xref: /linux/drivers/base/arch_topology.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/rcupdate.h>
21 #include <linux/sched.h>
22 #include <linux/units.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thermal_pressure.h>
26 
27 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
28 static struct cpumask scale_freq_counters_mask;
29 static bool scale_freq_invariant;
30 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
31 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
32 
33 static bool supports_scale_freq_counters(const struct cpumask *cpus)
34 {
35 	return cpumask_subset(cpus, &scale_freq_counters_mask);
36 }
37 
38 bool topology_scale_freq_invariant(void)
39 {
40 	return cpufreq_supports_freq_invariance() ||
41 	       supports_scale_freq_counters(cpu_online_mask);
42 }
43 
44 static void update_scale_freq_invariant(bool status)
45 {
46 	if (scale_freq_invariant == status)
47 		return;
48 
49 	/*
50 	 * Task scheduler behavior depends on frequency invariance support,
51 	 * either cpufreq or counter driven. If the support status changes as
52 	 * a result of counter initialisation and use, retrigger the build of
53 	 * scheduling domains to ensure the information is propagated properly.
54 	 */
55 	if (topology_scale_freq_invariant() == status) {
56 		scale_freq_invariant = status;
57 		rebuild_sched_domains_energy();
58 	}
59 }
60 
61 void topology_set_scale_freq_source(struct scale_freq_data *data,
62 				    const struct cpumask *cpus)
63 {
64 	struct scale_freq_data *sfd;
65 	int cpu;
66 
67 	/*
68 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
69 	 * supported by cpufreq.
70 	 */
71 	if (cpumask_empty(&scale_freq_counters_mask))
72 		scale_freq_invariant = topology_scale_freq_invariant();
73 
74 	rcu_read_lock();
75 
76 	for_each_cpu(cpu, cpus) {
77 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
78 
79 		/* Use ARCH provided counters whenever possible */
80 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
81 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
82 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
83 		}
84 	}
85 
86 	rcu_read_unlock();
87 
88 	update_scale_freq_invariant(true);
89 }
90 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
91 
92 void topology_clear_scale_freq_source(enum scale_freq_source source,
93 				      const struct cpumask *cpus)
94 {
95 	struct scale_freq_data *sfd;
96 	int cpu;
97 
98 	rcu_read_lock();
99 
100 	for_each_cpu(cpu, cpus) {
101 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
102 
103 		if (sfd && sfd->source == source) {
104 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
105 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
106 		}
107 	}
108 
109 	rcu_read_unlock();
110 
111 	/*
112 	 * Make sure all references to previous sft_data are dropped to avoid
113 	 * use-after-free races.
114 	 */
115 	synchronize_rcu();
116 
117 	update_scale_freq_invariant(false);
118 }
119 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
120 
121 void topology_scale_freq_tick(void)
122 {
123 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
124 
125 	if (sfd)
126 		sfd->set_freq_scale();
127 }
128 
129 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
130 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
131 
132 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
133 			     unsigned long max_freq)
134 {
135 	unsigned long scale;
136 	int i;
137 
138 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
139 		return;
140 
141 	/*
142 	 * If the use of counters for FIE is enabled, just return as we don't
143 	 * want to update the scale factor with information from CPUFREQ.
144 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
145 	 */
146 	if (supports_scale_freq_counters(cpus))
147 		return;
148 
149 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
150 
151 	for_each_cpu(i, cpus)
152 		per_cpu(arch_freq_scale, i) = scale;
153 }
154 
155 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
156 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
157 
158 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
159 {
160 	per_cpu(cpu_scale, cpu) = capacity;
161 }
162 
163 DEFINE_PER_CPU(unsigned long, thermal_pressure);
164 
165 /**
166  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
167  * @cpus        : The related CPUs for which capacity has been reduced
168  * @capped_freq : The maximum allowed frequency that CPUs can run at
169  *
170  * Update the value of thermal pressure for all @cpus in the mask. The
171  * cpumask should include all (online+offline) affected CPUs, to avoid
172  * operating on stale data when hot-plug is used for some CPUs. The
173  * @capped_freq reflects the currently allowed max CPUs frequency due to
174  * thermal capping. It might be also a boost frequency value, which is bigger
175  * than the internal 'capacity_freq_ref' max frequency. In such case the
176  * pressure value should simply be removed, since this is an indication that
177  * there is no thermal throttling. The @capped_freq must be provided in kHz.
178  */
179 void topology_update_thermal_pressure(const struct cpumask *cpus,
180 				      unsigned long capped_freq)
181 {
182 	unsigned long max_capacity, capacity, th_pressure;
183 	u32 max_freq;
184 	int cpu;
185 
186 	cpu = cpumask_first(cpus);
187 	max_capacity = arch_scale_cpu_capacity(cpu);
188 	max_freq = arch_scale_freq_ref(cpu);
189 
190 	/*
191 	 * Handle properly the boost frequencies, which should simply clean
192 	 * the thermal pressure value.
193 	 */
194 	if (max_freq <= capped_freq)
195 		capacity = max_capacity;
196 	else
197 		capacity = mult_frac(max_capacity, capped_freq, max_freq);
198 
199 	th_pressure = max_capacity - capacity;
200 
201 	trace_thermal_pressure_update(cpu, th_pressure);
202 
203 	for_each_cpu(cpu, cpus)
204 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
205 }
206 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
207 
208 static ssize_t cpu_capacity_show(struct device *dev,
209 				 struct device_attribute *attr,
210 				 char *buf)
211 {
212 	struct cpu *cpu = container_of(dev, struct cpu, dev);
213 
214 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
215 }
216 
217 static void update_topology_flags_workfn(struct work_struct *work);
218 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219 
220 static DEVICE_ATTR_RO(cpu_capacity);
221 
222 static int register_cpu_capacity_sysctl(void)
223 {
224 	int i;
225 	struct device *cpu;
226 
227 	for_each_possible_cpu(i) {
228 		cpu = get_cpu_device(i);
229 		if (!cpu) {
230 			pr_err("%s: too early to get CPU%d device!\n",
231 			       __func__, i);
232 			continue;
233 		}
234 		device_create_file(cpu, &dev_attr_cpu_capacity);
235 	}
236 
237 	return 0;
238 }
239 subsys_initcall(register_cpu_capacity_sysctl);
240 
241 static int update_topology;
242 
243 int topology_update_cpu_topology(void)
244 {
245 	return update_topology;
246 }
247 
248 /*
249  * Updating the sched_domains can't be done directly from cpufreq callbacks
250  * due to locking, so queue the work for later.
251  */
252 static void update_topology_flags_workfn(struct work_struct *work)
253 {
254 	update_topology = 1;
255 	rebuild_sched_domains();
256 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
257 	update_topology = 0;
258 }
259 
260 static u32 *raw_capacity;
261 
262 static int free_raw_capacity(void)
263 {
264 	kfree(raw_capacity);
265 	raw_capacity = NULL;
266 
267 	return 0;
268 }
269 
270 void topology_normalize_cpu_scale(void)
271 {
272 	u64 capacity;
273 	u64 capacity_scale;
274 	int cpu;
275 
276 	if (!raw_capacity)
277 		return;
278 
279 	capacity_scale = 1;
280 	for_each_possible_cpu(cpu) {
281 		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
282 		capacity_scale = max(capacity, capacity_scale);
283 	}
284 
285 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
286 	for_each_possible_cpu(cpu) {
287 		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
288 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
289 			capacity_scale);
290 		topology_set_cpu_scale(cpu, capacity);
291 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
292 			cpu, topology_get_cpu_scale(cpu));
293 	}
294 }
295 
296 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
297 {
298 	struct clk *cpu_clk;
299 	static bool cap_parsing_failed;
300 	int ret;
301 	u32 cpu_capacity;
302 
303 	if (cap_parsing_failed)
304 		return false;
305 
306 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
307 				   &cpu_capacity);
308 	if (!ret) {
309 		if (!raw_capacity) {
310 			raw_capacity = kcalloc(num_possible_cpus(),
311 					       sizeof(*raw_capacity),
312 					       GFP_KERNEL);
313 			if (!raw_capacity) {
314 				cap_parsing_failed = true;
315 				return false;
316 			}
317 		}
318 		raw_capacity[cpu] = cpu_capacity;
319 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
320 			cpu_node, raw_capacity[cpu]);
321 
322 		/*
323 		 * Update capacity_freq_ref for calculating early boot CPU capacities.
324 		 * For non-clk CPU DVFS mechanism, there's no way to get the
325 		 * frequency value now, assuming they are running at the same
326 		 * frequency (by keeping the initial capacity_freq_ref value).
327 		 */
328 		cpu_clk = of_clk_get(cpu_node, 0);
329 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
330 			per_cpu(capacity_freq_ref, cpu) =
331 				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
332 			clk_put(cpu_clk);
333 		}
334 	} else {
335 		if (raw_capacity) {
336 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
337 				cpu_node);
338 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
339 		}
340 		cap_parsing_failed = true;
341 		free_raw_capacity();
342 	}
343 
344 	return !ret;
345 }
346 
347 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
348 {
349 }
350 
351 #ifdef CONFIG_ACPI_CPPC_LIB
352 #include <acpi/cppc_acpi.h>
353 
354 void topology_init_cpu_capacity_cppc(void)
355 {
356 	u64 capacity, capacity_scale = 0;
357 	struct cppc_perf_caps perf_caps;
358 	int cpu;
359 
360 	if (likely(!acpi_cpc_valid()))
361 		return;
362 
363 	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
364 			       GFP_KERNEL);
365 	if (!raw_capacity)
366 		return;
367 
368 	for_each_possible_cpu(cpu) {
369 		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
370 		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
371 		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
372 			raw_capacity[cpu] = perf_caps.highest_perf;
373 			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
374 
375 			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
376 
377 			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
378 				 cpu, raw_capacity[cpu]);
379 			continue;
380 		}
381 
382 		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
383 		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
384 		goto exit;
385 	}
386 
387 	for_each_possible_cpu(cpu) {
388 		freq_inv_set_max_ratio(cpu,
389 				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
390 
391 		capacity = raw_capacity[cpu];
392 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
393 				     capacity_scale);
394 		topology_set_cpu_scale(cpu, capacity);
395 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
396 			cpu, topology_get_cpu_scale(cpu));
397 	}
398 
399 	schedule_work(&update_topology_flags_work);
400 	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
401 
402 exit:
403 	free_raw_capacity();
404 }
405 #endif
406 
407 #ifdef CONFIG_CPU_FREQ
408 static cpumask_var_t cpus_to_visit;
409 static void parsing_done_workfn(struct work_struct *work);
410 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
411 
412 static int
413 init_cpu_capacity_callback(struct notifier_block *nb,
414 			   unsigned long val,
415 			   void *data)
416 {
417 	struct cpufreq_policy *policy = data;
418 	int cpu;
419 
420 	if (!raw_capacity)
421 		return 0;
422 
423 	if (val != CPUFREQ_CREATE_POLICY)
424 		return 0;
425 
426 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
427 		 cpumask_pr_args(policy->related_cpus),
428 		 cpumask_pr_args(cpus_to_visit));
429 
430 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
431 
432 	for_each_cpu(cpu, policy->related_cpus) {
433 		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
434 		freq_inv_set_max_ratio(cpu,
435 				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
436 	}
437 
438 	if (cpumask_empty(cpus_to_visit)) {
439 		topology_normalize_cpu_scale();
440 		schedule_work(&update_topology_flags_work);
441 		free_raw_capacity();
442 		pr_debug("cpu_capacity: parsing done\n");
443 		schedule_work(&parsing_done_work);
444 	}
445 
446 	return 0;
447 }
448 
449 static struct notifier_block init_cpu_capacity_notifier = {
450 	.notifier_call = init_cpu_capacity_callback,
451 };
452 
453 static int __init register_cpufreq_notifier(void)
454 {
455 	int ret;
456 
457 	/*
458 	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
459 	 * information is not needed for cpu capacity initialization.
460 	 */
461 	if (!acpi_disabled || !raw_capacity)
462 		return -EINVAL;
463 
464 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
465 		return -ENOMEM;
466 
467 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
468 
469 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
470 					CPUFREQ_POLICY_NOTIFIER);
471 
472 	if (ret)
473 		free_cpumask_var(cpus_to_visit);
474 
475 	return ret;
476 }
477 core_initcall(register_cpufreq_notifier);
478 
479 static void parsing_done_workfn(struct work_struct *work)
480 {
481 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
482 					 CPUFREQ_POLICY_NOTIFIER);
483 	free_cpumask_var(cpus_to_visit);
484 }
485 
486 #else
487 core_initcall(free_raw_capacity);
488 #endif
489 
490 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
491 /*
492  * This function returns the logic cpu number of the node.
493  * There are basically three kinds of return values:
494  * (1) logic cpu number which is > 0.
495  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
496  * there is no possible logical CPU in the kernel to match. This happens
497  * when CONFIG_NR_CPUS is configure to be smaller than the number of
498  * CPU nodes in DT. We need to just ignore this case.
499  * (3) -1 if the node does not exist in the device tree
500  */
501 static int __init get_cpu_for_node(struct device_node *node)
502 {
503 	struct device_node *cpu_node;
504 	int cpu;
505 
506 	cpu_node = of_parse_phandle(node, "cpu", 0);
507 	if (!cpu_node)
508 		return -1;
509 
510 	cpu = of_cpu_node_to_id(cpu_node);
511 	if (cpu >= 0)
512 		topology_parse_cpu_capacity(cpu_node, cpu);
513 	else
514 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
515 			cpu_node, cpumask_pr_args(cpu_possible_mask));
516 
517 	of_node_put(cpu_node);
518 	return cpu;
519 }
520 
521 static int __init parse_core(struct device_node *core, int package_id,
522 			     int cluster_id, int core_id)
523 {
524 	char name[20];
525 	bool leaf = true;
526 	int i = 0;
527 	int cpu;
528 	struct device_node *t;
529 
530 	do {
531 		snprintf(name, sizeof(name), "thread%d", i);
532 		t = of_get_child_by_name(core, name);
533 		if (t) {
534 			leaf = false;
535 			cpu = get_cpu_for_node(t);
536 			if (cpu >= 0) {
537 				cpu_topology[cpu].package_id = package_id;
538 				cpu_topology[cpu].cluster_id = cluster_id;
539 				cpu_topology[cpu].core_id = core_id;
540 				cpu_topology[cpu].thread_id = i;
541 			} else if (cpu != -ENODEV) {
542 				pr_err("%pOF: Can't get CPU for thread\n", t);
543 				of_node_put(t);
544 				return -EINVAL;
545 			}
546 			of_node_put(t);
547 		}
548 		i++;
549 	} while (t);
550 
551 	cpu = get_cpu_for_node(core);
552 	if (cpu >= 0) {
553 		if (!leaf) {
554 			pr_err("%pOF: Core has both threads and CPU\n",
555 			       core);
556 			return -EINVAL;
557 		}
558 
559 		cpu_topology[cpu].package_id = package_id;
560 		cpu_topology[cpu].cluster_id = cluster_id;
561 		cpu_topology[cpu].core_id = core_id;
562 	} else if (leaf && cpu != -ENODEV) {
563 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
564 		return -EINVAL;
565 	}
566 
567 	return 0;
568 }
569 
570 static int __init parse_cluster(struct device_node *cluster, int package_id,
571 				int cluster_id, int depth)
572 {
573 	char name[20];
574 	bool leaf = true;
575 	bool has_cores = false;
576 	struct device_node *c;
577 	int core_id = 0;
578 	int i, ret;
579 
580 	/*
581 	 * First check for child clusters; we currently ignore any
582 	 * information about the nesting of clusters and present the
583 	 * scheduler with a flat list of them.
584 	 */
585 	i = 0;
586 	do {
587 		snprintf(name, sizeof(name), "cluster%d", i);
588 		c = of_get_child_by_name(cluster, name);
589 		if (c) {
590 			leaf = false;
591 			ret = parse_cluster(c, package_id, i, depth + 1);
592 			if (depth > 0)
593 				pr_warn("Topology for clusters of clusters not yet supported\n");
594 			of_node_put(c);
595 			if (ret != 0)
596 				return ret;
597 		}
598 		i++;
599 	} while (c);
600 
601 	/* Now check for cores */
602 	i = 0;
603 	do {
604 		snprintf(name, sizeof(name), "core%d", i);
605 		c = of_get_child_by_name(cluster, name);
606 		if (c) {
607 			has_cores = true;
608 
609 			if (depth == 0) {
610 				pr_err("%pOF: cpu-map children should be clusters\n",
611 				       c);
612 				of_node_put(c);
613 				return -EINVAL;
614 			}
615 
616 			if (leaf) {
617 				ret = parse_core(c, package_id, cluster_id,
618 						 core_id++);
619 			} else {
620 				pr_err("%pOF: Non-leaf cluster with core %s\n",
621 				       cluster, name);
622 				ret = -EINVAL;
623 			}
624 
625 			of_node_put(c);
626 			if (ret != 0)
627 				return ret;
628 		}
629 		i++;
630 	} while (c);
631 
632 	if (leaf && !has_cores)
633 		pr_warn("%pOF: empty cluster\n", cluster);
634 
635 	return 0;
636 }
637 
638 static int __init parse_socket(struct device_node *socket)
639 {
640 	char name[20];
641 	struct device_node *c;
642 	bool has_socket = false;
643 	int package_id = 0, ret;
644 
645 	do {
646 		snprintf(name, sizeof(name), "socket%d", package_id);
647 		c = of_get_child_by_name(socket, name);
648 		if (c) {
649 			has_socket = true;
650 			ret = parse_cluster(c, package_id, -1, 0);
651 			of_node_put(c);
652 			if (ret != 0)
653 				return ret;
654 		}
655 		package_id++;
656 	} while (c);
657 
658 	if (!has_socket)
659 		ret = parse_cluster(socket, 0, -1, 0);
660 
661 	return ret;
662 }
663 
664 static int __init parse_dt_topology(void)
665 {
666 	struct device_node *cn, *map;
667 	int ret = 0;
668 	int cpu;
669 
670 	cn = of_find_node_by_path("/cpus");
671 	if (!cn) {
672 		pr_err("No CPU information found in DT\n");
673 		return 0;
674 	}
675 
676 	/*
677 	 * When topology is provided cpu-map is essentially a root
678 	 * cluster with restricted subnodes.
679 	 */
680 	map = of_get_child_by_name(cn, "cpu-map");
681 	if (!map)
682 		goto out;
683 
684 	ret = parse_socket(map);
685 	if (ret != 0)
686 		goto out_map;
687 
688 	topology_normalize_cpu_scale();
689 
690 	/*
691 	 * Check that all cores are in the topology; the SMP code will
692 	 * only mark cores described in the DT as possible.
693 	 */
694 	for_each_possible_cpu(cpu)
695 		if (cpu_topology[cpu].package_id < 0) {
696 			ret = -EINVAL;
697 			break;
698 		}
699 
700 out_map:
701 	of_node_put(map);
702 out:
703 	of_node_put(cn);
704 	return ret;
705 }
706 #endif
707 
708 /*
709  * cpu topology table
710  */
711 struct cpu_topology cpu_topology[NR_CPUS];
712 EXPORT_SYMBOL_GPL(cpu_topology);
713 
714 const struct cpumask *cpu_coregroup_mask(int cpu)
715 {
716 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
717 
718 	/* Find the smaller of NUMA, core or LLC siblings */
719 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
720 		/* not numa in package, lets use the package siblings */
721 		core_mask = &cpu_topology[cpu].core_sibling;
722 	}
723 
724 	if (last_level_cache_is_valid(cpu)) {
725 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
726 			core_mask = &cpu_topology[cpu].llc_sibling;
727 	}
728 
729 	/*
730 	 * For systems with no shared cpu-side LLC but with clusters defined,
731 	 * extend core_mask to cluster_siblings. The sched domain builder will
732 	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
733 	 */
734 	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
735 	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
736 		core_mask = &cpu_topology[cpu].cluster_sibling;
737 
738 	return core_mask;
739 }
740 
741 const struct cpumask *cpu_clustergroup_mask(int cpu)
742 {
743 	/*
744 	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
745 	 * cpu_coregroup_mask().
746 	 */
747 	if (cpumask_subset(cpu_coregroup_mask(cpu),
748 			   &cpu_topology[cpu].cluster_sibling))
749 		return topology_sibling_cpumask(cpu);
750 
751 	return &cpu_topology[cpu].cluster_sibling;
752 }
753 
754 void update_siblings_masks(unsigned int cpuid)
755 {
756 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
757 	int cpu, ret;
758 
759 	ret = detect_cache_attributes(cpuid);
760 	if (ret && ret != -ENOENT)
761 		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
762 
763 	/* update core and thread sibling masks */
764 	for_each_online_cpu(cpu) {
765 		cpu_topo = &cpu_topology[cpu];
766 
767 		if (last_level_cache_is_shared(cpu, cpuid)) {
768 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
769 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
770 		}
771 
772 		if (cpuid_topo->package_id != cpu_topo->package_id)
773 			continue;
774 
775 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
776 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
777 
778 		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
779 			continue;
780 
781 		if (cpuid_topo->cluster_id >= 0) {
782 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
783 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
784 		}
785 
786 		if (cpuid_topo->core_id != cpu_topo->core_id)
787 			continue;
788 
789 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
790 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
791 	}
792 }
793 
794 static void clear_cpu_topology(int cpu)
795 {
796 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
797 
798 	cpumask_clear(&cpu_topo->llc_sibling);
799 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
800 
801 	cpumask_clear(&cpu_topo->cluster_sibling);
802 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
803 
804 	cpumask_clear(&cpu_topo->core_sibling);
805 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
806 	cpumask_clear(&cpu_topo->thread_sibling);
807 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
808 }
809 
810 void __init reset_cpu_topology(void)
811 {
812 	unsigned int cpu;
813 
814 	for_each_possible_cpu(cpu) {
815 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
816 
817 		cpu_topo->thread_id = -1;
818 		cpu_topo->core_id = -1;
819 		cpu_topo->cluster_id = -1;
820 		cpu_topo->package_id = -1;
821 
822 		clear_cpu_topology(cpu);
823 	}
824 }
825 
826 void remove_cpu_topology(unsigned int cpu)
827 {
828 	int sibling;
829 
830 	for_each_cpu(sibling, topology_core_cpumask(cpu))
831 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
832 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
833 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
834 	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
835 		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
836 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
837 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
838 
839 	clear_cpu_topology(cpu);
840 }
841 
842 __weak int __init parse_acpi_topology(void)
843 {
844 	return 0;
845 }
846 
847 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
848 void __init init_cpu_topology(void)
849 {
850 	int cpu, ret;
851 
852 	reset_cpu_topology();
853 	ret = parse_acpi_topology();
854 	if (!ret)
855 		ret = of_have_populated_dt() && parse_dt_topology();
856 
857 	if (ret) {
858 		/*
859 		 * Discard anything that was parsed if we hit an error so we
860 		 * don't use partial information. But do not return yet to give
861 		 * arch-specific early cache level detection a chance to run.
862 		 */
863 		reset_cpu_topology();
864 	}
865 
866 	for_each_possible_cpu(cpu) {
867 		ret = fetch_cache_info(cpu);
868 		if (!ret)
869 			continue;
870 		else if (ret != -ENOENT)
871 			pr_err("Early cacheinfo failed, ret = %d\n", ret);
872 		return;
873 	}
874 }
875 
876 void store_cpu_topology(unsigned int cpuid)
877 {
878 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
879 
880 	if (cpuid_topo->package_id != -1)
881 		goto topology_populated;
882 
883 	cpuid_topo->thread_id = -1;
884 	cpuid_topo->core_id = cpuid;
885 	cpuid_topo->package_id = cpu_to_node(cpuid);
886 
887 	pr_debug("CPU%u: package %d core %d thread %d\n",
888 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
889 		 cpuid_topo->thread_id);
890 
891 topology_populated:
892 	update_siblings_masks(cpuid);
893 }
894 #endif
895