xref: /linux/drivers/base/platform.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * platform.c - platform 'pseudo' bus for legacy devices
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  *
8  * Please see Documentation/driver-model/platform.txt for more
9  * information.
10  */
11 
12 #include <linux/string.h>
13 #include <linux/platform_device.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/idr.h>
25 #include <linux/acpi.h>
26 #include <linux/clk/clk-conf.h>
27 #include <linux/limits.h>
28 #include <linux/property.h>
29 #include <linux/kmemleak.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 /* For automatically allocated device IDs */
35 static DEFINE_IDA(platform_devid_ida);
36 
37 struct device platform_bus = {
38 	.init_name	= "platform",
39 };
40 EXPORT_SYMBOL_GPL(platform_bus);
41 
42 /**
43  * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
44  * @pdev: platform device
45  *
46  * This is called before platform_device_add() such that any pdev_archdata may
47  * be setup before the platform_notifier is called.  So if a user needs to
48  * manipulate any relevant information in the pdev_archdata they can do:
49  *
50  *	platform_device_alloc()
51  *	... manipulate ...
52  *	platform_device_add()
53  *
54  * And if they don't care they can just call platform_device_register() and
55  * everything will just work out.
56  */
57 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
58 {
59 }
60 
61 /**
62  * platform_get_resource - get a resource for a device
63  * @dev: platform device
64  * @type: resource type
65  * @num: resource index
66  */
67 struct resource *platform_get_resource(struct platform_device *dev,
68 				       unsigned int type, unsigned int num)
69 {
70 	int i;
71 
72 	for (i = 0; i < dev->num_resources; i++) {
73 		struct resource *r = &dev->resource[i];
74 
75 		if (type == resource_type(r) && num-- == 0)
76 			return r;
77 	}
78 	return NULL;
79 }
80 EXPORT_SYMBOL_GPL(platform_get_resource);
81 
82 /**
83  * platform_get_irq - get an IRQ for a device
84  * @dev: platform device
85  * @num: IRQ number index
86  */
87 int platform_get_irq(struct platform_device *dev, unsigned int num)
88 {
89 #ifdef CONFIG_SPARC
90 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
91 	if (!dev || num >= dev->archdata.num_irqs)
92 		return -ENXIO;
93 	return dev->archdata.irqs[num];
94 #else
95 	struct resource *r;
96 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
97 		int ret;
98 
99 		ret = of_irq_get(dev->dev.of_node, num);
100 		if (ret > 0 || ret == -EPROBE_DEFER)
101 			return ret;
102 	}
103 
104 	r = platform_get_resource(dev, IORESOURCE_IRQ, num);
105 	if (has_acpi_companion(&dev->dev)) {
106 		if (r && r->flags & IORESOURCE_DISABLED) {
107 			int ret;
108 
109 			ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
110 			if (ret)
111 				return ret;
112 		}
113 	}
114 
115 	/*
116 	 * The resources may pass trigger flags to the irqs that need
117 	 * to be set up. It so happens that the trigger flags for
118 	 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
119 	 * settings.
120 	 */
121 	if (r && r->flags & IORESOURCE_BITS) {
122 		struct irq_data *irqd;
123 
124 		irqd = irq_get_irq_data(r->start);
125 		if (!irqd)
126 			return -ENXIO;
127 		irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
128 	}
129 
130 	if (r)
131 		return r->start;
132 
133 	/*
134 	 * For the index 0 interrupt, allow falling back to GpioInt
135 	 * resources. While a device could have both Interrupt and GpioInt
136 	 * resources, making this fallback ambiguous, in many common cases
137 	 * the device will only expose one IRQ, and this fallback
138 	 * allows a common code path across either kind of resource.
139 	 */
140 	if (num == 0 && has_acpi_companion(&dev->dev))
141 		return acpi_dev_gpio_irq_get(ACPI_COMPANION(&dev->dev), num);
142 
143 	return -ENXIO;
144 #endif
145 }
146 EXPORT_SYMBOL_GPL(platform_get_irq);
147 
148 /**
149  * platform_irq_count - Count the number of IRQs a platform device uses
150  * @dev: platform device
151  *
152  * Return: Number of IRQs a platform device uses or EPROBE_DEFER
153  */
154 int platform_irq_count(struct platform_device *dev)
155 {
156 	int ret, nr = 0;
157 
158 	while ((ret = platform_get_irq(dev, nr)) >= 0)
159 		nr++;
160 
161 	if (ret == -EPROBE_DEFER)
162 		return ret;
163 
164 	return nr;
165 }
166 EXPORT_SYMBOL_GPL(platform_irq_count);
167 
168 /**
169  * platform_get_resource_byname - get a resource for a device by name
170  * @dev: platform device
171  * @type: resource type
172  * @name: resource name
173  */
174 struct resource *platform_get_resource_byname(struct platform_device *dev,
175 					      unsigned int type,
176 					      const char *name)
177 {
178 	int i;
179 
180 	for (i = 0; i < dev->num_resources; i++) {
181 		struct resource *r = &dev->resource[i];
182 
183 		if (unlikely(!r->name))
184 			continue;
185 
186 		if (type == resource_type(r) && !strcmp(r->name, name))
187 			return r;
188 	}
189 	return NULL;
190 }
191 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
192 
193 /**
194  * platform_get_irq_byname - get an IRQ for a device by name
195  * @dev: platform device
196  * @name: IRQ name
197  */
198 int platform_get_irq_byname(struct platform_device *dev, const char *name)
199 {
200 	struct resource *r;
201 
202 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
203 		int ret;
204 
205 		ret = of_irq_get_byname(dev->dev.of_node, name);
206 		if (ret > 0 || ret == -EPROBE_DEFER)
207 			return ret;
208 	}
209 
210 	r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
211 	return r ? r->start : -ENXIO;
212 }
213 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
214 
215 /**
216  * platform_add_devices - add a numbers of platform devices
217  * @devs: array of platform devices to add
218  * @num: number of platform devices in array
219  */
220 int platform_add_devices(struct platform_device **devs, int num)
221 {
222 	int i, ret = 0;
223 
224 	for (i = 0; i < num; i++) {
225 		ret = platform_device_register(devs[i]);
226 		if (ret) {
227 			while (--i >= 0)
228 				platform_device_unregister(devs[i]);
229 			break;
230 		}
231 	}
232 
233 	return ret;
234 }
235 EXPORT_SYMBOL_GPL(platform_add_devices);
236 
237 struct platform_object {
238 	struct platform_device pdev;
239 	char name[];
240 };
241 
242 /**
243  * platform_device_put - destroy a platform device
244  * @pdev: platform device to free
245  *
246  * Free all memory associated with a platform device.  This function must
247  * _only_ be externally called in error cases.  All other usage is a bug.
248  */
249 void platform_device_put(struct platform_device *pdev)
250 {
251 	if (!IS_ERR_OR_NULL(pdev))
252 		put_device(&pdev->dev);
253 }
254 EXPORT_SYMBOL_GPL(platform_device_put);
255 
256 static void platform_device_release(struct device *dev)
257 {
258 	struct platform_object *pa = container_of(dev, struct platform_object,
259 						  pdev.dev);
260 
261 	of_device_node_put(&pa->pdev.dev);
262 	kfree(pa->pdev.dev.platform_data);
263 	kfree(pa->pdev.mfd_cell);
264 	kfree(pa->pdev.resource);
265 	kfree(pa->pdev.driver_override);
266 	kfree(pa);
267 }
268 
269 /**
270  * platform_device_alloc - create a platform device
271  * @name: base name of the device we're adding
272  * @id: instance id
273  *
274  * Create a platform device object which can have other objects attached
275  * to it, and which will have attached objects freed when it is released.
276  */
277 struct platform_device *platform_device_alloc(const char *name, int id)
278 {
279 	struct platform_object *pa;
280 
281 	pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
282 	if (pa) {
283 		strcpy(pa->name, name);
284 		pa->pdev.name = pa->name;
285 		pa->pdev.id = id;
286 		device_initialize(&pa->pdev.dev);
287 		pa->pdev.dev.release = platform_device_release;
288 		arch_setup_pdev_archdata(&pa->pdev);
289 	}
290 
291 	return pa ? &pa->pdev : NULL;
292 }
293 EXPORT_SYMBOL_GPL(platform_device_alloc);
294 
295 /**
296  * platform_device_add_resources - add resources to a platform device
297  * @pdev: platform device allocated by platform_device_alloc to add resources to
298  * @res: set of resources that needs to be allocated for the device
299  * @num: number of resources
300  *
301  * Add a copy of the resources to the platform device.  The memory
302  * associated with the resources will be freed when the platform device is
303  * released.
304  */
305 int platform_device_add_resources(struct platform_device *pdev,
306 				  const struct resource *res, unsigned int num)
307 {
308 	struct resource *r = NULL;
309 
310 	if (res) {
311 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
312 		if (!r)
313 			return -ENOMEM;
314 	}
315 
316 	kfree(pdev->resource);
317 	pdev->resource = r;
318 	pdev->num_resources = num;
319 	return 0;
320 }
321 EXPORT_SYMBOL_GPL(platform_device_add_resources);
322 
323 /**
324  * platform_device_add_data - add platform-specific data to a platform device
325  * @pdev: platform device allocated by platform_device_alloc to add resources to
326  * @data: platform specific data for this platform device
327  * @size: size of platform specific data
328  *
329  * Add a copy of platform specific data to the platform device's
330  * platform_data pointer.  The memory associated with the platform data
331  * will be freed when the platform device is released.
332  */
333 int platform_device_add_data(struct platform_device *pdev, const void *data,
334 			     size_t size)
335 {
336 	void *d = NULL;
337 
338 	if (data) {
339 		d = kmemdup(data, size, GFP_KERNEL);
340 		if (!d)
341 			return -ENOMEM;
342 	}
343 
344 	kfree(pdev->dev.platform_data);
345 	pdev->dev.platform_data = d;
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(platform_device_add_data);
349 
350 /**
351  * platform_device_add_properties - add built-in properties to a platform device
352  * @pdev: platform device to add properties to
353  * @properties: null terminated array of properties to add
354  *
355  * The function will take deep copy of @properties and attach the copy to the
356  * platform device. The memory associated with properties will be freed when the
357  * platform device is released.
358  */
359 int platform_device_add_properties(struct platform_device *pdev,
360 				   const struct property_entry *properties)
361 {
362 	return device_add_properties(&pdev->dev, properties);
363 }
364 EXPORT_SYMBOL_GPL(platform_device_add_properties);
365 
366 /**
367  * platform_device_add - add a platform device to device hierarchy
368  * @pdev: platform device we're adding
369  *
370  * This is part 2 of platform_device_register(), though may be called
371  * separately _iff_ pdev was allocated by platform_device_alloc().
372  */
373 int platform_device_add(struct platform_device *pdev)
374 {
375 	int i, ret;
376 
377 	if (!pdev)
378 		return -EINVAL;
379 
380 	if (!pdev->dev.parent)
381 		pdev->dev.parent = &platform_bus;
382 
383 	pdev->dev.bus = &platform_bus_type;
384 
385 	switch (pdev->id) {
386 	default:
387 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
388 		break;
389 	case PLATFORM_DEVID_NONE:
390 		dev_set_name(&pdev->dev, "%s", pdev->name);
391 		break;
392 	case PLATFORM_DEVID_AUTO:
393 		/*
394 		 * Automatically allocated device ID. We mark it as such so
395 		 * that we remember it must be freed, and we append a suffix
396 		 * to avoid namespace collision with explicit IDs.
397 		 */
398 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
399 		if (ret < 0)
400 			goto err_out;
401 		pdev->id = ret;
402 		pdev->id_auto = true;
403 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
404 		break;
405 	}
406 
407 	for (i = 0; i < pdev->num_resources; i++) {
408 		struct resource *p, *r = &pdev->resource[i];
409 
410 		if (r->name == NULL)
411 			r->name = dev_name(&pdev->dev);
412 
413 		p = r->parent;
414 		if (!p) {
415 			if (resource_type(r) == IORESOURCE_MEM)
416 				p = &iomem_resource;
417 			else if (resource_type(r) == IORESOURCE_IO)
418 				p = &ioport_resource;
419 		}
420 
421 		if (p && insert_resource(p, r)) {
422 			dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
423 			ret = -EBUSY;
424 			goto failed;
425 		}
426 	}
427 
428 	pr_debug("Registering platform device '%s'. Parent at %s\n",
429 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
430 
431 	ret = device_add(&pdev->dev);
432 	if (ret == 0)
433 		return ret;
434 
435  failed:
436 	if (pdev->id_auto) {
437 		ida_simple_remove(&platform_devid_ida, pdev->id);
438 		pdev->id = PLATFORM_DEVID_AUTO;
439 	}
440 
441 	while (--i >= 0) {
442 		struct resource *r = &pdev->resource[i];
443 		if (r->parent)
444 			release_resource(r);
445 	}
446 
447  err_out:
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(platform_device_add);
451 
452 /**
453  * platform_device_del - remove a platform-level device
454  * @pdev: platform device we're removing
455  *
456  * Note that this function will also release all memory- and port-based
457  * resources owned by the device (@dev->resource).  This function must
458  * _only_ be externally called in error cases.  All other usage is a bug.
459  */
460 void platform_device_del(struct platform_device *pdev)
461 {
462 	int i;
463 
464 	if (!IS_ERR_OR_NULL(pdev)) {
465 		device_del(&pdev->dev);
466 
467 		if (pdev->id_auto) {
468 			ida_simple_remove(&platform_devid_ida, pdev->id);
469 			pdev->id = PLATFORM_DEVID_AUTO;
470 		}
471 
472 		for (i = 0; i < pdev->num_resources; i++) {
473 			struct resource *r = &pdev->resource[i];
474 			if (r->parent)
475 				release_resource(r);
476 		}
477 	}
478 }
479 EXPORT_SYMBOL_GPL(platform_device_del);
480 
481 /**
482  * platform_device_register - add a platform-level device
483  * @pdev: platform device we're adding
484  */
485 int platform_device_register(struct platform_device *pdev)
486 {
487 	device_initialize(&pdev->dev);
488 	arch_setup_pdev_archdata(pdev);
489 	return platform_device_add(pdev);
490 }
491 EXPORT_SYMBOL_GPL(platform_device_register);
492 
493 /**
494  * platform_device_unregister - unregister a platform-level device
495  * @pdev: platform device we're unregistering
496  *
497  * Unregistration is done in 2 steps. First we release all resources
498  * and remove it from the subsystem, then we drop reference count by
499  * calling platform_device_put().
500  */
501 void platform_device_unregister(struct platform_device *pdev)
502 {
503 	platform_device_del(pdev);
504 	platform_device_put(pdev);
505 }
506 EXPORT_SYMBOL_GPL(platform_device_unregister);
507 
508 /**
509  * platform_device_register_full - add a platform-level device with
510  * resources and platform-specific data
511  *
512  * @pdevinfo: data used to create device
513  *
514  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
515  */
516 struct platform_device *platform_device_register_full(
517 		const struct platform_device_info *pdevinfo)
518 {
519 	int ret = -ENOMEM;
520 	struct platform_device *pdev;
521 
522 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
523 	if (!pdev)
524 		return ERR_PTR(-ENOMEM);
525 
526 	pdev->dev.parent = pdevinfo->parent;
527 	pdev->dev.fwnode = pdevinfo->fwnode;
528 	pdev->dev.of_node = of_node_get(to_of_node(pdev->dev.fwnode));
529 	pdev->dev.of_node_reused = pdevinfo->of_node_reused;
530 
531 	if (pdevinfo->dma_mask) {
532 		/*
533 		 * This memory isn't freed when the device is put,
534 		 * I don't have a nice idea for that though.  Conceptually
535 		 * dma_mask in struct device should not be a pointer.
536 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
537 		 */
538 		pdev->dev.dma_mask =
539 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
540 		if (!pdev->dev.dma_mask)
541 			goto err;
542 
543 		kmemleak_ignore(pdev->dev.dma_mask);
544 
545 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
546 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
547 	}
548 
549 	ret = platform_device_add_resources(pdev,
550 			pdevinfo->res, pdevinfo->num_res);
551 	if (ret)
552 		goto err;
553 
554 	ret = platform_device_add_data(pdev,
555 			pdevinfo->data, pdevinfo->size_data);
556 	if (ret)
557 		goto err;
558 
559 	if (pdevinfo->properties) {
560 		ret = platform_device_add_properties(pdev,
561 						     pdevinfo->properties);
562 		if (ret)
563 			goto err;
564 	}
565 
566 	ret = platform_device_add(pdev);
567 	if (ret) {
568 err:
569 		ACPI_COMPANION_SET(&pdev->dev, NULL);
570 		kfree(pdev->dev.dma_mask);
571 		platform_device_put(pdev);
572 		return ERR_PTR(ret);
573 	}
574 
575 	return pdev;
576 }
577 EXPORT_SYMBOL_GPL(platform_device_register_full);
578 
579 static int platform_drv_probe(struct device *_dev)
580 {
581 	struct platform_driver *drv = to_platform_driver(_dev->driver);
582 	struct platform_device *dev = to_platform_device(_dev);
583 	int ret;
584 
585 	ret = of_clk_set_defaults(_dev->of_node, false);
586 	if (ret < 0)
587 		return ret;
588 
589 	ret = dev_pm_domain_attach(_dev, true);
590 	if (ret)
591 		goto out;
592 
593 	if (drv->probe) {
594 		ret = drv->probe(dev);
595 		if (ret)
596 			dev_pm_domain_detach(_dev, true);
597 	}
598 
599 out:
600 	if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
601 		dev_warn(_dev, "probe deferral not supported\n");
602 		ret = -ENXIO;
603 	}
604 
605 	return ret;
606 }
607 
608 static int platform_drv_probe_fail(struct device *_dev)
609 {
610 	return -ENXIO;
611 }
612 
613 static int platform_drv_remove(struct device *_dev)
614 {
615 	struct platform_driver *drv = to_platform_driver(_dev->driver);
616 	struct platform_device *dev = to_platform_device(_dev);
617 	int ret = 0;
618 
619 	if (drv->remove)
620 		ret = drv->remove(dev);
621 	dev_pm_domain_detach(_dev, true);
622 
623 	return ret;
624 }
625 
626 static void platform_drv_shutdown(struct device *_dev)
627 {
628 	struct platform_driver *drv = to_platform_driver(_dev->driver);
629 	struct platform_device *dev = to_platform_device(_dev);
630 
631 	if (drv->shutdown)
632 		drv->shutdown(dev);
633 }
634 
635 /**
636  * __platform_driver_register - register a driver for platform-level devices
637  * @drv: platform driver structure
638  * @owner: owning module/driver
639  */
640 int __platform_driver_register(struct platform_driver *drv,
641 				struct module *owner)
642 {
643 	drv->driver.owner = owner;
644 	drv->driver.bus = &platform_bus_type;
645 	drv->driver.probe = platform_drv_probe;
646 	drv->driver.remove = platform_drv_remove;
647 	drv->driver.shutdown = platform_drv_shutdown;
648 
649 	return driver_register(&drv->driver);
650 }
651 EXPORT_SYMBOL_GPL(__platform_driver_register);
652 
653 /**
654  * platform_driver_unregister - unregister a driver for platform-level devices
655  * @drv: platform driver structure
656  */
657 void platform_driver_unregister(struct platform_driver *drv)
658 {
659 	driver_unregister(&drv->driver);
660 }
661 EXPORT_SYMBOL_GPL(platform_driver_unregister);
662 
663 /**
664  * __platform_driver_probe - register driver for non-hotpluggable device
665  * @drv: platform driver structure
666  * @probe: the driver probe routine, probably from an __init section
667  * @module: module which will be the owner of the driver
668  *
669  * Use this instead of platform_driver_register() when you know the device
670  * is not hotpluggable and has already been registered, and you want to
671  * remove its run-once probe() infrastructure from memory after the driver
672  * has bound to the device.
673  *
674  * One typical use for this would be with drivers for controllers integrated
675  * into system-on-chip processors, where the controller devices have been
676  * configured as part of board setup.
677  *
678  * Note that this is incompatible with deferred probing.
679  *
680  * Returns zero if the driver registered and bound to a device, else returns
681  * a negative error code and with the driver not registered.
682  */
683 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
684 		int (*probe)(struct platform_device *), struct module *module)
685 {
686 	int retval, code;
687 
688 	if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
689 		pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
690 			 drv->driver.name, __func__);
691 		return -EINVAL;
692 	}
693 
694 	/*
695 	 * We have to run our probes synchronously because we check if
696 	 * we find any devices to bind to and exit with error if there
697 	 * are any.
698 	 */
699 	drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
700 
701 	/*
702 	 * Prevent driver from requesting probe deferral to avoid further
703 	 * futile probe attempts.
704 	 */
705 	drv->prevent_deferred_probe = true;
706 
707 	/* make sure driver won't have bind/unbind attributes */
708 	drv->driver.suppress_bind_attrs = true;
709 
710 	/* temporary section violation during probe() */
711 	drv->probe = probe;
712 	retval = code = __platform_driver_register(drv, module);
713 
714 	/*
715 	 * Fixup that section violation, being paranoid about code scanning
716 	 * the list of drivers in order to probe new devices.  Check to see
717 	 * if the probe was successful, and make sure any forced probes of
718 	 * new devices fail.
719 	 */
720 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
721 	drv->probe = NULL;
722 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
723 		retval = -ENODEV;
724 	drv->driver.probe = platform_drv_probe_fail;
725 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
726 
727 	if (code != retval)
728 		platform_driver_unregister(drv);
729 	return retval;
730 }
731 EXPORT_SYMBOL_GPL(__platform_driver_probe);
732 
733 /**
734  * __platform_create_bundle - register driver and create corresponding device
735  * @driver: platform driver structure
736  * @probe: the driver probe routine, probably from an __init section
737  * @res: set of resources that needs to be allocated for the device
738  * @n_res: number of resources
739  * @data: platform specific data for this platform device
740  * @size: size of platform specific data
741  * @module: module which will be the owner of the driver
742  *
743  * Use this in legacy-style modules that probe hardware directly and
744  * register a single platform device and corresponding platform driver.
745  *
746  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
747  */
748 struct platform_device * __init_or_module __platform_create_bundle(
749 			struct platform_driver *driver,
750 			int (*probe)(struct platform_device *),
751 			struct resource *res, unsigned int n_res,
752 			const void *data, size_t size, struct module *module)
753 {
754 	struct platform_device *pdev;
755 	int error;
756 
757 	pdev = platform_device_alloc(driver->driver.name, -1);
758 	if (!pdev) {
759 		error = -ENOMEM;
760 		goto err_out;
761 	}
762 
763 	error = platform_device_add_resources(pdev, res, n_res);
764 	if (error)
765 		goto err_pdev_put;
766 
767 	error = platform_device_add_data(pdev, data, size);
768 	if (error)
769 		goto err_pdev_put;
770 
771 	error = platform_device_add(pdev);
772 	if (error)
773 		goto err_pdev_put;
774 
775 	error = __platform_driver_probe(driver, probe, module);
776 	if (error)
777 		goto err_pdev_del;
778 
779 	return pdev;
780 
781 err_pdev_del:
782 	platform_device_del(pdev);
783 err_pdev_put:
784 	platform_device_put(pdev);
785 err_out:
786 	return ERR_PTR(error);
787 }
788 EXPORT_SYMBOL_GPL(__platform_create_bundle);
789 
790 /**
791  * __platform_register_drivers - register an array of platform drivers
792  * @drivers: an array of drivers to register
793  * @count: the number of drivers to register
794  * @owner: module owning the drivers
795  *
796  * Registers platform drivers specified by an array. On failure to register a
797  * driver, all previously registered drivers will be unregistered. Callers of
798  * this API should use platform_unregister_drivers() to unregister drivers in
799  * the reverse order.
800  *
801  * Returns: 0 on success or a negative error code on failure.
802  */
803 int __platform_register_drivers(struct platform_driver * const *drivers,
804 				unsigned int count, struct module *owner)
805 {
806 	unsigned int i;
807 	int err;
808 
809 	for (i = 0; i < count; i++) {
810 		pr_debug("registering platform driver %ps\n", drivers[i]);
811 
812 		err = __platform_driver_register(drivers[i], owner);
813 		if (err < 0) {
814 			pr_err("failed to register platform driver %ps: %d\n",
815 			       drivers[i], err);
816 			goto error;
817 		}
818 	}
819 
820 	return 0;
821 
822 error:
823 	while (i--) {
824 		pr_debug("unregistering platform driver %ps\n", drivers[i]);
825 		platform_driver_unregister(drivers[i]);
826 	}
827 
828 	return err;
829 }
830 EXPORT_SYMBOL_GPL(__platform_register_drivers);
831 
832 /**
833  * platform_unregister_drivers - unregister an array of platform drivers
834  * @drivers: an array of drivers to unregister
835  * @count: the number of drivers to unregister
836  *
837  * Unegisters platform drivers specified by an array. This is typically used
838  * to complement an earlier call to platform_register_drivers(). Drivers are
839  * unregistered in the reverse order in which they were registered.
840  */
841 void platform_unregister_drivers(struct platform_driver * const *drivers,
842 				 unsigned int count)
843 {
844 	while (count--) {
845 		pr_debug("unregistering platform driver %ps\n", drivers[count]);
846 		platform_driver_unregister(drivers[count]);
847 	}
848 }
849 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
850 
851 /* modalias support enables more hands-off userspace setup:
852  * (a) environment variable lets new-style hotplug events work once system is
853  *     fully running:  "modprobe $MODALIAS"
854  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
855  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
856  */
857 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
858 			     char *buf)
859 {
860 	struct platform_device	*pdev = to_platform_device(dev);
861 	int len;
862 
863 	len = of_device_modalias(dev, buf, PAGE_SIZE);
864 	if (len != -ENODEV)
865 		return len;
866 
867 	len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
868 	if (len != -ENODEV)
869 		return len;
870 
871 	len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
872 
873 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
874 }
875 static DEVICE_ATTR_RO(modalias);
876 
877 static ssize_t driver_override_store(struct device *dev,
878 				     struct device_attribute *attr,
879 				     const char *buf, size_t count)
880 {
881 	struct platform_device *pdev = to_platform_device(dev);
882 	char *driver_override, *old, *cp;
883 
884 	/* We need to keep extra room for a newline */
885 	if (count >= (PAGE_SIZE - 1))
886 		return -EINVAL;
887 
888 	driver_override = kstrndup(buf, count, GFP_KERNEL);
889 	if (!driver_override)
890 		return -ENOMEM;
891 
892 	cp = strchr(driver_override, '\n');
893 	if (cp)
894 		*cp = '\0';
895 
896 	device_lock(dev);
897 	old = pdev->driver_override;
898 	if (strlen(driver_override)) {
899 		pdev->driver_override = driver_override;
900 	} else {
901 		kfree(driver_override);
902 		pdev->driver_override = NULL;
903 	}
904 	device_unlock(dev);
905 
906 	kfree(old);
907 
908 	return count;
909 }
910 
911 static ssize_t driver_override_show(struct device *dev,
912 				    struct device_attribute *attr, char *buf)
913 {
914 	struct platform_device *pdev = to_platform_device(dev);
915 	ssize_t len;
916 
917 	device_lock(dev);
918 	len = sprintf(buf, "%s\n", pdev->driver_override);
919 	device_unlock(dev);
920 	return len;
921 }
922 static DEVICE_ATTR_RW(driver_override);
923 
924 
925 static struct attribute *platform_dev_attrs[] = {
926 	&dev_attr_modalias.attr,
927 	&dev_attr_driver_override.attr,
928 	NULL,
929 };
930 ATTRIBUTE_GROUPS(platform_dev);
931 
932 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
933 {
934 	struct platform_device	*pdev = to_platform_device(dev);
935 	int rc;
936 
937 	/* Some devices have extra OF data and an OF-style MODALIAS */
938 	rc = of_device_uevent_modalias(dev, env);
939 	if (rc != -ENODEV)
940 		return rc;
941 
942 	rc = acpi_device_uevent_modalias(dev, env);
943 	if (rc != -ENODEV)
944 		return rc;
945 
946 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
947 			pdev->name);
948 	return 0;
949 }
950 
951 static const struct platform_device_id *platform_match_id(
952 			const struct platform_device_id *id,
953 			struct platform_device *pdev)
954 {
955 	while (id->name[0]) {
956 		if (strcmp(pdev->name, id->name) == 0) {
957 			pdev->id_entry = id;
958 			return id;
959 		}
960 		id++;
961 	}
962 	return NULL;
963 }
964 
965 /**
966  * platform_match - bind platform device to platform driver.
967  * @dev: device.
968  * @drv: driver.
969  *
970  * Platform device IDs are assumed to be encoded like this:
971  * "<name><instance>", where <name> is a short description of the type of
972  * device, like "pci" or "floppy", and <instance> is the enumerated
973  * instance of the device, like '0' or '42'.  Driver IDs are simply
974  * "<name>".  So, extract the <name> from the platform_device structure,
975  * and compare it against the name of the driver. Return whether they match
976  * or not.
977  */
978 static int platform_match(struct device *dev, struct device_driver *drv)
979 {
980 	struct platform_device *pdev = to_platform_device(dev);
981 	struct platform_driver *pdrv = to_platform_driver(drv);
982 
983 	/* When driver_override is set, only bind to the matching driver */
984 	if (pdev->driver_override)
985 		return !strcmp(pdev->driver_override, drv->name);
986 
987 	/* Attempt an OF style match first */
988 	if (of_driver_match_device(dev, drv))
989 		return 1;
990 
991 	/* Then try ACPI style match */
992 	if (acpi_driver_match_device(dev, drv))
993 		return 1;
994 
995 	/* Then try to match against the id table */
996 	if (pdrv->id_table)
997 		return platform_match_id(pdrv->id_table, pdev) != NULL;
998 
999 	/* fall-back to driver name match */
1000 	return (strcmp(pdev->name, drv->name) == 0);
1001 }
1002 
1003 #ifdef CONFIG_PM_SLEEP
1004 
1005 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
1006 {
1007 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1008 	struct platform_device *pdev = to_platform_device(dev);
1009 	int ret = 0;
1010 
1011 	if (dev->driver && pdrv->suspend)
1012 		ret = pdrv->suspend(pdev, mesg);
1013 
1014 	return ret;
1015 }
1016 
1017 static int platform_legacy_resume(struct device *dev)
1018 {
1019 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1020 	struct platform_device *pdev = to_platform_device(dev);
1021 	int ret = 0;
1022 
1023 	if (dev->driver && pdrv->resume)
1024 		ret = pdrv->resume(pdev);
1025 
1026 	return ret;
1027 }
1028 
1029 #endif /* CONFIG_PM_SLEEP */
1030 
1031 #ifdef CONFIG_SUSPEND
1032 
1033 int platform_pm_suspend(struct device *dev)
1034 {
1035 	struct device_driver *drv = dev->driver;
1036 	int ret = 0;
1037 
1038 	if (!drv)
1039 		return 0;
1040 
1041 	if (drv->pm) {
1042 		if (drv->pm->suspend)
1043 			ret = drv->pm->suspend(dev);
1044 	} else {
1045 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 int platform_pm_resume(struct device *dev)
1052 {
1053 	struct device_driver *drv = dev->driver;
1054 	int ret = 0;
1055 
1056 	if (!drv)
1057 		return 0;
1058 
1059 	if (drv->pm) {
1060 		if (drv->pm->resume)
1061 			ret = drv->pm->resume(dev);
1062 	} else {
1063 		ret = platform_legacy_resume(dev);
1064 	}
1065 
1066 	return ret;
1067 }
1068 
1069 #endif /* CONFIG_SUSPEND */
1070 
1071 #ifdef CONFIG_HIBERNATE_CALLBACKS
1072 
1073 int platform_pm_freeze(struct device *dev)
1074 {
1075 	struct device_driver *drv = dev->driver;
1076 	int ret = 0;
1077 
1078 	if (!drv)
1079 		return 0;
1080 
1081 	if (drv->pm) {
1082 		if (drv->pm->freeze)
1083 			ret = drv->pm->freeze(dev);
1084 	} else {
1085 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 int platform_pm_thaw(struct device *dev)
1092 {
1093 	struct device_driver *drv = dev->driver;
1094 	int ret = 0;
1095 
1096 	if (!drv)
1097 		return 0;
1098 
1099 	if (drv->pm) {
1100 		if (drv->pm->thaw)
1101 			ret = drv->pm->thaw(dev);
1102 	} else {
1103 		ret = platform_legacy_resume(dev);
1104 	}
1105 
1106 	return ret;
1107 }
1108 
1109 int platform_pm_poweroff(struct device *dev)
1110 {
1111 	struct device_driver *drv = dev->driver;
1112 	int ret = 0;
1113 
1114 	if (!drv)
1115 		return 0;
1116 
1117 	if (drv->pm) {
1118 		if (drv->pm->poweroff)
1119 			ret = drv->pm->poweroff(dev);
1120 	} else {
1121 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 int platform_pm_restore(struct device *dev)
1128 {
1129 	struct device_driver *drv = dev->driver;
1130 	int ret = 0;
1131 
1132 	if (!drv)
1133 		return 0;
1134 
1135 	if (drv->pm) {
1136 		if (drv->pm->restore)
1137 			ret = drv->pm->restore(dev);
1138 	} else {
1139 		ret = platform_legacy_resume(dev);
1140 	}
1141 
1142 	return ret;
1143 }
1144 
1145 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1146 
1147 int platform_dma_configure(struct device *dev)
1148 {
1149 	enum dev_dma_attr attr;
1150 	int ret = 0;
1151 
1152 	if (dev->of_node) {
1153 		ret = of_dma_configure(dev, dev->of_node, true);
1154 	} else if (has_acpi_companion(dev)) {
1155 		attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode));
1156 		ret = acpi_dma_configure(dev, attr);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 static const struct dev_pm_ops platform_dev_pm_ops = {
1163 	.runtime_suspend = pm_generic_runtime_suspend,
1164 	.runtime_resume = pm_generic_runtime_resume,
1165 	USE_PLATFORM_PM_SLEEP_OPS
1166 };
1167 
1168 struct bus_type platform_bus_type = {
1169 	.name		= "platform",
1170 	.dev_groups	= platform_dev_groups,
1171 	.match		= platform_match,
1172 	.uevent		= platform_uevent,
1173 	.dma_configure	= platform_dma_configure,
1174 	.pm		= &platform_dev_pm_ops,
1175 };
1176 EXPORT_SYMBOL_GPL(platform_bus_type);
1177 
1178 int __init platform_bus_init(void)
1179 {
1180 	int error;
1181 
1182 	early_platform_cleanup();
1183 
1184 	error = device_register(&platform_bus);
1185 	if (error) {
1186 		put_device(&platform_bus);
1187 		return error;
1188 	}
1189 	error =  bus_register(&platform_bus_type);
1190 	if (error)
1191 		device_unregister(&platform_bus);
1192 	of_platform_register_reconfig_notifier();
1193 	return error;
1194 }
1195 
1196 static __initdata LIST_HEAD(early_platform_driver_list);
1197 static __initdata LIST_HEAD(early_platform_device_list);
1198 
1199 /**
1200  * early_platform_driver_register - register early platform driver
1201  * @epdrv: early_platform driver structure
1202  * @buf: string passed from early_param()
1203  *
1204  * Helper function for early_platform_init() / early_platform_init_buffer()
1205  */
1206 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1207 					  char *buf)
1208 {
1209 	char *tmp;
1210 	int n;
1211 
1212 	/* Simply add the driver to the end of the global list.
1213 	 * Drivers will by default be put on the list in compiled-in order.
1214 	 */
1215 	if (!epdrv->list.next) {
1216 		INIT_LIST_HEAD(&epdrv->list);
1217 		list_add_tail(&epdrv->list, &early_platform_driver_list);
1218 	}
1219 
1220 	/* If the user has specified device then make sure the driver
1221 	 * gets prioritized. The driver of the last device specified on
1222 	 * command line will be put first on the list.
1223 	 */
1224 	n = strlen(epdrv->pdrv->driver.name);
1225 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1226 		list_move(&epdrv->list, &early_platform_driver_list);
1227 
1228 		/* Allow passing parameters after device name */
1229 		if (buf[n] == '\0' || buf[n] == ',')
1230 			epdrv->requested_id = -1;
1231 		else {
1232 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
1233 							     &tmp, 10);
1234 
1235 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1236 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1237 				n = 0;
1238 			} else
1239 				n += strcspn(&buf[n + 1], ",") + 1;
1240 		}
1241 
1242 		if (buf[n] == ',')
1243 			n++;
1244 
1245 		if (epdrv->bufsize) {
1246 			memcpy(epdrv->buffer, &buf[n],
1247 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1248 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * early_platform_add_devices - adds a number of early platform devices
1257  * @devs: array of early platform devices to add
1258  * @num: number of early platform devices in array
1259  *
1260  * Used by early architecture code to register early platform devices and
1261  * their platform data.
1262  */
1263 void __init early_platform_add_devices(struct platform_device **devs, int num)
1264 {
1265 	struct device *dev;
1266 	int i;
1267 
1268 	/* simply add the devices to list */
1269 	for (i = 0; i < num; i++) {
1270 		dev = &devs[i]->dev;
1271 
1272 		if (!dev->devres_head.next) {
1273 			pm_runtime_early_init(dev);
1274 			INIT_LIST_HEAD(&dev->devres_head);
1275 			list_add_tail(&dev->devres_head,
1276 				      &early_platform_device_list);
1277 		}
1278 	}
1279 }
1280 
1281 /**
1282  * early_platform_driver_register_all - register early platform drivers
1283  * @class_str: string to identify early platform driver class
1284  *
1285  * Used by architecture code to register all early platform drivers
1286  * for a certain class. If omitted then only early platform drivers
1287  * with matching kernel command line class parameters will be registered.
1288  */
1289 void __init early_platform_driver_register_all(char *class_str)
1290 {
1291 	/* The "class_str" parameter may or may not be present on the kernel
1292 	 * command line. If it is present then there may be more than one
1293 	 * matching parameter.
1294 	 *
1295 	 * Since we register our early platform drivers using early_param()
1296 	 * we need to make sure that they also get registered in the case
1297 	 * when the parameter is missing from the kernel command line.
1298 	 *
1299 	 * We use parse_early_options() to make sure the early_param() gets
1300 	 * called at least once. The early_param() may be called more than
1301 	 * once since the name of the preferred device may be specified on
1302 	 * the kernel command line. early_platform_driver_register() handles
1303 	 * this case for us.
1304 	 */
1305 	parse_early_options(class_str);
1306 }
1307 
1308 /**
1309  * early_platform_match - find early platform device matching driver
1310  * @epdrv: early platform driver structure
1311  * @id: id to match against
1312  */
1313 static struct platform_device * __init
1314 early_platform_match(struct early_platform_driver *epdrv, int id)
1315 {
1316 	struct platform_device *pd;
1317 
1318 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1319 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1320 			if (pd->id == id)
1321 				return pd;
1322 
1323 	return NULL;
1324 }
1325 
1326 /**
1327  * early_platform_left - check if early platform driver has matching devices
1328  * @epdrv: early platform driver structure
1329  * @id: return true if id or above exists
1330  */
1331 static int __init early_platform_left(struct early_platform_driver *epdrv,
1332 				       int id)
1333 {
1334 	struct platform_device *pd;
1335 
1336 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1337 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1338 			if (pd->id >= id)
1339 				return 1;
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * early_platform_driver_probe_id - probe drivers matching class_str and id
1346  * @class_str: string to identify early platform driver class
1347  * @id: id to match against
1348  * @nr_probe: number of platform devices to successfully probe before exiting
1349  */
1350 static int __init early_platform_driver_probe_id(char *class_str,
1351 						 int id,
1352 						 int nr_probe)
1353 {
1354 	struct early_platform_driver *epdrv;
1355 	struct platform_device *match;
1356 	int match_id;
1357 	int n = 0;
1358 	int left = 0;
1359 
1360 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1361 		/* only use drivers matching our class_str */
1362 		if (strcmp(class_str, epdrv->class_str))
1363 			continue;
1364 
1365 		if (id == -2) {
1366 			match_id = epdrv->requested_id;
1367 			left = 1;
1368 
1369 		} else {
1370 			match_id = id;
1371 			left += early_platform_left(epdrv, id);
1372 
1373 			/* skip requested id */
1374 			switch (epdrv->requested_id) {
1375 			case EARLY_PLATFORM_ID_ERROR:
1376 			case EARLY_PLATFORM_ID_UNSET:
1377 				break;
1378 			default:
1379 				if (epdrv->requested_id == id)
1380 					match_id = EARLY_PLATFORM_ID_UNSET;
1381 			}
1382 		}
1383 
1384 		switch (match_id) {
1385 		case EARLY_PLATFORM_ID_ERROR:
1386 			pr_warn("%s: unable to parse %s parameter\n",
1387 				class_str, epdrv->pdrv->driver.name);
1388 			/* fall-through */
1389 		case EARLY_PLATFORM_ID_UNSET:
1390 			match = NULL;
1391 			break;
1392 		default:
1393 			match = early_platform_match(epdrv, match_id);
1394 		}
1395 
1396 		if (match) {
1397 			/*
1398 			 * Set up a sensible init_name to enable
1399 			 * dev_name() and others to be used before the
1400 			 * rest of the driver core is initialized.
1401 			 */
1402 			if (!match->dev.init_name && slab_is_available()) {
1403 				if (match->id != -1)
1404 					match->dev.init_name =
1405 						kasprintf(GFP_KERNEL, "%s.%d",
1406 							  match->name,
1407 							  match->id);
1408 				else
1409 					match->dev.init_name =
1410 						kasprintf(GFP_KERNEL, "%s",
1411 							  match->name);
1412 
1413 				if (!match->dev.init_name)
1414 					return -ENOMEM;
1415 			}
1416 
1417 			if (epdrv->pdrv->probe(match))
1418 				pr_warn("%s: unable to probe %s early.\n",
1419 					class_str, match->name);
1420 			else
1421 				n++;
1422 		}
1423 
1424 		if (n >= nr_probe)
1425 			break;
1426 	}
1427 
1428 	if (left)
1429 		return n;
1430 	else
1431 		return -ENODEV;
1432 }
1433 
1434 /**
1435  * early_platform_driver_probe - probe a class of registered drivers
1436  * @class_str: string to identify early platform driver class
1437  * @nr_probe: number of platform devices to successfully probe before exiting
1438  * @user_only: only probe user specified early platform devices
1439  *
1440  * Used by architecture code to probe registered early platform drivers
1441  * within a certain class. For probe to happen a registered early platform
1442  * device matching a registered early platform driver is needed.
1443  */
1444 int __init early_platform_driver_probe(char *class_str,
1445 				       int nr_probe,
1446 				       int user_only)
1447 {
1448 	int k, n, i;
1449 
1450 	n = 0;
1451 	for (i = -2; n < nr_probe; i++) {
1452 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1453 
1454 		if (k < 0)
1455 			break;
1456 
1457 		n += k;
1458 
1459 		if (user_only)
1460 			break;
1461 	}
1462 
1463 	return n;
1464 }
1465 
1466 /**
1467  * early_platform_cleanup - clean up early platform code
1468  */
1469 void __init early_platform_cleanup(void)
1470 {
1471 	struct platform_device *pd, *pd2;
1472 
1473 	/* clean up the devres list used to chain devices */
1474 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1475 				 dev.devres_head) {
1476 		list_del(&pd->dev.devres_head);
1477 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1478 	}
1479 }
1480 
1481