xref: /linux/drivers/acpi/processor_idle.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44 
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47 
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER	"power"
54 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void) __read_mostly;
58 module_param(max_cstate, uint, 0644);
59 
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
62 
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history __read_mostly =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98    callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100 	{ set_max_cstate, "IBM ThinkPad R40e", {
101 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
103 	{ set_max_cstate, "IBM ThinkPad R40e", {
104 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
105 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
106 	{ set_max_cstate, "IBM ThinkPad R40e", {
107 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
108 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
109 	{ set_max_cstate, "IBM ThinkPad R40e", {
110 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
111 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
112 	{ set_max_cstate, "IBM ThinkPad R40e", {
113 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
115 	{ set_max_cstate, "IBM ThinkPad R40e", {
116 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
118 	{ set_max_cstate, "IBM ThinkPad R40e", {
119 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
121 	{ set_max_cstate, "IBM ThinkPad R40e", {
122 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
124 	{ set_max_cstate, "IBM ThinkPad R40e", {
125 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
127 	{ set_max_cstate, "IBM ThinkPad R40e", {
128 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
130 	{ set_max_cstate, "IBM ThinkPad R40e", {
131 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
133 	{ set_max_cstate, "IBM ThinkPad R40e", {
134 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
136 	{ set_max_cstate, "IBM ThinkPad R40e", {
137 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
139 	{ set_max_cstate, "IBM ThinkPad R40e", {
140 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
142 	{ set_max_cstate, "IBM ThinkPad R40e", {
143 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
145 	{ set_max_cstate, "Medion 41700", {
146 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
147 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
148 	{ set_max_cstate, "Clevo 5600D", {
149 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
150 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
151 	 (void *)2},
152 	{},
153 };
154 
155 static inline u32 ticks_elapsed(u32 t1, u32 t2)
156 {
157 	if (t2 >= t1)
158 		return (t2 - t1);
159 	else if (!acpi_fadt.tmr_val_ext)
160 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
161 	else
162 		return ((0xFFFFFFFF - t1) + t2);
163 }
164 
165 static void
166 acpi_processor_power_activate(struct acpi_processor *pr,
167 			      struct acpi_processor_cx *new)
168 {
169 	struct acpi_processor_cx *old;
170 
171 	if (!pr || !new)
172 		return;
173 
174 	old = pr->power.state;
175 
176 	if (old)
177 		old->promotion.count = 0;
178 	new->demotion.count = 0;
179 
180 	/* Cleanup from old state. */
181 	if (old) {
182 		switch (old->type) {
183 		case ACPI_STATE_C3:
184 			/* Disable bus master reload */
185 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
186 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
187 						  ACPI_MTX_DO_NOT_LOCK);
188 			break;
189 		}
190 	}
191 
192 	/* Prepare to use new state. */
193 	switch (new->type) {
194 	case ACPI_STATE_C3:
195 		/* Enable bus master reload */
196 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
197 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
198 					  ACPI_MTX_DO_NOT_LOCK);
199 		break;
200 	}
201 
202 	pr->power.state = new;
203 
204 	return;
205 }
206 
207 static void acpi_safe_halt(void)
208 {
209 	current_thread_info()->status &= ~TS_POLLING;
210 	smp_mb__after_clear_bit();
211 	if (!need_resched())
212 		safe_halt();
213 	current_thread_info()->status |= TS_POLLING;
214 }
215 
216 static atomic_t c3_cpu_count;
217 
218 static void acpi_processor_idle(void)
219 {
220 	struct acpi_processor *pr = NULL;
221 	struct acpi_processor_cx *cx = NULL;
222 	struct acpi_processor_cx *next_state = NULL;
223 	int sleep_ticks = 0;
224 	u32 t1, t2 = 0;
225 
226 	pr = processors[smp_processor_id()];
227 	if (!pr)
228 		return;
229 
230 	/*
231 	 * Interrupts must be disabled during bus mastering calculations and
232 	 * for C2/C3 transitions.
233 	 */
234 	local_irq_disable();
235 
236 	/*
237 	 * Check whether we truly need to go idle, or should
238 	 * reschedule:
239 	 */
240 	if (unlikely(need_resched())) {
241 		local_irq_enable();
242 		return;
243 	}
244 
245 	cx = pr->power.state;
246 	if (!cx) {
247 		if (pm_idle_save)
248 			pm_idle_save();
249 		else
250 			acpi_safe_halt();
251 		return;
252 	}
253 
254 	/*
255 	 * Check BM Activity
256 	 * -----------------
257 	 * Check for bus mastering activity (if required), record, and check
258 	 * for demotion.
259 	 */
260 	if (pr->flags.bm_check) {
261 		u32 bm_status = 0;
262 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
263 
264 		if (diff > 32)
265 			diff = 32;
266 
267 		while (diff) {
268 			/* if we didn't get called, assume there was busmaster activity */
269 			diff--;
270 			if (diff)
271 				pr->power.bm_activity |= 0x1;
272 			pr->power.bm_activity <<= 1;
273 		}
274 
275 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
276 				  &bm_status, ACPI_MTX_DO_NOT_LOCK);
277 		if (bm_status) {
278 			pr->power.bm_activity++;
279 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
280 					  1, ACPI_MTX_DO_NOT_LOCK);
281 		}
282 		/*
283 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
284 		 * the true state of bus mastering activity; forcing us to
285 		 * manually check the BMIDEA bit of each IDE channel.
286 		 */
287 		else if (errata.piix4.bmisx) {
288 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
289 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
290 				pr->power.bm_activity++;
291 		}
292 
293 		pr->power.bm_check_timestamp = jiffies;
294 
295 		/*
296 		 * Apply bus mastering demotion policy.  Automatically demote
297 		 * to avoid a faulty transition.  Note that the processor
298 		 * won't enter a low-power state during this call (to this
299 		 * funciton) but should upon the next.
300 		 *
301 		 * TBD: A better policy might be to fallback to the demotion
302 		 *      state (use it for this quantum only) istead of
303 		 *      demoting -- and rely on duration as our sole demotion
304 		 *      qualification.  This may, however, introduce DMA
305 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
306 		 */
307 		if (pr->power.bm_activity & cx->demotion.threshold.bm) {
308 			local_irq_enable();
309 			next_state = cx->demotion.state;
310 			goto end;
311 		}
312 	}
313 
314 #ifdef CONFIG_HOTPLUG_CPU
315 	/*
316 	 * Check for P_LVL2_UP flag before entering C2 and above on
317 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
318 	 * detection phase, to work cleanly with logical CPU hotplug.
319 	 */
320 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
321 	    !pr->flags.has_cst && !acpi_fadt.plvl2_up)
322 		cx = &pr->power.states[ACPI_STATE_C1];
323 #endif
324 
325 	cx->usage++;
326 
327 	/*
328 	 * Sleep:
329 	 * ------
330 	 * Invoke the current Cx state to put the processor to sleep.
331 	 */
332 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
333 		current_thread_info()->status &= ~TS_POLLING;
334 		smp_mb__after_clear_bit();
335 		if (need_resched()) {
336 			current_thread_info()->status |= TS_POLLING;
337 			local_irq_enable();
338 			return;
339 		}
340 	}
341 
342 	switch (cx->type) {
343 
344 	case ACPI_STATE_C1:
345 		/*
346 		 * Invoke C1.
347 		 * Use the appropriate idle routine, the one that would
348 		 * be used without acpi C-states.
349 		 */
350 		if (pm_idle_save)
351 			pm_idle_save();
352 		else
353 			acpi_safe_halt();
354 
355 		/*
356 		 * TBD: Can't get time duration while in C1, as resumes
357 		 *      go to an ISR rather than here.  Need to instrument
358 		 *      base interrupt handler.
359 		 */
360 		sleep_ticks = 0xFFFFFFFF;
361 		break;
362 
363 	case ACPI_STATE_C2:
364 		/* Get start time (ticks) */
365 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
366 		/* Invoke C2 */
367 		inb(cx->address);
368 		/* Dummy op - must do something useless after P_LVL2 read */
369 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
370 		/* Get end time (ticks) */
371 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
372 
373 #ifdef CONFIG_GENERIC_TIME
374 		/* TSC halts in C2, so notify users */
375 		mark_tsc_unstable();
376 #endif
377 		/* Re-enable interrupts */
378 		local_irq_enable();
379 		current_thread_info()->status |= TS_POLLING;
380 		/* Compute time (ticks) that we were actually asleep */
381 		sleep_ticks =
382 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
383 		break;
384 
385 	case ACPI_STATE_C3:
386 
387 		if (pr->flags.bm_check) {
388 			if (atomic_inc_return(&c3_cpu_count) ==
389 			    num_online_cpus()) {
390 				/*
391 				 * All CPUs are trying to go to C3
392 				 * Disable bus master arbitration
393 				 */
394 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
395 						  ACPI_MTX_DO_NOT_LOCK);
396 			}
397 		} else {
398 			/* SMP with no shared cache... Invalidate cache  */
399 			ACPI_FLUSH_CPU_CACHE();
400 		}
401 
402 		/* Get start time (ticks) */
403 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
404 		/* Invoke C3 */
405 		inb(cx->address);
406 		/* Dummy op - must do something useless after P_LVL3 read */
407 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
408 		/* Get end time (ticks) */
409 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
410 		if (pr->flags.bm_check) {
411 			/* Enable bus master arbitration */
412 			atomic_dec(&c3_cpu_count);
413 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
414 					  ACPI_MTX_DO_NOT_LOCK);
415 		}
416 
417 #ifdef CONFIG_GENERIC_TIME
418 		/* TSC halts in C3, so notify users */
419 		mark_tsc_unstable();
420 #endif
421 		/* Re-enable interrupts */
422 		local_irq_enable();
423 		current_thread_info()->status |= TS_POLLING;
424 		/* Compute time (ticks) that we were actually asleep */
425 		sleep_ticks =
426 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
427 		break;
428 
429 	default:
430 		local_irq_enable();
431 		return;
432 	}
433 
434 	next_state = pr->power.state;
435 
436 #ifdef CONFIG_HOTPLUG_CPU
437 	/* Don't do promotion/demotion */
438 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
439 	    !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
440 		next_state = cx;
441 		goto end;
442 	}
443 #endif
444 
445 	/*
446 	 * Promotion?
447 	 * ----------
448 	 * Track the number of longs (time asleep is greater than threshold)
449 	 * and promote when the count threshold is reached.  Note that bus
450 	 * mastering activity may prevent promotions.
451 	 * Do not promote above max_cstate.
452 	 */
453 	if (cx->promotion.state &&
454 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
455 		if (sleep_ticks > cx->promotion.threshold.ticks) {
456 			cx->promotion.count++;
457 			cx->demotion.count = 0;
458 			if (cx->promotion.count >=
459 			    cx->promotion.threshold.count) {
460 				if (pr->flags.bm_check) {
461 					if (!
462 					    (pr->power.bm_activity & cx->
463 					     promotion.threshold.bm)) {
464 						next_state =
465 						    cx->promotion.state;
466 						goto end;
467 					}
468 				} else {
469 					next_state = cx->promotion.state;
470 					goto end;
471 				}
472 			}
473 		}
474 	}
475 
476 	/*
477 	 * Demotion?
478 	 * ---------
479 	 * Track the number of shorts (time asleep is less than time threshold)
480 	 * and demote when the usage threshold is reached.
481 	 */
482 	if (cx->demotion.state) {
483 		if (sleep_ticks < cx->demotion.threshold.ticks) {
484 			cx->demotion.count++;
485 			cx->promotion.count = 0;
486 			if (cx->demotion.count >= cx->demotion.threshold.count) {
487 				next_state = cx->demotion.state;
488 				goto end;
489 			}
490 		}
491 	}
492 
493       end:
494 	/*
495 	 * Demote if current state exceeds max_cstate
496 	 */
497 	if ((pr->power.state - pr->power.states) > max_cstate) {
498 		if (cx->demotion.state)
499 			next_state = cx->demotion.state;
500 	}
501 
502 	/*
503 	 * New Cx State?
504 	 * -------------
505 	 * If we're going to start using a new Cx state we must clean up
506 	 * from the previous and prepare to use the new.
507 	 */
508 	if (next_state != pr->power.state)
509 		acpi_processor_power_activate(pr, next_state);
510 }
511 
512 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
513 {
514 	unsigned int i;
515 	unsigned int state_is_set = 0;
516 	struct acpi_processor_cx *lower = NULL;
517 	struct acpi_processor_cx *higher = NULL;
518 	struct acpi_processor_cx *cx;
519 
520 	ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
521 
522 	if (!pr)
523 		return_VALUE(-EINVAL);
524 
525 	/*
526 	 * This function sets the default Cx state policy (OS idle handler).
527 	 * Our scheme is to promote quickly to C2 but more conservatively
528 	 * to C3.  We're favoring C2  for its characteristics of low latency
529 	 * (quick response), good power savings, and ability to allow bus
530 	 * mastering activity.  Note that the Cx state policy is completely
531 	 * customizable and can be altered dynamically.
532 	 */
533 
534 	/* startup state */
535 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
536 		cx = &pr->power.states[i];
537 		if (!cx->valid)
538 			continue;
539 
540 		if (!state_is_set)
541 			pr->power.state = cx;
542 		state_is_set++;
543 		break;
544 	}
545 
546 	if (!state_is_set)
547 		return_VALUE(-ENODEV);
548 
549 	/* demotion */
550 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
551 		cx = &pr->power.states[i];
552 		if (!cx->valid)
553 			continue;
554 
555 		if (lower) {
556 			cx->demotion.state = lower;
557 			cx->demotion.threshold.ticks = cx->latency_ticks;
558 			cx->demotion.threshold.count = 1;
559 			if (cx->type == ACPI_STATE_C3)
560 				cx->demotion.threshold.bm = bm_history;
561 		}
562 
563 		lower = cx;
564 	}
565 
566 	/* promotion */
567 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
568 		cx = &pr->power.states[i];
569 		if (!cx->valid)
570 			continue;
571 
572 		if (higher) {
573 			cx->promotion.state = higher;
574 			cx->promotion.threshold.ticks = cx->latency_ticks;
575 			if (cx->type >= ACPI_STATE_C2)
576 				cx->promotion.threshold.count = 4;
577 			else
578 				cx->promotion.threshold.count = 10;
579 			if (higher->type == ACPI_STATE_C3)
580 				cx->promotion.threshold.bm = bm_history;
581 		}
582 
583 		higher = cx;
584 	}
585 
586 	return_VALUE(0);
587 }
588 
589 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
590 {
591 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
592 
593 	if (!pr)
594 		return_VALUE(-EINVAL);
595 
596 	if (!pr->pblk)
597 		return_VALUE(-ENODEV);
598 
599 	/* if info is obtained from pblk/fadt, type equals state */
600 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
601 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
602 
603 #ifndef CONFIG_HOTPLUG_CPU
604 	/*
605 	 * Check for P_LVL2_UP flag before entering C2 and above on
606 	 * an SMP system.
607 	 */
608 	if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
609 		return_VALUE(-ENODEV);
610 #endif
611 
612 	/* determine C2 and C3 address from pblk */
613 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
614 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
615 
616 	/* determine latencies from FADT */
617 	pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
618 	pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
619 
620 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
621 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
622 			  pr->power.states[ACPI_STATE_C2].address,
623 			  pr->power.states[ACPI_STATE_C3].address));
624 
625 	return_VALUE(0);
626 }
627 
628 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
629 {
630 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
631 
632 	/* Zero initialize all the C-states info. */
633 	memset(pr->power.states, 0, sizeof(pr->power.states));
634 
635 	/* set the first C-State to C1 */
636 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
637 
638 	/* the C0 state only exists as a filler in our array,
639 	 * and all processors need to support C1 */
640 	pr->power.states[ACPI_STATE_C0].valid = 1;
641 	pr->power.states[ACPI_STATE_C1].valid = 1;
642 
643 	return_VALUE(0);
644 }
645 
646 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
647 {
648 	acpi_status status = 0;
649 	acpi_integer count;
650 	int current_count;
651 	int i;
652 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
653 	union acpi_object *cst;
654 
655 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
656 
657 	if (nocst)
658 		return_VALUE(-ENODEV);
659 
660 	current_count = 1;
661 
662 	/* Zero initialize C2 onwards and prepare for fresh CST lookup */
663 	for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
664 		memset(&(pr->power.states[i]), 0,
665 				sizeof(struct acpi_processor_cx));
666 
667 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
668 	if (ACPI_FAILURE(status)) {
669 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
670 		return_VALUE(-ENODEV);
671 	}
672 
673 	cst = (union acpi_object *)buffer.pointer;
674 
675 	/* There must be at least 2 elements */
676 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
677 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
678 				  "not enough elements in _CST\n"));
679 		status = -EFAULT;
680 		goto end;
681 	}
682 
683 	count = cst->package.elements[0].integer.value;
684 
685 	/* Validate number of power states. */
686 	if (count < 1 || count != cst->package.count - 1) {
687 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
688 				  "count given by _CST is not valid\n"));
689 		status = -EFAULT;
690 		goto end;
691 	}
692 
693 	/* Tell driver that at least _CST is supported. */
694 	pr->flags.has_cst = 1;
695 
696 	for (i = 1; i <= count; i++) {
697 		union acpi_object *element;
698 		union acpi_object *obj;
699 		struct acpi_power_register *reg;
700 		struct acpi_processor_cx cx;
701 
702 		memset(&cx, 0, sizeof(cx));
703 
704 		element = (union acpi_object *)&(cst->package.elements[i]);
705 		if (element->type != ACPI_TYPE_PACKAGE)
706 			continue;
707 
708 		if (element->package.count != 4)
709 			continue;
710 
711 		obj = (union acpi_object *)&(element->package.elements[0]);
712 
713 		if (obj->type != ACPI_TYPE_BUFFER)
714 			continue;
715 
716 		reg = (struct acpi_power_register *)obj->buffer.pointer;
717 
718 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
719 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
720 			continue;
721 
722 		cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
723 		    0 : reg->address;
724 
725 		/* There should be an easy way to extract an integer... */
726 		obj = (union acpi_object *)&(element->package.elements[1]);
727 		if (obj->type != ACPI_TYPE_INTEGER)
728 			continue;
729 
730 		cx.type = obj->integer.value;
731 
732 		if ((cx.type != ACPI_STATE_C1) &&
733 		    (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
734 			continue;
735 
736 		if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
737 			continue;
738 
739 		obj = (union acpi_object *)&(element->package.elements[2]);
740 		if (obj->type != ACPI_TYPE_INTEGER)
741 			continue;
742 
743 		cx.latency = obj->integer.value;
744 
745 		obj = (union acpi_object *)&(element->package.elements[3]);
746 		if (obj->type != ACPI_TYPE_INTEGER)
747 			continue;
748 
749 		cx.power = obj->integer.value;
750 
751 		current_count++;
752 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
753 
754 		/*
755 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
756 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
757 		 */
758 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
759 			printk(KERN_WARNING
760 			       "Limiting number of power states to max (%d)\n",
761 			       ACPI_PROCESSOR_MAX_POWER);
762 			printk(KERN_WARNING
763 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
764 			break;
765 		}
766 	}
767 
768 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
769 			  current_count));
770 
771 	/* Validate number of power states discovered */
772 	if (current_count < 2)
773 		status = -EFAULT;
774 
775       end:
776 	acpi_os_free(buffer.pointer);
777 
778 	return_VALUE(status);
779 }
780 
781 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
782 {
783 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
784 
785 	if (!cx->address)
786 		return_VOID;
787 
788 	/*
789 	 * C2 latency must be less than or equal to 100
790 	 * microseconds.
791 	 */
792 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
793 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
794 				  "latency too large [%d]\n", cx->latency));
795 		return_VOID;
796 	}
797 
798 	/*
799 	 * Otherwise we've met all of our C2 requirements.
800 	 * Normalize the C2 latency to expidite policy
801 	 */
802 	cx->valid = 1;
803 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
804 
805 	return_VOID;
806 }
807 
808 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
809 					   struct acpi_processor_cx *cx)
810 {
811 	static int bm_check_flag;
812 
813 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
814 
815 	if (!cx->address)
816 		return_VOID;
817 
818 	/*
819 	 * C3 latency must be less than or equal to 1000
820 	 * microseconds.
821 	 */
822 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
823 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
824 				  "latency too large [%d]\n", cx->latency));
825 		return_VOID;
826 	}
827 
828 	/*
829 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
830 	 * DMA transfers are used by any ISA device to avoid livelock.
831 	 * Note that we could disable Type-F DMA (as recommended by
832 	 * the erratum), but this is known to disrupt certain ISA
833 	 * devices thus we take the conservative approach.
834 	 */
835 	else if (errata.piix4.fdma) {
836 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
837 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
838 		return_VOID;
839 	}
840 
841 	/* All the logic here assumes flags.bm_check is same across all CPUs */
842 	if (!bm_check_flag) {
843 		/* Determine whether bm_check is needed based on CPU  */
844 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
845 		bm_check_flag = pr->flags.bm_check;
846 	} else {
847 		pr->flags.bm_check = bm_check_flag;
848 	}
849 
850 	if (pr->flags.bm_check) {
851 		/* bus mastering control is necessary */
852 		if (!pr->flags.bm_control) {
853 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
854 					  "C3 support requires bus mastering control\n"));
855 			return_VOID;
856 		}
857 	} else {
858 		/*
859 		 * WBINVD should be set in fadt, for C3 state to be
860 		 * supported on when bm_check is not required.
861 		 */
862 		if (acpi_fadt.wb_invd != 1) {
863 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
864 					  "Cache invalidation should work properly"
865 					  " for C3 to be enabled on SMP systems\n"));
866 			return_VOID;
867 		}
868 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
869 				  0, ACPI_MTX_DO_NOT_LOCK);
870 	}
871 
872 	/*
873 	 * Otherwise we've met all of our C3 requirements.
874 	 * Normalize the C3 latency to expidite policy.  Enable
875 	 * checking of bus mastering status (bm_check) so we can
876 	 * use this in our C3 policy
877 	 */
878 	cx->valid = 1;
879 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
880 
881 	return_VOID;
882 }
883 
884 static int acpi_processor_power_verify(struct acpi_processor *pr)
885 {
886 	unsigned int i;
887 	unsigned int working = 0;
888 
889 #ifdef ARCH_APICTIMER_STOPS_ON_C3
890 	int timer_broadcast = 0;
891 	cpumask_t mask = cpumask_of_cpu(pr->id);
892 	on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
893 #endif
894 
895 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
896 		struct acpi_processor_cx *cx = &pr->power.states[i];
897 
898 		switch (cx->type) {
899 		case ACPI_STATE_C1:
900 			cx->valid = 1;
901 			break;
902 
903 		case ACPI_STATE_C2:
904 			acpi_processor_power_verify_c2(cx);
905 #ifdef ARCH_APICTIMER_STOPS_ON_C3
906 			/* Some AMD systems fake C3 as C2, but still
907 			   have timer troubles */
908 			if (cx->valid &&
909 				boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
910 				timer_broadcast++;
911 #endif
912 			break;
913 
914 		case ACPI_STATE_C3:
915 			acpi_processor_power_verify_c3(pr, cx);
916 #ifdef ARCH_APICTIMER_STOPS_ON_C3
917 			if (cx->valid)
918 				timer_broadcast++;
919 #endif
920 			break;
921 		}
922 
923 		if (cx->valid)
924 			working++;
925 	}
926 
927 #ifdef ARCH_APICTIMER_STOPS_ON_C3
928 	if (timer_broadcast)
929 		on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
930 #endif
931 
932 	return (working);
933 }
934 
935 static int acpi_processor_get_power_info(struct acpi_processor *pr)
936 {
937 	unsigned int i;
938 	int result;
939 
940 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
941 
942 	/* NOTE: the idle thread may not be running while calling
943 	 * this function */
944 
945 	/* Adding C1 state */
946 	acpi_processor_get_power_info_default_c1(pr);
947 	result = acpi_processor_get_power_info_cst(pr);
948 	if (result == -ENODEV)
949 		acpi_processor_get_power_info_fadt(pr);
950 
951 	pr->power.count = acpi_processor_power_verify(pr);
952 
953 	/*
954 	 * Set Default Policy
955 	 * ------------------
956 	 * Now that we know which states are supported, set the default
957 	 * policy.  Note that this policy can be changed dynamically
958 	 * (e.g. encourage deeper sleeps to conserve battery life when
959 	 * not on AC).
960 	 */
961 	result = acpi_processor_set_power_policy(pr);
962 	if (result)
963 		return_VALUE(result);
964 
965 	/*
966 	 * if one state of type C2 or C3 is available, mark this
967 	 * CPU as being "idle manageable"
968 	 */
969 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
970 		if (pr->power.states[i].valid) {
971 			pr->power.count = i;
972 			if (pr->power.states[i].type >= ACPI_STATE_C2)
973 				pr->flags.power = 1;
974 		}
975 	}
976 
977 	return_VALUE(0);
978 }
979 
980 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
981 {
982 	int result = 0;
983 
984 	ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
985 
986 	if (!pr)
987 		return_VALUE(-EINVAL);
988 
989 	if (nocst) {
990 		return_VALUE(-ENODEV);
991 	}
992 
993 	if (!pr->flags.power_setup_done)
994 		return_VALUE(-ENODEV);
995 
996 	/* Fall back to the default idle loop */
997 	pm_idle = pm_idle_save;
998 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
999 
1000 	pr->flags.power = 0;
1001 	result = acpi_processor_get_power_info(pr);
1002 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1003 		pm_idle = acpi_processor_idle;
1004 
1005 	return_VALUE(result);
1006 }
1007 
1008 /* proc interface */
1009 
1010 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1011 {
1012 	struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1013 	unsigned int i;
1014 
1015 	ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
1016 
1017 	if (!pr)
1018 		goto end;
1019 
1020 	seq_printf(seq, "active state:            C%zd\n"
1021 		   "max_cstate:              C%d\n"
1022 		   "bus master activity:     %08x\n",
1023 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1024 		   max_cstate, (unsigned)pr->power.bm_activity);
1025 
1026 	seq_puts(seq, "states:\n");
1027 
1028 	for (i = 1; i <= pr->power.count; i++) {
1029 		seq_printf(seq, "   %cC%d:                  ",
1030 			   (&pr->power.states[i] ==
1031 			    pr->power.state ? '*' : ' '), i);
1032 
1033 		if (!pr->power.states[i].valid) {
1034 			seq_puts(seq, "<not supported>\n");
1035 			continue;
1036 		}
1037 
1038 		switch (pr->power.states[i].type) {
1039 		case ACPI_STATE_C1:
1040 			seq_printf(seq, "type[C1] ");
1041 			break;
1042 		case ACPI_STATE_C2:
1043 			seq_printf(seq, "type[C2] ");
1044 			break;
1045 		case ACPI_STATE_C3:
1046 			seq_printf(seq, "type[C3] ");
1047 			break;
1048 		default:
1049 			seq_printf(seq, "type[--] ");
1050 			break;
1051 		}
1052 
1053 		if (pr->power.states[i].promotion.state)
1054 			seq_printf(seq, "promotion[C%zd] ",
1055 				   (pr->power.states[i].promotion.state -
1056 				    pr->power.states));
1057 		else
1058 			seq_puts(seq, "promotion[--] ");
1059 
1060 		if (pr->power.states[i].demotion.state)
1061 			seq_printf(seq, "demotion[C%zd] ",
1062 				   (pr->power.states[i].demotion.state -
1063 				    pr->power.states));
1064 		else
1065 			seq_puts(seq, "demotion[--] ");
1066 
1067 		seq_printf(seq, "latency[%03d] usage[%08d]\n",
1068 			   pr->power.states[i].latency,
1069 			   pr->power.states[i].usage);
1070 	}
1071 
1072       end:
1073 	return_VALUE(0);
1074 }
1075 
1076 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1077 {
1078 	return single_open(file, acpi_processor_power_seq_show,
1079 			   PDE(inode)->data);
1080 }
1081 
1082 static struct file_operations acpi_processor_power_fops = {
1083 	.open = acpi_processor_power_open_fs,
1084 	.read = seq_read,
1085 	.llseek = seq_lseek,
1086 	.release = single_release,
1087 };
1088 
1089 int acpi_processor_power_init(struct acpi_processor *pr,
1090 			      struct acpi_device *device)
1091 {
1092 	acpi_status status = 0;
1093 	static int first_run;
1094 	struct proc_dir_entry *entry = NULL;
1095 	unsigned int i;
1096 
1097 	ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1098 
1099 	if (!first_run) {
1100 		dmi_check_system(processor_power_dmi_table);
1101 		if (max_cstate < ACPI_C_STATES_MAX)
1102 			printk(KERN_NOTICE
1103 			       "ACPI: processor limited to max C-state %d\n",
1104 			       max_cstate);
1105 		first_run++;
1106 	}
1107 
1108 	if (!pr)
1109 		return_VALUE(-EINVAL);
1110 
1111 	if (acpi_fadt.cst_cnt && !nocst) {
1112 		status =
1113 		    acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1114 		if (ACPI_FAILURE(status)) {
1115 			ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1116 					  "Notifying BIOS of _CST ability failed\n"));
1117 		}
1118 	}
1119 
1120 	acpi_processor_get_power_info(pr);
1121 
1122 	/*
1123 	 * Install the idle handler if processor power management is supported.
1124 	 * Note that we use previously set idle handler will be used on
1125 	 * platforms that only support C1.
1126 	 */
1127 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1128 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1129 		for (i = 1; i <= pr->power.count; i++)
1130 			if (pr->power.states[i].valid)
1131 				printk(" C%d[C%d]", i,
1132 				       pr->power.states[i].type);
1133 		printk(")\n");
1134 
1135 		if (pr->id == 0) {
1136 			pm_idle_save = pm_idle;
1137 			pm_idle = acpi_processor_idle;
1138 		}
1139 	}
1140 
1141 	/* 'power' [R] */
1142 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1143 				  S_IRUGO, acpi_device_dir(device));
1144 	if (!entry)
1145 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1146 				  "Unable to create '%s' fs entry\n",
1147 				  ACPI_PROCESSOR_FILE_POWER));
1148 	else {
1149 		entry->proc_fops = &acpi_processor_power_fops;
1150 		entry->data = acpi_driver_data(device);
1151 		entry->owner = THIS_MODULE;
1152 	}
1153 
1154 	pr->flags.power_setup_done = 1;
1155 
1156 	return_VALUE(0);
1157 }
1158 
1159 int acpi_processor_power_exit(struct acpi_processor *pr,
1160 			      struct acpi_device *device)
1161 {
1162 	ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1163 
1164 	pr->flags.power_setup_done = 0;
1165 
1166 	if (acpi_device_dir(device))
1167 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1168 				  acpi_device_dir(device));
1169 
1170 	/* Unregister the idle handler when processor #0 is removed. */
1171 	if (pr->id == 0) {
1172 		pm_idle = pm_idle_save;
1173 
1174 		/*
1175 		 * We are about to unload the current idle thread pm callback
1176 		 * (pm_idle), Wait for all processors to update cached/local
1177 		 * copies of pm_idle before proceeding.
1178 		 */
1179 		cpu_idle_wait();
1180 	}
1181 
1182 	return_VALUE(0);
1183 }
1184