xref: /linux/drivers/acpi/processor_idle.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
43 
44 #include <acpi/acpi_bus.h>
45 #include <acpi/processor.h>
46 
47 #define ACPI_PROCESSOR_COMPONENT        0x01000000
48 #define ACPI_PROCESSOR_CLASS            "processor"
49 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
50 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
51 ACPI_MODULE_NAME                ("acpi_processor")
52 
53 #define ACPI_PROCESSOR_FILE_POWER	"power"
54 
55 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
56 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
57 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
58 
59 static void (*pm_idle_save)(void);
60 module_param(max_cstate, uint, 0644);
61 
62 static unsigned int nocst = 0;
63 module_param(nocst, uint, 0000);
64 
65 /*
66  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
67  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
68  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
69  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
70  * reduce history for more aggressive entry into C3
71  */
72 static unsigned int bm_history = (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
73 module_param(bm_history, uint, 0644);
74 /* --------------------------------------------------------------------------
75                                 Power Management
76    -------------------------------------------------------------------------- */
77 
78 /*
79  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80  * For now disable this. Probably a bug somewhere else.
81  *
82  * To skip this limit, boot/load with a large max_cstate limit.
83  */
84 static int set_max_cstate(struct dmi_system_id *id)
85 {
86 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 		return 0;
88 
89 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
90 		" Override with \"processor.max_cstate=%d\"\n", id->ident,
91 		(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 
93 	max_cstate = (long)id->driver_data;
94 
95 	return 0;
96 }
97 
98 
99 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
100 	{ set_max_cstate, "IBM ThinkPad R40e", {
101 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
103 	{ set_max_cstate, "Medion 41700", {
104 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
105 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J") }, (void*)1},
106 	{ set_max_cstate, "Clevo 5600D", {
107 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
108 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307") },
109 	  (void*)2},
110 	{},
111 };
112 
113 
114 static inline u32
115 ticks_elapsed (
116 	u32			t1,
117 	u32			t2)
118 {
119 	if (t2 >= t1)
120 		return (t2 - t1);
121 	else if (!acpi_fadt.tmr_val_ext)
122 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
123 	else
124 		return ((0xFFFFFFFF - t1) + t2);
125 }
126 
127 
128 static void
129 acpi_processor_power_activate (
130 	struct acpi_processor	*pr,
131 	struct acpi_processor_cx  *new)
132 {
133 	struct acpi_processor_cx  *old;
134 
135 	if (!pr || !new)
136 		return;
137 
138 	old = pr->power.state;
139 
140 	if (old)
141 		old->promotion.count = 0;
142  	new->demotion.count = 0;
143 
144 	/* Cleanup from old state. */
145 	if (old) {
146 		switch (old->type) {
147 		case ACPI_STATE_C3:
148 			/* Disable bus master reload */
149 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
150 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
151 			break;
152 		}
153 	}
154 
155 	/* Prepare to use new state. */
156 	switch (new->type) {
157 	case ACPI_STATE_C3:
158 		/* Enable bus master reload */
159 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
161 		break;
162 	}
163 
164 	pr->power.state = new;
165 
166 	return;
167 }
168 
169 
170 static atomic_t 	c3_cpu_count;
171 
172 
173 static void acpi_processor_idle (void)
174 {
175 	struct acpi_processor	*pr = NULL;
176 	struct acpi_processor_cx *cx = NULL;
177 	struct acpi_processor_cx *next_state = NULL;
178 	int			sleep_ticks = 0;
179 	u32			t1, t2 = 0;
180 
181 	pr = processors[raw_smp_processor_id()];
182 	if (!pr)
183 		return;
184 
185 	/*
186 	 * Interrupts must be disabled during bus mastering calculations and
187 	 * for C2/C3 transitions.
188 	 */
189 	local_irq_disable();
190 
191 	/*
192 	 * Check whether we truly need to go idle, or should
193 	 * reschedule:
194 	 */
195 	if (unlikely(need_resched())) {
196 		local_irq_enable();
197 		return;
198 	}
199 
200 	cx = pr->power.state;
201 	if (!cx)
202 		goto easy_out;
203 
204 	/*
205 	 * Check BM Activity
206 	 * -----------------
207 	 * Check for bus mastering activity (if required), record, and check
208 	 * for demotion.
209 	 */
210 	if (pr->flags.bm_check) {
211 		u32		bm_status = 0;
212 		unsigned long	diff = jiffies - pr->power.bm_check_timestamp;
213 
214 		if (diff > 32)
215 			diff = 32;
216 
217 		while (diff) {
218 			/* if we didn't get called, assume there was busmaster activity */
219 			diff--;
220 			if (diff)
221 				pr->power.bm_activity |= 0x1;
222 			pr->power.bm_activity <<= 1;
223 		}
224 
225 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
226 			&bm_status, ACPI_MTX_DO_NOT_LOCK);
227 		if (bm_status) {
228 			pr->power.bm_activity++;
229 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
230 				1, ACPI_MTX_DO_NOT_LOCK);
231 		}
232 		/*
233 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
234 		 * the true state of bus mastering activity; forcing us to
235 		 * manually check the BMIDEA bit of each IDE channel.
236 		 */
237 		else if (errata.piix4.bmisx) {
238 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
239 				|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
240 				pr->power.bm_activity++;
241 		}
242 
243 		pr->power.bm_check_timestamp = jiffies;
244 
245 		/*
246 		 * Apply bus mastering demotion policy.  Automatically demote
247 		 * to avoid a faulty transition.  Note that the processor
248 		 * won't enter a low-power state during this call (to this
249 		 * funciton) but should upon the next.
250 		 *
251 		 * TBD: A better policy might be to fallback to the demotion
252 		 *      state (use it for this quantum only) istead of
253 		 *      demoting -- and rely on duration as our sole demotion
254 		 *      qualification.  This may, however, introduce DMA
255 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
256 		 */
257 		if (pr->power.bm_activity & cx->demotion.threshold.bm) {
258 			local_irq_enable();
259 			next_state = cx->demotion.state;
260 			goto end;
261 		}
262 	}
263 
264 	cx->usage++;
265 
266 	/*
267 	 * Sleep:
268 	 * ------
269 	 * Invoke the current Cx state to put the processor to sleep.
270 	 */
271 	switch (cx->type) {
272 
273 	case ACPI_STATE_C1:
274 		/*
275 		 * Invoke C1.
276 		 * Use the appropriate idle routine, the one that would
277 		 * be used without acpi C-states.
278 		 */
279 		if (pm_idle_save)
280 			pm_idle_save();
281 		else
282 			safe_halt();
283 		/*
284                  * TBD: Can't get time duration while in C1, as resumes
285 		 *      go to an ISR rather than here.  Need to instrument
286 		 *      base interrupt handler.
287 		 */
288 		sleep_ticks = 0xFFFFFFFF;
289 		break;
290 
291 	case ACPI_STATE_C2:
292 		/* Get start time (ticks) */
293 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
294 		/* Invoke C2 */
295 		inb(cx->address);
296 		/* Dummy op - must do something useless after P_LVL2 read */
297 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
298 		/* Get end time (ticks) */
299 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
300 		/* Re-enable interrupts */
301 		local_irq_enable();
302 		/* Compute time (ticks) that we were actually asleep */
303 		sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
304 		break;
305 
306 	case ACPI_STATE_C3:
307 
308 		if (pr->flags.bm_check) {
309 			if (atomic_inc_return(&c3_cpu_count) ==
310 					num_online_cpus()) {
311 				/*
312 				 * All CPUs are trying to go to C3
313 				 * Disable bus master arbitration
314 				 */
315 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
316 					ACPI_MTX_DO_NOT_LOCK);
317 			}
318 		} else {
319 			/* SMP with no shared cache... Invalidate cache  */
320 			ACPI_FLUSH_CPU_CACHE();
321 		}
322 
323 		/* Get start time (ticks) */
324 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
325 		/* Invoke C3 */
326 		inb(cx->address);
327 		/* Dummy op - must do something useless after P_LVL3 read */
328 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
329 		/* Get end time (ticks) */
330 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
331 		if (pr->flags.bm_check) {
332 			/* Enable bus master arbitration */
333 			atomic_dec(&c3_cpu_count);
334 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
335 		}
336 
337 		/* Re-enable interrupts */
338 		local_irq_enable();
339 		/* Compute time (ticks) that we were actually asleep */
340 		sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
341 		break;
342 
343 	default:
344 		local_irq_enable();
345 		return;
346 	}
347 
348 	next_state = pr->power.state;
349 
350 	/*
351 	 * Promotion?
352 	 * ----------
353 	 * Track the number of longs (time asleep is greater than threshold)
354 	 * and promote when the count threshold is reached.  Note that bus
355 	 * mastering activity may prevent promotions.
356 	 * Do not promote above max_cstate.
357 	 */
358 	if (cx->promotion.state &&
359 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
360 		if (sleep_ticks > cx->promotion.threshold.ticks) {
361 			cx->promotion.count++;
362  			cx->demotion.count = 0;
363 			if (cx->promotion.count >= cx->promotion.threshold.count) {
364 				if (pr->flags.bm_check) {
365 					if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
366 						next_state = cx->promotion.state;
367 						goto end;
368 					}
369 				}
370 				else {
371 					next_state = cx->promotion.state;
372 					goto end;
373 				}
374 			}
375 		}
376 	}
377 
378 	/*
379 	 * Demotion?
380 	 * ---------
381 	 * Track the number of shorts (time asleep is less than time threshold)
382 	 * and demote when the usage threshold is reached.
383 	 */
384 	if (cx->demotion.state) {
385 		if (sleep_ticks < cx->demotion.threshold.ticks) {
386 			cx->demotion.count++;
387 			cx->promotion.count = 0;
388 			if (cx->demotion.count >= cx->demotion.threshold.count) {
389 				next_state = cx->demotion.state;
390 				goto end;
391 			}
392 		}
393 	}
394 
395 end:
396 	/*
397 	 * Demote if current state exceeds max_cstate
398 	 */
399 	if ((pr->power.state - pr->power.states) > max_cstate) {
400 		if (cx->demotion.state)
401 			next_state = cx->demotion.state;
402 	}
403 
404 	/*
405 	 * New Cx State?
406 	 * -------------
407 	 * If we're going to start using a new Cx state we must clean up
408 	 * from the previous and prepare to use the new.
409 	 */
410 	if (next_state != pr->power.state)
411 		acpi_processor_power_activate(pr, next_state);
412 
413 	return;
414 
415  easy_out:
416 	/* do C1 instead of busy loop */
417 	if (pm_idle_save)
418 		pm_idle_save();
419 	else
420 		safe_halt();
421 	return;
422 }
423 
424 
425 static int
426 acpi_processor_set_power_policy (
427 	struct acpi_processor	*pr)
428 {
429 	unsigned int i;
430 	unsigned int state_is_set = 0;
431 	struct acpi_processor_cx *lower = NULL;
432 	struct acpi_processor_cx *higher = NULL;
433 	struct acpi_processor_cx *cx;
434 
435  	ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
436 
437 	if (!pr)
438 		return_VALUE(-EINVAL);
439 
440 	/*
441 	 * This function sets the default Cx state policy (OS idle handler).
442 	 * Our scheme is to promote quickly to C2 but more conservatively
443 	 * to C3.  We're favoring C2  for its characteristics of low latency
444 	 * (quick response), good power savings, and ability to allow bus
445 	 * mastering activity.  Note that the Cx state policy is completely
446 	 * customizable and can be altered dynamically.
447 	 */
448 
449 	/* startup state */
450 	for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
451 		cx = &pr->power.states[i];
452 		if (!cx->valid)
453 			continue;
454 
455 		if (!state_is_set)
456 			pr->power.state = cx;
457 		state_is_set++;
458 		break;
459  	}
460 
461 	if (!state_is_set)
462 		return_VALUE(-ENODEV);
463 
464 	/* demotion */
465 	for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
466 		cx = &pr->power.states[i];
467 		if (!cx->valid)
468 			continue;
469 
470 		if (lower) {
471 			cx->demotion.state = lower;
472 			cx->demotion.threshold.ticks = cx->latency_ticks;
473 			cx->demotion.threshold.count = 1;
474 			if (cx->type == ACPI_STATE_C3)
475 				cx->demotion.threshold.bm = bm_history;
476 		}
477 
478 		lower = cx;
479 	}
480 
481 	/* promotion */
482 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
483 		cx = &pr->power.states[i];
484 		if (!cx->valid)
485 			continue;
486 
487 		if (higher) {
488 			cx->promotion.state  = higher;
489 			cx->promotion.threshold.ticks = cx->latency_ticks;
490 			if (cx->type >= ACPI_STATE_C2)
491 				cx->promotion.threshold.count = 4;
492 			else
493 				cx->promotion.threshold.count = 10;
494 			if (higher->type == ACPI_STATE_C3)
495 				cx->promotion.threshold.bm = bm_history;
496 		}
497 
498 		higher = cx;
499 	}
500 
501  	return_VALUE(0);
502 }
503 
504 
505 static int acpi_processor_get_power_info_fadt (struct acpi_processor *pr)
506 {
507 	int i;
508 
509 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
510 
511 	if (!pr)
512 		return_VALUE(-EINVAL);
513 
514 	if (!pr->pblk)
515 		return_VALUE(-ENODEV);
516 
517 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
518 		memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
519 
520 	/* if info is obtained from pblk/fadt, type equals state */
521 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
522 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
523 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
524 
525 	/* the C0 state only exists as a filler in our array,
526 	 * and all processors need to support C1 */
527 	pr->power.states[ACPI_STATE_C0].valid = 1;
528 	pr->power.states[ACPI_STATE_C1].valid = 1;
529 
530 	/* determine C2 and C3 address from pblk */
531 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
532 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
533 
534 	/* determine latencies from FADT */
535 	pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
536 	pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
537 
538 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
540 			  pr->power.states[ACPI_STATE_C2].address,
541 			  pr->power.states[ACPI_STATE_C3].address));
542 
543 	return_VALUE(0);
544 }
545 
546 
547 static int acpi_processor_get_power_info_default_c1 (struct acpi_processor *pr)
548 {
549 	int i;
550 
551 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
552 
553 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
554 		memset(&(pr->power.states[i]), 0,
555 		       sizeof(struct acpi_processor_cx));
556 
557 	/* if info is obtained from pblk/fadt, type equals state */
558 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
559 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
560 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
561 
562 	/* the C0 state only exists as a filler in our array,
563 	 * and all processors need to support C1 */
564 	pr->power.states[ACPI_STATE_C0].valid = 1;
565 	pr->power.states[ACPI_STATE_C1].valid = 1;
566 
567 	return_VALUE(0);
568 }
569 
570 
571 static int acpi_processor_get_power_info_cst (struct acpi_processor *pr)
572 {
573 	acpi_status		status = 0;
574 	acpi_integer		count;
575 	int			i;
576 	struct acpi_buffer	buffer = {ACPI_ALLOCATE_BUFFER, NULL};
577 	union acpi_object	*cst;
578 
579 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
580 
581 	if (nocst)
582 		return_VALUE(-ENODEV);
583 
584 	pr->power.count = 0;
585 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
586 		memset(&(pr->power.states[i]), 0,
587 		       sizeof(struct acpi_processor_cx));
588 
589 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
590 	if (ACPI_FAILURE(status)) {
591 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
592 		return_VALUE(-ENODEV);
593  	}
594 
595 	cst = (union acpi_object *) buffer.pointer;
596 
597 	/* There must be at least 2 elements */
598 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
599 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "not enough elements in _CST\n"));
600 		status = -EFAULT;
601 		goto end;
602 	}
603 
604 	count = cst->package.elements[0].integer.value;
605 
606 	/* Validate number of power states. */
607 	if (count < 1 || count != cst->package.count - 1) {
608 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "count given by _CST is not valid\n"));
609 		status = -EFAULT;
610 		goto end;
611 	}
612 
613 	/* We support up to ACPI_PROCESSOR_MAX_POWER. */
614 	if (count > ACPI_PROCESSOR_MAX_POWER) {
615 		printk(KERN_WARNING "Limiting number of power states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER);
616 		printk(KERN_WARNING "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
617 		count = ACPI_PROCESSOR_MAX_POWER;
618 	}
619 
620 	/* Tell driver that at least _CST is supported. */
621 	pr->flags.has_cst = 1;
622 
623 	for (i = 1; i <= count; i++) {
624 		union acpi_object *element;
625 		union acpi_object *obj;
626 		struct acpi_power_register *reg;
627 		struct acpi_processor_cx cx;
628 
629 		memset(&cx, 0, sizeof(cx));
630 
631 		element = (union acpi_object *) &(cst->package.elements[i]);
632 		if (element->type != ACPI_TYPE_PACKAGE)
633 			continue;
634 
635 		if (element->package.count != 4)
636 			continue;
637 
638 		obj = (union acpi_object *) &(element->package.elements[0]);
639 
640 		if (obj->type != ACPI_TYPE_BUFFER)
641 			continue;
642 
643 		reg = (struct acpi_power_register *) obj->buffer.pointer;
644 
645 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
646 			(reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
647 			continue;
648 
649 		cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
650 			0 : reg->address;
651 
652 		/* There should be an easy way to extract an integer... */
653 		obj = (union acpi_object *) &(element->package.elements[1]);
654 		if (obj->type != ACPI_TYPE_INTEGER)
655 			continue;
656 
657 		cx.type = obj->integer.value;
658 
659 		if ((cx.type != ACPI_STATE_C1) &&
660 		    (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
661 			continue;
662 
663 		if ((cx.type < ACPI_STATE_C1) ||
664 		    (cx.type > ACPI_STATE_C3))
665 			continue;
666 
667 		obj = (union acpi_object *) &(element->package.elements[2]);
668 		if (obj->type != ACPI_TYPE_INTEGER)
669 			continue;
670 
671 		cx.latency = obj->integer.value;
672 
673 		obj = (union acpi_object *) &(element->package.elements[3]);
674 		if (obj->type != ACPI_TYPE_INTEGER)
675 			continue;
676 
677 		cx.power = obj->integer.value;
678 
679 		(pr->power.count)++;
680 		memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
681 	}
682 
683 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", pr->power.count));
684 
685 	/* Validate number of power states discovered */
686 	if (pr->power.count < 2)
687 		status = -ENODEV;
688 
689 end:
690 	acpi_os_free(buffer.pointer);
691 
692 	return_VALUE(status);
693 }
694 
695 
696 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
697 {
698 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
699 
700 	if (!cx->address)
701 		return_VOID;
702 
703 	/*
704 	 * C2 latency must be less than or equal to 100
705 	 * microseconds.
706 	 */
707 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
708 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
709 				  "latency too large [%d]\n",
710 				  cx->latency));
711 		return_VOID;
712 	}
713 
714 	/*
715 	 * Otherwise we've met all of our C2 requirements.
716 	 * Normalize the C2 latency to expidite policy
717 	 */
718 	cx->valid = 1;
719 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
720 
721 	return_VOID;
722 }
723 
724 
725 static void acpi_processor_power_verify_c3(
726 	struct acpi_processor *pr,
727 	struct acpi_processor_cx *cx)
728 {
729 	static int bm_check_flag;
730 
731 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
732 
733 	if (!cx->address)
734 		return_VOID;
735 
736 	/*
737 	 * C3 latency must be less than or equal to 1000
738 	 * microseconds.
739 	 */
740 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
741 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
742 				  "latency too large [%d]\n",
743 				  cx->latency));
744 		return_VOID;
745 	}
746 
747 	/*
748 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
749 	 * DMA transfers are used by any ISA device to avoid livelock.
750 	 * Note that we could disable Type-F DMA (as recommended by
751 	 * the erratum), but this is known to disrupt certain ISA
752 	 * devices thus we take the conservative approach.
753 	 */
754 	else if (errata.piix4.fdma) {
755 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
756 			"C3 not supported on PIIX4 with Type-F DMA\n"));
757 		return_VOID;
758 	}
759 
760 	/* All the logic here assumes flags.bm_check is same across all CPUs */
761 	if (!bm_check_flag) {
762 		/* Determine whether bm_check is needed based on CPU  */
763 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
764 		bm_check_flag = pr->flags.bm_check;
765 	} else {
766 		pr->flags.bm_check = bm_check_flag;
767 	}
768 
769 	if (pr->flags.bm_check) {
770 		/* bus mastering control is necessary */
771 		if (!pr->flags.bm_control) {
772 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
773 			  "C3 support requires bus mastering control\n"));
774 			return_VOID;
775 		}
776 	} else {
777 		/*
778 		 * WBINVD should be set in fadt, for C3 state to be
779 		 * supported on when bm_check is not required.
780 		 */
781 		if (acpi_fadt.wb_invd != 1) {
782 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
783 			  "Cache invalidation should work properly"
784 			  " for C3 to be enabled on SMP systems\n"));
785 			return_VOID;
786 		}
787 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
788 				0, ACPI_MTX_DO_NOT_LOCK);
789 	}
790 
791 	/*
792 	 * Otherwise we've met all of our C3 requirements.
793 	 * Normalize the C3 latency to expidite policy.  Enable
794 	 * checking of bus mastering status (bm_check) so we can
795 	 * use this in our C3 policy
796 	 */
797 	cx->valid = 1;
798 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
799 
800 	return_VOID;
801 }
802 
803 
804 static int acpi_processor_power_verify(struct acpi_processor *pr)
805 {
806 	unsigned int i;
807 	unsigned int working = 0;
808 
809 	for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
810 		struct acpi_processor_cx *cx = &pr->power.states[i];
811 
812 		switch (cx->type) {
813 		case ACPI_STATE_C1:
814 			cx->valid = 1;
815 			break;
816 
817 		case ACPI_STATE_C2:
818 			acpi_processor_power_verify_c2(cx);
819 			break;
820 
821 		case ACPI_STATE_C3:
822 			acpi_processor_power_verify_c3(pr, cx);
823 			break;
824 		}
825 
826 		if (cx->valid)
827 			working++;
828 	}
829 
830 	return (working);
831 }
832 
833 static int acpi_processor_get_power_info (
834 	struct acpi_processor	*pr)
835 {
836 	unsigned int i;
837 	int result;
838 
839 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
840 
841 	/* NOTE: the idle thread may not be running while calling
842 	 * this function */
843 
844 	result = acpi_processor_get_power_info_cst(pr);
845 	if ((result) || (acpi_processor_power_verify(pr) < 2)) {
846 		result = acpi_processor_get_power_info_fadt(pr);
847 		if ((result) || (acpi_processor_power_verify(pr) < 2))
848 			result = acpi_processor_get_power_info_default_c1(pr);
849 	}
850 
851 	/*
852 	 * Set Default Policy
853 	 * ------------------
854 	 * Now that we know which states are supported, set the default
855 	 * policy.  Note that this policy can be changed dynamically
856 	 * (e.g. encourage deeper sleeps to conserve battery life when
857 	 * not on AC).
858 	 */
859 	result = acpi_processor_set_power_policy(pr);
860 	if (result)
861 		return_VALUE(result);
862 
863 	/*
864 	 * if one state of type C2 or C3 is available, mark this
865 	 * CPU as being "idle manageable"
866 	 */
867 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
868 		if (pr->power.states[i].valid) {
869 			pr->power.count = i;
870 			pr->flags.power = 1;
871 		}
872 	}
873 
874 	return_VALUE(0);
875 }
876 
877 int acpi_processor_cst_has_changed (struct acpi_processor *pr)
878 {
879  	int			result = 0;
880 
881 	ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
882 
883 	if (!pr)
884  		return_VALUE(-EINVAL);
885 
886 	if ( nocst) {
887 		return_VALUE(-ENODEV);
888 	}
889 
890 	if (!pr->flags.power_setup_done)
891 		return_VALUE(-ENODEV);
892 
893 	/* Fall back to the default idle loop */
894 	pm_idle = pm_idle_save;
895 	synchronize_sched();  /* Relies on interrupts forcing exit from idle. */
896 
897 	pr->flags.power = 0;
898 	result = acpi_processor_get_power_info(pr);
899 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
900 		pm_idle = acpi_processor_idle;
901 
902 	return_VALUE(result);
903 }
904 
905 /* proc interface */
906 
907 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
908 {
909 	struct acpi_processor	*pr = (struct acpi_processor *)seq->private;
910 	unsigned int		i;
911 
912 	ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
913 
914 	if (!pr)
915 		goto end;
916 
917 	seq_printf(seq, "active state:            C%zd\n"
918 			"max_cstate:              C%d\n"
919 			"bus master activity:     %08x\n",
920 			pr->power.state ? pr->power.state - pr->power.states : 0,
921 			max_cstate,
922 			(unsigned)pr->power.bm_activity);
923 
924 	seq_puts(seq, "states:\n");
925 
926 	for (i = 1; i <= pr->power.count; i++) {
927 		seq_printf(seq, "   %cC%d:                  ",
928 			(&pr->power.states[i] == pr->power.state?'*':' '), i);
929 
930 		if (!pr->power.states[i].valid) {
931 			seq_puts(seq, "<not supported>\n");
932 			continue;
933 		}
934 
935 		switch (pr->power.states[i].type) {
936 		case ACPI_STATE_C1:
937 			seq_printf(seq, "type[C1] ");
938 			break;
939 		case ACPI_STATE_C2:
940 			seq_printf(seq, "type[C2] ");
941 			break;
942 		case ACPI_STATE_C3:
943 			seq_printf(seq, "type[C3] ");
944 			break;
945 		default:
946 			seq_printf(seq, "type[--] ");
947 			break;
948 		}
949 
950 		if (pr->power.states[i].promotion.state)
951 			seq_printf(seq, "promotion[C%zd] ",
952 				(pr->power.states[i].promotion.state -
953 				 pr->power.states));
954 		else
955 			seq_puts(seq, "promotion[--] ");
956 
957 		if (pr->power.states[i].demotion.state)
958 			seq_printf(seq, "demotion[C%zd] ",
959 				(pr->power.states[i].demotion.state -
960 				 pr->power.states));
961 		else
962 			seq_puts(seq, "demotion[--] ");
963 
964 		seq_printf(seq, "latency[%03d] usage[%08d]\n",
965 			pr->power.states[i].latency,
966 			pr->power.states[i].usage);
967 	}
968 
969 end:
970 	return_VALUE(0);
971 }
972 
973 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
974 {
975 	return single_open(file, acpi_processor_power_seq_show,
976 						PDE(inode)->data);
977 }
978 
979 static struct file_operations acpi_processor_power_fops = {
980 	.open 		= acpi_processor_power_open_fs,
981 	.read		= seq_read,
982 	.llseek		= seq_lseek,
983 	.release	= single_release,
984 };
985 
986 int acpi_processor_power_init(struct acpi_processor *pr, struct acpi_device *device)
987 {
988 	acpi_status		status = 0;
989 	static int		first_run = 0;
990 	struct proc_dir_entry	*entry = NULL;
991 	unsigned int i;
992 
993 	ACPI_FUNCTION_TRACE("acpi_processor_power_init");
994 
995 	if (!first_run) {
996 		dmi_check_system(processor_power_dmi_table);
997 		if (max_cstate < ACPI_C_STATES_MAX)
998 			printk(KERN_NOTICE "ACPI: processor limited to max C-state %d\n", max_cstate);
999 		first_run++;
1000 	}
1001 
1002 	if (!pr)
1003 		return_VALUE(-EINVAL);
1004 
1005 	if (acpi_fadt.cst_cnt && !nocst) {
1006 		status = acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1007 		if (ACPI_FAILURE(status)) {
1008 			ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1009 					  "Notifying BIOS of _CST ability failed\n"));
1010 		}
1011 	}
1012 
1013 	acpi_processor_power_init_pdc(&(pr->power), pr->id);
1014 	acpi_processor_set_pdc(pr, pr->power.pdc);
1015 	acpi_processor_get_power_info(pr);
1016 
1017 	/*
1018 	 * Install the idle handler if processor power management is supported.
1019 	 * Note that we use previously set idle handler will be used on
1020 	 * platforms that only support C1.
1021 	 */
1022 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1023 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1024 		for (i = 1; i <= pr->power.count; i++)
1025 			if (pr->power.states[i].valid)
1026 				printk(" C%d[C%d]", i, pr->power.states[i].type);
1027 		printk(")\n");
1028 
1029 		if (pr->id == 0) {
1030 			pm_idle_save = pm_idle;
1031 			pm_idle = acpi_processor_idle;
1032 		}
1033 	}
1034 
1035 	/* 'power' [R] */
1036 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1037 		S_IRUGO, acpi_device_dir(device));
1038 	if (!entry)
1039 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1040 			"Unable to create '%s' fs entry\n",
1041 			ACPI_PROCESSOR_FILE_POWER));
1042 	else {
1043 		entry->proc_fops = &acpi_processor_power_fops;
1044 		entry->data = acpi_driver_data(device);
1045 		entry->owner = THIS_MODULE;
1046 	}
1047 
1048 	pr->flags.power_setup_done = 1;
1049 
1050 	return_VALUE(0);
1051 }
1052 
1053 int acpi_processor_power_exit(struct acpi_processor *pr, struct acpi_device *device)
1054 {
1055 	ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1056 
1057 	pr->flags.power_setup_done = 0;
1058 
1059 	if (acpi_device_dir(device))
1060 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device));
1061 
1062 	/* Unregister the idle handler when processor #0 is removed. */
1063 	if (pr->id == 0) {
1064 		pm_idle = pm_idle_save;
1065 
1066 		/*
1067 		 * We are about to unload the current idle thread pm callback
1068 		 * (pm_idle), Wait for all processors to update cached/local
1069 		 * copies of pm_idle before proceeding.
1070 		 */
1071 		cpu_idle_wait();
1072 	}
1073 
1074 	return_VALUE(0);
1075 }
1076