xref: /linux/drivers/acpi/processor_idle.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44 
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47 
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER	"power"
54 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59 
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62 
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98 	{set_max_cstate, "IBM ThinkPad R40e", {
99 					       DMI_MATCH(DMI_BIOS_VENDOR,
100 							 "IBM"),
101 					       DMI_MATCH(DMI_BIOS_VERSION,
102 							 "1SET60WW")},
103 	 (void *)1},
104 	{set_max_cstate, "Medion 41700", {
105 					  DMI_MATCH(DMI_BIOS_VENDOR,
106 						    "Phoenix Technologies LTD"),
107 					  DMI_MATCH(DMI_BIOS_VERSION,
108 						    "R01-A1J")}, (void *)1},
109 	{set_max_cstate, "Clevo 5600D", {
110 					 DMI_MATCH(DMI_BIOS_VENDOR,
111 						   "Phoenix Technologies LTD"),
112 					 DMI_MATCH(DMI_BIOS_VERSION,
113 						   "SHE845M0.86C.0013.D.0302131307")},
114 	 (void *)2},
115 	{},
116 };
117 
118 static inline u32 ticks_elapsed(u32 t1, u32 t2)
119 {
120 	if (t2 >= t1)
121 		return (t2 - t1);
122 	else if (!acpi_fadt.tmr_val_ext)
123 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
124 	else
125 		return ((0xFFFFFFFF - t1) + t2);
126 }
127 
128 static void
129 acpi_processor_power_activate(struct acpi_processor *pr,
130 			      struct acpi_processor_cx *new)
131 {
132 	struct acpi_processor_cx *old;
133 
134 	if (!pr || !new)
135 		return;
136 
137 	old = pr->power.state;
138 
139 	if (old)
140 		old->promotion.count = 0;
141 	new->demotion.count = 0;
142 
143 	/* Cleanup from old state. */
144 	if (old) {
145 		switch (old->type) {
146 		case ACPI_STATE_C3:
147 			/* Disable bus master reload */
148 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
149 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
150 						  ACPI_MTX_DO_NOT_LOCK);
151 			break;
152 		}
153 	}
154 
155 	/* Prepare to use new state. */
156 	switch (new->type) {
157 	case ACPI_STATE_C3:
158 		/* Enable bus master reload */
159 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
161 					  ACPI_MTX_DO_NOT_LOCK);
162 		break;
163 	}
164 
165 	pr->power.state = new;
166 
167 	return;
168 }
169 
170 static atomic_t c3_cpu_count;
171 
172 static void acpi_processor_idle(void)
173 {
174 	struct acpi_processor *pr = NULL;
175 	struct acpi_processor_cx *cx = NULL;
176 	struct acpi_processor_cx *next_state = NULL;
177 	int sleep_ticks = 0;
178 	u32 t1, t2 = 0;
179 
180 	pr = processors[raw_smp_processor_id()];
181 	if (!pr)
182 		return;
183 
184 	/*
185 	 * Interrupts must be disabled during bus mastering calculations and
186 	 * for C2/C3 transitions.
187 	 */
188 	local_irq_disable();
189 
190 	/*
191 	 * Check whether we truly need to go idle, or should
192 	 * reschedule:
193 	 */
194 	if (unlikely(need_resched())) {
195 		local_irq_enable();
196 		return;
197 	}
198 
199 	cx = pr->power.state;
200 	if (!cx)
201 		goto easy_out;
202 
203 	/*
204 	 * Check BM Activity
205 	 * -----------------
206 	 * Check for bus mastering activity (if required), record, and check
207 	 * for demotion.
208 	 */
209 	if (pr->flags.bm_check) {
210 		u32 bm_status = 0;
211 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
212 
213 		if (diff > 32)
214 			diff = 32;
215 
216 		while (diff) {
217 			/* if we didn't get called, assume there was busmaster activity */
218 			diff--;
219 			if (diff)
220 				pr->power.bm_activity |= 0x1;
221 			pr->power.bm_activity <<= 1;
222 		}
223 
224 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
225 				  &bm_status, ACPI_MTX_DO_NOT_LOCK);
226 		if (bm_status) {
227 			pr->power.bm_activity++;
228 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
229 					  1, ACPI_MTX_DO_NOT_LOCK);
230 		}
231 		/*
232 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
233 		 * the true state of bus mastering activity; forcing us to
234 		 * manually check the BMIDEA bit of each IDE channel.
235 		 */
236 		else if (errata.piix4.bmisx) {
237 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
238 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
239 				pr->power.bm_activity++;
240 		}
241 
242 		pr->power.bm_check_timestamp = jiffies;
243 
244 		/*
245 		 * Apply bus mastering demotion policy.  Automatically demote
246 		 * to avoid a faulty transition.  Note that the processor
247 		 * won't enter a low-power state during this call (to this
248 		 * funciton) but should upon the next.
249 		 *
250 		 * TBD: A better policy might be to fallback to the demotion
251 		 *      state (use it for this quantum only) istead of
252 		 *      demoting -- and rely on duration as our sole demotion
253 		 *      qualification.  This may, however, introduce DMA
254 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
255 		 */
256 		if (pr->power.bm_activity & cx->demotion.threshold.bm) {
257 			local_irq_enable();
258 			next_state = cx->demotion.state;
259 			goto end;
260 		}
261 	}
262 
263 	cx->usage++;
264 
265 	/*
266 	 * Sleep:
267 	 * ------
268 	 * Invoke the current Cx state to put the processor to sleep.
269 	 */
270 	switch (cx->type) {
271 
272 	case ACPI_STATE_C1:
273 		/*
274 		 * Invoke C1.
275 		 * Use the appropriate idle routine, the one that would
276 		 * be used without acpi C-states.
277 		 */
278 		if (pm_idle_save)
279 			pm_idle_save();
280 		else
281 			safe_halt();
282 		/*
283 		 * TBD: Can't get time duration while in C1, as resumes
284 		 *      go to an ISR rather than here.  Need to instrument
285 		 *      base interrupt handler.
286 		 */
287 		sleep_ticks = 0xFFFFFFFF;
288 		break;
289 
290 	case ACPI_STATE_C2:
291 		/* Get start time (ticks) */
292 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
293 		/* Invoke C2 */
294 		inb(cx->address);
295 		/* Dummy op - must do something useless after P_LVL2 read */
296 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
297 		/* Get end time (ticks) */
298 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
299 		/* Re-enable interrupts */
300 		local_irq_enable();
301 		/* Compute time (ticks) that we were actually asleep */
302 		sleep_ticks =
303 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
304 		break;
305 
306 	case ACPI_STATE_C3:
307 
308 		if (pr->flags.bm_check) {
309 			if (atomic_inc_return(&c3_cpu_count) ==
310 			    num_online_cpus()) {
311 				/*
312 				 * All CPUs are trying to go to C3
313 				 * Disable bus master arbitration
314 				 */
315 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
316 						  ACPI_MTX_DO_NOT_LOCK);
317 			}
318 		} else {
319 			/* SMP with no shared cache... Invalidate cache  */
320 			ACPI_FLUSH_CPU_CACHE();
321 		}
322 
323 		/* Get start time (ticks) */
324 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
325 		/* Invoke C3 */
326 		inb(cx->address);
327 		/* Dummy op - must do something useless after P_LVL3 read */
328 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
329 		/* Get end time (ticks) */
330 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
331 		if (pr->flags.bm_check) {
332 			/* Enable bus master arbitration */
333 			atomic_dec(&c3_cpu_count);
334 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
335 					  ACPI_MTX_DO_NOT_LOCK);
336 		}
337 
338 		/* Re-enable interrupts */
339 		local_irq_enable();
340 		/* Compute time (ticks) that we were actually asleep */
341 		sleep_ticks =
342 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
343 		break;
344 
345 	default:
346 		local_irq_enable();
347 		return;
348 	}
349 
350 	next_state = pr->power.state;
351 
352 	/*
353 	 * Promotion?
354 	 * ----------
355 	 * Track the number of longs (time asleep is greater than threshold)
356 	 * and promote when the count threshold is reached.  Note that bus
357 	 * mastering activity may prevent promotions.
358 	 * Do not promote above max_cstate.
359 	 */
360 	if (cx->promotion.state &&
361 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
362 		if (sleep_ticks > cx->promotion.threshold.ticks) {
363 			cx->promotion.count++;
364 			cx->demotion.count = 0;
365 			if (cx->promotion.count >=
366 			    cx->promotion.threshold.count) {
367 				if (pr->flags.bm_check) {
368 					if (!
369 					    (pr->power.bm_activity & cx->
370 					     promotion.threshold.bm)) {
371 						next_state =
372 						    cx->promotion.state;
373 						goto end;
374 					}
375 				} else {
376 					next_state = cx->promotion.state;
377 					goto end;
378 				}
379 			}
380 		}
381 	}
382 
383 	/*
384 	 * Demotion?
385 	 * ---------
386 	 * Track the number of shorts (time asleep is less than time threshold)
387 	 * and demote when the usage threshold is reached.
388 	 */
389 	if (cx->demotion.state) {
390 		if (sleep_ticks < cx->demotion.threshold.ticks) {
391 			cx->demotion.count++;
392 			cx->promotion.count = 0;
393 			if (cx->demotion.count >= cx->demotion.threshold.count) {
394 				next_state = cx->demotion.state;
395 				goto end;
396 			}
397 		}
398 	}
399 
400       end:
401 	/*
402 	 * Demote if current state exceeds max_cstate
403 	 */
404 	if ((pr->power.state - pr->power.states) > max_cstate) {
405 		if (cx->demotion.state)
406 			next_state = cx->demotion.state;
407 	}
408 
409 	/*
410 	 * New Cx State?
411 	 * -------------
412 	 * If we're going to start using a new Cx state we must clean up
413 	 * from the previous and prepare to use the new.
414 	 */
415 	if (next_state != pr->power.state)
416 		acpi_processor_power_activate(pr, next_state);
417 
418 	return;
419 
420       easy_out:
421 	/* do C1 instead of busy loop */
422 	if (pm_idle_save)
423 		pm_idle_save();
424 	else
425 		safe_halt();
426 	return;
427 }
428 
429 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
430 {
431 	unsigned int i;
432 	unsigned int state_is_set = 0;
433 	struct acpi_processor_cx *lower = NULL;
434 	struct acpi_processor_cx *higher = NULL;
435 	struct acpi_processor_cx *cx;
436 
437 	ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
438 
439 	if (!pr)
440 		return_VALUE(-EINVAL);
441 
442 	/*
443 	 * This function sets the default Cx state policy (OS idle handler).
444 	 * Our scheme is to promote quickly to C2 but more conservatively
445 	 * to C3.  We're favoring C2  for its characteristics of low latency
446 	 * (quick response), good power savings, and ability to allow bus
447 	 * mastering activity.  Note that the Cx state policy is completely
448 	 * customizable and can be altered dynamically.
449 	 */
450 
451 	/* startup state */
452 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
453 		cx = &pr->power.states[i];
454 		if (!cx->valid)
455 			continue;
456 
457 		if (!state_is_set)
458 			pr->power.state = cx;
459 		state_is_set++;
460 		break;
461 	}
462 
463 	if (!state_is_set)
464 		return_VALUE(-ENODEV);
465 
466 	/* demotion */
467 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
468 		cx = &pr->power.states[i];
469 		if (!cx->valid)
470 			continue;
471 
472 		if (lower) {
473 			cx->demotion.state = lower;
474 			cx->demotion.threshold.ticks = cx->latency_ticks;
475 			cx->demotion.threshold.count = 1;
476 			if (cx->type == ACPI_STATE_C3)
477 				cx->demotion.threshold.bm = bm_history;
478 		}
479 
480 		lower = cx;
481 	}
482 
483 	/* promotion */
484 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
485 		cx = &pr->power.states[i];
486 		if (!cx->valid)
487 			continue;
488 
489 		if (higher) {
490 			cx->promotion.state = higher;
491 			cx->promotion.threshold.ticks = cx->latency_ticks;
492 			if (cx->type >= ACPI_STATE_C2)
493 				cx->promotion.threshold.count = 4;
494 			else
495 				cx->promotion.threshold.count = 10;
496 			if (higher->type == ACPI_STATE_C3)
497 				cx->promotion.threshold.bm = bm_history;
498 		}
499 
500 		higher = cx;
501 	}
502 
503 	return_VALUE(0);
504 }
505 
506 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
507 {
508 	int i;
509 
510 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
511 
512 	if (!pr)
513 		return_VALUE(-EINVAL);
514 
515 	if (!pr->pblk)
516 		return_VALUE(-ENODEV);
517 
518 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
519 		memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
520 
521 	/* if info is obtained from pblk/fadt, type equals state */
522 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
523 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
524 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
525 
526 	/* the C0 state only exists as a filler in our array,
527 	 * and all processors need to support C1 */
528 	pr->power.states[ACPI_STATE_C0].valid = 1;
529 	pr->power.states[ACPI_STATE_C1].valid = 1;
530 
531 	/* determine C2 and C3 address from pblk */
532 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
533 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
534 
535 	/* determine latencies from FADT */
536 	pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
537 	pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
538 
539 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
541 			  pr->power.states[ACPI_STATE_C2].address,
542 			  pr->power.states[ACPI_STATE_C3].address));
543 
544 	return_VALUE(0);
545 }
546 
547 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
548 {
549 	int i;
550 
551 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
552 
553 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
554 		memset(&(pr->power.states[i]), 0,
555 		       sizeof(struct acpi_processor_cx));
556 
557 	/* if info is obtained from pblk/fadt, type equals state */
558 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
559 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
560 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
561 
562 	/* the C0 state only exists as a filler in our array,
563 	 * and all processors need to support C1 */
564 	pr->power.states[ACPI_STATE_C0].valid = 1;
565 	pr->power.states[ACPI_STATE_C1].valid = 1;
566 
567 	return_VALUE(0);
568 }
569 
570 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
571 {
572 	acpi_status status = 0;
573 	acpi_integer count;
574 	int i;
575 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
576 	union acpi_object *cst;
577 
578 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
579 
580 	if (nocst)
581 		return_VALUE(-ENODEV);
582 
583 	pr->power.count = 0;
584 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
585 		memset(&(pr->power.states[i]), 0,
586 		       sizeof(struct acpi_processor_cx));
587 
588 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
589 	if (ACPI_FAILURE(status)) {
590 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
591 		return_VALUE(-ENODEV);
592 	}
593 
594 	cst = (union acpi_object *)buffer.pointer;
595 
596 	/* There must be at least 2 elements */
597 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
598 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
599 				  "not enough elements in _CST\n"));
600 		status = -EFAULT;
601 		goto end;
602 	}
603 
604 	count = cst->package.elements[0].integer.value;
605 
606 	/* Validate number of power states. */
607 	if (count < 1 || count != cst->package.count - 1) {
608 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
609 				  "count given by _CST is not valid\n"));
610 		status = -EFAULT;
611 		goto end;
612 	}
613 
614 	/* We support up to ACPI_PROCESSOR_MAX_POWER. */
615 	if (count > ACPI_PROCESSOR_MAX_POWER) {
616 		printk(KERN_WARNING
617 		       "Limiting number of power states to max (%d)\n",
618 		       ACPI_PROCESSOR_MAX_POWER);
619 		printk(KERN_WARNING
620 		       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
621 		count = ACPI_PROCESSOR_MAX_POWER;
622 	}
623 
624 	/* Tell driver that at least _CST is supported. */
625 	pr->flags.has_cst = 1;
626 
627 	for (i = 1; i <= count; i++) {
628 		union acpi_object *element;
629 		union acpi_object *obj;
630 		struct acpi_power_register *reg;
631 		struct acpi_processor_cx cx;
632 
633 		memset(&cx, 0, sizeof(cx));
634 
635 		element = (union acpi_object *)&(cst->package.elements[i]);
636 		if (element->type != ACPI_TYPE_PACKAGE)
637 			continue;
638 
639 		if (element->package.count != 4)
640 			continue;
641 
642 		obj = (union acpi_object *)&(element->package.elements[0]);
643 
644 		if (obj->type != ACPI_TYPE_BUFFER)
645 			continue;
646 
647 		reg = (struct acpi_power_register *)obj->buffer.pointer;
648 
649 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
650 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
651 			continue;
652 
653 		cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
654 		    0 : reg->address;
655 
656 		/* There should be an easy way to extract an integer... */
657 		obj = (union acpi_object *)&(element->package.elements[1]);
658 		if (obj->type != ACPI_TYPE_INTEGER)
659 			continue;
660 
661 		cx.type = obj->integer.value;
662 
663 		if ((cx.type != ACPI_STATE_C1) &&
664 		    (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
665 			continue;
666 
667 		if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
668 			continue;
669 
670 		obj = (union acpi_object *)&(element->package.elements[2]);
671 		if (obj->type != ACPI_TYPE_INTEGER)
672 			continue;
673 
674 		cx.latency = obj->integer.value;
675 
676 		obj = (union acpi_object *)&(element->package.elements[3]);
677 		if (obj->type != ACPI_TYPE_INTEGER)
678 			continue;
679 
680 		cx.power = obj->integer.value;
681 
682 		(pr->power.count)++;
683 		memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
684 	}
685 
686 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
687 			  pr->power.count));
688 
689 	/* Validate number of power states discovered */
690 	if (pr->power.count < 2)
691 		status = -ENODEV;
692 
693       end:
694 	acpi_os_free(buffer.pointer);
695 
696 	return_VALUE(status);
697 }
698 
699 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
700 {
701 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
702 
703 	if (!cx->address)
704 		return_VOID;
705 
706 	/*
707 	 * C2 latency must be less than or equal to 100
708 	 * microseconds.
709 	 */
710 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
711 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
712 				  "latency too large [%d]\n", cx->latency));
713 		return_VOID;
714 	}
715 
716 	/*
717 	 * Otherwise we've met all of our C2 requirements.
718 	 * Normalize the C2 latency to expidite policy
719 	 */
720 	cx->valid = 1;
721 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
722 
723 	return_VOID;
724 }
725 
726 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
727 					   struct acpi_processor_cx *cx)
728 {
729 	static int bm_check_flag;
730 
731 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
732 
733 	if (!cx->address)
734 		return_VOID;
735 
736 	/*
737 	 * C3 latency must be less than or equal to 1000
738 	 * microseconds.
739 	 */
740 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
741 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
742 				  "latency too large [%d]\n", cx->latency));
743 		return_VOID;
744 	}
745 
746 	/*
747 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
748 	 * DMA transfers are used by any ISA device to avoid livelock.
749 	 * Note that we could disable Type-F DMA (as recommended by
750 	 * the erratum), but this is known to disrupt certain ISA
751 	 * devices thus we take the conservative approach.
752 	 */
753 	else if (errata.piix4.fdma) {
754 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
755 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
756 		return_VOID;
757 	}
758 
759 	/* All the logic here assumes flags.bm_check is same across all CPUs */
760 	if (!bm_check_flag) {
761 		/* Determine whether bm_check is needed based on CPU  */
762 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
763 		bm_check_flag = pr->flags.bm_check;
764 	} else {
765 		pr->flags.bm_check = bm_check_flag;
766 	}
767 
768 	if (pr->flags.bm_check) {
769 		/* bus mastering control is necessary */
770 		if (!pr->flags.bm_control) {
771 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
772 					  "C3 support requires bus mastering control\n"));
773 			return_VOID;
774 		}
775 	} else {
776 		/*
777 		 * WBINVD should be set in fadt, for C3 state to be
778 		 * supported on when bm_check is not required.
779 		 */
780 		if (acpi_fadt.wb_invd != 1) {
781 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
782 					  "Cache invalidation should work properly"
783 					  " for C3 to be enabled on SMP systems\n"));
784 			return_VOID;
785 		}
786 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
787 				  0, ACPI_MTX_DO_NOT_LOCK);
788 	}
789 
790 	/*
791 	 * Otherwise we've met all of our C3 requirements.
792 	 * Normalize the C3 latency to expidite policy.  Enable
793 	 * checking of bus mastering status (bm_check) so we can
794 	 * use this in our C3 policy
795 	 */
796 	cx->valid = 1;
797 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
798 
799 	return_VOID;
800 }
801 
802 static int acpi_processor_power_verify(struct acpi_processor *pr)
803 {
804 	unsigned int i;
805 	unsigned int working = 0;
806 
807 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
808 		struct acpi_processor_cx *cx = &pr->power.states[i];
809 
810 		switch (cx->type) {
811 		case ACPI_STATE_C1:
812 			cx->valid = 1;
813 			break;
814 
815 		case ACPI_STATE_C2:
816 			acpi_processor_power_verify_c2(cx);
817 			break;
818 
819 		case ACPI_STATE_C3:
820 			acpi_processor_power_verify_c3(pr, cx);
821 			break;
822 		}
823 
824 		if (cx->valid)
825 			working++;
826 	}
827 
828 	return (working);
829 }
830 
831 static int acpi_processor_get_power_info(struct acpi_processor *pr)
832 {
833 	unsigned int i;
834 	int result;
835 
836 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
837 
838 	/* NOTE: the idle thread may not be running while calling
839 	 * this function */
840 
841 	result = acpi_processor_get_power_info_cst(pr);
842 	if ((result) || (acpi_processor_power_verify(pr) < 2)) {
843 		result = acpi_processor_get_power_info_fadt(pr);
844 		if ((result) || (acpi_processor_power_verify(pr) < 2))
845 			result = acpi_processor_get_power_info_default_c1(pr);
846 	}
847 
848 	/*
849 	 * Set Default Policy
850 	 * ------------------
851 	 * Now that we know which states are supported, set the default
852 	 * policy.  Note that this policy can be changed dynamically
853 	 * (e.g. encourage deeper sleeps to conserve battery life when
854 	 * not on AC).
855 	 */
856 	result = acpi_processor_set_power_policy(pr);
857 	if (result)
858 		return_VALUE(result);
859 
860 	/*
861 	 * if one state of type C2 or C3 is available, mark this
862 	 * CPU as being "idle manageable"
863 	 */
864 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
865 		if (pr->power.states[i].valid) {
866 			pr->power.count = i;
867 			pr->flags.power = 1;
868 		}
869 	}
870 
871 	return_VALUE(0);
872 }
873 
874 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
875 {
876 	int result = 0;
877 
878 	ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
879 
880 	if (!pr)
881 		return_VALUE(-EINVAL);
882 
883 	if (nocst) {
884 		return_VALUE(-ENODEV);
885 	}
886 
887 	if (!pr->flags.power_setup_done)
888 		return_VALUE(-ENODEV);
889 
890 	/* Fall back to the default idle loop */
891 	pm_idle = pm_idle_save;
892 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
893 
894 	pr->flags.power = 0;
895 	result = acpi_processor_get_power_info(pr);
896 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
897 		pm_idle = acpi_processor_idle;
898 
899 	return_VALUE(result);
900 }
901 
902 /* proc interface */
903 
904 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
905 {
906 	struct acpi_processor *pr = (struct acpi_processor *)seq->private;
907 	unsigned int i;
908 
909 	ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
910 
911 	if (!pr)
912 		goto end;
913 
914 	seq_printf(seq, "active state:            C%zd\n"
915 		   "max_cstate:              C%d\n"
916 		   "bus master activity:     %08x\n",
917 		   pr->power.state ? pr->power.state - pr->power.states : 0,
918 		   max_cstate, (unsigned)pr->power.bm_activity);
919 
920 	seq_puts(seq, "states:\n");
921 
922 	for (i = 1; i <= pr->power.count; i++) {
923 		seq_printf(seq, "   %cC%d:                  ",
924 			   (&pr->power.states[i] ==
925 			    pr->power.state ? '*' : ' '), i);
926 
927 		if (!pr->power.states[i].valid) {
928 			seq_puts(seq, "<not supported>\n");
929 			continue;
930 		}
931 
932 		switch (pr->power.states[i].type) {
933 		case ACPI_STATE_C1:
934 			seq_printf(seq, "type[C1] ");
935 			break;
936 		case ACPI_STATE_C2:
937 			seq_printf(seq, "type[C2] ");
938 			break;
939 		case ACPI_STATE_C3:
940 			seq_printf(seq, "type[C3] ");
941 			break;
942 		default:
943 			seq_printf(seq, "type[--] ");
944 			break;
945 		}
946 
947 		if (pr->power.states[i].promotion.state)
948 			seq_printf(seq, "promotion[C%zd] ",
949 				   (pr->power.states[i].promotion.state -
950 				    pr->power.states));
951 		else
952 			seq_puts(seq, "promotion[--] ");
953 
954 		if (pr->power.states[i].demotion.state)
955 			seq_printf(seq, "demotion[C%zd] ",
956 				   (pr->power.states[i].demotion.state -
957 				    pr->power.states));
958 		else
959 			seq_puts(seq, "demotion[--] ");
960 
961 		seq_printf(seq, "latency[%03d] usage[%08d]\n",
962 			   pr->power.states[i].latency,
963 			   pr->power.states[i].usage);
964 	}
965 
966       end:
967 	return_VALUE(0);
968 }
969 
970 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
971 {
972 	return single_open(file, acpi_processor_power_seq_show,
973 			   PDE(inode)->data);
974 }
975 
976 static struct file_operations acpi_processor_power_fops = {
977 	.open = acpi_processor_power_open_fs,
978 	.read = seq_read,
979 	.llseek = seq_lseek,
980 	.release = single_release,
981 };
982 
983 int acpi_processor_power_init(struct acpi_processor *pr,
984 			      struct acpi_device *device)
985 {
986 	acpi_status status = 0;
987 	static int first_run = 0;
988 	struct proc_dir_entry *entry = NULL;
989 	unsigned int i;
990 
991 	ACPI_FUNCTION_TRACE("acpi_processor_power_init");
992 
993 	if (!first_run) {
994 		dmi_check_system(processor_power_dmi_table);
995 		if (max_cstate < ACPI_C_STATES_MAX)
996 			printk(KERN_NOTICE
997 			       "ACPI: processor limited to max C-state %d\n",
998 			       max_cstate);
999 		first_run++;
1000 	}
1001 
1002 	if (!pr)
1003 		return_VALUE(-EINVAL);
1004 
1005 	if (acpi_fadt.cst_cnt && !nocst) {
1006 		status =
1007 		    acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1008 		if (ACPI_FAILURE(status)) {
1009 			ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1010 					  "Notifying BIOS of _CST ability failed\n"));
1011 		}
1012 	}
1013 
1014 	acpi_processor_power_init_pdc(&(pr->power), pr->id);
1015 	acpi_processor_set_pdc(pr, pr->power.pdc);
1016 	acpi_processor_get_power_info(pr);
1017 
1018 	/*
1019 	 * Install the idle handler if processor power management is supported.
1020 	 * Note that we use previously set idle handler will be used on
1021 	 * platforms that only support C1.
1022 	 */
1023 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1024 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1025 		for (i = 1; i <= pr->power.count; i++)
1026 			if (pr->power.states[i].valid)
1027 				printk(" C%d[C%d]", i,
1028 				       pr->power.states[i].type);
1029 		printk(")\n");
1030 
1031 		if (pr->id == 0) {
1032 			pm_idle_save = pm_idle;
1033 			pm_idle = acpi_processor_idle;
1034 		}
1035 	}
1036 
1037 	/* 'power' [R] */
1038 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1039 				  S_IRUGO, acpi_device_dir(device));
1040 	if (!entry)
1041 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1042 				  "Unable to create '%s' fs entry\n",
1043 				  ACPI_PROCESSOR_FILE_POWER));
1044 	else {
1045 		entry->proc_fops = &acpi_processor_power_fops;
1046 		entry->data = acpi_driver_data(device);
1047 		entry->owner = THIS_MODULE;
1048 	}
1049 
1050 	pr->flags.power_setup_done = 1;
1051 
1052 	return_VALUE(0);
1053 }
1054 
1055 int acpi_processor_power_exit(struct acpi_processor *pr,
1056 			      struct acpi_device *device)
1057 {
1058 	ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1059 
1060 	pr->flags.power_setup_done = 0;
1061 
1062 	if (acpi_device_dir(device))
1063 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1064 				  acpi_device_dir(device));
1065 
1066 	/* Unregister the idle handler when processor #0 is removed. */
1067 	if (pr->id == 0) {
1068 		pm_idle = pm_idle_save;
1069 
1070 		/*
1071 		 * We are about to unload the current idle thread pm callback
1072 		 * (pm_idle), Wait for all processors to update cached/local
1073 		 * copies of pm_idle before proceeding.
1074 		 */
1075 		cpu_idle_wait();
1076 	}
1077 
1078 	return_VALUE(0);
1079 }
1080