE_LICENSE("GPL"); 1686 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1687 1688 int loop_register_transfer(struct loop_func_table *funcs) 1689 { 1690 unsigned int n = funcs->number; 1691 1692 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1693 return -EINVAL; 1694 xfer_funcs[n] = funcs; 1695 return 0; 1696 } 1697 1698 static int unregister_transfer_cb(int id, void *ptr, void *data) 1699 { 1700 struct loop_device *lo = ptr; 1701 struct loop_func_table *xfer = data; 1702 1703 mutex_lock(&lo->lo_ctl_mutex); 1704 if (lo->lo_encryption == xfer) 1705 loop_release_xfer(lo); 1706 mutex_unlock(&lo->lo_ctl_mutex); 1707 return 0; 1708 } 1709 1710 int loop_unregister_transfer(int number) 1711 { 1712 unsigned int n = number; 1713 struct loop_func_table *xfer; 1714 1715 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1716 return -EINVAL; 1717 1718 xfer_funcs[n] = NULL; 1719 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1720 return 0; 1721 } 1722 1723 EXPORT_SYMBOL(loop_register_transfer); 1724 EXPORT_SYMBOL(loop_unregister_transfer); 1725 1726 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1727 const struct blk_mq_queue_data *bd) 1728 { 1729 struct request *rq = bd->rq; 1730 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1731 struct loop_device *lo = rq->q->queuedata; 1732 1733 blk_mq_start_request(rq); 1734 1735 if (lo->lo_state != Lo_bound) 1736 return BLK_STS_IOERR; 1737 1738 switch (req_op(rq)) { 1739 case REQ_OP_FLUSH: 1740 case REQ_OP_DISCARD: 1741 case REQ_OP_WRITE_ZEROES: 1742 cmd->use_aio = false; 1743 break; 1744 default: 1745 cmd->use_aio = lo->use_dio; 1746 break; 1747 } 1748 1749 /* always use the first bio's css */ 1750 #ifdef CONFIG_BLK_CGROUP 1751 if (cmd->use_aio && rq->bio && rq->bio->bi_css) { 1752 cmd->css = rq->bio->bi_css; 1753 css_get(cmd->css); 1754 } else 1755 #endif 1756 cmd->css = NULL; 1757 kthread_queue_work(&lo->worker, &cmd->work); 1758 1759 return BLK_STS_OK; 1760 } 1761 1762 static void loop_handle_cmd(struct loop_cmd *cmd) 1763 { 1764 struct request *rq = blk_mq_rq_from_pdu(cmd); 1765 const bool write = op_is_write(req_op(rq)); 1766 struct loop_device *lo = rq->q->queuedata; 1767 int ret = 0; 1768 1769 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1770 ret = -EIO; 1771 goto failed; 1772 } 1773 1774 ret = do_req_filebacked(lo, rq); 1775 failed: 1776 /* complete non-aio request */ 1777 if (!cmd->use_aio || ret) { 1778 cmd->ret = ret ? -EIO : 0; 1779 blk_mq_complete_request(rq); 1780 } 1781 } 1782 1783 static void loop_queue_work(struct kthread_work *work) 1784 { 1785 struct loop_cmd *cmd = 1786 container_of(work, struct loop_cmd, work); 1787 1788 loop_handle_cmd(cmd); 1789 } 1790 1791 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1792 unsigned int hctx_idx, unsigned int numa_node) 1793 { 1794 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1795 1796 kthread_init_work(&cmd->work, loop_queue_work); 1797 return 0; 1798 } 1799 1800 static const struct blk_mq_ops loop_mq_ops = { 1801 .queue_rq = loop_queue_rq, 1802 .init_request = loop_init_request, 1803 .complete = lo_complete_rq, 1804 }; 1805 1806 static int loop_add(struct loop_device **l, int i) 1807 { 1808 struct loop_device *lo; 1809 struct gendisk *disk; 1810 int err; 1811 1812 err = -ENOMEM; 1813 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1814 if (!lo) 1815 goto out; 1816 1817 lo->lo_state = Lo_unbound; 1818 1819 /* allocate id, if @id >= 0, we're requesting that specific id */ 1820 if (i >= 0) { 1821 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1822 if (err == -ENOSPC) 1823 err = -EEXIST; 1824 } else { 1825 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1826 } 1827 if (err < 0) 1828 goto out_free_dev; 1829 i = err; 1830 1831 err = -ENOMEM; 1832 lo->tag_set.ops = &loop_mq_ops; 1833 lo->tag_set.nr_hw_queues = 1; 1834 lo->tag_set.queue_depth = 128; 1835 lo->tag_set.numa_node = NUMA_NO_NODE; 1836 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1837 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1838 lo->tag_set.driver_data = lo; 1839 1840 err = blk_mq_alloc_tag_set(&lo->tag_set); 1841 if (err) 1842 goto out_free_idr; 1843 1844 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1845 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1846 err = PTR_ERR(lo->lo_queue); 1847 goto out_cleanup_tags; 1848 } 1849 lo->lo_queue->queuedata = lo; 1850 1851 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1852 1853 /* 1854 * By default, we do buffer IO, so it doesn't make sense to enable 1855 * merge because the I/O submitted to backing file is handled page by 1856 * page. For directio mode, merge does help to dispatch bigger request 1857 * to underlayer disk. We will enable merge once directio is enabled. 1858 */ 1859 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1860 1861 err = -ENOMEM; 1862 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1863 if (!disk) 1864 goto out_free_queue; 1865 1866 /* 1867 * Disable partition scanning by default. The in-kernel partition 1868 * scanning can be requested individually per-device during its 1869 * setup. Userspace can always add and remove partitions from all 1870 * devices. The needed partition minors are allocated from the 1871 * extended minor space, the main loop device numbers will continue 1872 * to match the loop minors, regardless of the number of partitions 1873 * used. 1874 * 1875 * If max_part is given, partition scanning is globally enabled for 1876 * all loop devices. The minors for the main loop devices will be 1877 * multiples of max_part. 1878 * 1879 * Note: Global-for-all-devices, set-only-at-init, read-only module 1880 * parameteters like 'max_loop' and 'max_part' make things needlessly 1881 * complicated, are too static, inflexible and may surprise 1882 * userspace tools. Parameters like this in general should be avoided. 1883 */ 1884 if (!part_shift) 1885 disk->flags |= GENHD_FL_NO_PART_SCAN; 1886 disk->flags |= GENHD_FL_EXT_DEVT; 1887 mutex_init(&lo->lo_ctl_mutex); 1888 atomic_set(&lo->lo_refcnt, 0); 1889 lo->lo_number = i; 1890 spin_lock_init(&lo->lo_lock); 1891 disk->major = LOOP_MAJOR; 1892 disk->first_minor = i << part_shift; 1893 disk->fops = &lo_fops; 1894 disk->private_data = lo; 1895 disk->queue = lo->lo_queue; 1896 sprintf(disk->disk_name, "loop%d", i); 1897 add_disk(disk); 1898 *l = lo; 1899 return lo->lo_number; 1900 1901 out_free_queue: 1902 blk_cleanup_queue(lo->lo_queue); 1903 out_cleanup_tags: 1904 blk_mq_free_tag_set(&lo->tag_set); 1905 out_free_idr: 1906 idr_remove(&loop_index_idr, i); 1907 out_free_dev: 1908 kfree(lo); 1909 out: 1910 return err; 1911 } 1912 1913 static void loop_remove(struct loop_device *lo) 1914 { 1915 del_gendisk(lo->lo_disk); 1916 blk_cleanup_queue(lo->lo_queue); 1917 blk_mq_free_tag_set(&lo->tag_set); 1918 put_disk(lo->lo_disk); 1919 kfree(lo); 1920 } 1921 1922 static int find_free_cb(int id, void *ptr, void *data) 1923 { 1924 struct loop_device *lo = ptr; 1925 struct loop_device **l = data; 1926 1927 if (lo->lo_state == Lo_unbound) { 1928 *l = lo; 1929 return 1; 1930 } 1931 return 0; 1932 } 1933 1934 static int loop_lookup(struct loop_device **l, int i) 1935 { 1936 struct loop_device *lo; 1937 int ret = -ENODEV; 1938 1939 if (i < 0) { 1940 int err; 1941 1942 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1943 if (err == 1) { 1944 *l = lo; 1945 ret = lo->lo_number; 1946 } 1947 goto out; 1948 } 1949 1950 /* lookup and return a specific i */ 1951 lo = idr_find(&loop_index_idr, i); 1952 if (lo) { 1953 *l = lo; 1954 ret = lo->lo_number; 1955 } 1956 out: 1957 return ret; 1958 } 1959 1960 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1961 { 1962 struct loop_device *lo; 1963 struct kobject *kobj; 1964 int err; 1965 1966 mutex_lock(&loop_index_mutex); 1967 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1968 if (err < 0) 1969 err = loop_add(&lo, MINOR(dev) >> part_shift); 1970 if (err < 0) 1971 kobj = NULL; 1972 else 1973 kobj = get_disk_and_module(lo->lo_disk); 1974 mutex_unlock(&loop_index_mutex); 1975 1976 *part = 0; 1977 return kobj; 1978 } 1979 1980 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1981 unsigned long parm) 1982 { 1983 struct loop_device *lo; 1984 int ret = -ENOSYS; 1985 1986 mutex_lock(&loop_index_mutex); 1987 switch (cmd) { 1988 case LOOP_CTL_ADD: 1989 ret = loop_lookup(&lo, parm); 1990 if (ret >= 0) { 1991 ret = -EEXIST; 1992 break; 1993 } 1994 ret = loop_add(&lo, parm); 1995 break; 1996 case LOOP_CTL_REMOVE: 1997 ret = loop_lookup(&lo, parm); 1998 if (ret < 0) 1999 break; 2000 ret = mutex_lock_killable(&lo->lo_ctl_mutex); 2001 if (ret) 2002 break; 2003 if (lo->lo_state != Lo_unbound) { 2004 ret = -EBUSY; 2005 mutex_unlock(&lo->lo_ctl_mutex); 2006 break; 2007 } 2008 if (atomic_read(&lo->lo_refcnt) > 0) { 2009 ret = -EBUSY; 2010 mutex_unlock(&lo->lo_ctl_mutex); 2011 break; 2012 } 2013 lo->lo_disk->private_data = NULL; 2014 mutex_unlock(&lo->lo_ctl_mutex); 2015 idr_remove(&loop_index_idr, lo->lo_number); 2016 loop_remove(lo); 2017 break; 2018 case LOOP_CTL_GET_FREE: 2019 ret = loop_lookup(&lo, -1); 2020 if (ret >= 0) 2021 break; 2022 ret = loop_add(&lo, -1); 2023 } 2024 mutex_unlock(&loop_index_mutex); 2025 2026 return ret; 2027 } 2028 2029 static const struct file_operations loop_ctl_fops = { 2030 .open = nonseekable_open, 2031 .unlocked_ioctl = loop_control_ioctl, 2032 .compat_ioctl = loop_control_ioctl, 2033 .owner = THIS_MODULE, 2034 .llseek = noop_llseek, 2035 }; 2036 2037 static struct miscdevice loop_misc = { 2038 .minor = LOOP_CTRL_MINOR, 2039 .name = "loop-control", 2040 .fops = &loop_ctl_fops, 2041 }; 2042 2043 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2044 MODULE_ALIAS("devname:loop-control"); 2045 2046 static int __init loop_init(void) 2047 { 2048 int i, nr; 2049 unsigned long range; 2050 struct loop_device *lo; 2051 int err; 2052 2053 part_shift = 0; 2054 if (max_part > 0) { 2055 part_shift = fls(max_part); 2056 2057 /* 2058 * Adjust max_part according to part_shift as it is exported 2059 * to user space so that user can decide correct minor number 2060 * if [s]he want to create more devices. 2061 * 2062 * Note that -1 is required because partition 0 is reserved 2063 * for the whole disk. 2064 */ 2065 max_part = (1UL << part_shift) - 1; 2066 } 2067 2068 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2069 err = -EINVAL; 2070 goto err_out; 2071 } 2072 2073 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2074 err = -EINVAL; 2075 goto err_out; 2076 } 2077 2078 /* 2079 * If max_loop is specified, create that many devices upfront. 2080 * This also becomes a hard limit. If max_loop is not specified, 2081 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2082 * init time. Loop devices can be requested on-demand with the 2083 * /dev/loop-control interface, or be instantiated by accessing 2084 * a 'dead' device node. 2085 */ 2086 if (max_loop) { 2087 nr = max_loop; 2088 range = max_loop << part_shift; 2089 } else { 2090 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2091 range = 1UL << MINORBITS; 2092 } 2093 2094 err = misc_register(&loop_misc); 2095 if (err < 0) 2096 goto err_out; 2097 2098 2099 if (register_blkdev(LOOP_MAJOR, "loop")) { 2100 err = -EIO; 2101 goto misc_out; 2102 } 2103 2104 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2105 THIS_MODULE, loop_probe, NULL, NULL); 2106 2107 /* pre-create number of devices given by config or max_loop */ 2108 mutex_lock(&loop_index_mutex); 2109 for (i = 0; i < nr; i++) 2110 loop_add(&lo, i); 2111 mutex_unlock(&loop_index_mutex); 2112 2113 printk(KERN_INFO "loop: module loaded\n"); 2114 return 0; 2115 2116 misc_out: 2117 misc_deregister(&loop_misc); 2118 err_out: 2119 return err; 2120 } 2121 2122 static int loop_exit_cb(int id, void *ptr, void *data) 2123 { 2124 struct loop_device *lo = ptr; 2125 2126 loop_remove(lo); 2127 return 0; 2128 } 2129 2130 static void __exit loop_exit(void) 2131 { 2132 unsigned long range; 2133 2134 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2135 2136 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2137 idr_destroy(&loop_index_idr); 2138 2139 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2140 unregister_blkdev(LOOP_MAJOR, "loop"); 2141 2142 misc_deregister(&loop_misc); 2143 } 2144 2145 module_init(loop_init); 2146 module_exit(loop_exit); 2147 2148 #ifndef MODULE 2149 static int __init max_loop_setup(char *str) 2150 { 2151 max_loop = simple_strtol(str, NULL, 0); 2152 return 1; 2153 } 2154 2155 __setup("max_loop=", max_loop_setup); 2156 #endif 2157