xref: /linux/drivers/acpi/nfit/core.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/pmem.h>
24 #include <linux/io.h>
25 #include <linux/nd.h>
26 #include <asm/cacheflush.h>
27 #include "nfit.h"
28 
29 /*
30  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31  * irrelevant.
32  */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34 
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38 
39 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
40 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
41 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
42 
43 /* after three payloads of overflow, it's dead jim */
44 static unsigned int scrub_overflow_abort = 3;
45 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
46 MODULE_PARM_DESC(scrub_overflow_abort,
47 		"Number of times we overflow ARS results before abort");
48 
49 static bool disable_vendor_specific;
50 module_param(disable_vendor_specific, bool, S_IRUGO);
51 MODULE_PARM_DESC(disable_vendor_specific,
52 		"Limit commands to the publicly specified set\n");
53 
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56 
57 static struct workqueue_struct *nfit_wq;
58 
59 struct nfit_table_prev {
60 	struct list_head spas;
61 	struct list_head memdevs;
62 	struct list_head dcrs;
63 	struct list_head bdws;
64 	struct list_head idts;
65 	struct list_head flushes;
66 };
67 
68 static u8 nfit_uuid[NFIT_UUID_MAX][16];
69 
70 const u8 *to_nfit_uuid(enum nfit_uuids id)
71 {
72 	return nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75 
76 static struct acpi_nfit_desc *to_acpi_nfit_desc(
77 		struct nvdimm_bus_descriptor *nd_desc)
78 {
79 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
80 }
81 
82 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
83 {
84 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
85 
86 	/*
87 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
88 	 * acpi_device.
89 	 */
90 	if (!nd_desc->provider_name
91 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
92 		return NULL;
93 
94 	return to_acpi_device(acpi_desc->dev);
95 }
96 
97 static int xlat_status(void *buf, unsigned int cmd, u32 status)
98 {
99 	struct nd_cmd_clear_error *clear_err;
100 	struct nd_cmd_ars_status *ars_status;
101 	u16 flags;
102 
103 	switch (cmd) {
104 	case ND_CMD_ARS_CAP:
105 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
106 			return -ENOTTY;
107 
108 		/* Command failed */
109 		if (status & 0xffff)
110 			return -EIO;
111 
112 		/* No supported scan types for this range */
113 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
114 		if ((status >> 16 & flags) == 0)
115 			return -ENOTTY;
116 		break;
117 	case ND_CMD_ARS_START:
118 		/* ARS is in progress */
119 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
120 			return -EBUSY;
121 
122 		/* Command failed */
123 		if (status & 0xffff)
124 			return -EIO;
125 		break;
126 	case ND_CMD_ARS_STATUS:
127 		ars_status = buf;
128 		/* Command failed */
129 		if (status & 0xffff)
130 			return -EIO;
131 		/* Check extended status (Upper two bytes) */
132 		if (status == NFIT_ARS_STATUS_DONE)
133 			return 0;
134 
135 		/* ARS is in progress */
136 		if (status == NFIT_ARS_STATUS_BUSY)
137 			return -EBUSY;
138 
139 		/* No ARS performed for the current boot */
140 		if (status == NFIT_ARS_STATUS_NONE)
141 			return -EAGAIN;
142 
143 		/*
144 		 * ARS interrupted, either we overflowed or some other
145 		 * agent wants the scan to stop.  If we didn't overflow
146 		 * then just continue with the returned results.
147 		 */
148 		if (status == NFIT_ARS_STATUS_INTR) {
149 			if (ars_status->flags & NFIT_ARS_F_OVERFLOW)
150 				return -ENOSPC;
151 			return 0;
152 		}
153 
154 		/* Unknown status */
155 		if (status >> 16)
156 			return -EIO;
157 		break;
158 	case ND_CMD_CLEAR_ERROR:
159 		clear_err = buf;
160 		if (status & 0xffff)
161 			return -EIO;
162 		if (!clear_err->cleared)
163 			return -EIO;
164 		if (clear_err->length > clear_err->cleared)
165 			return clear_err->cleared;
166 		break;
167 	default:
168 		break;
169 	}
170 
171 	/* all other non-zero status results in an error */
172 	if (status)
173 		return -EIO;
174 	return 0;
175 }
176 
177 static int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc,
178 		struct nvdimm *nvdimm, unsigned int cmd, void *buf,
179 		unsigned int buf_len, int *cmd_rc)
180 {
181 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
182 	union acpi_object in_obj, in_buf, *out_obj;
183 	const struct nd_cmd_desc *desc = NULL;
184 	struct device *dev = acpi_desc->dev;
185 	struct nd_cmd_pkg *call_pkg = NULL;
186 	const char *cmd_name, *dimm_name;
187 	unsigned long cmd_mask, dsm_mask;
188 	u32 offset, fw_status = 0;
189 	acpi_handle handle;
190 	unsigned int func;
191 	const u8 *uuid;
192 	int rc, i;
193 
194 	func = cmd;
195 	if (cmd == ND_CMD_CALL) {
196 		call_pkg = buf;
197 		func = call_pkg->nd_command;
198 	}
199 
200 	if (nvdimm) {
201 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
202 		struct acpi_device *adev = nfit_mem->adev;
203 
204 		if (!adev)
205 			return -ENOTTY;
206 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
207 			return -ENOTTY;
208 
209 		dimm_name = nvdimm_name(nvdimm);
210 		cmd_name = nvdimm_cmd_name(cmd);
211 		cmd_mask = nvdimm_cmd_mask(nvdimm);
212 		dsm_mask = nfit_mem->dsm_mask;
213 		desc = nd_cmd_dimm_desc(cmd);
214 		uuid = to_nfit_uuid(nfit_mem->family);
215 		handle = adev->handle;
216 	} else {
217 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
218 
219 		cmd_name = nvdimm_bus_cmd_name(cmd);
220 		cmd_mask = nd_desc->cmd_mask;
221 		dsm_mask = cmd_mask;
222 		desc = nd_cmd_bus_desc(cmd);
223 		uuid = to_nfit_uuid(NFIT_DEV_BUS);
224 		handle = adev->handle;
225 		dimm_name = "bus";
226 	}
227 
228 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
229 		return -ENOTTY;
230 
231 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
232 		return -ENOTTY;
233 
234 	in_obj.type = ACPI_TYPE_PACKAGE;
235 	in_obj.package.count = 1;
236 	in_obj.package.elements = &in_buf;
237 	in_buf.type = ACPI_TYPE_BUFFER;
238 	in_buf.buffer.pointer = buf;
239 	in_buf.buffer.length = 0;
240 
241 	/* libnvdimm has already validated the input envelope */
242 	for (i = 0; i < desc->in_num; i++)
243 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
244 				i, buf);
245 
246 	if (call_pkg) {
247 		/* skip over package wrapper */
248 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
249 		in_buf.buffer.length = call_pkg->nd_size_in;
250 	}
251 
252 	if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
253 		dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
254 				__func__, dimm_name, cmd, func,
255 				in_buf.buffer.length);
256 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
257 			in_buf.buffer.pointer,
258 			min_t(u32, 256, in_buf.buffer.length), true);
259 	}
260 
261 	out_obj = acpi_evaluate_dsm(handle, uuid, 1, func, &in_obj);
262 	if (!out_obj) {
263 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
264 				cmd_name);
265 		return -EINVAL;
266 	}
267 
268 	if (call_pkg) {
269 		call_pkg->nd_fw_size = out_obj->buffer.length;
270 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
271 			out_obj->buffer.pointer,
272 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
273 
274 		ACPI_FREE(out_obj);
275 		/*
276 		 * Need to support FW function w/o known size in advance.
277 		 * Caller can determine required size based upon nd_fw_size.
278 		 * If we return an error (like elsewhere) then caller wouldn't
279 		 * be able to rely upon data returned to make calculation.
280 		 */
281 		return 0;
282 	}
283 
284 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
285 		dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
286 				__func__, dimm_name, cmd_name, out_obj->type);
287 		rc = -EINVAL;
288 		goto out;
289 	}
290 
291 	if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
292 		dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__,
293 				dimm_name, cmd_name, out_obj->buffer.length);
294 		print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
295 				4, out_obj->buffer.pointer, min_t(u32, 128,
296 					out_obj->buffer.length), true);
297 	}
298 
299 	for (i = 0, offset = 0; i < desc->out_num; i++) {
300 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
301 				(u32 *) out_obj->buffer.pointer);
302 
303 		if (offset + out_size > out_obj->buffer.length) {
304 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
305 					__func__, dimm_name, cmd_name, i);
306 			break;
307 		}
308 
309 		if (in_buf.buffer.length + offset + out_size > buf_len) {
310 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
311 					__func__, dimm_name, cmd_name, i);
312 			rc = -ENXIO;
313 			goto out;
314 		}
315 		memcpy(buf + in_buf.buffer.length + offset,
316 				out_obj->buffer.pointer + offset, out_size);
317 		offset += out_size;
318 	}
319 
320 	/*
321 	 * Set fw_status for all the commands with a known format to be
322 	 * later interpreted by xlat_status().
323 	 */
324 	if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
325 			|| (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
326 		fw_status = *(u32 *) out_obj->buffer.pointer;
327 
328 	if (offset + in_buf.buffer.length < buf_len) {
329 		if (i >= 1) {
330 			/*
331 			 * status valid, return the number of bytes left
332 			 * unfilled in the output buffer
333 			 */
334 			rc = buf_len - offset - in_buf.buffer.length;
335 			if (cmd_rc)
336 				*cmd_rc = xlat_status(buf, cmd, fw_status);
337 		} else {
338 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
339 					__func__, dimm_name, cmd_name, buf_len,
340 					offset);
341 			rc = -ENXIO;
342 		}
343 	} else {
344 		rc = 0;
345 		if (cmd_rc)
346 			*cmd_rc = xlat_status(buf, cmd, fw_status);
347 	}
348 
349  out:
350 	ACPI_FREE(out_obj);
351 
352 	return rc;
353 }
354 
355 static const char *spa_type_name(u16 type)
356 {
357 	static const char *to_name[] = {
358 		[NFIT_SPA_VOLATILE] = "volatile",
359 		[NFIT_SPA_PM] = "pmem",
360 		[NFIT_SPA_DCR] = "dimm-control-region",
361 		[NFIT_SPA_BDW] = "block-data-window",
362 		[NFIT_SPA_VDISK] = "volatile-disk",
363 		[NFIT_SPA_VCD] = "volatile-cd",
364 		[NFIT_SPA_PDISK] = "persistent-disk",
365 		[NFIT_SPA_PCD] = "persistent-cd",
366 
367 	};
368 
369 	if (type > NFIT_SPA_PCD)
370 		return "unknown";
371 
372 	return to_name[type];
373 }
374 
375 int nfit_spa_type(struct acpi_nfit_system_address *spa)
376 {
377 	int i;
378 
379 	for (i = 0; i < NFIT_UUID_MAX; i++)
380 		if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0)
381 			return i;
382 	return -1;
383 }
384 
385 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
386 		struct nfit_table_prev *prev,
387 		struct acpi_nfit_system_address *spa)
388 {
389 	struct device *dev = acpi_desc->dev;
390 	struct nfit_spa *nfit_spa;
391 
392 	if (spa->header.length != sizeof(*spa))
393 		return false;
394 
395 	list_for_each_entry(nfit_spa, &prev->spas, list) {
396 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
397 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
398 			return true;
399 		}
400 	}
401 
402 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
403 			GFP_KERNEL);
404 	if (!nfit_spa)
405 		return false;
406 	INIT_LIST_HEAD(&nfit_spa->list);
407 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
408 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
409 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
410 			spa->range_index,
411 			spa_type_name(nfit_spa_type(spa)));
412 	return true;
413 }
414 
415 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
416 		struct nfit_table_prev *prev,
417 		struct acpi_nfit_memory_map *memdev)
418 {
419 	struct device *dev = acpi_desc->dev;
420 	struct nfit_memdev *nfit_memdev;
421 
422 	if (memdev->header.length != sizeof(*memdev))
423 		return false;
424 
425 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
426 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
427 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
428 			return true;
429 		}
430 
431 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
432 			GFP_KERNEL);
433 	if (!nfit_memdev)
434 		return false;
435 	INIT_LIST_HEAD(&nfit_memdev->list);
436 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
437 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
438 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n",
439 			__func__, memdev->device_handle, memdev->range_index,
440 			memdev->region_index);
441 	return true;
442 }
443 
444 /*
445  * An implementation may provide a truncated control region if no block windows
446  * are defined.
447  */
448 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
449 {
450 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
451 				window_size))
452 		return 0;
453 	if (dcr->windows)
454 		return sizeof(*dcr);
455 	return offsetof(struct acpi_nfit_control_region, window_size);
456 }
457 
458 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
459 		struct nfit_table_prev *prev,
460 		struct acpi_nfit_control_region *dcr)
461 {
462 	struct device *dev = acpi_desc->dev;
463 	struct nfit_dcr *nfit_dcr;
464 
465 	if (!sizeof_dcr(dcr))
466 		return false;
467 
468 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
469 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
470 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
471 			return true;
472 		}
473 
474 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
475 			GFP_KERNEL);
476 	if (!nfit_dcr)
477 		return false;
478 	INIT_LIST_HEAD(&nfit_dcr->list);
479 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
480 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
481 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
482 			dcr->region_index, dcr->windows);
483 	return true;
484 }
485 
486 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
487 		struct nfit_table_prev *prev,
488 		struct acpi_nfit_data_region *bdw)
489 {
490 	struct device *dev = acpi_desc->dev;
491 	struct nfit_bdw *nfit_bdw;
492 
493 	if (bdw->header.length != sizeof(*bdw))
494 		return false;
495 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
496 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
497 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
498 			return true;
499 		}
500 
501 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
502 			GFP_KERNEL);
503 	if (!nfit_bdw)
504 		return false;
505 	INIT_LIST_HEAD(&nfit_bdw->list);
506 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
507 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
508 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
509 			bdw->region_index, bdw->windows);
510 	return true;
511 }
512 
513 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
514 {
515 	if (idt->header.length < sizeof(*idt))
516 		return 0;
517 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
518 }
519 
520 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
521 		struct nfit_table_prev *prev,
522 		struct acpi_nfit_interleave *idt)
523 {
524 	struct device *dev = acpi_desc->dev;
525 	struct nfit_idt *nfit_idt;
526 
527 	if (!sizeof_idt(idt))
528 		return false;
529 
530 	list_for_each_entry(nfit_idt, &prev->idts, list) {
531 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
532 			continue;
533 
534 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
535 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
536 			return true;
537 		}
538 	}
539 
540 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
541 			GFP_KERNEL);
542 	if (!nfit_idt)
543 		return false;
544 	INIT_LIST_HEAD(&nfit_idt->list);
545 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
546 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
547 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
548 			idt->interleave_index, idt->line_count);
549 	return true;
550 }
551 
552 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
553 {
554 	if (flush->header.length < sizeof(*flush))
555 		return 0;
556 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
557 }
558 
559 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
560 		struct nfit_table_prev *prev,
561 		struct acpi_nfit_flush_address *flush)
562 {
563 	struct device *dev = acpi_desc->dev;
564 	struct nfit_flush *nfit_flush;
565 
566 	if (!sizeof_flush(flush))
567 		return false;
568 
569 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
570 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
571 			continue;
572 
573 		if (memcmp(nfit_flush->flush, flush,
574 					sizeof_flush(flush)) == 0) {
575 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
576 			return true;
577 		}
578 	}
579 
580 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
581 			+ sizeof_flush(flush), GFP_KERNEL);
582 	if (!nfit_flush)
583 		return false;
584 	INIT_LIST_HEAD(&nfit_flush->list);
585 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
586 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
587 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
588 			flush->device_handle, flush->hint_count);
589 	return true;
590 }
591 
592 static void *add_table(struct acpi_nfit_desc *acpi_desc,
593 		struct nfit_table_prev *prev, void *table, const void *end)
594 {
595 	struct device *dev = acpi_desc->dev;
596 	struct acpi_nfit_header *hdr;
597 	void *err = ERR_PTR(-ENOMEM);
598 
599 	if (table >= end)
600 		return NULL;
601 
602 	hdr = table;
603 	if (!hdr->length) {
604 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
605 			hdr->type);
606 		return NULL;
607 	}
608 
609 	switch (hdr->type) {
610 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
611 		if (!add_spa(acpi_desc, prev, table))
612 			return err;
613 		break;
614 	case ACPI_NFIT_TYPE_MEMORY_MAP:
615 		if (!add_memdev(acpi_desc, prev, table))
616 			return err;
617 		break;
618 	case ACPI_NFIT_TYPE_CONTROL_REGION:
619 		if (!add_dcr(acpi_desc, prev, table))
620 			return err;
621 		break;
622 	case ACPI_NFIT_TYPE_DATA_REGION:
623 		if (!add_bdw(acpi_desc, prev, table))
624 			return err;
625 		break;
626 	case ACPI_NFIT_TYPE_INTERLEAVE:
627 		if (!add_idt(acpi_desc, prev, table))
628 			return err;
629 		break;
630 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
631 		if (!add_flush(acpi_desc, prev, table))
632 			return err;
633 		break;
634 	case ACPI_NFIT_TYPE_SMBIOS:
635 		dev_dbg(dev, "%s: smbios\n", __func__);
636 		break;
637 	default:
638 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
639 		break;
640 	}
641 
642 	return table + hdr->length;
643 }
644 
645 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
646 		struct nfit_mem *nfit_mem)
647 {
648 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
649 	u16 dcr = nfit_mem->dcr->region_index;
650 	struct nfit_spa *nfit_spa;
651 
652 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
653 		u16 range_index = nfit_spa->spa->range_index;
654 		int type = nfit_spa_type(nfit_spa->spa);
655 		struct nfit_memdev *nfit_memdev;
656 
657 		if (type != NFIT_SPA_BDW)
658 			continue;
659 
660 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
661 			if (nfit_memdev->memdev->range_index != range_index)
662 				continue;
663 			if (nfit_memdev->memdev->device_handle != device_handle)
664 				continue;
665 			if (nfit_memdev->memdev->region_index != dcr)
666 				continue;
667 
668 			nfit_mem->spa_bdw = nfit_spa->spa;
669 			return;
670 		}
671 	}
672 
673 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
674 			nfit_mem->spa_dcr->range_index);
675 	nfit_mem->bdw = NULL;
676 }
677 
678 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
679 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
680 {
681 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
682 	struct nfit_memdev *nfit_memdev;
683 	struct nfit_bdw *nfit_bdw;
684 	struct nfit_idt *nfit_idt;
685 	u16 idt_idx, range_index;
686 
687 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
688 		if (nfit_bdw->bdw->region_index != dcr)
689 			continue;
690 		nfit_mem->bdw = nfit_bdw->bdw;
691 		break;
692 	}
693 
694 	if (!nfit_mem->bdw)
695 		return;
696 
697 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
698 
699 	if (!nfit_mem->spa_bdw)
700 		return;
701 
702 	range_index = nfit_mem->spa_bdw->range_index;
703 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
704 		if (nfit_memdev->memdev->range_index != range_index ||
705 				nfit_memdev->memdev->region_index != dcr)
706 			continue;
707 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
708 		idt_idx = nfit_memdev->memdev->interleave_index;
709 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
710 			if (nfit_idt->idt->interleave_index != idt_idx)
711 				continue;
712 			nfit_mem->idt_bdw = nfit_idt->idt;
713 			break;
714 		}
715 		break;
716 	}
717 }
718 
719 static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc,
720 		struct acpi_nfit_system_address *spa)
721 {
722 	struct nfit_mem *nfit_mem, *found;
723 	struct nfit_memdev *nfit_memdev;
724 	int type = nfit_spa_type(spa);
725 
726 	switch (type) {
727 	case NFIT_SPA_DCR:
728 	case NFIT_SPA_PM:
729 		break;
730 	default:
731 		return 0;
732 	}
733 
734 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
735 		struct nfit_flush *nfit_flush;
736 		struct nfit_dcr *nfit_dcr;
737 		u32 device_handle;
738 		u16 dcr;
739 
740 		if (nfit_memdev->memdev->range_index != spa->range_index)
741 			continue;
742 		found = NULL;
743 		dcr = nfit_memdev->memdev->region_index;
744 		device_handle = nfit_memdev->memdev->device_handle;
745 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
746 			if (__to_nfit_memdev(nfit_mem)->device_handle
747 					== device_handle) {
748 				found = nfit_mem;
749 				break;
750 			}
751 
752 		if (found)
753 			nfit_mem = found;
754 		else {
755 			nfit_mem = devm_kzalloc(acpi_desc->dev,
756 					sizeof(*nfit_mem), GFP_KERNEL);
757 			if (!nfit_mem)
758 				return -ENOMEM;
759 			INIT_LIST_HEAD(&nfit_mem->list);
760 			nfit_mem->acpi_desc = acpi_desc;
761 			list_add(&nfit_mem->list, &acpi_desc->dimms);
762 		}
763 
764 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
765 			if (nfit_dcr->dcr->region_index != dcr)
766 				continue;
767 			/*
768 			 * Record the control region for the dimm.  For
769 			 * the ACPI 6.1 case, where there are separate
770 			 * control regions for the pmem vs blk
771 			 * interfaces, be sure to record the extended
772 			 * blk details.
773 			 */
774 			if (!nfit_mem->dcr)
775 				nfit_mem->dcr = nfit_dcr->dcr;
776 			else if (nfit_mem->dcr->windows == 0
777 					&& nfit_dcr->dcr->windows)
778 				nfit_mem->dcr = nfit_dcr->dcr;
779 			break;
780 		}
781 
782 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
783 			struct acpi_nfit_flush_address *flush;
784 			u16 i;
785 
786 			if (nfit_flush->flush->device_handle != device_handle)
787 				continue;
788 			nfit_mem->nfit_flush = nfit_flush;
789 			flush = nfit_flush->flush;
790 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
791 					flush->hint_count
792 					* sizeof(struct resource), GFP_KERNEL);
793 			if (!nfit_mem->flush_wpq)
794 				return -ENOMEM;
795 			for (i = 0; i < flush->hint_count; i++) {
796 				struct resource *res = &nfit_mem->flush_wpq[i];
797 
798 				res->start = flush->hint_address[i];
799 				res->end = res->start + 8 - 1;
800 			}
801 			break;
802 		}
803 
804 		if (dcr && !nfit_mem->dcr) {
805 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
806 					spa->range_index, dcr);
807 			return -ENODEV;
808 		}
809 
810 		if (type == NFIT_SPA_DCR) {
811 			struct nfit_idt *nfit_idt;
812 			u16 idt_idx;
813 
814 			/* multiple dimms may share a SPA when interleaved */
815 			nfit_mem->spa_dcr = spa;
816 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
817 			idt_idx = nfit_memdev->memdev->interleave_index;
818 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
819 				if (nfit_idt->idt->interleave_index != idt_idx)
820 					continue;
821 				nfit_mem->idt_dcr = nfit_idt->idt;
822 				break;
823 			}
824 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
825 		} else {
826 			/*
827 			 * A single dimm may belong to multiple SPA-PM
828 			 * ranges, record at least one in addition to
829 			 * any SPA-DCR range.
830 			 */
831 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
832 		}
833 	}
834 
835 	return 0;
836 }
837 
838 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
839 {
840 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
841 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
842 	u32 handleA, handleB;
843 
844 	handleA = __to_nfit_memdev(a)->device_handle;
845 	handleB = __to_nfit_memdev(b)->device_handle;
846 	if (handleA < handleB)
847 		return -1;
848 	else if (handleA > handleB)
849 		return 1;
850 	return 0;
851 }
852 
853 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
854 {
855 	struct nfit_spa *nfit_spa;
856 
857 	/*
858 	 * For each SPA-DCR or SPA-PMEM address range find its
859 	 * corresponding MEMDEV(s).  From each MEMDEV find the
860 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
861 	 * try to find a SPA-BDW and a corresponding BDW that references
862 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
863 	 * BDWs are optional.
864 	 */
865 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
866 		int rc;
867 
868 		rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa);
869 		if (rc)
870 			return rc;
871 	}
872 
873 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
874 
875 	return 0;
876 }
877 
878 static ssize_t revision_show(struct device *dev,
879 		struct device_attribute *attr, char *buf)
880 {
881 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
882 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
883 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
884 
885 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
886 }
887 static DEVICE_ATTR_RO(revision);
888 
889 /*
890  * This shows the number of full Address Range Scrubs that have been
891  * completed since driver load time. Userspace can wait on this using
892  * select/poll etc. A '+' at the end indicates an ARS is in progress
893  */
894 static ssize_t scrub_show(struct device *dev,
895 		struct device_attribute *attr, char *buf)
896 {
897 	struct nvdimm_bus_descriptor *nd_desc;
898 	ssize_t rc = -ENXIO;
899 
900 	device_lock(dev);
901 	nd_desc = dev_get_drvdata(dev);
902 	if (nd_desc) {
903 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
904 
905 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
906 				(work_busy(&acpi_desc->work)) ? "+\n" : "\n");
907 	}
908 	device_unlock(dev);
909 	return rc;
910 }
911 
912 static ssize_t scrub_store(struct device *dev,
913 		struct device_attribute *attr, const char *buf, size_t size)
914 {
915 	struct nvdimm_bus_descriptor *nd_desc;
916 	ssize_t rc;
917 	long val;
918 
919 	rc = kstrtol(buf, 0, &val);
920 	if (rc)
921 		return rc;
922 	if (val != 1)
923 		return -EINVAL;
924 
925 	device_lock(dev);
926 	nd_desc = dev_get_drvdata(dev);
927 	if (nd_desc) {
928 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
929 
930 		rc = acpi_nfit_ars_rescan(acpi_desc);
931 	}
932 	device_unlock(dev);
933 	if (rc)
934 		return rc;
935 	return size;
936 }
937 static DEVICE_ATTR_RW(scrub);
938 
939 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
940 {
941 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
942 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
943 		| 1 << ND_CMD_ARS_STATUS;
944 
945 	return (nd_desc->cmd_mask & mask) == mask;
946 }
947 
948 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
949 {
950 	struct device *dev = container_of(kobj, struct device, kobj);
951 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
952 
953 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
954 		return 0;
955 	return a->mode;
956 }
957 
958 static struct attribute *acpi_nfit_attributes[] = {
959 	&dev_attr_revision.attr,
960 	&dev_attr_scrub.attr,
961 	NULL,
962 };
963 
964 static struct attribute_group acpi_nfit_attribute_group = {
965 	.name = "nfit",
966 	.attrs = acpi_nfit_attributes,
967 	.is_visible = nfit_visible,
968 };
969 
970 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
971 	&nvdimm_bus_attribute_group,
972 	&acpi_nfit_attribute_group,
973 	NULL,
974 };
975 
976 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
977 {
978 	struct nvdimm *nvdimm = to_nvdimm(dev);
979 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
980 
981 	return __to_nfit_memdev(nfit_mem);
982 }
983 
984 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
985 {
986 	struct nvdimm *nvdimm = to_nvdimm(dev);
987 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
988 
989 	return nfit_mem->dcr;
990 }
991 
992 static ssize_t handle_show(struct device *dev,
993 		struct device_attribute *attr, char *buf)
994 {
995 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
996 
997 	return sprintf(buf, "%#x\n", memdev->device_handle);
998 }
999 static DEVICE_ATTR_RO(handle);
1000 
1001 static ssize_t phys_id_show(struct device *dev,
1002 		struct device_attribute *attr, char *buf)
1003 {
1004 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1005 
1006 	return sprintf(buf, "%#x\n", memdev->physical_id);
1007 }
1008 static DEVICE_ATTR_RO(phys_id);
1009 
1010 static ssize_t vendor_show(struct device *dev,
1011 		struct device_attribute *attr, char *buf)
1012 {
1013 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1014 
1015 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1016 }
1017 static DEVICE_ATTR_RO(vendor);
1018 
1019 static ssize_t rev_id_show(struct device *dev,
1020 		struct device_attribute *attr, char *buf)
1021 {
1022 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1023 
1024 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1025 }
1026 static DEVICE_ATTR_RO(rev_id);
1027 
1028 static ssize_t device_show(struct device *dev,
1029 		struct device_attribute *attr, char *buf)
1030 {
1031 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1032 
1033 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1034 }
1035 static DEVICE_ATTR_RO(device);
1036 
1037 static ssize_t subsystem_vendor_show(struct device *dev,
1038 		struct device_attribute *attr, char *buf)
1039 {
1040 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1041 
1042 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1043 }
1044 static DEVICE_ATTR_RO(subsystem_vendor);
1045 
1046 static ssize_t subsystem_rev_id_show(struct device *dev,
1047 		struct device_attribute *attr, char *buf)
1048 {
1049 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1050 
1051 	return sprintf(buf, "0x%04x\n",
1052 			be16_to_cpu(dcr->subsystem_revision_id));
1053 }
1054 static DEVICE_ATTR_RO(subsystem_rev_id);
1055 
1056 static ssize_t subsystem_device_show(struct device *dev,
1057 		struct device_attribute *attr, char *buf)
1058 {
1059 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1060 
1061 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1062 }
1063 static DEVICE_ATTR_RO(subsystem_device);
1064 
1065 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1066 {
1067 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1068 	int formats = 0;
1069 
1070 	if (nfit_mem->memdev_pmem)
1071 		formats++;
1072 	if (nfit_mem->memdev_bdw)
1073 		formats++;
1074 	return formats;
1075 }
1076 
1077 static ssize_t format_show(struct device *dev,
1078 		struct device_attribute *attr, char *buf)
1079 {
1080 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1081 
1082 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1083 }
1084 static DEVICE_ATTR_RO(format);
1085 
1086 static ssize_t format1_show(struct device *dev,
1087 		struct device_attribute *attr, char *buf)
1088 {
1089 	u32 handle;
1090 	ssize_t rc = -ENXIO;
1091 	struct nfit_mem *nfit_mem;
1092 	struct nfit_memdev *nfit_memdev;
1093 	struct acpi_nfit_desc *acpi_desc;
1094 	struct nvdimm *nvdimm = to_nvdimm(dev);
1095 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1096 
1097 	nfit_mem = nvdimm_provider_data(nvdimm);
1098 	acpi_desc = nfit_mem->acpi_desc;
1099 	handle = to_nfit_memdev(dev)->device_handle;
1100 
1101 	/* assumes DIMMs have at most 2 published interface codes */
1102 	mutex_lock(&acpi_desc->init_mutex);
1103 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1104 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1105 		struct nfit_dcr *nfit_dcr;
1106 
1107 		if (memdev->device_handle != handle)
1108 			continue;
1109 
1110 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1111 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1112 				continue;
1113 			if (nfit_dcr->dcr->code == dcr->code)
1114 				continue;
1115 			rc = sprintf(buf, "0x%04x\n",
1116 					le16_to_cpu(nfit_dcr->dcr->code));
1117 			break;
1118 		}
1119 		if (rc != ENXIO)
1120 			break;
1121 	}
1122 	mutex_unlock(&acpi_desc->init_mutex);
1123 	return rc;
1124 }
1125 static DEVICE_ATTR_RO(format1);
1126 
1127 static ssize_t formats_show(struct device *dev,
1128 		struct device_attribute *attr, char *buf)
1129 {
1130 	struct nvdimm *nvdimm = to_nvdimm(dev);
1131 
1132 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1133 }
1134 static DEVICE_ATTR_RO(formats);
1135 
1136 static ssize_t serial_show(struct device *dev,
1137 		struct device_attribute *attr, char *buf)
1138 {
1139 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1140 
1141 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1142 }
1143 static DEVICE_ATTR_RO(serial);
1144 
1145 static ssize_t family_show(struct device *dev,
1146 		struct device_attribute *attr, char *buf)
1147 {
1148 	struct nvdimm *nvdimm = to_nvdimm(dev);
1149 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1150 
1151 	if (nfit_mem->family < 0)
1152 		return -ENXIO;
1153 	return sprintf(buf, "%d\n", nfit_mem->family);
1154 }
1155 static DEVICE_ATTR_RO(family);
1156 
1157 static ssize_t dsm_mask_show(struct device *dev,
1158 		struct device_attribute *attr, char *buf)
1159 {
1160 	struct nvdimm *nvdimm = to_nvdimm(dev);
1161 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1162 
1163 	if (nfit_mem->family < 0)
1164 		return -ENXIO;
1165 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1166 }
1167 static DEVICE_ATTR_RO(dsm_mask);
1168 
1169 static ssize_t flags_show(struct device *dev,
1170 		struct device_attribute *attr, char *buf)
1171 {
1172 	u16 flags = to_nfit_memdev(dev)->flags;
1173 
1174 	return sprintf(buf, "%s%s%s%s%s\n",
1175 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1176 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1177 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1178 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1179 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "");
1180 }
1181 static DEVICE_ATTR_RO(flags);
1182 
1183 static ssize_t id_show(struct device *dev,
1184 		struct device_attribute *attr, char *buf)
1185 {
1186 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1187 
1188 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1189 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1190 				be16_to_cpu(dcr->vendor_id),
1191 				dcr->manufacturing_location,
1192 				be16_to_cpu(dcr->manufacturing_date),
1193 				be32_to_cpu(dcr->serial_number));
1194 	else
1195 		return sprintf(buf, "%04x-%08x\n",
1196 				be16_to_cpu(dcr->vendor_id),
1197 				be32_to_cpu(dcr->serial_number));
1198 }
1199 static DEVICE_ATTR_RO(id);
1200 
1201 static struct attribute *acpi_nfit_dimm_attributes[] = {
1202 	&dev_attr_handle.attr,
1203 	&dev_attr_phys_id.attr,
1204 	&dev_attr_vendor.attr,
1205 	&dev_attr_device.attr,
1206 	&dev_attr_rev_id.attr,
1207 	&dev_attr_subsystem_vendor.attr,
1208 	&dev_attr_subsystem_device.attr,
1209 	&dev_attr_subsystem_rev_id.attr,
1210 	&dev_attr_format.attr,
1211 	&dev_attr_formats.attr,
1212 	&dev_attr_format1.attr,
1213 	&dev_attr_serial.attr,
1214 	&dev_attr_flags.attr,
1215 	&dev_attr_id.attr,
1216 	&dev_attr_family.attr,
1217 	&dev_attr_dsm_mask.attr,
1218 	NULL,
1219 };
1220 
1221 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1222 		struct attribute *a, int n)
1223 {
1224 	struct device *dev = container_of(kobj, struct device, kobj);
1225 	struct nvdimm *nvdimm = to_nvdimm(dev);
1226 
1227 	if (!to_nfit_dcr(dev))
1228 		return 0;
1229 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1230 		return 0;
1231 	return a->mode;
1232 }
1233 
1234 static struct attribute_group acpi_nfit_dimm_attribute_group = {
1235 	.name = "nfit",
1236 	.attrs = acpi_nfit_dimm_attributes,
1237 	.is_visible = acpi_nfit_dimm_attr_visible,
1238 };
1239 
1240 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1241 	&nvdimm_attribute_group,
1242 	&nd_device_attribute_group,
1243 	&acpi_nfit_dimm_attribute_group,
1244 	NULL,
1245 };
1246 
1247 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1248 		u32 device_handle)
1249 {
1250 	struct nfit_mem *nfit_mem;
1251 
1252 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1253 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1254 			return nfit_mem->nvdimm;
1255 
1256 	return NULL;
1257 }
1258 
1259 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1260 		struct nfit_mem *nfit_mem, u32 device_handle)
1261 {
1262 	struct acpi_device *adev, *adev_dimm;
1263 	struct device *dev = acpi_desc->dev;
1264 	unsigned long dsm_mask;
1265 	const u8 *uuid;
1266 	int i;
1267 
1268 	/* nfit test assumes 1:1 relationship between commands and dsms */
1269 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1270 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1271 	adev = to_acpi_dev(acpi_desc);
1272 	if (!adev)
1273 		return 0;
1274 
1275 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1276 	nfit_mem->adev = adev_dimm;
1277 	if (!adev_dimm) {
1278 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1279 				device_handle);
1280 		return force_enable_dimms ? 0 : -ENODEV;
1281 	}
1282 
1283 	/*
1284 	 * Until standardization materializes we need to consider 4
1285 	 * different command sets.  Note, that checking for function0 (bit0)
1286 	 * tells us if any commands are reachable through this uuid.
1287 	 */
1288 	for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1289 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1290 			break;
1291 
1292 	/* limit the supported commands to those that are publicly documented */
1293 	nfit_mem->family = i;
1294 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1295 		dsm_mask = 0x3fe;
1296 		if (disable_vendor_specific)
1297 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1298 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1299 		dsm_mask = 0x1c3c76;
1300 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1301 		dsm_mask = 0x1fe;
1302 		if (disable_vendor_specific)
1303 			dsm_mask &= ~(1 << 8);
1304 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1305 		dsm_mask = 0xffffffff;
1306 	} else {
1307 		dev_dbg(dev, "unknown dimm command family\n");
1308 		nfit_mem->family = -1;
1309 		/* DSMs are optional, continue loading the driver... */
1310 		return 0;
1311 	}
1312 
1313 	uuid = to_nfit_uuid(nfit_mem->family);
1314 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1315 		if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i))
1316 			set_bit(i, &nfit_mem->dsm_mask);
1317 
1318 	return 0;
1319 }
1320 
1321 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1322 {
1323 	struct nfit_mem *nfit_mem;
1324 	int dimm_count = 0;
1325 
1326 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1327 		struct acpi_nfit_flush_address *flush;
1328 		unsigned long flags = 0, cmd_mask;
1329 		struct nvdimm *nvdimm;
1330 		u32 device_handle;
1331 		u16 mem_flags;
1332 		int rc;
1333 
1334 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1335 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1336 		if (nvdimm) {
1337 			dimm_count++;
1338 			continue;
1339 		}
1340 
1341 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1342 			flags |= NDD_ALIASING;
1343 
1344 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1345 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1346 			flags |= NDD_UNARMED;
1347 
1348 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1349 		if (rc)
1350 			continue;
1351 
1352 		/*
1353 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1354 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1355 		 * userspace interface.
1356 		 */
1357 		cmd_mask = 1UL << ND_CMD_CALL;
1358 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1359 			cmd_mask |= nfit_mem->dsm_mask;
1360 
1361 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1362 			: NULL;
1363 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1364 				acpi_nfit_dimm_attribute_groups,
1365 				flags, cmd_mask, flush ? flush->hint_count : 0,
1366 				nfit_mem->flush_wpq);
1367 		if (!nvdimm)
1368 			return -ENOMEM;
1369 
1370 		nfit_mem->nvdimm = nvdimm;
1371 		dimm_count++;
1372 
1373 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1374 			continue;
1375 
1376 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n",
1377 				nvdimm_name(nvdimm),
1378 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1379 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1380 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1381 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "");
1382 
1383 	}
1384 
1385 	return nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1386 }
1387 
1388 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1389 {
1390 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1391 	const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS);
1392 	struct acpi_device *adev;
1393 	int i;
1394 
1395 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1396 	adev = to_acpi_dev(acpi_desc);
1397 	if (!adev)
1398 		return;
1399 
1400 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1401 		if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i))
1402 			set_bit(i, &nd_desc->cmd_mask);
1403 }
1404 
1405 static ssize_t range_index_show(struct device *dev,
1406 		struct device_attribute *attr, char *buf)
1407 {
1408 	struct nd_region *nd_region = to_nd_region(dev);
1409 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1410 
1411 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1412 }
1413 static DEVICE_ATTR_RO(range_index);
1414 
1415 static struct attribute *acpi_nfit_region_attributes[] = {
1416 	&dev_attr_range_index.attr,
1417 	NULL,
1418 };
1419 
1420 static struct attribute_group acpi_nfit_region_attribute_group = {
1421 	.name = "nfit",
1422 	.attrs = acpi_nfit_region_attributes,
1423 };
1424 
1425 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1426 	&nd_region_attribute_group,
1427 	&nd_mapping_attribute_group,
1428 	&nd_device_attribute_group,
1429 	&nd_numa_attribute_group,
1430 	&acpi_nfit_region_attribute_group,
1431 	NULL,
1432 };
1433 
1434 /* enough info to uniquely specify an interleave set */
1435 struct nfit_set_info {
1436 	struct nfit_set_info_map {
1437 		u64 region_offset;
1438 		u32 serial_number;
1439 		u32 pad;
1440 	} mapping[0];
1441 };
1442 
1443 static size_t sizeof_nfit_set_info(int num_mappings)
1444 {
1445 	return sizeof(struct nfit_set_info)
1446 		+ num_mappings * sizeof(struct nfit_set_info_map);
1447 }
1448 
1449 static int cmp_map(const void *m0, const void *m1)
1450 {
1451 	const struct nfit_set_info_map *map0 = m0;
1452 	const struct nfit_set_info_map *map1 = m1;
1453 
1454 	return memcmp(&map0->region_offset, &map1->region_offset,
1455 			sizeof(u64));
1456 }
1457 
1458 /* Retrieve the nth entry referencing this spa */
1459 static struct acpi_nfit_memory_map *memdev_from_spa(
1460 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1461 {
1462 	struct nfit_memdev *nfit_memdev;
1463 
1464 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1465 		if (nfit_memdev->memdev->range_index == range_index)
1466 			if (n-- == 0)
1467 				return nfit_memdev->memdev;
1468 	return NULL;
1469 }
1470 
1471 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1472 		struct nd_region_desc *ndr_desc,
1473 		struct acpi_nfit_system_address *spa)
1474 {
1475 	int i, spa_type = nfit_spa_type(spa);
1476 	struct device *dev = acpi_desc->dev;
1477 	struct nd_interleave_set *nd_set;
1478 	u16 nr = ndr_desc->num_mappings;
1479 	struct nfit_set_info *info;
1480 
1481 	if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE)
1482 		/* pass */;
1483 	else
1484 		return 0;
1485 
1486 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1487 	if (!nd_set)
1488 		return -ENOMEM;
1489 
1490 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1491 	if (!info)
1492 		return -ENOMEM;
1493 	for (i = 0; i < nr; i++) {
1494 		struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
1495 		struct nfit_set_info_map *map = &info->mapping[i];
1496 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1497 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1498 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1499 				spa->range_index, i);
1500 
1501 		if (!memdev || !nfit_mem->dcr) {
1502 			dev_err(dev, "%s: failed to find DCR\n", __func__);
1503 			return -ENODEV;
1504 		}
1505 
1506 		map->region_offset = memdev->region_offset;
1507 		map->serial_number = nfit_mem->dcr->serial_number;
1508 	}
1509 
1510 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1511 			cmp_map, NULL);
1512 	nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1513 	ndr_desc->nd_set = nd_set;
1514 	devm_kfree(dev, info);
1515 
1516 	return 0;
1517 }
1518 
1519 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1520 {
1521 	struct acpi_nfit_interleave *idt = mmio->idt;
1522 	u32 sub_line_offset, line_index, line_offset;
1523 	u64 line_no, table_skip_count, table_offset;
1524 
1525 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1526 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1527 	line_offset = idt->line_offset[line_index]
1528 		* mmio->line_size;
1529 	table_offset = table_skip_count * mmio->table_size;
1530 
1531 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1532 }
1533 
1534 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1535 {
1536 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1537 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1538 	const u32 STATUS_MASK = 0x80000037;
1539 
1540 	if (mmio->num_lines)
1541 		offset = to_interleave_offset(offset, mmio);
1542 
1543 	return readl(mmio->addr.base + offset) & STATUS_MASK;
1544 }
1545 
1546 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1547 		resource_size_t dpa, unsigned int len, unsigned int write)
1548 {
1549 	u64 cmd, offset;
1550 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1551 
1552 	enum {
1553 		BCW_OFFSET_MASK = (1ULL << 48)-1,
1554 		BCW_LEN_SHIFT = 48,
1555 		BCW_LEN_MASK = (1ULL << 8) - 1,
1556 		BCW_CMD_SHIFT = 56,
1557 	};
1558 
1559 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1560 	len = len >> L1_CACHE_SHIFT;
1561 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1562 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
1563 
1564 	offset = nfit_blk->cmd_offset + mmio->size * bw;
1565 	if (mmio->num_lines)
1566 		offset = to_interleave_offset(offset, mmio);
1567 
1568 	writeq(cmd, mmio->addr.base + offset);
1569 	nvdimm_flush(nfit_blk->nd_region);
1570 
1571 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1572 		readq(mmio->addr.base + offset);
1573 }
1574 
1575 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1576 		resource_size_t dpa, void *iobuf, size_t len, int rw,
1577 		unsigned int lane)
1578 {
1579 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1580 	unsigned int copied = 0;
1581 	u64 base_offset;
1582 	int rc;
1583 
1584 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1585 		+ lane * mmio->size;
1586 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
1587 	while (len) {
1588 		unsigned int c;
1589 		u64 offset;
1590 
1591 		if (mmio->num_lines) {
1592 			u32 line_offset;
1593 
1594 			offset = to_interleave_offset(base_offset + copied,
1595 					mmio);
1596 			div_u64_rem(offset, mmio->line_size, &line_offset);
1597 			c = min_t(size_t, len, mmio->line_size - line_offset);
1598 		} else {
1599 			offset = base_offset + nfit_blk->bdw_offset;
1600 			c = len;
1601 		}
1602 
1603 		if (rw)
1604 			memcpy_to_pmem(mmio->addr.aperture + offset,
1605 					iobuf + copied, c);
1606 		else {
1607 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
1608 				mmio_flush_range((void __force *)
1609 					mmio->addr.aperture + offset, c);
1610 
1611 			memcpy_from_pmem(iobuf + copied,
1612 					mmio->addr.aperture + offset, c);
1613 		}
1614 
1615 		copied += c;
1616 		len -= c;
1617 	}
1618 
1619 	if (rw)
1620 		nvdimm_flush(nfit_blk->nd_region);
1621 
1622 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
1623 	return rc;
1624 }
1625 
1626 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
1627 		resource_size_t dpa, void *iobuf, u64 len, int rw)
1628 {
1629 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
1630 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1631 	struct nd_region *nd_region = nfit_blk->nd_region;
1632 	unsigned int lane, copied = 0;
1633 	int rc = 0;
1634 
1635 	lane = nd_region_acquire_lane(nd_region);
1636 	while (len) {
1637 		u64 c = min(len, mmio->size);
1638 
1639 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
1640 				iobuf + copied, c, rw, lane);
1641 		if (rc)
1642 			break;
1643 
1644 		copied += c;
1645 		len -= c;
1646 	}
1647 	nd_region_release_lane(nd_region, lane);
1648 
1649 	return rc;
1650 }
1651 
1652 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
1653 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
1654 {
1655 	if (idt) {
1656 		mmio->num_lines = idt->line_count;
1657 		mmio->line_size = idt->line_size;
1658 		if (interleave_ways == 0)
1659 			return -ENXIO;
1660 		mmio->table_size = mmio->num_lines * interleave_ways
1661 			* mmio->line_size;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
1668 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
1669 {
1670 	struct nd_cmd_dimm_flags flags;
1671 	int rc;
1672 
1673 	memset(&flags, 0, sizeof(flags));
1674 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
1675 			sizeof(flags), NULL);
1676 
1677 	if (rc >= 0 && flags.status == 0)
1678 		nfit_blk->dimm_flags = flags.flags;
1679 	else if (rc == -ENOTTY) {
1680 		/* fall back to a conservative default */
1681 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
1682 		rc = 0;
1683 	} else
1684 		rc = -ENXIO;
1685 
1686 	return rc;
1687 }
1688 
1689 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
1690 		struct device *dev)
1691 {
1692 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1693 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
1694 	struct nfit_blk_mmio *mmio;
1695 	struct nfit_blk *nfit_blk;
1696 	struct nfit_mem *nfit_mem;
1697 	struct nvdimm *nvdimm;
1698 	int rc;
1699 
1700 	nvdimm = nd_blk_region_to_dimm(ndbr);
1701 	nfit_mem = nvdimm_provider_data(nvdimm);
1702 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
1703 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
1704 				nfit_mem ? "" : " nfit_mem",
1705 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
1706 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
1707 		return -ENXIO;
1708 	}
1709 
1710 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
1711 	if (!nfit_blk)
1712 		return -ENOMEM;
1713 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
1714 	nfit_blk->nd_region = to_nd_region(dev);
1715 
1716 	/* map block aperture memory */
1717 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
1718 	mmio = &nfit_blk->mmio[BDW];
1719 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
1720                         nfit_mem->spa_bdw->length, ARCH_MEMREMAP_PMEM);
1721 	if (!mmio->addr.base) {
1722 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
1723 				nvdimm_name(nvdimm));
1724 		return -ENOMEM;
1725 	}
1726 	mmio->size = nfit_mem->bdw->size;
1727 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
1728 	mmio->idt = nfit_mem->idt_bdw;
1729 	mmio->spa = nfit_mem->spa_bdw;
1730 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
1731 			nfit_mem->memdev_bdw->interleave_ways);
1732 	if (rc) {
1733 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
1734 				__func__, nvdimm_name(nvdimm));
1735 		return rc;
1736 	}
1737 
1738 	/* map block control memory */
1739 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
1740 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
1741 	mmio = &nfit_blk->mmio[DCR];
1742 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
1743 			nfit_mem->spa_dcr->length);
1744 	if (!mmio->addr.base) {
1745 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
1746 				nvdimm_name(nvdimm));
1747 		return -ENOMEM;
1748 	}
1749 	mmio->size = nfit_mem->dcr->window_size;
1750 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
1751 	mmio->idt = nfit_mem->idt_dcr;
1752 	mmio->spa = nfit_mem->spa_dcr;
1753 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
1754 			nfit_mem->memdev_dcr->interleave_ways);
1755 	if (rc) {
1756 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
1757 				__func__, nvdimm_name(nvdimm));
1758 		return rc;
1759 	}
1760 
1761 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
1762 	if (rc < 0) {
1763 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
1764 				__func__, nvdimm_name(nvdimm));
1765 		return rc;
1766 	}
1767 
1768 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
1769 		dev_warn(dev, "unable to guarantee persistence of writes\n");
1770 
1771 	if (mmio->line_size == 0)
1772 		return 0;
1773 
1774 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
1775 			+ 8 > mmio->line_size) {
1776 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
1777 		return -ENXIO;
1778 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
1779 			+ 8 > mmio->line_size) {
1780 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
1781 		return -ENXIO;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
1788 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
1789 {
1790 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1791 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1792 	int cmd_rc, rc;
1793 
1794 	cmd->address = spa->address;
1795 	cmd->length = spa->length;
1796 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
1797 			sizeof(*cmd), &cmd_rc);
1798 	if (rc < 0)
1799 		return rc;
1800 	return cmd_rc;
1801 }
1802 
1803 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
1804 {
1805 	int rc;
1806 	int cmd_rc;
1807 	struct nd_cmd_ars_start ars_start;
1808 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1809 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1810 
1811 	memset(&ars_start, 0, sizeof(ars_start));
1812 	ars_start.address = spa->address;
1813 	ars_start.length = spa->length;
1814 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
1815 		ars_start.type = ND_ARS_PERSISTENT;
1816 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
1817 		ars_start.type = ND_ARS_VOLATILE;
1818 	else
1819 		return -ENOTTY;
1820 
1821 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1822 			sizeof(ars_start), &cmd_rc);
1823 
1824 	if (rc < 0)
1825 		return rc;
1826 	return cmd_rc;
1827 }
1828 
1829 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
1830 {
1831 	int rc, cmd_rc;
1832 	struct nd_cmd_ars_start ars_start;
1833 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1834 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
1835 
1836 	memset(&ars_start, 0, sizeof(ars_start));
1837 	ars_start.address = ars_status->restart_address;
1838 	ars_start.length = ars_status->restart_length;
1839 	ars_start.type = ars_status->type;
1840 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1841 			sizeof(ars_start), &cmd_rc);
1842 	if (rc < 0)
1843 		return rc;
1844 	return cmd_rc;
1845 }
1846 
1847 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
1848 {
1849 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1850 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
1851 	int rc, cmd_rc;
1852 
1853 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
1854 			acpi_desc->ars_status_size, &cmd_rc);
1855 	if (rc < 0)
1856 		return rc;
1857 	return cmd_rc;
1858 }
1859 
1860 static int ars_status_process_records(struct nvdimm_bus *nvdimm_bus,
1861 		struct nd_cmd_ars_status *ars_status)
1862 {
1863 	int rc;
1864 	u32 i;
1865 
1866 	for (i = 0; i < ars_status->num_records; i++) {
1867 		rc = nvdimm_bus_add_poison(nvdimm_bus,
1868 				ars_status->records[i].err_address,
1869 				ars_status->records[i].length);
1870 		if (rc)
1871 			return rc;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static void acpi_nfit_remove_resource(void *data)
1878 {
1879 	struct resource *res = data;
1880 
1881 	remove_resource(res);
1882 }
1883 
1884 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
1885 		struct nd_region_desc *ndr_desc)
1886 {
1887 	struct resource *res, *nd_res = ndr_desc->res;
1888 	int is_pmem, ret;
1889 
1890 	/* No operation if the region is already registered as PMEM */
1891 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
1892 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
1893 	if (is_pmem == REGION_INTERSECTS)
1894 		return 0;
1895 
1896 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
1897 	if (!res)
1898 		return -ENOMEM;
1899 
1900 	res->name = "Persistent Memory";
1901 	res->start = nd_res->start;
1902 	res->end = nd_res->end;
1903 	res->flags = IORESOURCE_MEM;
1904 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
1905 
1906 	ret = insert_resource(&iomem_resource, res);
1907 	if (ret)
1908 		return ret;
1909 
1910 	ret = devm_add_action_or_reset(acpi_desc->dev,
1911 					acpi_nfit_remove_resource,
1912 					res);
1913 	if (ret)
1914 		return ret;
1915 
1916 	return 0;
1917 }
1918 
1919 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
1920 		struct nd_mapping *nd_mapping, struct nd_region_desc *ndr_desc,
1921 		struct acpi_nfit_memory_map *memdev,
1922 		struct nfit_spa *nfit_spa)
1923 {
1924 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
1925 			memdev->device_handle);
1926 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1927 	struct nd_blk_region_desc *ndbr_desc;
1928 	struct nfit_mem *nfit_mem;
1929 	int blk_valid = 0;
1930 
1931 	if (!nvdimm) {
1932 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
1933 				spa->range_index, memdev->device_handle);
1934 		return -ENODEV;
1935 	}
1936 
1937 	nd_mapping->nvdimm = nvdimm;
1938 	switch (nfit_spa_type(spa)) {
1939 	case NFIT_SPA_PM:
1940 	case NFIT_SPA_VOLATILE:
1941 		nd_mapping->start = memdev->address;
1942 		nd_mapping->size = memdev->region_size;
1943 		break;
1944 	case NFIT_SPA_DCR:
1945 		nfit_mem = nvdimm_provider_data(nvdimm);
1946 		if (!nfit_mem || !nfit_mem->bdw) {
1947 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
1948 					spa->range_index, nvdimm_name(nvdimm));
1949 		} else {
1950 			nd_mapping->size = nfit_mem->bdw->capacity;
1951 			nd_mapping->start = nfit_mem->bdw->start_address;
1952 			ndr_desc->num_lanes = nfit_mem->bdw->windows;
1953 			blk_valid = 1;
1954 		}
1955 
1956 		ndr_desc->nd_mapping = nd_mapping;
1957 		ndr_desc->num_mappings = blk_valid;
1958 		ndbr_desc = to_blk_region_desc(ndr_desc);
1959 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
1960 		ndbr_desc->do_io = acpi_desc->blk_do_io;
1961 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
1962 				ndr_desc);
1963 		if (!nfit_spa->nd_region)
1964 			return -ENOMEM;
1965 		break;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
1972 {
1973 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
1974 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
1975 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
1976 		nfit_spa_type(spa) == NFIT_SPA_PCD);
1977 }
1978 
1979 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
1980 		struct nfit_spa *nfit_spa)
1981 {
1982 	static struct nd_mapping nd_mappings[ND_MAX_MAPPINGS];
1983 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1984 	struct nd_blk_region_desc ndbr_desc;
1985 	struct nd_region_desc *ndr_desc;
1986 	struct nfit_memdev *nfit_memdev;
1987 	struct nvdimm_bus *nvdimm_bus;
1988 	struct resource res;
1989 	int count = 0, rc;
1990 
1991 	if (nfit_spa->nd_region)
1992 		return 0;
1993 
1994 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
1995 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
1996 				__func__);
1997 		return 0;
1998 	}
1999 
2000 	memset(&res, 0, sizeof(res));
2001 	memset(&nd_mappings, 0, sizeof(nd_mappings));
2002 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2003 	res.start = spa->address;
2004 	res.end = res.start + spa->length - 1;
2005 	ndr_desc = &ndbr_desc.ndr_desc;
2006 	ndr_desc->res = &res;
2007 	ndr_desc->provider_data = nfit_spa;
2008 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2009 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2010 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2011 						spa->proximity_domain);
2012 	else
2013 		ndr_desc->numa_node = NUMA_NO_NODE;
2014 
2015 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2016 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2017 		struct nd_mapping *nd_mapping;
2018 
2019 		if (memdev->range_index != spa->range_index)
2020 			continue;
2021 		if (count >= ND_MAX_MAPPINGS) {
2022 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2023 					spa->range_index, ND_MAX_MAPPINGS);
2024 			return -ENXIO;
2025 		}
2026 		nd_mapping = &nd_mappings[count++];
2027 		rc = acpi_nfit_init_mapping(acpi_desc, nd_mapping, ndr_desc,
2028 				memdev, nfit_spa);
2029 		if (rc)
2030 			goto out;
2031 	}
2032 
2033 	ndr_desc->nd_mapping = nd_mappings;
2034 	ndr_desc->num_mappings = count;
2035 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2036 	if (rc)
2037 		goto out;
2038 
2039 	nvdimm_bus = acpi_desc->nvdimm_bus;
2040 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2041 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2042 		if (rc) {
2043 			dev_warn(acpi_desc->dev,
2044 				"failed to insert pmem resource to iomem: %d\n",
2045 				rc);
2046 			goto out;
2047 		}
2048 
2049 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2050 				ndr_desc);
2051 		if (!nfit_spa->nd_region)
2052 			rc = -ENOMEM;
2053 	} else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) {
2054 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2055 				ndr_desc);
2056 		if (!nfit_spa->nd_region)
2057 			rc = -ENOMEM;
2058 	} else if (nfit_spa_is_virtual(spa)) {
2059 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2060 				ndr_desc);
2061 		if (!nfit_spa->nd_region)
2062 			rc = -ENOMEM;
2063 	}
2064 
2065  out:
2066 	if (rc)
2067 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2068 				nfit_spa->spa->range_index);
2069 	return rc;
2070 }
2071 
2072 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2073 		u32 max_ars)
2074 {
2075 	struct device *dev = acpi_desc->dev;
2076 	struct nd_cmd_ars_status *ars_status;
2077 
2078 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2079 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2080 		return 0;
2081 	}
2082 
2083 	if (acpi_desc->ars_status)
2084 		devm_kfree(dev, acpi_desc->ars_status);
2085 	acpi_desc->ars_status = NULL;
2086 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2087 	if (!ars_status)
2088 		return -ENOMEM;
2089 	acpi_desc->ars_status = ars_status;
2090 	acpi_desc->ars_status_size = max_ars;
2091 	return 0;
2092 }
2093 
2094 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2095 		struct nfit_spa *nfit_spa)
2096 {
2097 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2098 	int rc;
2099 
2100 	if (!nfit_spa->max_ars) {
2101 		struct nd_cmd_ars_cap ars_cap;
2102 
2103 		memset(&ars_cap, 0, sizeof(ars_cap));
2104 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2105 		if (rc < 0)
2106 			return rc;
2107 		nfit_spa->max_ars = ars_cap.max_ars_out;
2108 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2109 		/* check that the supported scrub types match the spa type */
2110 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2111 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2112 			return -ENOTTY;
2113 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2114 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2115 			return -ENOTTY;
2116 	}
2117 
2118 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2119 		return -ENOMEM;
2120 
2121 	rc = ars_get_status(acpi_desc);
2122 	if (rc < 0 && rc != -ENOSPC)
2123 		return rc;
2124 
2125 	if (ars_status_process_records(acpi_desc->nvdimm_bus,
2126 				acpi_desc->ars_status))
2127 		return -ENOMEM;
2128 
2129 	return 0;
2130 }
2131 
2132 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2133 		struct nfit_spa *nfit_spa)
2134 {
2135 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2136 	unsigned int overflow_retry = scrub_overflow_abort;
2137 	u64 init_ars_start = 0, init_ars_len = 0;
2138 	struct device *dev = acpi_desc->dev;
2139 	unsigned int tmo = scrub_timeout;
2140 	int rc;
2141 
2142 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2143 		return;
2144 
2145 	rc = ars_start(acpi_desc, nfit_spa);
2146 	/*
2147 	 * If we timed out the initial scan we'll still be busy here,
2148 	 * and will wait another timeout before giving up permanently.
2149 	 */
2150 	if (rc < 0 && rc != -EBUSY)
2151 		return;
2152 
2153 	do {
2154 		u64 ars_start, ars_len;
2155 
2156 		if (acpi_desc->cancel)
2157 			break;
2158 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2159 		if (rc == -ENOTTY)
2160 			break;
2161 		if (rc == -EBUSY && !tmo) {
2162 			dev_warn(dev, "range %d ars timeout, aborting\n",
2163 					spa->range_index);
2164 			break;
2165 		}
2166 
2167 		if (rc == -EBUSY) {
2168 			/*
2169 			 * Note, entries may be appended to the list
2170 			 * while the lock is dropped, but the workqueue
2171 			 * being active prevents entries being deleted /
2172 			 * freed.
2173 			 */
2174 			mutex_unlock(&acpi_desc->init_mutex);
2175 			ssleep(1);
2176 			tmo--;
2177 			mutex_lock(&acpi_desc->init_mutex);
2178 			continue;
2179 		}
2180 
2181 		/* we got some results, but there are more pending... */
2182 		if (rc == -ENOSPC && overflow_retry--) {
2183 			if (!init_ars_len) {
2184 				init_ars_len = acpi_desc->ars_status->length;
2185 				init_ars_start = acpi_desc->ars_status->address;
2186 			}
2187 			rc = ars_continue(acpi_desc);
2188 		}
2189 
2190 		if (rc < 0) {
2191 			dev_warn(dev, "range %d ars continuation failed\n",
2192 					spa->range_index);
2193 			break;
2194 		}
2195 
2196 		if (init_ars_len) {
2197 			ars_start = init_ars_start;
2198 			ars_len = init_ars_len;
2199 		} else {
2200 			ars_start = acpi_desc->ars_status->address;
2201 			ars_len = acpi_desc->ars_status->length;
2202 		}
2203 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2204 				spa->range_index, ars_start, ars_len);
2205 		/* notify the region about new poison entries */
2206 		nvdimm_region_notify(nfit_spa->nd_region,
2207 				NVDIMM_REVALIDATE_POISON);
2208 		break;
2209 	} while (1);
2210 }
2211 
2212 static void acpi_nfit_scrub(struct work_struct *work)
2213 {
2214 	struct device *dev;
2215 	u64 init_scrub_length = 0;
2216 	struct nfit_spa *nfit_spa;
2217 	u64 init_scrub_address = 0;
2218 	bool init_ars_done = false;
2219 	struct acpi_nfit_desc *acpi_desc;
2220 	unsigned int tmo = scrub_timeout;
2221 	unsigned int overflow_retry = scrub_overflow_abort;
2222 
2223 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2224 	dev = acpi_desc->dev;
2225 
2226 	/*
2227 	 * We scrub in 2 phases.  The first phase waits for any platform
2228 	 * firmware initiated scrubs to complete and then we go search for the
2229 	 * affected spa regions to mark them scanned.  In the second phase we
2230 	 * initiate a directed scrub for every range that was not scrubbed in
2231 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2232 	 * the first phase, but really only care about running phase 2, where
2233 	 * regions can be notified of new poison.
2234 	 */
2235 
2236 	/* process platform firmware initiated scrubs */
2237  retry:
2238 	mutex_lock(&acpi_desc->init_mutex);
2239 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2240 		struct nd_cmd_ars_status *ars_status;
2241 		struct acpi_nfit_system_address *spa;
2242 		u64 ars_start, ars_len;
2243 		int rc;
2244 
2245 		if (acpi_desc->cancel)
2246 			break;
2247 
2248 		if (nfit_spa->nd_region)
2249 			continue;
2250 
2251 		if (init_ars_done) {
2252 			/*
2253 			 * No need to re-query, we're now just
2254 			 * reconciling all the ranges covered by the
2255 			 * initial scrub
2256 			 */
2257 			rc = 0;
2258 		} else
2259 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2260 
2261 		if (rc == -ENOTTY) {
2262 			/* no ars capability, just register spa and move on */
2263 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2264 			continue;
2265 		}
2266 
2267 		if (rc == -EBUSY && !tmo) {
2268 			/* fallthrough to directed scrub in phase 2 */
2269 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2270 			break;
2271 		} else if (rc == -EBUSY) {
2272 			mutex_unlock(&acpi_desc->init_mutex);
2273 			ssleep(1);
2274 			tmo--;
2275 			goto retry;
2276 		}
2277 
2278 		/* we got some results, but there are more pending... */
2279 		if (rc == -ENOSPC && overflow_retry--) {
2280 			ars_status = acpi_desc->ars_status;
2281 			/*
2282 			 * Record the original scrub range, so that we
2283 			 * can recall all the ranges impacted by the
2284 			 * initial scrub.
2285 			 */
2286 			if (!init_scrub_length) {
2287 				init_scrub_length = ars_status->length;
2288 				init_scrub_address = ars_status->address;
2289 			}
2290 			rc = ars_continue(acpi_desc);
2291 			if (rc == 0) {
2292 				mutex_unlock(&acpi_desc->init_mutex);
2293 				goto retry;
2294 			}
2295 		}
2296 
2297 		if (rc < 0) {
2298 			/*
2299 			 * Initial scrub failed, we'll give it one more
2300 			 * try below...
2301 			 */
2302 			break;
2303 		}
2304 
2305 		/* We got some final results, record completed ranges */
2306 		ars_status = acpi_desc->ars_status;
2307 		if (init_scrub_length) {
2308 			ars_start = init_scrub_address;
2309 			ars_len = ars_start + init_scrub_length;
2310 		} else {
2311 			ars_start = ars_status->address;
2312 			ars_len = ars_status->length;
2313 		}
2314 		spa = nfit_spa->spa;
2315 
2316 		if (!init_ars_done) {
2317 			init_ars_done = true;
2318 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2319 					ars_start, ars_len);
2320 		}
2321 		if (ars_start <= spa->address && ars_start + ars_len
2322 				>= spa->address + spa->length)
2323 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2324 	}
2325 
2326 	/*
2327 	 * For all the ranges not covered by an initial scrub we still
2328 	 * want to see if there are errors, but it's ok to discover them
2329 	 * asynchronously.
2330 	 */
2331 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2332 		/*
2333 		 * Flag all the ranges that still need scrubbing, but
2334 		 * register them now to make data available.
2335 		 */
2336 		if (!nfit_spa->nd_region) {
2337 			nfit_spa->ars_required = 1;
2338 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2339 		}
2340 	}
2341 
2342 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2343 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2344 	acpi_desc->scrub_count++;
2345 	if (acpi_desc->scrub_count_state)
2346 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2347 	mutex_unlock(&acpi_desc->init_mutex);
2348 }
2349 
2350 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2351 {
2352 	struct nfit_spa *nfit_spa;
2353 	int rc;
2354 
2355 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2356 		if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
2357 			/* BLK regions don't need to wait for ars results */
2358 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2359 			if (rc)
2360 				return rc;
2361 		}
2362 
2363 	queue_work(nfit_wq, &acpi_desc->work);
2364 	return 0;
2365 }
2366 
2367 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2368 		struct nfit_table_prev *prev)
2369 {
2370 	struct device *dev = acpi_desc->dev;
2371 
2372 	if (!list_empty(&prev->spas) ||
2373 			!list_empty(&prev->memdevs) ||
2374 			!list_empty(&prev->dcrs) ||
2375 			!list_empty(&prev->bdws) ||
2376 			!list_empty(&prev->idts) ||
2377 			!list_empty(&prev->flushes)) {
2378 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
2379 		return -ENXIO;
2380 	}
2381 	return 0;
2382 }
2383 
2384 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2385 {
2386 	struct device *dev = acpi_desc->dev;
2387 	struct kernfs_node *nfit;
2388 	struct device *bus_dev;
2389 
2390 	if (!ars_supported(acpi_desc->nvdimm_bus))
2391 		return 0;
2392 
2393 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2394 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2395 	if (!nfit) {
2396 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2397 		return -ENODEV;
2398 	}
2399 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2400 	sysfs_put(nfit);
2401 	if (!acpi_desc->scrub_count_state) {
2402 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2403 		return -ENODEV;
2404 	}
2405 
2406 	return 0;
2407 }
2408 
2409 static void acpi_nfit_destruct(void *data)
2410 {
2411 	struct acpi_nfit_desc *acpi_desc = data;
2412 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2413 
2414 	/*
2415 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
2416 	 * race teardown
2417 	 */
2418 	mutex_lock(&acpi_desc_lock);
2419 	acpi_desc->cancel = 1;
2420 	/*
2421 	 * Bounce the nvdimm bus lock to make sure any in-flight
2422 	 * acpi_nfit_ars_rescan() submissions have had a chance to
2423 	 * either submit or see ->cancel set.
2424 	 */
2425 	device_lock(bus_dev);
2426 	device_unlock(bus_dev);
2427 
2428 	flush_workqueue(nfit_wq);
2429 	if (acpi_desc->scrub_count_state)
2430 		sysfs_put(acpi_desc->scrub_count_state);
2431 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2432 	acpi_desc->nvdimm_bus = NULL;
2433 	list_del(&acpi_desc->list);
2434 	mutex_unlock(&acpi_desc_lock);
2435 }
2436 
2437 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2438 {
2439 	struct device *dev = acpi_desc->dev;
2440 	struct nfit_table_prev prev;
2441 	const void *end;
2442 	int rc;
2443 
2444 	if (!acpi_desc->nvdimm_bus) {
2445 		acpi_nfit_init_dsms(acpi_desc);
2446 
2447 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2448 				&acpi_desc->nd_desc);
2449 		if (!acpi_desc->nvdimm_bus)
2450 			return -ENOMEM;
2451 
2452 		rc = devm_add_action_or_reset(dev, acpi_nfit_destruct,
2453 				acpi_desc);
2454 		if (rc)
2455 			return rc;
2456 
2457 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2458 		if (rc)
2459 			return rc;
2460 
2461 		/* register this acpi_desc for mce notifications */
2462 		mutex_lock(&acpi_desc_lock);
2463 		list_add_tail(&acpi_desc->list, &acpi_descs);
2464 		mutex_unlock(&acpi_desc_lock);
2465 	}
2466 
2467 	mutex_lock(&acpi_desc->init_mutex);
2468 
2469 	INIT_LIST_HEAD(&prev.spas);
2470 	INIT_LIST_HEAD(&prev.memdevs);
2471 	INIT_LIST_HEAD(&prev.dcrs);
2472 	INIT_LIST_HEAD(&prev.bdws);
2473 	INIT_LIST_HEAD(&prev.idts);
2474 	INIT_LIST_HEAD(&prev.flushes);
2475 
2476 	list_cut_position(&prev.spas, &acpi_desc->spas,
2477 				acpi_desc->spas.prev);
2478 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2479 				acpi_desc->memdevs.prev);
2480 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2481 				acpi_desc->dcrs.prev);
2482 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
2483 				acpi_desc->bdws.prev);
2484 	list_cut_position(&prev.idts, &acpi_desc->idts,
2485 				acpi_desc->idts.prev);
2486 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
2487 				acpi_desc->flushes.prev);
2488 
2489 	end = data + sz;
2490 	while (!IS_ERR_OR_NULL(data))
2491 		data = add_table(acpi_desc, &prev, data, end);
2492 
2493 	if (IS_ERR(data)) {
2494 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2495 				PTR_ERR(data));
2496 		rc = PTR_ERR(data);
2497 		goto out_unlock;
2498 	}
2499 
2500 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2501 	if (rc)
2502 		goto out_unlock;
2503 
2504 	rc = nfit_mem_init(acpi_desc);
2505 	if (rc)
2506 		goto out_unlock;
2507 
2508 	rc = acpi_nfit_register_dimms(acpi_desc);
2509 	if (rc)
2510 		goto out_unlock;
2511 
2512 	rc = acpi_nfit_register_regions(acpi_desc);
2513 
2514  out_unlock:
2515 	mutex_unlock(&acpi_desc->init_mutex);
2516 	return rc;
2517 }
2518 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2519 
2520 struct acpi_nfit_flush_work {
2521 	struct work_struct work;
2522 	struct completion cmp;
2523 };
2524 
2525 static void flush_probe(struct work_struct *work)
2526 {
2527 	struct acpi_nfit_flush_work *flush;
2528 
2529 	flush = container_of(work, typeof(*flush), work);
2530 	complete(&flush->cmp);
2531 }
2532 
2533 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2534 {
2535 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2536 	struct device *dev = acpi_desc->dev;
2537 	struct acpi_nfit_flush_work flush;
2538 
2539 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2540 	device_lock(dev);
2541 	device_unlock(dev);
2542 
2543 	/*
2544 	 * Scrub work could take 10s of seconds, userspace may give up so we
2545 	 * need to be interruptible while waiting.
2546 	 */
2547 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
2548 	COMPLETION_INITIALIZER_ONSTACK(flush.cmp);
2549 	queue_work(nfit_wq, &flush.work);
2550 	return wait_for_completion_interruptible(&flush.cmp);
2551 }
2552 
2553 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2554 		struct nvdimm *nvdimm, unsigned int cmd)
2555 {
2556 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2557 
2558 	if (nvdimm)
2559 		return 0;
2560 	if (cmd != ND_CMD_ARS_START)
2561 		return 0;
2562 
2563 	/*
2564 	 * The kernel and userspace may race to initiate a scrub, but
2565 	 * the scrub thread is prepared to lose that initial race.  It
2566 	 * just needs guarantees that any ars it initiates are not
2567 	 * interrupted by any intervening start reqeusts from userspace.
2568 	 */
2569 	if (work_busy(&acpi_desc->work))
2570 		return -EBUSY;
2571 
2572 	return 0;
2573 }
2574 
2575 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc)
2576 {
2577 	struct device *dev = acpi_desc->dev;
2578 	struct nfit_spa *nfit_spa;
2579 
2580 	if (work_busy(&acpi_desc->work))
2581 		return -EBUSY;
2582 
2583 	if (acpi_desc->cancel)
2584 		return 0;
2585 
2586 	mutex_lock(&acpi_desc->init_mutex);
2587 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2588 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
2589 
2590 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
2591 			continue;
2592 
2593 		nfit_spa->ars_required = 1;
2594 	}
2595 	queue_work(nfit_wq, &acpi_desc->work);
2596 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
2597 	mutex_unlock(&acpi_desc->init_mutex);
2598 
2599 	return 0;
2600 }
2601 
2602 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
2603 {
2604 	struct nvdimm_bus_descriptor *nd_desc;
2605 
2606 	dev_set_drvdata(dev, acpi_desc);
2607 	acpi_desc->dev = dev;
2608 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
2609 	nd_desc = &acpi_desc->nd_desc;
2610 	nd_desc->provider_name = "ACPI.NFIT";
2611 	nd_desc->module = THIS_MODULE;
2612 	nd_desc->ndctl = acpi_nfit_ctl;
2613 	nd_desc->flush_probe = acpi_nfit_flush_probe;
2614 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
2615 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
2616 
2617 	INIT_LIST_HEAD(&acpi_desc->spas);
2618 	INIT_LIST_HEAD(&acpi_desc->dcrs);
2619 	INIT_LIST_HEAD(&acpi_desc->bdws);
2620 	INIT_LIST_HEAD(&acpi_desc->idts);
2621 	INIT_LIST_HEAD(&acpi_desc->flushes);
2622 	INIT_LIST_HEAD(&acpi_desc->memdevs);
2623 	INIT_LIST_HEAD(&acpi_desc->dimms);
2624 	INIT_LIST_HEAD(&acpi_desc->list);
2625 	mutex_init(&acpi_desc->init_mutex);
2626 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
2627 }
2628 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
2629 
2630 static int acpi_nfit_add(struct acpi_device *adev)
2631 {
2632 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2633 	struct acpi_nfit_desc *acpi_desc;
2634 	struct device *dev = &adev->dev;
2635 	struct acpi_table_header *tbl;
2636 	acpi_status status = AE_OK;
2637 	acpi_size sz;
2638 	int rc = 0;
2639 
2640 	status = acpi_get_table_with_size(ACPI_SIG_NFIT, 0, &tbl, &sz);
2641 	if (ACPI_FAILURE(status)) {
2642 		/* This is ok, we could have an nvdimm hotplugged later */
2643 		dev_dbg(dev, "failed to find NFIT at startup\n");
2644 		return 0;
2645 	}
2646 
2647 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2648 	if (!acpi_desc)
2649 		return -ENOMEM;
2650 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
2651 
2652 	/* Save the acpi header for exporting the revision via sysfs */
2653 	acpi_desc->acpi_header = *tbl;
2654 
2655 	/* Evaluate _FIT and override with that if present */
2656 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
2657 	if (ACPI_SUCCESS(status) && buf.length > 0) {
2658 		union acpi_object *obj = buf.pointer;
2659 
2660 		if (obj->type == ACPI_TYPE_BUFFER)
2661 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2662 					obj->buffer.length);
2663 		else
2664 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
2665 				 __func__, (int) obj->type);
2666 		kfree(buf.pointer);
2667 	} else
2668 		/* skip over the lead-in header table */
2669 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
2670 				+ sizeof(struct acpi_table_nfit),
2671 				sz - sizeof(struct acpi_table_nfit));
2672 	return rc;
2673 }
2674 
2675 static int acpi_nfit_remove(struct acpi_device *adev)
2676 {
2677 	/* see acpi_nfit_destruct */
2678 	return 0;
2679 }
2680 
2681 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
2682 {
2683 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(&adev->dev);
2684 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2685 	struct device *dev = &adev->dev;
2686 	union acpi_object *obj;
2687 	acpi_status status;
2688 	int ret;
2689 
2690 	dev_dbg(dev, "%s: event: %d\n", __func__, event);
2691 
2692 	device_lock(dev);
2693 	if (!dev->driver) {
2694 		/* dev->driver may be null if we're being removed */
2695 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
2696 		goto out_unlock;
2697 	}
2698 
2699 	if (!acpi_desc) {
2700 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2701 		if (!acpi_desc)
2702 			goto out_unlock;
2703 		acpi_nfit_desc_init(acpi_desc, &adev->dev);
2704 	} else {
2705 		/*
2706 		 * Finish previous registration before considering new
2707 		 * regions.
2708 		 */
2709 		flush_workqueue(nfit_wq);
2710 	}
2711 
2712 	/* Evaluate _FIT */
2713 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
2714 	if (ACPI_FAILURE(status)) {
2715 		dev_err(dev, "failed to evaluate _FIT\n");
2716 		goto out_unlock;
2717 	}
2718 
2719 	obj = buf.pointer;
2720 	if (obj->type == ACPI_TYPE_BUFFER) {
2721 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2722 				obj->buffer.length);
2723 		if (ret)
2724 			dev_err(dev, "failed to merge updated NFIT\n");
2725 	} else
2726 		dev_err(dev, "Invalid _FIT\n");
2727 	kfree(buf.pointer);
2728 
2729  out_unlock:
2730 	device_unlock(dev);
2731 }
2732 
2733 static const struct acpi_device_id acpi_nfit_ids[] = {
2734 	{ "ACPI0012", 0 },
2735 	{ "", 0 },
2736 };
2737 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
2738 
2739 static struct acpi_driver acpi_nfit_driver = {
2740 	.name = KBUILD_MODNAME,
2741 	.ids = acpi_nfit_ids,
2742 	.ops = {
2743 		.add = acpi_nfit_add,
2744 		.remove = acpi_nfit_remove,
2745 		.notify = acpi_nfit_notify,
2746 	},
2747 };
2748 
2749 static __init int nfit_init(void)
2750 {
2751 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
2752 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
2753 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
2754 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
2755 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
2756 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
2757 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
2758 
2759 	acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]);
2760 	acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]);
2761 	acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]);
2762 	acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]);
2763 	acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]);
2764 	acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]);
2765 	acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]);
2766 	acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]);
2767 	acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]);
2768 	acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]);
2769 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE1, nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
2770 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE2, nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
2771 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_MSFT, nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
2772 
2773 	nfit_wq = create_singlethread_workqueue("nfit");
2774 	if (!nfit_wq)
2775 		return -ENOMEM;
2776 
2777 	nfit_mce_register();
2778 
2779 	return acpi_bus_register_driver(&acpi_nfit_driver);
2780 }
2781 
2782 static __exit void nfit_exit(void)
2783 {
2784 	nfit_mce_unregister();
2785 	acpi_bus_unregister_driver(&acpi_nfit_driver);
2786 	destroy_workqueue(nfit_wq);
2787 	WARN_ON(!list_empty(&acpi_descs));
2788 }
2789 
2790 module_init(nfit_init);
2791 module_exit(nfit_exit);
2792 MODULE_LICENSE("GPL v2");
2793 MODULE_AUTHOR("Intel Corporation");
2794