1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cacheinfo.h> 11 #include <linux/cpu.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/sched/topology.h> 17 #include <linux/cpuset.h> 18 #include <linux/cpumask.h> 19 #include <linux/init.h> 20 #include <linux/rcupdate.h> 21 #include <linux/sched.h> 22 #include <linux/units.h> 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/thermal_pressure.h> 26 27 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 28 static struct cpumask scale_freq_counters_mask; 29 static bool scale_freq_invariant; 30 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1; 31 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref); 32 33 static bool supports_scale_freq_counters(const struct cpumask *cpus) 34 { 35 return cpumask_subset(cpus, &scale_freq_counters_mask); 36 } 37 38 bool topology_scale_freq_invariant(void) 39 { 40 return cpufreq_supports_freq_invariance() || 41 supports_scale_freq_counters(cpu_online_mask); 42 } 43 44 static void update_scale_freq_invariant(bool status) 45 { 46 if (scale_freq_invariant == status) 47 return; 48 49 /* 50 * Task scheduler behavior depends on frequency invariance support, 51 * either cpufreq or counter driven. If the support status changes as 52 * a result of counter initialisation and use, retrigger the build of 53 * scheduling domains to ensure the information is propagated properly. 54 */ 55 if (topology_scale_freq_invariant() == status) { 56 scale_freq_invariant = status; 57 rebuild_sched_domains_energy(); 58 } 59 } 60 61 void topology_set_scale_freq_source(struct scale_freq_data *data, 62 const struct cpumask *cpus) 63 { 64 struct scale_freq_data *sfd; 65 int cpu; 66 67 /* 68 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 69 * supported by cpufreq. 70 */ 71 if (cpumask_empty(&scale_freq_counters_mask)) 72 scale_freq_invariant = topology_scale_freq_invariant(); 73 74 rcu_read_lock(); 75 76 for_each_cpu(cpu, cpus) { 77 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 78 79 /* Use ARCH provided counters whenever possible */ 80 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 81 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 82 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 83 } 84 } 85 86 rcu_read_unlock(); 87 88 update_scale_freq_invariant(true); 89 } 90 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 91 92 void topology_clear_scale_freq_source(enum scale_freq_source source, 93 const struct cpumask *cpus) 94 { 95 struct scale_freq_data *sfd; 96 int cpu; 97 98 rcu_read_lock(); 99 100 for_each_cpu(cpu, cpus) { 101 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 102 103 if (sfd && sfd->source == source) { 104 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 105 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 106 } 107 } 108 109 rcu_read_unlock(); 110 111 /* 112 * Make sure all references to previous sft_data are dropped to avoid 113 * use-after-free races. 114 */ 115 synchronize_rcu(); 116 117 update_scale_freq_invariant(false); 118 } 119 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 120 121 void topology_scale_freq_tick(void) 122 { 123 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 124 125 if (sfd) 126 sfd->set_freq_scale(); 127 } 128 129 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 130 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 131 132 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 133 unsigned long max_freq) 134 { 135 unsigned long scale; 136 int i; 137 138 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 139 return; 140 141 /* 142 * If the use of counters for FIE is enabled, just return as we don't 143 * want to update the scale factor with information from CPUFREQ. 144 * Instead the scale factor will be updated from arch_scale_freq_tick. 145 */ 146 if (supports_scale_freq_counters(cpus)) 147 return; 148 149 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 150 151 for_each_cpu(i, cpus) 152 per_cpu(arch_freq_scale, i) = scale; 153 } 154 155 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 156 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); 157 158 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 159 { 160 per_cpu(cpu_scale, cpu) = capacity; 161 } 162 163 DEFINE_PER_CPU(unsigned long, thermal_pressure); 164 165 /** 166 * topology_update_thermal_pressure() - Update thermal pressure for CPUs 167 * @cpus : The related CPUs for which capacity has been reduced 168 * @capped_freq : The maximum allowed frequency that CPUs can run at 169 * 170 * Update the value of thermal pressure for all @cpus in the mask. The 171 * cpumask should include all (online+offline) affected CPUs, to avoid 172 * operating on stale data when hot-plug is used for some CPUs. The 173 * @capped_freq reflects the currently allowed max CPUs frequency due to 174 * thermal capping. It might be also a boost frequency value, which is bigger 175 * than the internal 'capacity_freq_ref' max frequency. In such case the 176 * pressure value should simply be removed, since this is an indication that 177 * there is no thermal throttling. The @capped_freq must be provided in kHz. 178 */ 179 void topology_update_thermal_pressure(const struct cpumask *cpus, 180 unsigned long capped_freq) 181 { 182 unsigned long max_capacity, capacity, th_pressure; 183 u32 max_freq; 184 int cpu; 185 186 cpu = cpumask_first(cpus); 187 max_capacity = arch_scale_cpu_capacity(cpu); 188 max_freq = arch_scale_freq_ref(cpu); 189 190 /* 191 * Handle properly the boost frequencies, which should simply clean 192 * the thermal pressure value. 193 */ 194 if (max_freq <= capped_freq) 195 capacity = max_capacity; 196 else 197 capacity = mult_frac(max_capacity, capped_freq, max_freq); 198 199 th_pressure = max_capacity - capacity; 200 201 trace_thermal_pressure_update(cpu, th_pressure); 202 203 for_each_cpu(cpu, cpus) 204 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 205 } 206 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); 207 208 static ssize_t cpu_capacity_show(struct device *dev, 209 struct device_attribute *attr, 210 char *buf) 211 { 212 struct cpu *cpu = container_of(dev, struct cpu, dev); 213 214 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 215 } 216 217 static void update_topology_flags_workfn(struct work_struct *work); 218 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 219 220 static DEVICE_ATTR_RO(cpu_capacity); 221 222 static int register_cpu_capacity_sysctl(void) 223 { 224 int i; 225 struct device *cpu; 226 227 for_each_possible_cpu(i) { 228 cpu = get_cpu_device(i); 229 if (!cpu) { 230 pr_err("%s: too early to get CPU%d device!\n", 231 __func__, i); 232 continue; 233 } 234 device_create_file(cpu, &dev_attr_cpu_capacity); 235 } 236 237 return 0; 238 } 239 subsys_initcall(register_cpu_capacity_sysctl); 240 241 static int update_topology; 242 243 int topology_update_cpu_topology(void) 244 { 245 return update_topology; 246 } 247 248 /* 249 * Updating the sched_domains can't be done directly from cpufreq callbacks 250 * due to locking, so queue the work for later. 251 */ 252 static void update_topology_flags_workfn(struct work_struct *work) 253 { 254 update_topology = 1; 255 rebuild_sched_domains(); 256 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 257 update_topology = 0; 258 } 259 260 static u32 *raw_capacity; 261 262 static int free_raw_capacity(void) 263 { 264 kfree(raw_capacity); 265 raw_capacity = NULL; 266 267 return 0; 268 } 269 270 void topology_normalize_cpu_scale(void) 271 { 272 u64 capacity; 273 u64 capacity_scale; 274 int cpu; 275 276 if (!raw_capacity) 277 return; 278 279 capacity_scale = 1; 280 for_each_possible_cpu(cpu) { 281 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu); 282 capacity_scale = max(capacity, capacity_scale); 283 } 284 285 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 286 for_each_possible_cpu(cpu) { 287 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu); 288 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 289 capacity_scale); 290 topology_set_cpu_scale(cpu, capacity); 291 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 292 cpu, topology_get_cpu_scale(cpu)); 293 } 294 } 295 296 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 297 { 298 struct clk *cpu_clk; 299 static bool cap_parsing_failed; 300 int ret; 301 u32 cpu_capacity; 302 303 if (cap_parsing_failed) 304 return false; 305 306 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 307 &cpu_capacity); 308 if (!ret) { 309 if (!raw_capacity) { 310 raw_capacity = kcalloc(num_possible_cpus(), 311 sizeof(*raw_capacity), 312 GFP_KERNEL); 313 if (!raw_capacity) { 314 cap_parsing_failed = true; 315 return false; 316 } 317 } 318 raw_capacity[cpu] = cpu_capacity; 319 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 320 cpu_node, raw_capacity[cpu]); 321 322 /* 323 * Update capacity_freq_ref for calculating early boot CPU capacities. 324 * For non-clk CPU DVFS mechanism, there's no way to get the 325 * frequency value now, assuming they are running at the same 326 * frequency (by keeping the initial capacity_freq_ref value). 327 */ 328 cpu_clk = of_clk_get(cpu_node, 0); 329 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 330 per_cpu(capacity_freq_ref, cpu) = 331 clk_get_rate(cpu_clk) / HZ_PER_KHZ; 332 clk_put(cpu_clk); 333 } 334 } else { 335 if (raw_capacity) { 336 pr_err("cpu_capacity: missing %pOF raw capacity\n", 337 cpu_node); 338 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 339 } 340 cap_parsing_failed = true; 341 free_raw_capacity(); 342 } 343 344 return !ret; 345 } 346 347 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate) 348 { 349 } 350 351 #ifdef CONFIG_ACPI_CPPC_LIB 352 #include <acpi/cppc_acpi.h> 353 354 void topology_init_cpu_capacity_cppc(void) 355 { 356 u64 capacity, capacity_scale = 0; 357 struct cppc_perf_caps perf_caps; 358 int cpu; 359 360 if (likely(!acpi_cpc_valid())) 361 return; 362 363 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), 364 GFP_KERNEL); 365 if (!raw_capacity) 366 return; 367 368 for_each_possible_cpu(cpu) { 369 if (!cppc_get_perf_caps(cpu, &perf_caps) && 370 (perf_caps.highest_perf >= perf_caps.nominal_perf) && 371 (perf_caps.highest_perf >= perf_caps.lowest_perf)) { 372 raw_capacity[cpu] = perf_caps.highest_perf; 373 capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]); 374 375 per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]); 376 377 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", 378 cpu, raw_capacity[cpu]); 379 continue; 380 } 381 382 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); 383 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 384 goto exit; 385 } 386 387 for_each_possible_cpu(cpu) { 388 freq_inv_set_max_ratio(cpu, 389 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 390 391 capacity = raw_capacity[cpu]; 392 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 393 capacity_scale); 394 topology_set_cpu_scale(cpu, capacity); 395 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 396 cpu, topology_get_cpu_scale(cpu)); 397 } 398 399 schedule_work(&update_topology_flags_work); 400 pr_debug("cpu_capacity: cpu_capacity initialization done\n"); 401 402 exit: 403 free_raw_capacity(); 404 } 405 #endif 406 407 #ifdef CONFIG_CPU_FREQ 408 static cpumask_var_t cpus_to_visit; 409 static void parsing_done_workfn(struct work_struct *work); 410 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 411 412 static int 413 init_cpu_capacity_callback(struct notifier_block *nb, 414 unsigned long val, 415 void *data) 416 { 417 struct cpufreq_policy *policy = data; 418 int cpu; 419 420 if (!raw_capacity) 421 return 0; 422 423 if (val != CPUFREQ_CREATE_POLICY) 424 return 0; 425 426 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 427 cpumask_pr_args(policy->related_cpus), 428 cpumask_pr_args(cpus_to_visit)); 429 430 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 431 432 for_each_cpu(cpu, policy->related_cpus) { 433 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq; 434 freq_inv_set_max_ratio(cpu, 435 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 436 } 437 438 if (cpumask_empty(cpus_to_visit)) { 439 topology_normalize_cpu_scale(); 440 schedule_work(&update_topology_flags_work); 441 free_raw_capacity(); 442 pr_debug("cpu_capacity: parsing done\n"); 443 schedule_work(&parsing_done_work); 444 } 445 446 return 0; 447 } 448 449 static struct notifier_block init_cpu_capacity_notifier = { 450 .notifier_call = init_cpu_capacity_callback, 451 }; 452 453 static int __init register_cpufreq_notifier(void) 454 { 455 int ret; 456 457 /* 458 * On ACPI-based systems skip registering cpufreq notifier as cpufreq 459 * information is not needed for cpu capacity initialization. 460 */ 461 if (!acpi_disabled || !raw_capacity) 462 return -EINVAL; 463 464 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 465 return -ENOMEM; 466 467 cpumask_copy(cpus_to_visit, cpu_possible_mask); 468 469 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 470 CPUFREQ_POLICY_NOTIFIER); 471 472 if (ret) 473 free_cpumask_var(cpus_to_visit); 474 475 return ret; 476 } 477 core_initcall(register_cpufreq_notifier); 478 479 static void parsing_done_workfn(struct work_struct *work) 480 { 481 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 482 CPUFREQ_POLICY_NOTIFIER); 483 free_cpumask_var(cpus_to_visit); 484 } 485 486 #else 487 core_initcall(free_raw_capacity); 488 #endif 489 490 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 491 /* 492 * This function returns the logic cpu number of the node. 493 * There are basically three kinds of return values: 494 * (1) logic cpu number which is > 0. 495 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 496 * there is no possible logical CPU in the kernel to match. This happens 497 * when CONFIG_NR_CPUS is configure to be smaller than the number of 498 * CPU nodes in DT. We need to just ignore this case. 499 * (3) -1 if the node does not exist in the device tree 500 */ 501 static int __init get_cpu_for_node(struct device_node *node) 502 { 503 struct device_node *cpu_node; 504 int cpu; 505 506 cpu_node = of_parse_phandle(node, "cpu", 0); 507 if (!cpu_node) 508 return -1; 509 510 cpu = of_cpu_node_to_id(cpu_node); 511 if (cpu >= 0) 512 topology_parse_cpu_capacity(cpu_node, cpu); 513 else 514 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 515 cpu_node, cpumask_pr_args(cpu_possible_mask)); 516 517 of_node_put(cpu_node); 518 return cpu; 519 } 520 521 static int __init parse_core(struct device_node *core, int package_id, 522 int cluster_id, int core_id) 523 { 524 char name[20]; 525 bool leaf = true; 526 int i = 0; 527 int cpu; 528 struct device_node *t; 529 530 do { 531 snprintf(name, sizeof(name), "thread%d", i); 532 t = of_get_child_by_name(core, name); 533 if (t) { 534 leaf = false; 535 cpu = get_cpu_for_node(t); 536 if (cpu >= 0) { 537 cpu_topology[cpu].package_id = package_id; 538 cpu_topology[cpu].cluster_id = cluster_id; 539 cpu_topology[cpu].core_id = core_id; 540 cpu_topology[cpu].thread_id = i; 541 } else if (cpu != -ENODEV) { 542 pr_err("%pOF: Can't get CPU for thread\n", t); 543 of_node_put(t); 544 return -EINVAL; 545 } 546 of_node_put(t); 547 } 548 i++; 549 } while (t); 550 551 cpu = get_cpu_for_node(core); 552 if (cpu >= 0) { 553 if (!leaf) { 554 pr_err("%pOF: Core has both threads and CPU\n", 555 core); 556 return -EINVAL; 557 } 558 559 cpu_topology[cpu].package_id = package_id; 560 cpu_topology[cpu].cluster_id = cluster_id; 561 cpu_topology[cpu].core_id = core_id; 562 } else if (leaf && cpu != -ENODEV) { 563 pr_err("%pOF: Can't get CPU for leaf core\n", core); 564 return -EINVAL; 565 } 566 567 return 0; 568 } 569 570 static int __init parse_cluster(struct device_node *cluster, int package_id, 571 int cluster_id, int depth) 572 { 573 char name[20]; 574 bool leaf = true; 575 bool has_cores = false; 576 struct device_node *c; 577 int core_id = 0; 578 int i, ret; 579 580 /* 581 * First check for child clusters; we currently ignore any 582 * information about the nesting of clusters and present the 583 * scheduler with a flat list of them. 584 */ 585 i = 0; 586 do { 587 snprintf(name, sizeof(name), "cluster%d", i); 588 c = of_get_child_by_name(cluster, name); 589 if (c) { 590 leaf = false; 591 ret = parse_cluster(c, package_id, i, depth + 1); 592 if (depth > 0) 593 pr_warn("Topology for clusters of clusters not yet supported\n"); 594 of_node_put(c); 595 if (ret != 0) 596 return ret; 597 } 598 i++; 599 } while (c); 600 601 /* Now check for cores */ 602 i = 0; 603 do { 604 snprintf(name, sizeof(name), "core%d", i); 605 c = of_get_child_by_name(cluster, name); 606 if (c) { 607 has_cores = true; 608 609 if (depth == 0) { 610 pr_err("%pOF: cpu-map children should be clusters\n", 611 c); 612 of_node_put(c); 613 return -EINVAL; 614 } 615 616 if (leaf) { 617 ret = parse_core(c, package_id, cluster_id, 618 core_id++); 619 } else { 620 pr_err("%pOF: Non-leaf cluster with core %s\n", 621 cluster, name); 622 ret = -EINVAL; 623 } 624 625 of_node_put(c); 626 if (ret != 0) 627 return ret; 628 } 629 i++; 630 } while (c); 631 632 if (leaf && !has_cores) 633 pr_warn("%pOF: empty cluster\n", cluster); 634 635 return 0; 636 } 637 638 static int __init parse_socket(struct device_node *socket) 639 { 640 char name[20]; 641 struct device_node *c; 642 bool has_socket = false; 643 int package_id = 0, ret; 644 645 do { 646 snprintf(name, sizeof(name), "socket%d", package_id); 647 c = of_get_child_by_name(socket, name); 648 if (c) { 649 has_socket = true; 650 ret = parse_cluster(c, package_id, -1, 0); 651 of_node_put(c); 652 if (ret != 0) 653 return ret; 654 } 655 package_id++; 656 } while (c); 657 658 if (!has_socket) 659 ret = parse_cluster(socket, 0, -1, 0); 660 661 return ret; 662 } 663 664 static int __init parse_dt_topology(void) 665 { 666 struct device_node *cn, *map; 667 int ret = 0; 668 int cpu; 669 670 cn = of_find_node_by_path("/cpus"); 671 if (!cn) { 672 pr_err("No CPU information found in DT\n"); 673 return 0; 674 } 675 676 /* 677 * When topology is provided cpu-map is essentially a root 678 * cluster with restricted subnodes. 679 */ 680 map = of_get_child_by_name(cn, "cpu-map"); 681 if (!map) 682 goto out; 683 684 ret = parse_socket(map); 685 if (ret != 0) 686 goto out_map; 687 688 topology_normalize_cpu_scale(); 689 690 /* 691 * Check that all cores are in the topology; the SMP code will 692 * only mark cores described in the DT as possible. 693 */ 694 for_each_possible_cpu(cpu) 695 if (cpu_topology[cpu].package_id < 0) { 696 ret = -EINVAL; 697 break; 698 } 699 700 out_map: 701 of_node_put(map); 702 out: 703 of_node_put(cn); 704 return ret; 705 } 706 #endif 707 708 /* 709 * cpu topology table 710 */ 711 struct cpu_topology cpu_topology[NR_CPUS]; 712 EXPORT_SYMBOL_GPL(cpu_topology); 713 714 const struct cpumask *cpu_coregroup_mask(int cpu) 715 { 716 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 717 718 /* Find the smaller of NUMA, core or LLC siblings */ 719 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 720 /* not numa in package, lets use the package siblings */ 721 core_mask = &cpu_topology[cpu].core_sibling; 722 } 723 724 if (last_level_cache_is_valid(cpu)) { 725 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 726 core_mask = &cpu_topology[cpu].llc_sibling; 727 } 728 729 /* 730 * For systems with no shared cpu-side LLC but with clusters defined, 731 * extend core_mask to cluster_siblings. The sched domain builder will 732 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. 733 */ 734 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && 735 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) 736 core_mask = &cpu_topology[cpu].cluster_sibling; 737 738 return core_mask; 739 } 740 741 const struct cpumask *cpu_clustergroup_mask(int cpu) 742 { 743 /* 744 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as 745 * cpu_coregroup_mask(). 746 */ 747 if (cpumask_subset(cpu_coregroup_mask(cpu), 748 &cpu_topology[cpu].cluster_sibling)) 749 return topology_sibling_cpumask(cpu); 750 751 return &cpu_topology[cpu].cluster_sibling; 752 } 753 754 void update_siblings_masks(unsigned int cpuid) 755 { 756 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 757 int cpu, ret; 758 759 ret = detect_cache_attributes(cpuid); 760 if (ret && ret != -ENOENT) 761 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret); 762 763 /* update core and thread sibling masks */ 764 for_each_online_cpu(cpu) { 765 cpu_topo = &cpu_topology[cpu]; 766 767 if (last_level_cache_is_shared(cpu, cpuid)) { 768 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 769 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 770 } 771 772 if (cpuid_topo->package_id != cpu_topo->package_id) 773 continue; 774 775 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 776 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 777 778 if (cpuid_topo->cluster_id != cpu_topo->cluster_id) 779 continue; 780 781 if (cpuid_topo->cluster_id >= 0) { 782 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 783 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 784 } 785 786 if (cpuid_topo->core_id != cpu_topo->core_id) 787 continue; 788 789 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 790 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 791 } 792 } 793 794 static void clear_cpu_topology(int cpu) 795 { 796 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 797 798 cpumask_clear(&cpu_topo->llc_sibling); 799 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 800 801 cpumask_clear(&cpu_topo->cluster_sibling); 802 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 803 804 cpumask_clear(&cpu_topo->core_sibling); 805 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 806 cpumask_clear(&cpu_topo->thread_sibling); 807 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 808 } 809 810 void __init reset_cpu_topology(void) 811 { 812 unsigned int cpu; 813 814 for_each_possible_cpu(cpu) { 815 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 816 817 cpu_topo->thread_id = -1; 818 cpu_topo->core_id = -1; 819 cpu_topo->cluster_id = -1; 820 cpu_topo->package_id = -1; 821 822 clear_cpu_topology(cpu); 823 } 824 } 825 826 void remove_cpu_topology(unsigned int cpu) 827 { 828 int sibling; 829 830 for_each_cpu(sibling, topology_core_cpumask(cpu)) 831 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 832 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 833 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 834 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 835 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 836 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 837 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 838 839 clear_cpu_topology(cpu); 840 } 841 842 __weak int __init parse_acpi_topology(void) 843 { 844 return 0; 845 } 846 847 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 848 void __init init_cpu_topology(void) 849 { 850 int cpu, ret; 851 852 reset_cpu_topology(); 853 ret = parse_acpi_topology(); 854 if (!ret) 855 ret = of_have_populated_dt() && parse_dt_topology(); 856 857 if (ret) { 858 /* 859 * Discard anything that was parsed if we hit an error so we 860 * don't use partial information. But do not return yet to give 861 * arch-specific early cache level detection a chance to run. 862 */ 863 reset_cpu_topology(); 864 } 865 866 for_each_possible_cpu(cpu) { 867 ret = fetch_cache_info(cpu); 868 if (!ret) 869 continue; 870 else if (ret != -ENOENT) 871 pr_err("Early cacheinfo failed, ret = %d\n", ret); 872 return; 873 } 874 } 875 876 void store_cpu_topology(unsigned int cpuid) 877 { 878 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; 879 880 if (cpuid_topo->package_id != -1) 881 goto topology_populated; 882 883 cpuid_topo->thread_id = -1; 884 cpuid_topo->core_id = cpuid; 885 cpuid_topo->package_id = cpu_to_node(cpuid); 886 887 pr_debug("CPU%u: package %d core %d thread %d\n", 888 cpuid, cpuid_topo->package_id, cpuid_topo->core_id, 889 cpuid_topo->thread_id); 890 891 topology_populated: 892 update_siblings_masks(cpuid); 893 } 894 #endif 895