xref: /linux/drivers/accel/ivpu/vpu_jsm_api.h (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (c) 2020-2025, Intel Corporation.
4  */
5 
6 /**
7  * @addtogroup Jsm
8  * @{
9  */
10 
11 /**
12  * @file
13  * @brief JSM shared definitions
14  */
15 #ifndef VPU_JSM_API_H
16 #define VPU_JSM_API_H
17 
18 /*
19  * Major version changes that break backward compatibility
20  */
21 #define VPU_JSM_API_VER_MAJOR 3
22 
23 /*
24  * Minor version changes when API backward compatibility is preserved.
25  */
26 #define VPU_JSM_API_VER_MINOR 33
27 
28 /*
29  * API header changed (field names, documentation, formatting) but API itself has not been changed
30  */
31 #define VPU_JSM_API_VER_PATCH 0
32 
33 /*
34  * Index in the API version table
35  */
36 #define VPU_JSM_API_VER_INDEX 4
37 
38 /*
39  * Number of Priority Bands for Hardware Scheduling
40  * Bands: Idle(0), Normal(1), Focus(2), RealTime(3)
41  */
42 #define VPU_HWS_NUM_PRIORITY_BANDS 4
43 
44 /* Max number of impacted contexts that can be dealt with the engine reset command */
45 #define VPU_MAX_ENGINE_RESET_IMPACTED_CONTEXTS 3
46 
47 /*
48  * Pack the API structures to enforce binary compatibility
49  * Align to 8 bytes for optimal performance
50  */
51 #pragma pack(push, 8)
52 
53 /*
54  * Engine indexes.
55  */
56 #define VPU_ENGINE_COMPUTE 0
57 #define VPU_ENGINE_NB	   1
58 
59 /*
60  * VPU status values.
61  */
62 #define VPU_JSM_STATUS_SUCCESS				 0x0U
63 #define VPU_JSM_STATUS_PARSING_ERR			 0x1U
64 #define VPU_JSM_STATUS_PROCESSING_ERR			 0x2U
65 #define VPU_JSM_STATUS_PREEMPTED			 0x3U
66 #define VPU_JSM_STATUS_ABORTED				 0x4U
67 #define VPU_JSM_STATUS_USER_CTX_VIOL_ERR		 0x5U
68 #define VPU_JSM_STATUS_GLOBAL_CTX_VIOL_ERR		 0x6U
69 #define VPU_JSM_STATUS_MVNCI_WRONG_INPUT_FORMAT		 0x7U
70 #define VPU_JSM_STATUS_MVNCI_UNSUPPORTED_NETWORK_ELEMENT 0x8U
71 #define VPU_JSM_STATUS_MVNCI_INVALID_HANDLE		 0x9U
72 #define VPU_JSM_STATUS_MVNCI_OUT_OF_RESOURCES		 0xAU
73 #define VPU_JSM_STATUS_MVNCI_NOT_IMPLEMENTED		 0xBU
74 #define VPU_JSM_STATUS_MVNCI_INTERNAL_ERROR		 0xCU
75 /* @deprecated (use VPU_JSM_STATUS_PREEMPTED_MID_COMMAND instead) */
76 #define VPU_JSM_STATUS_PREEMPTED_MID_INFERENCE		 0xDU
77 /* Job status returned when the job was preempted mid-command */
78 #define VPU_JSM_STATUS_PREEMPTED_MID_COMMAND		 0xDU
79 /* Range of status codes that require engine reset */
80 #define VPU_JSM_STATUS_ENGINE_RESET_REQUIRED_MIN	 0xEU
81 #define VPU_JSM_STATUS_MVNCI_CONTEXT_VIOLATION_HW	 0xEU
82 #define VPU_JSM_STATUS_MVNCI_PREEMPTION_TIMED_OUT	 0xFU
83 #define VPU_JSM_STATUS_ENGINE_RESET_REQUIRED_MAX	 0x1FU
84 
85 /*
86  * Host <-> VPU IPC channels.
87  * ASYNC commands use a high priority channel, other messages use low-priority ones.
88  */
89 #define VPU_IPC_CHAN_ASYNC_CMD 0
90 #define VPU_IPC_CHAN_GEN_CMD   10
91 #define VPU_IPC_CHAN_JOB_RET   11
92 
93 /*
94  * Job flags bit masks.
95  */
96 enum {
97 	/*
98 	 * Null submission mask.
99 	 * When set, batch buffer's commands are not processed but returned as
100 	 * successful immediately, except fences and timestamps.
101 	 * When cleared, batch buffer's commands are processed normally.
102 	 * Used for testing and profiling purposes.
103 	 */
104 	VPU_JOB_FLAGS_NULL_SUBMISSION_MASK = (1 << 0U),
105 	/*
106 	 * Inline command mask.
107 	 * When set, the object in job queue is an inline command (see struct vpu_inline_cmd below).
108 	 * When cleared, the object in job queue is a job (see struct vpu_job_queue_entry below).
109 	 */
110 	VPU_JOB_FLAGS_INLINE_CMD_MASK = (1 << 1U),
111 	/*
112 	 * VPU private data mask.
113 	 * Reserved for the VPU to store private data about the job (or inline command)
114 	 * while being processed.
115 	 */
116 	VPU_JOB_FLAGS_PRIVATE_DATA_MASK = 0xFFFF0000U
117 };
118 
119 /*
120  * Job queue flags bit masks.
121  */
122 enum {
123 	/*
124 	 * No job done notification mask.
125 	 * When set, indicates that no job done notification should be sent for any
126 	 * job from this queue. When cleared, indicates that job done notification
127 	 * should be sent for every job completed from this queue.
128 	 */
129 	VPU_JOB_QUEUE_FLAGS_NO_JOB_DONE_MASK = (1 << 0U),
130 	/*
131 	 * Native fence usage mask.
132 	 * When set, indicates that job queue uses native fences (as inline commands
133 	 * in job queue). Such queues may also use legacy fences (as commands in batch buffers).
134 	 * When cleared, indicates the job queue only uses legacy fences.
135 	 * NOTES:
136 	 *   1. For queues using native fences, VPU expects that all jobs in the queue
137 	 *      are immediately followed by an inline command object. This object is expected
138 	 *      to be a fence signal command in most cases, but can also be a NOP in case the host
139 	 *      does not need per-job fence signalling. Other inline commands objects can be
140 	 *      inserted between "job and inline command" pairs.
141 	 *  2. Native fence queues are only supported on VPU 40xx onwards.
142 	 */
143 	VPU_JOB_QUEUE_FLAGS_USE_NATIVE_FENCE_MASK = (1 << 1U),
144 	/*
145 	 * Enable turbo mode for testing NPU performance; not recommended for regular usage.
146 	 */
147 	VPU_JOB_QUEUE_FLAGS_TURBO_MODE = (1 << 2U),
148 	/*
149 	 * Queue error detection mode flag
150 	 * For 'interactive' queues (this bit not set), the FW will identify queues that have not
151 	 * completed a job inside the TDR timeout as in error as part of engine reset sequence.
152 	 * For 'non-interactive' queues (this bit set), the FW will identify queues that have not
153 	 * progressed the heartbeat inside the non-interactive no-progress timeout as in error as
154 	 * part of engine reset sequence. Additionally, there is an upper limit applied to these
155 	 * queues: even if they progress the heartbeat, if they run longer than non-interactive
156 	 * timeout, then the FW will also identify them as in error.
157 	 */
158 	VPU_JOB_QUEUE_FLAGS_NON_INTERACTIVE = (1 << 3U)
159 };
160 
161 /*
162  * Max length (including trailing NULL char) of trace entity name (e.g., the
163  * name of a logging destination or a loggable HW component).
164  */
165 #define VPU_TRACE_ENTITY_NAME_MAX_LEN 32
166 
167 /*
168  * Max length (including trailing NULL char) of a dyndbg command.
169  *
170  * NOTE: 96 is used so that the size of 'struct vpu_ipc_msg' in the JSM API is
171  * 128 bytes (multiple of 64 bytes, the cache line size).
172  */
173 #define VPU_DYNDBG_CMD_MAX_LEN 96
174 
175 /*
176  * For HWS command queue scheduling, we can prioritise command queues inside the
177  * same process with a relative in-process priority. Valid values for relative
178  * priority are given below - max and min.
179  */
180 #define VPU_HWS_COMMAND_QUEUE_MAX_IN_PROCESS_PRIORITY 7
181 #define VPU_HWS_COMMAND_QUEUE_MIN_IN_PROCESS_PRIORITY -7
182 
183 /*
184  * For HWS priority scheduling, we can have multiple realtime priority bands.
185  * They are numbered 0 to a MAX.
186  */
187 #define VPU_HWS_MAX_REALTIME_PRIORITY_LEVEL 31U
188 
189 /*
190  * vpu_jsm_engine_reset_context flag definitions
191  */
192 #define VPU_ENGINE_RESET_CONTEXT_FLAG_COLLATERAL_DAMAGE_MASK BIT(0)
193 #define VPU_ENGINE_RESET_CONTEXT_HANG_PRIMARY_CAUSE	     0
194 #define VPU_ENGINE_RESET_CONTEXT_COLLATERAL_DAMAGE	     1
195 
196 /*
197  * Invalid command queue handle identifier. Applies to cmdq_id and cmdq_group
198  * in this API.
199  */
200 #define VPU_HWS_INVALID_CMDQ_HANDLE 0ULL
201 
202 /*
203  * Inline commands types.
204  */
205 /*
206  * NOP.
207  * VPU does nothing other than consuming the inline command object.
208  */
209 #define VPU_INLINE_CMD_TYPE_NOP		 0x0
210 /*
211  * Fence wait.
212  * VPU waits for the fence current value to reach monitored value.
213  * Fence wait operations are executed upon job dispatching. While waiting for
214  * the fence to be satisfied, VPU blocks fetching of the next objects in the queue.
215  * Jobs present in the queue prior to the fence wait object may be processed
216  * concurrently.
217  */
218 #define VPU_INLINE_CMD_TYPE_FENCE_WAIT	 0x1
219 /*
220  * Fence signal.
221  * VPU sets the fence current value to the provided value. If new current value
222  * is equal to or higher than monitored value, VPU sends fence signalled notification
223  * to the host. Fence signal operations are executed upon completion of all the jobs
224  * present in the queue prior to them, and in-order relative to each other in the queue.
225  * But jobs in-between them may be processed concurrently and may complete out-of-order.
226  */
227 #define VPU_INLINE_CMD_TYPE_FENCE_SIGNAL 0x2
228 
229 /**
230  * Job scheduling priority bands for both hardware scheduling and OS scheduling.
231  */
232 enum vpu_job_scheduling_priority_band {
233 	VPU_JOB_SCHEDULING_PRIORITY_BAND_IDLE = 0,
234 	VPU_JOB_SCHEDULING_PRIORITY_BAND_NORMAL = 1,
235 	VPU_JOB_SCHEDULING_PRIORITY_BAND_FOCUS = 2,
236 	VPU_JOB_SCHEDULING_PRIORITY_BAND_REALTIME = 3,
237 	VPU_JOB_SCHEDULING_PRIORITY_BAND_COUNT = 4,
238 };
239 
240 /**
241  * Job format.
242  * Jobs defines the actual workloads to be executed by a given engine.
243  */
244 struct vpu_job_queue_entry {
245 	/** Address of VPU commands batch buffer */
246 	u64 batch_buf_addr;
247 	/** Job ID */
248 	u32 job_id;
249 	/** Flags bit field, see VPU_JOB_FLAGS_* above */
250 	u32 flags;
251 	/**
252 	 * Doorbell ring timestamp taken by KMD from SoC's global system clock, in
253 	 * microseconds. NPU can convert this value to its own fixed clock's timebase,
254 	 * to match other profiling timestamps.
255 	 */
256 	u64 doorbell_timestamp;
257 	/** Extra id for job tracking, used only in the firmware perf traces */
258 	u64 host_tracking_id;
259 	/** Address of the primary preemption buffer to use for this job */
260 	u64 primary_preempt_buf_addr;
261 	/** Size of the primary preemption buffer to use for this job */
262 	u32 primary_preempt_buf_size;
263 	/** Size of secondary preemption buffer to use for this job */
264 	u32 secondary_preempt_buf_size;
265 	/** Address of secondary preemption buffer to use for this job */
266 	u64 secondary_preempt_buf_addr;
267 	u64 reserved_0;
268 };
269 
270 /**
271  * Inline command format.
272  * Inline commands are the commands executed at scheduler level (typically,
273  * synchronization directives). Inline command and job objects must be of
274  * the same size and have flags field at same offset.
275  */
276 struct vpu_inline_cmd {
277 	u64 reserved_0;
278 	/** Inline command type, see VPU_INLINE_CMD_TYPE_* defines. */
279 	u32 type;
280 	/** Flags bit field, see VPU_JOB_FLAGS_* above. */
281 	u32 flags;
282 	/** Inline command payload. Depends on inline command type. */
283 	union payload {
284 		/** Fence (wait and signal) commands' payload. */
285 		struct fence {
286 			/** Fence object handle. */
287 			u64 fence_handle;
288 			/** User VA of the current fence value. */
289 			u64 current_value_va;
290 			/** User VA of the monitored fence value (read-only). */
291 			u64 monitored_value_va;
292 			/** Value to wait for or write in fence location. */
293 			u64 value;
294 			/** User VA of the log buffer in which to add log entry on completion. */
295 			u64 log_buffer_va;
296 			/** NPU private data. */
297 			u64 npu_private_data;
298 		} fence;
299 		/**
300 		 * Other commands do not have a payload:
301 		 * Payload definition for future inline commands can be inserted here.
302 		 */
303 		u64 reserved_1[6];
304 	} payload;
305 };
306 
307 /**
308  * Job queue slots can be populated either with job objects or inline command objects.
309  */
310 union vpu_jobq_slot {
311 	struct vpu_job_queue_entry job;
312 	struct vpu_inline_cmd inline_cmd;
313 };
314 
315 /**
316  * Job queue control registers.
317  */
318 struct vpu_job_queue_header {
319 	u32 engine_idx;
320 	u32 head;
321 	u32 tail;
322 	u32 flags;
323 	/** Set to 1 to indicate priority_band field is valid */
324 	u32 priority_band_valid;
325 	/**
326 	 * Priority for the work of this job queue, valid only if the HWS is NOT used
327 	 * and the @ref priority_band_valid is set to 1. It is applied only during
328 	 * the @ref VPU_JSM_MSG_REGISTER_DB message processing.
329 	 * The device firmware might use the priority_band to optimize the power
330 	 * management logic, but it will not affect the order of jobs.
331 	 * Available priority bands: @see enum vpu_job_scheduling_priority_band
332 	 */
333 	u32 priority_band;
334 	/** Inside realtime band assigns a further priority, limited to 0..31 range */
335 	u32 realtime_priority_level;
336 	u32 reserved_0[9];
337 };
338 
339 /*
340  * Job queue format.
341  */
342 struct vpu_job_queue {
343 	struct vpu_job_queue_header header;
344 	union vpu_jobq_slot slot[];
345 };
346 
347 /**
348  * Logging entity types.
349  *
350  * This enum defines the different types of entities involved in logging.
351  */
352 enum vpu_trace_entity_type {
353 	/** Logging destination (entity where logs can be stored / printed). */
354 	VPU_TRACE_ENTITY_TYPE_DESTINATION = 1,
355 	/** Loggable HW component (HW entity that can be logged). */
356 	VPU_TRACE_ENTITY_TYPE_HW_COMPONENT = 2,
357 };
358 
359 /**
360  * HWS specific log buffer header details.
361  * Total size is 32 bytes.
362  */
363 struct vpu_hws_log_buffer_header {
364 	/** Written by VPU after adding a log entry. Initialised by host to 0. */
365 	u32 first_free_entry_index;
366 	/** Incremented by VPU every time the VPU writes the 0th entry; initialised by host to 0. */
367 	u32 wraparound_count;
368 	/**
369 	 * This is the number of buffers that can be stored in the log buffer provided by the host.
370 	 * It is written by host before passing buffer to VPU. VPU should consider it read-only.
371 	 */
372 	u64 num_of_entries;
373 	u64 reserved[2];
374 };
375 
376 /**
377  * HWS specific log buffer entry details.
378  * Total size is 32 bytes.
379  */
380 struct vpu_hws_log_buffer_entry {
381 	/** VPU timestamp must be an invariant timer tick (not impacted by DVFS) */
382 	u64 vpu_timestamp;
383 	/**
384 	 * Operation type:
385 	 *     0 - context state change
386 	 *     1 - queue new work
387 	 *     2 - queue unwait sync object
388 	 *     3 - queue no more work
389 	 *     4 - queue wait sync object
390 	 */
391 	u32 operation_type;
392 	u32 reserved;
393 	/** Operation data depends on operation type */
394 	u64 operation_data[2];
395 };
396 
397 /* Native fence log buffer types. */
398 enum vpu_hws_native_fence_log_type {
399 	VPU_HWS_NATIVE_FENCE_LOG_TYPE_WAITS = 1,
400 	VPU_HWS_NATIVE_FENCE_LOG_TYPE_SIGNALS = 2
401 };
402 
403 /** HWS native fence log buffer header. */
404 struct vpu_hws_native_fence_log_header {
405 	union {
406 		struct {
407 			/** Index of the first free entry in buffer. */
408 			u32 first_free_entry_idx;
409 			/**
410 			 * Incremented whenever the NPU wraps around the buffer and writes
411 			 * to the first entry again.
412 			 */
413 			u32 wraparound_count;
414 		};
415 		/** Field allowing atomic update of both fields above. */
416 		u64 atomic_wraparound_and_entry_idx;
417 	};
418 	/** Log buffer type, see enum vpu_hws_native_fence_log_type. */
419 	u64 type;
420 	/** Allocated number of entries in the log buffer. */
421 	u64 entry_nb;
422 	u64 reserved[2];
423 };
424 
425 /** Native fence log operation types. */
426 enum vpu_hws_native_fence_log_op {
427 	VPU_HWS_NATIVE_FENCE_LOG_OP_SIGNAL_EXECUTED = 0,
428 	VPU_HWS_NATIVE_FENCE_LOG_OP_WAIT_UNBLOCKED = 1
429 };
430 
431 /** HWS native fence log entry. */
432 struct vpu_hws_native_fence_log_entry {
433 	/** Newly signaled/unblocked fence value. */
434 	u64 fence_value;
435 	/** Native fence object handle to which this operation belongs. */
436 	u64 fence_handle;
437 	/** Operation type, see enum vpu_hws_native_fence_log_op. */
438 	u64 op_type;
439 	u64 reserved_0;
440 	/**
441 	 * VPU_HWS_NATIVE_FENCE_LOG_OP_WAIT_UNBLOCKED only: Timestamp at which fence
442 	 * wait was started (in NPU SysTime).
443 	 */
444 	u64 fence_wait_start_ts;
445 	u64 reserved_1;
446 	/** Timestamp at which fence operation was completed (in NPU SysTime). */
447 	u64 fence_end_ts;
448 };
449 
450 /** Native fence log buffer. */
451 struct vpu_hws_native_fence_log_buffer {
452 	struct vpu_hws_native_fence_log_header header;
453 	struct vpu_hws_native_fence_log_entry entry[];
454 };
455 
456 /*
457  * Host <-> VPU IPC messages types.
458  */
459 enum vpu_ipc_msg_type {
460 	/** Unsupported command */
461 	VPU_JSM_MSG_UNKNOWN = 0xFFFFFFFF,
462 
463 	/** IPC Host -> Device, base id for async commands */
464 	VPU_JSM_MSG_ASYNC_CMD = 0x1100,
465 	/**
466 	 * Reset engine. The NPU cancels all the jobs currently executing on the target
467 	 * engine making the engine become idle and then does a HW reset, before returning
468 	 * to the host.
469 	 * @see struct vpu_ipc_msg_payload_engine_reset
470 	 */
471 	VPU_JSM_MSG_ENGINE_RESET = VPU_JSM_MSG_ASYNC_CMD,
472 	/**
473 	 * Preempt engine. The NPU stops (preempts) all the jobs currently
474 	 * executing on the target engine making the engine become idle and ready to
475 	 * execute new jobs.
476 	 * NOTE: The NPU does not remove unstarted jobs (if any) from job queues of
477 	 * the target engine, but it stops processing them (until the queue doorbell
478 	 * is rung again); the host is responsible to reset the job queue, either
479 	 * after preemption or when resubmitting jobs to the queue.
480 	 * @see vpu_ipc_msg_payload_engine_preempt
481 	 */
482 	VPU_JSM_MSG_ENGINE_PREEMPT = 0x1101,
483 	/**
484 	 * OS scheduling doorbell register command
485 	 * @see vpu_ipc_msg_payload_register_db
486 	 */
487 	VPU_JSM_MSG_REGISTER_DB = 0x1102,
488 	/**
489 	 * OS scheduling doorbell unregister command
490 	 * @see vpu_ipc_msg_payload_unregister_db
491 	 */
492 	VPU_JSM_MSG_UNREGISTER_DB = 0x1103,
493 	/**
494 	 * Query engine heartbeat. Heartbeat is expected to increase monotonically
495 	 * and increase while work is being progressed by NPU.
496 	 * @see vpu_ipc_msg_payload_query_engine_hb
497 	 */
498 	VPU_JSM_MSG_QUERY_ENGINE_HB = 0x1104,
499 	VPU_JSM_MSG_GET_POWER_LEVEL_COUNT = 0x1105,
500 	VPU_JSM_MSG_GET_POWER_LEVEL = 0x1106,
501 	VPU_JSM_MSG_SET_POWER_LEVEL = 0x1107,
502 	/* @deprecated */
503 	VPU_JSM_MSG_METRIC_STREAMER_OPEN = 0x1108,
504 	/* @deprecated */
505 	VPU_JSM_MSG_METRIC_STREAMER_CLOSE = 0x1109,
506 	/** Configure logging (used to modify configuration passed in boot params). */
507 	VPU_JSM_MSG_TRACE_SET_CONFIG = 0x110a,
508 	/** Return current logging configuration. */
509 	VPU_JSM_MSG_TRACE_GET_CONFIG = 0x110b,
510 	/**
511 	 * Get masks of destinations and HW components supported by the firmware
512 	 * (may vary between HW generations and FW compile
513 	 * time configurations)
514 	 */
515 	VPU_JSM_MSG_TRACE_GET_CAPABILITY = 0x110c,
516 	/** Get the name of a destination or HW component. */
517 	VPU_JSM_MSG_TRACE_GET_NAME = 0x110d,
518 	/**
519 	 * Release resource associated with host ssid . All jobs that belong to the host_ssid
520 	 * aborted and removed from internal scheduling queues. All doorbells assigned
521 	 * to the host_ssid are unregistered and any internal FW resources belonging to
522 	 * the host_ssid are released.
523 	 * @see vpu_ipc_msg_payload_ssid_release
524 	 */
525 	VPU_JSM_MSG_SSID_RELEASE = 0x110e,
526 	/**
527 	 * Start collecting metric data.
528 	 * @see vpu_jsm_metric_streamer_start
529 	 */
530 	VPU_JSM_MSG_METRIC_STREAMER_START = 0x110f,
531 	/**
532 	 * Stop collecting metric data. This command will return success if it is called
533 	 * for a metric stream that has already been stopped or was never started.
534 	 * @see vpu_jsm_metric_streamer_stop
535 	 */
536 	VPU_JSM_MSG_METRIC_STREAMER_STOP = 0x1110,
537 	/**
538 	 * Update current and next buffer for metric data collection. This command can
539 	 * also be used to request information about the number of collected samples
540 	 * and the amount of data written to the buffer.
541 	 * @see vpu_jsm_metric_streamer_update
542 	 */
543 	VPU_JSM_MSG_METRIC_STREAMER_UPDATE = 0x1111,
544 	/**
545 	 * Request description of selected metric groups and metric counters within
546 	 * each group. The VPU will write the description of groups and counters to
547 	 * the buffer specified in the command structure.
548 	 * @see vpu_jsm_metric_streamer_start
549 	 */
550 	VPU_JSM_MSG_METRIC_STREAMER_INFO = 0x1112,
551 	/**
552 	 * Control command: Priority band setup
553 	 * @see vpu_ipc_msg_payload_hws_priority_band_setup
554 	 */
555 	VPU_JSM_MSG_SET_PRIORITY_BAND_SETUP = 0x1113,
556 	/**
557 	 * Control command: Create command queue
558 	 * @see vpu_ipc_msg_payload_hws_create_cmdq
559 	 */
560 	VPU_JSM_MSG_CREATE_CMD_QUEUE = 0x1114,
561 	/**
562 	 * Control command: Destroy command queue
563 	 * @see vpu_ipc_msg_payload_hws_destroy_cmdq
564 	 */
565 	VPU_JSM_MSG_DESTROY_CMD_QUEUE = 0x1115,
566 	/**
567 	 * Control command: Set context scheduling properties
568 	 * @see vpu_ipc_msg_payload_hws_set_context_sched_properties
569 	 */
570 	VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES = 0x1116,
571 	/**
572 	 * Register a doorbell to notify VPU of new work. The doorbell may later be
573 	 * deallocated or reassigned to another context.
574 	 * @see vpu_jsm_hws_register_db
575 	 */
576 	VPU_JSM_MSG_HWS_REGISTER_DB = 0x1117,
577 	/**
578 	 * Control command: Log buffer setting
579 	 * @see vpu_ipc_msg_payload_hws_set_scheduling_log
580 	 */
581 	VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG = 0x1118,
582 	/**
583 	 * Control command: Suspend command queue.
584 	 * @see vpu_ipc_msg_payload_hws_suspend_cmdq
585 	 */
586 	VPU_JSM_MSG_HWS_SUSPEND_CMDQ = 0x1119,
587 	/**
588 	 * Control command: Resume command queue
589 	 * @see vpu_ipc_msg_payload_hws_resume_cmdq
590 	 */
591 	VPU_JSM_MSG_HWS_RESUME_CMDQ = 0x111a,
592 	/**
593 	 * Control command: Resume engine after reset
594 	 * @see vpu_ipc_msg_payload_hws_resume_engine
595 	 */
596 	VPU_JSM_MSG_HWS_ENGINE_RESUME = 0x111b,
597 	/**
598 	 * Control command: Enable survivability/DCT mode
599 	 * @see vpu_ipc_msg_payload_pwr_dct_control
600 	 */
601 	VPU_JSM_MSG_DCT_ENABLE = 0x111c,
602 	/**
603 	 * Control command: Disable survivability/DCT mode
604 	 * This command has no payload
605 	 */
606 	VPU_JSM_MSG_DCT_DISABLE = 0x111d,
607 	/**
608 	 * Dump VPU state. To be used for debug purposes only.
609 	 * This command has no payload.
610 	 * NOTE: Please introduce new ASYNC commands before this one.
611 	 */
612 	VPU_JSM_MSG_STATE_DUMP = 0x11FF,
613 
614 	/** IPC Host -> Device, base id for general commands */
615 	VPU_JSM_MSG_GENERAL_CMD = 0x1200,
616 	/** Unsupported command */
617 	VPU_JSM_MSG_BLOB_DEINIT_DEPRECATED = VPU_JSM_MSG_GENERAL_CMD,
618 	/**
619 	 * Control dyndbg behavior by executing a dyndbg command; equivalent to
620 	 * Linux command:
621 	 * @verbatim echo '<dyndbg_cmd>' > <debugfs>/dynamic_debug/control @endverbatim
622 	 * @see vpu_ipc_msg_payload_dyndbg_control
623 	 */
624 	VPU_JSM_MSG_DYNDBG_CONTROL = 0x1201,
625 	/**
626 	 * Perform the save procedure for the D0i3 entry
627 	 */
628 	VPU_JSM_MSG_PWR_D0I3_ENTER = 0x1202,
629 
630 	/**
631 	 * IPC Device -> Host, Job completion
632 	 * @see struct vpu_ipc_msg_payload_job_done
633 	 */
634 	VPU_JSM_MSG_JOB_DONE = 0x2100,
635 	/**
636 	 * IPC Device -> Host, Fence signalled
637 	 * @see vpu_ipc_msg_payload_native_fence_signalled
638 	 */
639 	VPU_JSM_MSG_NATIVE_FENCE_SIGNALLED = 0x2101,
640 
641 	/* IPC Device -> Host, Async command completion */
642 	VPU_JSM_MSG_ASYNC_CMD_DONE = 0x2200,
643 	/**
644 	 * IPC Device -> Host, engine reset complete
645 	 * @see vpu_ipc_msg_payload_engine_reset_done
646 	 */
647 	VPU_JSM_MSG_ENGINE_RESET_DONE = VPU_JSM_MSG_ASYNC_CMD_DONE,
648 	/**
649 	 * Preempt complete message
650 	 * @see vpu_ipc_msg_payload_engine_preempt_done
651 	 */
652 	VPU_JSM_MSG_ENGINE_PREEMPT_DONE = 0x2201,
653 	VPU_JSM_MSG_REGISTER_DB_DONE = 0x2202,
654 	VPU_JSM_MSG_UNREGISTER_DB_DONE = 0x2203,
655 	/**
656 	 * Response to query engine heartbeat.
657 	 * @see vpu_ipc_msg_payload_query_engine_hb_done
658 	 */
659 	VPU_JSM_MSG_QUERY_ENGINE_HB_DONE = 0x2204,
660 	VPU_JSM_MSG_GET_POWER_LEVEL_COUNT_DONE = 0x2205,
661 	VPU_JSM_MSG_GET_POWER_LEVEL_DONE = 0x2206,
662 	VPU_JSM_MSG_SET_POWER_LEVEL_DONE = 0x2207,
663 	/* @deprecated */
664 	VPU_JSM_MSG_METRIC_STREAMER_OPEN_DONE = 0x2208,
665 	/* @deprecated */
666 	VPU_JSM_MSG_METRIC_STREAMER_CLOSE_DONE = 0x2209,
667 	/** Response to VPU_JSM_MSG_TRACE_SET_CONFIG. */
668 	VPU_JSM_MSG_TRACE_SET_CONFIG_RSP = 0x220a,
669 	/** Response to VPU_JSM_MSG_TRACE_GET_CONFIG. */
670 	VPU_JSM_MSG_TRACE_GET_CONFIG_RSP = 0x220b,
671 	/** Response to VPU_JSM_MSG_TRACE_GET_CAPABILITY. */
672 	VPU_JSM_MSG_TRACE_GET_CAPABILITY_RSP = 0x220c,
673 	/** Response to VPU_JSM_MSG_TRACE_GET_NAME. */
674 	VPU_JSM_MSG_TRACE_GET_NAME_RSP = 0x220d,
675 	/**
676 	 * Response to VPU_JSM_MSG_SSID_RELEASE.
677 	 * @see vpu_ipc_msg_payload_ssid_release
678 	 */
679 	VPU_JSM_MSG_SSID_RELEASE_DONE = 0x220e,
680 	/**
681 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_START.
682 	 * VPU will return an error result if metric collection cannot be started,
683 	 * e.g. when the specified metric mask is invalid.
684 	 * @see vpu_jsm_metric_streamer_done
685 	 */
686 	VPU_JSM_MSG_METRIC_STREAMER_START_DONE = 0x220f,
687 	/**
688 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_STOP.
689 	 * Returns information about collected metric data.
690 	 * @see vpu_jsm_metric_streamer_done
691 	 */
692 	VPU_JSM_MSG_METRIC_STREAMER_STOP_DONE = 0x2210,
693 	/**
694 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_UPDATE.
695 	 * Returns information about collected metric data.
696 	 * @see vpu_jsm_metric_streamer_done
697 	 */
698 	VPU_JSM_MSG_METRIC_STREAMER_UPDATE_DONE = 0x2211,
699 	/**
700 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_INFO.
701 	 * Returns a description of the metric groups and metric counters.
702 	 * @see vpu_jsm_metric_streamer_done
703 	 */
704 	VPU_JSM_MSG_METRIC_STREAMER_INFO_DONE = 0x2212,
705 	/**
706 	 * Asynchronous event sent from the VPU to the host either when the current
707 	 * metric buffer is full or when the VPU has collected a multiple of
708 	 * @ref vpu_jsm_metric_streamer_start::notify_sample_count samples as indicated
709 	 * through the start command (VPU_JSM_MSG_METRIC_STREAMER_START). Returns
710 	 * information about collected metric data.
711 	 * @see vpu_jsm_metric_streamer_done
712 	 */
713 	VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION = 0x2213,
714 	/**
715 	 * Response to control command: Priority band setup
716 	 * @see vpu_ipc_msg_payload_hws_priority_band_setup
717 	 */
718 	VPU_JSM_MSG_SET_PRIORITY_BAND_SETUP_RSP = 0x2214,
719 	/**
720 	 * Response to control command: Create command queue
721 	 * @see vpu_ipc_msg_payload_hws_create_cmdq_rsp
722 	 */
723 	VPU_JSM_MSG_CREATE_CMD_QUEUE_RSP = 0x2215,
724 	/**
725 	 * Response to control command: Destroy command queue
726 	 * @see vpu_ipc_msg_payload_hws_destroy_cmdq
727 	 */
728 	VPU_JSM_MSG_DESTROY_CMD_QUEUE_RSP = 0x2216,
729 	/**
730 	 * Response to control command: Set context scheduling properties
731 	 * @see vpu_ipc_msg_payload_hws_set_context_sched_properties
732 	 */
733 	VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES_RSP = 0x2217,
734 	/**
735 	 * Response to control command: Log buffer setting
736 	 * @see vpu_ipc_msg_payload_hws_set_scheduling_log
737 	 */
738 	VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG_RSP = 0x2218,
739 	/**
740 	 * IPC Device -> Host, HWS notify index entry of log buffer written
741 	 * @see vpu_ipc_msg_payload_hws_scheduling_log_notification
742 	 */
743 	VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION = 0x2219,
744 	/**
745 	 * IPC Device -> Host, HWS completion of a context suspend request
746 	 * @see vpu_ipc_msg_payload_hws_suspend_cmdq
747 	 */
748 	VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE = 0x221a,
749 	/**
750 	 * Response to control command: Resume command queue
751 	 * @see vpu_ipc_msg_payload_hws_resume_cmdq
752 	 */
753 	VPU_JSM_MSG_HWS_RESUME_CMDQ_RSP = 0x221b,
754 	/**
755 	 * Response to control command: Resume engine command response
756 	 * @see vpu_ipc_msg_payload_hws_resume_engine
757 	 */
758 	VPU_JSM_MSG_HWS_RESUME_ENGINE_DONE = 0x221c,
759 	/**
760 	 * Response to control command: Enable survivability/DCT mode
761 	 * This command has no payload
762 	 */
763 	VPU_JSM_MSG_DCT_ENABLE_DONE = 0x221d,
764 	/**
765 	 * Response to control command: Disable survivability/DCT mode
766 	 * This command has no payload
767 	 */
768 	VPU_JSM_MSG_DCT_DISABLE_DONE = 0x221e,
769 	/**
770 	 * Response to state dump control command.
771 	 * This command has no payload.
772 	 * NOTE: Please introduce new ASYNC responses before this one.
773 	 */
774 	VPU_JSM_MSG_STATE_DUMP_RSP = 0x22FF,
775 
776 	/* IPC Device -> Host, General command completion */
777 	VPU_JSM_MSG_GENERAL_CMD_DONE = 0x2300,
778 	VPU_JSM_MSG_BLOB_DEINIT_DONE = VPU_JSM_MSG_GENERAL_CMD_DONE,
779 	/** Response to VPU_JSM_MSG_DYNDBG_CONTROL. */
780 	VPU_JSM_MSG_DYNDBG_CONTROL_RSP = 0x2301,
781 	/**
782 	 * Acknowledgment of completion of the save procedure initiated by
783 	 * VPU_JSM_MSG_PWR_D0I3_ENTER
784 	 */
785 	VPU_JSM_MSG_PWR_D0I3_ENTER_DONE = 0x2302,
786 };
787 
788 enum vpu_ipc_msg_status { VPU_JSM_MSG_FREE, VPU_JSM_MSG_ALLOCATED };
789 
790 /**
791  * Engine reset request payload
792  * @see VPU_JSM_MSG_ENGINE_RESET
793  */
794 struct vpu_ipc_msg_payload_engine_reset {
795 	/** Engine to be reset. */
796 	u32 engine_idx;
797 	/** Reserved */
798 	u32 reserved_0;
799 };
800 
801 /**
802  * Engine preemption request struct
803  * @see VPU_JSM_MSG_ENGINE_PREEMPT
804  */
805 struct vpu_ipc_msg_payload_engine_preempt {
806 	/** Engine to be preempted. */
807 	u32 engine_idx;
808 	/** ID of the preemption request. */
809 	u32 preempt_id;
810 };
811 
812 /**
813  * Register doorbell command structure.
814  * This structure supports doorbell registration for only OS scheduling.
815  * @see VPU_JSM_MSG_REGISTER_DB
816  */
817 struct vpu_ipc_msg_payload_register_db {
818 	/** Index of the doorbell to register. */
819 	u32 db_idx;
820 	/** Reserved */
821 	u32 reserved_0;
822 	/** Virtual address in Global GTT pointing to the start of job queue. */
823 	u64 jobq_base;
824 	/** Size of the job queue in bytes. */
825 	u32 jobq_size;
826 	/** Host sub-stream ID for the context assigned to the doorbell. */
827 	u32 host_ssid;
828 };
829 
830 /**
831  * Unregister doorbell command structure.
832  * Request structure to unregister a doorbell for both HW and OS scheduling.
833  * @see VPU_JSM_MSG_UNREGISTER_DB
834  */
835 struct vpu_ipc_msg_payload_unregister_db {
836 	/** Index of the doorbell to unregister. */
837 	u32 db_idx;
838 	/** Reserved */
839 	u32 reserved_0;
840 };
841 
842 /**
843  * Heartbeat request structure
844  * @see VPU_JSM_MSG_QUERY_ENGINE_HB
845  */
846 struct vpu_ipc_msg_payload_query_engine_hb {
847 	/** Engine to return heartbeat value. */
848 	u32 engine_idx;
849 	/** Reserved */
850 	u32 reserved_0;
851 };
852 
853 struct vpu_ipc_msg_payload_power_level {
854 	/**
855 	 * Requested power level. The power level value is in the
856 	 * range [0, power_level_count-1] where power_level_count
857 	 * is the number of available power levels as returned by
858 	 * the get power level count command. A power level of 0
859 	 * corresponds to the maximum possible power level, while
860 	 * power_level_count-1 corresponds to the minimum possible
861 	 * power level. Values outside of this range are not
862 	 * considered to be valid.
863 	 */
864 	u32 power_level;
865 	/* Reserved */
866 	u32 reserved_0;
867 };
868 
869 /**
870  * Structure for requesting ssid release
871  * @see VPU_JSM_MSG_SSID_RELEASE
872  */
873 struct vpu_ipc_msg_payload_ssid_release {
874 	/** Host sub-stream ID for the context to be released. */
875 	u32 host_ssid;
876 	/** Reserved */
877 	u32 reserved_0;
878 };
879 
880 /**
881  * @brief Metric streamer start command structure.
882  * This structure is also used with VPU_JSM_MSG_METRIC_STREAMER_INFO to request metric
883  * groups and metric counters description from the firmware.
884  * @see VPU_JSM_MSG_METRIC_STREAMER_START
885  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
886  */
887 struct vpu_jsm_metric_streamer_start {
888 	/**
889 	 * Bitmask to select the desired metric groups.
890 	 * A metric group can belong only to one metric streamer instance at a time.
891 	 * Since each metric streamer instance has a unique set of metric groups, it
892 	 * can also identify a metric streamer instance if more than one instance was
893 	 * started. If the VPU device does not support multiple metric streamer instances,
894 	 * then VPU_JSM_MSG_METRIC_STREAMER_START will return an error even if the second
895 	 * instance has different groups to the first.
896 	 */
897 	u64 metric_group_mask;
898 	/** Sampling rate in nanoseconds. */
899 	u64 sampling_rate;
900 	/**
901 	 * If > 0 the VPU will send a VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION message
902 	 * after every @ref notify_sample_count samples is collected or dropped by the VPU.
903 	 * If set to UINT_MAX the VPU will only generate a notification when the metric
904 	 * buffer is full. If set to 0 the VPU will never generate a notification.
905 	 */
906 	u32 notify_sample_count;
907 	u32 reserved_0;
908 	/**
909 	 * Address and size of the buffer where the VPU will write metric data. The
910 	 * VPU writes all counters from enabled metric groups one after another. If
911 	 * there is no space left to write data at the next sample period the VPU
912 	 * will switch to the next buffer (@ref next_buffer_addr) and will optionally
913 	 * send a notification to the host driver if @ref notify_sample_count is non-zero.
914 	 * If @ref next_buffer_addr is NULL the VPU will stop collecting metric data.
915 	 */
916 	u64 buffer_addr;
917 	u64 buffer_size;
918 	/**
919 	 * Address and size of the next buffer to write metric data to after the initial
920 	 * buffer is full. If the address is NULL the VPU will stop collecting metric
921 	 * data.
922 	 */
923 	u64 next_buffer_addr;
924 	u64 next_buffer_size;
925 };
926 
927 /**
928  * @brief Metric streamer stop command structure.
929  * @see VPU_JSM_MSG_METRIC_STREAMER_STOP
930  */
931 struct vpu_jsm_metric_streamer_stop {
932 	/** Bitmask to select the desired metric groups. */
933 	u64 metric_group_mask;
934 };
935 
936 /**
937  * Provide VPU FW with buffers to write metric data.
938  * @see VPU_JSM_MSG_METRIC_STREAMER_UPDATE
939  */
940 struct vpu_jsm_metric_streamer_update {
941 	/** Metric group mask that identifies metric streamer instance. */
942 	u64 metric_group_mask;
943 	/**
944 	 * Address and size of the buffer where the VPU will write metric data.
945 	 * This member dictates how the update operation should perform:
946 	 * 1. client needs information about the number of collected samples and the
947 	 *   amount of data written to the current buffer
948 	 * 2. client wants to switch to a new buffer
949 	 *
950 	 * Case 1. is identified by the buffer address being 0 or the same as the
951 	 * currently used buffer address. In this case the buffer size is ignored and
952 	 * the size of the current buffer is unchanged. The VPU will return an update
953 	 * in the vpu_jsm_metric_streamer_done structure. The internal writing position
954 	 * into the buffer is not changed.
955 	 *
956 	 * Case 2. is identified by the address being non-zero and differs from the
957 	 * current buffer address. The VPU will immediately switch data collection to
958 	 * the new buffer. Then the VPU will return an update in the
959 	 * vpu_jsm_metric_streamer_done structure.
960 	 */
961 	u64 buffer_addr;
962 	u64 buffer_size;
963 	/**
964 	 * Address and size of the next buffer to write metric data after the initial
965 	 * buffer is full. If the address is NULL the VPU will stop collecting metric
966 	 * data but will continue to record dropped samples.
967 	 *
968 	 * Note that there is a hazard possible if both buffer_addr and the next_buffer_addr
969 	 * are non-zero in same update request. It is the host's responsibility to ensure
970 	 * that both addresses make sense even if the VPU just switched to writing samples
971 	 * from the current to the next buffer.
972 	 */
973 	u64 next_buffer_addr;
974 	u64 next_buffer_size;
975 };
976 
977 /**
978  * Device -> host job completion message.
979  * @see VPU_JSM_MSG_JOB_DONE
980  */
981 struct vpu_ipc_msg_payload_job_done {
982 	/** Engine to which the job was submitted. */
983 	u32 engine_idx;
984 	/** Index of the doorbell to which the job was submitted */
985 	u32 db_idx;
986 	/** ID of the completed job */
987 	u32 job_id;
988 	/** Status of the completed job */
989 	u32 job_status;
990 	/** Host SSID */
991 	u32 host_ssid;
992 	/** Zero Padding */
993 	u32 reserved_0;
994 	/** Command queue id */
995 	u64 cmdq_id;
996 };
997 
998 /**
999  * Notification message upon native fence signalling.
1000  * @see VPU_JSM_MSG_NATIVE_FENCE_SIGNALLED
1001  */
1002 struct vpu_ipc_msg_payload_native_fence_signalled {
1003 	/** Engine ID. */
1004 	u32 engine_idx;
1005 	/** Host SSID. */
1006 	u32 host_ssid;
1007 	/** CMDQ ID */
1008 	u64 cmdq_id;
1009 	/** Fence object handle. */
1010 	u64 fence_handle;
1011 };
1012 
1013 /**
1014  * vpu_ipc_msg_payload_engine_reset_done will contain an array of this structure
1015  * which contains which queues caused reset if FW was able to detect any error.
1016  * @see vpu_ipc_msg_payload_engine_reset_done
1017  */
1018 struct vpu_jsm_engine_reset_context {
1019 	/** Host SSID */
1020 	u32 host_ssid;
1021 	/** Zero Padding */
1022 	u32 reserved_0;
1023 	/** Command queue id */
1024 	u64 cmdq_id;
1025 	/** See VPU_ENGINE_RESET_CONTEXT_* defines */
1026 	u64 flags;
1027 };
1028 
1029 /**
1030  * Engine reset response.
1031  * @see VPU_JSM_MSG_ENGINE_RESET_DONE
1032  */
1033 struct vpu_ipc_msg_payload_engine_reset_done {
1034 	/** Engine ordinal */
1035 	u32 engine_idx;
1036 	/** Number of impacted contexts */
1037 	u32 num_impacted_contexts;
1038 	/** Array of impacted command queue ids and their flags */
1039 	struct vpu_jsm_engine_reset_context
1040 		impacted_contexts[VPU_MAX_ENGINE_RESET_IMPACTED_CONTEXTS];
1041 };
1042 
1043 /**
1044  * Preemption response struct
1045  * @see VPU_JSM_MSG_ENGINE_PREEMPT_DONE
1046  */
1047 struct vpu_ipc_msg_payload_engine_preempt_done {
1048 	/** Engine preempted. */
1049 	u32 engine_idx;
1050 	/** ID of the preemption request. */
1051 	u32 preempt_id;
1052 };
1053 
1054 /**
1055  * Response structure for register doorbell command for both OS
1056  * and HW scheduling.
1057  * @see VPU_JSM_MSG_REGISTER_DB
1058  * @see VPU_JSM_MSG_HWS_REGISTER_DB
1059  */
1060 struct vpu_ipc_msg_payload_register_db_done {
1061 	/* Index of the registered doorbell. */
1062 	u32 db_idx;
1063 	/* Reserved */
1064 	u32 reserved_0;
1065 };
1066 
1067 /**
1068  * Response structure for unregister doorbell command for both OS
1069  * and HW scheduling.
1070  * @see VPU_JSM_MSG_UNREGISTER_DB
1071  */
1072 struct vpu_ipc_msg_payload_unregister_db_done {
1073 	/* Index of the unregistered doorbell. */
1074 	u32 db_idx;
1075 	/* Reserved */
1076 	u32 reserved_0;
1077 };
1078 
1079 /**
1080  * Structure for heartbeat response
1081  * @see VPU_JSM_MSG_QUERY_ENGINE_HB_DONE
1082  */
1083 struct vpu_ipc_msg_payload_query_engine_hb_done {
1084 	/** Engine returning heartbeat value. */
1085 	u32 engine_idx;
1086 	/** Reserved */
1087 	u32 reserved_0;
1088 	/** Heartbeat value. */
1089 	u64 heartbeat;
1090 };
1091 
1092 struct vpu_ipc_msg_payload_get_power_level_count_done {
1093 	/**
1094 	 * Number of supported power levels. The maximum possible
1095 	 * value of power_level_count is 16 but this may vary across
1096 	 * implementations.
1097 	 */
1098 	u32 power_level_count;
1099 	/* Reserved */
1100 	u32 reserved_0;
1101 	/**
1102 	 * Power consumption limit for each supported power level in
1103 	 * [0-100%] range relative to power level 0.
1104 	 */
1105 	u8 power_limit[16];
1106 };
1107 
1108 /**
1109  * HWS priority band setup request / response
1110  * @see VPU_JSM_MSG_SET_PRIORITY_BAND_SETUP
1111  */
1112 struct vpu_ipc_msg_payload_hws_priority_band_setup {
1113 	/*
1114 	 * Grace period in 100ns units when preempting another priority band for
1115 	 * this priority band
1116 	 */
1117 	u32 grace_period[VPU_HWS_NUM_PRIORITY_BANDS];
1118 	/*
1119 	 * Default quantum in 100ns units for scheduling across processes
1120 	 * within a priority band
1121 	 * Minimum value supported by NPU is 1ms (10000 in 100ns units).
1122 	 */
1123 	u32 process_quantum[VPU_HWS_NUM_PRIORITY_BANDS];
1124 	/*
1125 	 * Default grace period in 100ns units for processes that preempt each
1126 	 * other within a priority band
1127 	 */
1128 	u32 process_grace_period[VPU_HWS_NUM_PRIORITY_BANDS];
1129 	/*
1130 	 * For normal priority band, specifies the target VPU percentage
1131 	 * in situations when it's starved by the focus band.
1132 	 */
1133 	u32 normal_band_percentage;
1134 	/*
1135 	 * TDR timeout value in milliseconds. Default value of 0 meaning no timeout.
1136 	 */
1137 	u32 tdr_timeout;
1138 	/* Non-interactive queue timeout for no progress of heartbeat in milliseconds.
1139 	 * Default value of 0 meaning no timeout.
1140 	 */
1141 	u32 non_interactive_no_progress_timeout;
1142 	/*
1143 	 * Non-interactive queue upper limit timeout value in milliseconds. Default
1144 	 * value of 0 meaning no timeout.
1145 	 */
1146 	u32 non_interactive_timeout;
1147 };
1148 
1149 /**
1150  * @brief HWS create command queue request.
1151  * Host will create a command queue via this command.
1152  * Note: Cmdq group is a handle of an object which
1153  * may contain one or more command queues.
1154  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE
1155  */
1156 struct vpu_ipc_msg_payload_hws_create_cmdq {
1157 	/* Process id */
1158 	u64 process_id;
1159 	/* Host SSID */
1160 	u32 host_ssid;
1161 	/* Engine for which queue is being created */
1162 	u32 engine_idx;
1163 	/* Cmdq group: only used for HWS logging of state changes */
1164 	u64 cmdq_group;
1165 	/* Command queue id */
1166 	u64 cmdq_id;
1167 	/* Command queue base */
1168 	u64 cmdq_base;
1169 	/* Command queue size */
1170 	u32 cmdq_size;
1171 	/* Zero padding */
1172 	u32 reserved_0;
1173 };
1174 
1175 /**
1176  * HWS create command queue response.
1177  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE_RSP
1178  */
1179 struct vpu_ipc_msg_payload_hws_create_cmdq_rsp {
1180 	/** Process id */
1181 	u64 process_id;
1182 	/** Host SSID */
1183 	u32 host_ssid;
1184 	/** Engine for which queue is being created */
1185 	u32 engine_idx;
1186 	/** Command queue group */
1187 	u64 cmdq_group;
1188 	/** Command queue id */
1189 	u64 cmdq_id;
1190 };
1191 
1192 /**
1193  * HWS destroy command queue request / response
1194  * @see VPU_JSM_MSG_DESTROY_CMD_QUEUE
1195  * @see VPU_JSM_MSG_DESTROY_CMD_QUEUE_RSP
1196  */
1197 struct vpu_ipc_msg_payload_hws_destroy_cmdq {
1198 	/** Host SSID */
1199 	u32 host_ssid;
1200 	/** Zero Padding */
1201 	u32 reserved;
1202 	/** Command queue id */
1203 	u64 cmdq_id;
1204 };
1205 
1206 /**
1207  * HWS set context scheduling properties request / response
1208  * @see VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES
1209  * @see VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES_RSP
1210  */
1211 struct vpu_ipc_msg_payload_hws_set_context_sched_properties {
1212 	/** Host SSID */
1213 	u32 host_ssid;
1214 	/** Zero Padding */
1215 	u32 reserved_0;
1216 	/** Command queue id */
1217 	u64 cmdq_id;
1218 	/**
1219 	 * Priority band to assign to work of this context.
1220 	 * Available priority bands: @see enum vpu_job_scheduling_priority_band
1221 	 */
1222 	u32 priority_band;
1223 	/** Inside realtime band assigns a further priority */
1224 	u32 realtime_priority_level;
1225 	/** Priority relative to other contexts in the same process */
1226 	s32 in_process_priority;
1227 	/** Zero padding / Reserved */
1228 	u32 reserved_1;
1229 	/**
1230 	 * Context quantum relative to other contexts of same priority in the same process
1231 	 * Minimum value supported by NPU is 1ms (10000 in 100ns units).
1232 	 */
1233 	u64 context_quantum;
1234 	/** Grace period when preempting context of the same priority within the same process */
1235 	u64 grace_period_same_priority;
1236 	/** Grace period when preempting context of a lower priority within the same process */
1237 	u64 grace_period_lower_priority;
1238 };
1239 
1240 /**
1241  * Register doorbell command structure.
1242  * This structure supports doorbell registration for both HW and OS scheduling.
1243  * Note: Queue base and size are added here so that the same structure can be used for
1244  * OS scheduling and HW scheduling. For OS scheduling, cmdq_id will be ignored
1245  * and cmdq_base and cmdq_size will be used. For HW scheduling, cmdq_base and cmdq_size will be
1246  * ignored and cmdq_id is used.
1247  * @see VPU_JSM_MSG_HWS_REGISTER_DB
1248  */
1249 struct vpu_jsm_hws_register_db {
1250 	/** Index of the doorbell to register. */
1251 	u32 db_id;
1252 	/** Host sub-stream ID for the context assigned to the doorbell. */
1253 	u32 host_ssid;
1254 	/** ID of the command queue associated with the doorbell. */
1255 	u64 cmdq_id;
1256 	/** Virtual address pointing to the start of command queue. */
1257 	u64 cmdq_base;
1258 	/** Size of the command queue in bytes. */
1259 	u64 cmdq_size;
1260 };
1261 
1262 /**
1263  * Structure to set another buffer to be used for scheduling-related logging.
1264  * The size of the logging buffer and the number of entries is defined as part of the
1265  * buffer itself as described next.
1266  * The log buffer received from the host is made up of;
1267  *   - header:     32 bytes in size, as shown in @ref vpu_hws_log_buffer_header.
1268  *                 The header contains the number of log entries in the buffer.
1269  *   - log entry:  0 to n-1, each log entry is 32 bytes in size, as shown in
1270  *                 @ref vpu_hws_log_buffer_entry.
1271  *                 The entry contains the VPU timestamp, operation type and data.
1272  * The host should provide the notify index value of log buffer to VPU. This is a
1273  * value defined within the log buffer and when written to will generate the
1274  * scheduling log notification.
1275  * The host should set engine_idx and vpu_log_buffer_va to 0 to disable logging
1276  * for a particular engine.
1277  * VPU will handle one log buffer for each of supported engines.
1278  * VPU should allow the logging to consume one host_ssid.
1279  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG
1280  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG_RSP
1281  * @see VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
1282  */
1283 struct vpu_ipc_msg_payload_hws_set_scheduling_log {
1284 	/** Engine ordinal */
1285 	u32 engine_idx;
1286 	/** Host SSID */
1287 	u32 host_ssid;
1288 	/**
1289 	 * VPU log buffer virtual address.
1290 	 * Set to 0 to disable logging for this engine.
1291 	 */
1292 	u64 vpu_log_buffer_va;
1293 	/**
1294 	 * Notify index of log buffer. VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
1295 	 * is generated when an event log is written to this index.
1296 	 */
1297 	u64 notify_index;
1298 	/**
1299 	 * Field is now deprecated, will be removed when KMD is updated to support removal
1300 	 */
1301 	u32 enable_extra_events;
1302 	/** Zero Padding */
1303 	u32 reserved_0;
1304 };
1305 
1306 /**
1307  * The scheduling log notification is generated by VPU when it writes
1308  * an event into the log buffer at the notify_index. VPU notifies host with
1309  * VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION. This is an asynchronous
1310  * message from VPU to host.
1311  * @see VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
1312  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG
1313  */
1314 struct vpu_ipc_msg_payload_hws_scheduling_log_notification {
1315 	/** Engine ordinal */
1316 	u32 engine_idx;
1317 	/** Zero Padding */
1318 	u32 reserved_0;
1319 };
1320 
1321 /**
1322  * HWS suspend command queue request and done structure.
1323  * Host will request the suspend of contexts and VPU will;
1324  *   - Suspend all work on this context
1325  *   - Preempt any running work
1326  *   - Asynchronously perform the above and return success immediately once
1327  *     all items above are started successfully
1328  *   - Notify the host of completion of these operations via
1329  *     VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE
1330  *   - Reject any other context operations on a context with an in-flight
1331  *     suspend request running
1332  * Same structure used when VPU notifies host of completion of a context suspend
1333  * request. The ids and suspend fence value reported in this command will match
1334  * the one in the request from the host to suspend the context. Once suspend is
1335  * complete, VPU will not access any data relating to this command queue until
1336  * it is resumed.
1337  * @see VPU_JSM_MSG_HWS_SUSPEND_CMDQ
1338  * @see VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE
1339  */
1340 struct vpu_ipc_msg_payload_hws_suspend_cmdq {
1341 	/** Host SSID */
1342 	u32 host_ssid;
1343 	/** Zero Padding */
1344 	u32 reserved_0;
1345 	/** Command queue id */
1346 	u64 cmdq_id;
1347 	/**
1348 	 * Suspend fence value - reported by the VPU suspend context
1349 	 * completed once suspend is complete.
1350 	 */
1351 	u64 suspend_fence_value;
1352 };
1353 
1354 /**
1355  * HWS Resume command queue request / response structure.
1356  * Host will request the resume of a context;
1357  *  - VPU will resume all work on this context
1358  *  - Scheduler will allow this context to be scheduled
1359  * @see VPU_JSM_MSG_HWS_RESUME_CMDQ
1360  * @see VPU_JSM_MSG_HWS_RESUME_CMDQ_RSP
1361  */
1362 struct vpu_ipc_msg_payload_hws_resume_cmdq {
1363 	/** Host SSID */
1364 	u32 host_ssid;
1365 	/** Zero Padding */
1366 	u32 reserved_0;
1367 	/** Command queue id */
1368 	u64 cmdq_id;
1369 };
1370 
1371 /**
1372  * HWS Resume engine request / response structure.
1373  * After a HWS engine reset, all scheduling is stopped on VPU until an engine resume.
1374  * Host shall send this command to resume scheduling of any valid queue.
1375  * @see VPU_JSM_MSG_HWS_ENGINE_RESUME
1376  * @see VPU_JSM_MSG_HWS_RESUME_ENGINE_DONE
1377  */
1378 struct vpu_ipc_msg_payload_hws_resume_engine {
1379 	/** Engine to be resumed */
1380 	u32 engine_idx;
1381 	/** Reserved */
1382 	u32 reserved_0;
1383 };
1384 
1385 /**
1386  * Payload for VPU_JSM_MSG_TRACE_SET_CONFIG[_RSP] and
1387  * VPU_JSM_MSG_TRACE_GET_CONFIG_RSP messages.
1388  *
1389  * The payload is interpreted differently depending on the type of message:
1390  *
1391  * - For VPU_JSM_MSG_TRACE_SET_CONFIG, the payload specifies the desired
1392  *   logging configuration to be set.
1393  *
1394  * - For VPU_JSM_MSG_TRACE_SET_CONFIG_RSP, the payload reports the logging
1395  *   configuration that was set after a VPU_JSM_MSG_TRACE_SET_CONFIG request.
1396  *   The host can compare this payload with the one it sent in the
1397  *   VPU_JSM_MSG_TRACE_SET_CONFIG request to check whether or not the
1398  *   configuration was set as desired.
1399  *
1400  * - VPU_JSM_MSG_TRACE_GET_CONFIG_RSP, the payload reports the current logging
1401  *   configuration.
1402  */
1403 struct vpu_ipc_msg_payload_trace_config {
1404 	/**
1405 	 * Logging level (currently set or to be set); see 'mvLog_t' enum for
1406 	 * acceptable values. The specified logging level applies to all
1407 	 * destinations and HW components
1408 	 */
1409 	u32 trace_level;
1410 	/**
1411 	 * Bitmask of logging destinations (currently enabled or to be enabled);
1412 	 * bitwise OR of values defined in logging_destination enum.
1413 	 */
1414 	u32 trace_destination_mask;
1415 	/**
1416 	 * Bitmask of loggable HW components (currently enabled or to be enabled);
1417 	 * bitwise OR of values defined in loggable_hw_component enum.
1418 	 */
1419 	u64 trace_hw_component_mask;
1420 	u64 reserved_0; /**< Reserved for future extensions. */
1421 };
1422 
1423 /**
1424  * Payload for VPU_JSM_MSG_TRACE_GET_CAPABILITY_RSP messages.
1425  */
1426 struct vpu_ipc_msg_payload_trace_capability_rsp {
1427 	u32 trace_destination_mask; /**< Bitmask of supported logging destinations. */
1428 	u32 reserved_0;
1429 	u64 trace_hw_component_mask; /**< Bitmask of supported loggable HW components. */
1430 	u64 reserved_1; /**< Reserved for future extensions. */
1431 };
1432 
1433 /**
1434  * Payload for VPU_JSM_MSG_TRACE_GET_NAME requests.
1435  */
1436 struct vpu_ipc_msg_payload_trace_get_name {
1437 	/**
1438 	 * The type of the entity to query name for; see logging_entity_type for
1439 	 * possible values.
1440 	 */
1441 	u32 entity_type;
1442 	u32 reserved_0;
1443 	/**
1444 	 * The ID of the entity to query name for; possible values depends on the
1445 	 * entity type.
1446 	 */
1447 	u64 entity_id;
1448 };
1449 
1450 /**
1451  * Payload for VPU_JSM_MSG_TRACE_GET_NAME_RSP responses.
1452  */
1453 struct vpu_ipc_msg_payload_trace_get_name_rsp {
1454 	/**
1455 	 * The type of the entity whose name was queried; see logging_entity_type
1456 	 * for possible values.
1457 	 */
1458 	u32 entity_type;
1459 	u32 reserved_0;
1460 	/**
1461 	 * The ID of the entity whose name was queried; possible values depends on
1462 	 * the entity type.
1463 	 */
1464 	u64 entity_id;
1465 	/** Reserved for future extensions. */
1466 	u64 reserved_1;
1467 	/** The name of the entity. */
1468 	char entity_name[VPU_TRACE_ENTITY_NAME_MAX_LEN];
1469 };
1470 
1471 /**
1472  * Data sent from the VPU to the host in all metric streamer response messages
1473  * and in asynchronous notification.
1474  * @see VPU_JSM_MSG_METRIC_STREAMER_START_DONE
1475  * @see VPU_JSM_MSG_METRIC_STREAMER_STOP_DONE
1476  * @see VPU_JSM_MSG_METRIC_STREAMER_UPDATE_DONE
1477  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO_DONE
1478  * @see VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION
1479  */
1480 struct vpu_jsm_metric_streamer_done {
1481 	/** Metric group mask that identifies metric streamer instance. */
1482 	u64 metric_group_mask;
1483 	/**
1484 	 * Size in bytes of single sample - total size of all enabled counters.
1485 	 * Some VPU implementations may align sample_size to more than 8 bytes.
1486 	 */
1487 	u32 sample_size;
1488 	u32 reserved_0;
1489 	/**
1490 	 * Number of samples collected since the metric streamer was started.
1491 	 * This will be 0 if the metric streamer was not started.
1492 	 */
1493 	u32 samples_collected;
1494 	/**
1495 	 * Number of samples dropped since the metric streamer was started. This
1496 	 * is incremented every time the metric streamer is not able to write
1497 	 * collected samples because the current buffer is full and there is no
1498 	 * next buffer to switch to.
1499 	 */
1500 	u32 samples_dropped;
1501 	/** Address of the buffer that contains the latest metric data. */
1502 	u64 buffer_addr;
1503 	/**
1504 	 * Number of bytes written into the metric data buffer. In response to the
1505 	 * VPU_JSM_MSG_METRIC_STREAMER_INFO request this field contains the size of
1506 	 * all group and counter descriptors. The size is updated even if the buffer
1507 	 * in the request was NULL or too small to hold descriptors of all counters
1508 	 */
1509 	u64 bytes_written;
1510 };
1511 
1512 /**
1513  * Metric group description placed in the metric buffer after successful completion
1514  * of the VPU_JSM_MSG_METRIC_STREAMER_INFO command. This is followed by one or more
1515  * @ref vpu_jsm_metric_counter_descriptor records.
1516  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
1517  */
1518 struct vpu_jsm_metric_group_descriptor {
1519 	/**
1520 	 * Offset to the next metric group (8-byte aligned). If this offset is 0 this
1521 	 * is the last descriptor. The value of metric_info_size must be greater than
1522 	 * or equal to sizeof(struct vpu_jsm_metric_group_descriptor) + name_string_size
1523 	 * + description_string_size and must be 8-byte aligned.
1524 	 */
1525 	u32 next_metric_group_info_offset;
1526 	/**
1527 	 * Offset to the first metric counter description record (8-byte aligned).
1528 	 * @see vpu_jsm_metric_counter_descriptor
1529 	 */
1530 	u32 next_metric_counter_info_offset;
1531 	/** Index of the group. This corresponds to bit index in metric_group_mask. */
1532 	u32 group_id;
1533 	/** Number of counters in the metric group. */
1534 	u32 num_counters;
1535 	/** Data size for all counters, must be a multiple of 8 bytes.*/
1536 	u32 metric_group_data_size;
1537 	/**
1538 	 * Metric group domain number. Cannot use multiple, simultaneous metric groups
1539 	 * from the same domain.
1540 	 */
1541 	u32 domain;
1542 	/**
1543 	 * Counter name string size. The string must include a null termination character.
1544 	 * The FW may use a fixed size name or send a different name for each counter.
1545 	 * If the VPU uses fixed size strings, all characters from the end of the name
1546 	 * to the of the fixed size character array must be zeroed.
1547 	 */
1548 	u32 name_string_size;
1549 	/** Counter description string size, @see name_string_size */
1550 	u32 description_string_size;
1551 	u64 reserved_0;
1552 	/**
1553 	 * Right after this structure, the VPU writes name and description of
1554 	 * the metric group.
1555 	 */
1556 };
1557 
1558 /**
1559  * Metric counter description, placed in the buffer after vpu_jsm_metric_group_descriptor.
1560  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
1561  */
1562 struct vpu_jsm_metric_counter_descriptor {
1563 	/**
1564 	 * Offset to the next counter in a group (8-byte aligned). If this offset is
1565 	 * 0 this is the last counter in the group.
1566 	 */
1567 	u32 next_metric_counter_info_offset;
1568 	/**
1569 	 * Offset to the counter data from the start of samples in this metric group.
1570 	 * Note that metric_data_offset % metric_data_size must be 0.
1571 	 */
1572 	u32 metric_data_offset;
1573 	/** Size of the metric counter data in bytes. */
1574 	u32 metric_data_size;
1575 	/** Metric type, see Level Zero API for definitions. */
1576 	u32 tier;
1577 	/** Metric type, see set_metric_type_t for definitions. */
1578 	u32 metric_type;
1579 	/** Metric type, see set_value_type_t for definitions. */
1580 	u32 metric_value_type;
1581 	/**
1582 	 * Counter name string size. The string must include a null termination character.
1583 	 * The FW may use a fixed size name or send a different name for each counter.
1584 	 * If the VPU uses fixed size strings, all characters from the end of the name
1585 	 * to the of the fixed size character array must be zeroed.
1586 	 */
1587 	u32 name_string_size;
1588 	/** Counter description string size, @see name_string_size */
1589 	u32 description_string_size;
1590 	/** Counter component name string size, @see name_string_size */
1591 	u32 component_string_size;
1592 	/** Counter string size, @see name_string_size */
1593 	u32 units_string_size;
1594 	u64 reserved_0;
1595 	/**
1596 	 * Right after this structure, the VPU writes name, description
1597 	 * component and unit strings.
1598 	 */
1599 };
1600 
1601 /**
1602  * Payload for @ref VPU_JSM_MSG_DYNDBG_CONTROL requests.
1603  *
1604  * VPU_JSM_MSG_DYNDBG_CONTROL requests are used to control the VPU FW dynamic debug
1605  * feature, which allows developers to selectively enable/disable code to obtain
1606  * additional FW information. This is equivalent to the dynamic debug functionality
1607  * provided by Linux. The host can control dynamic debug behavior by sending dyndbg
1608  * commands, using the same syntax as for Linux dynamic debug commands.
1609  *
1610  * @see https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html.
1611  *
1612  * NOTE:
1613  * As the dynamic debug feature uses MVLOG messages to provide information, the host
1614  * must first set the logging level to MVLOG_DEBUG, using the @ref VPU_JSM_MSG_TRACE_SET_CONFIG
1615  * command.
1616  */
1617 struct vpu_ipc_msg_payload_dyndbg_control {
1618 	/**
1619 	 * Dyndbg command to be executed.
1620 	 */
1621 	char dyndbg_cmd[VPU_DYNDBG_CMD_MAX_LEN];
1622 };
1623 
1624 /**
1625  * Payload for VPU_JSM_MSG_PWR_D0I3_ENTER
1626  *
1627  * This is a bi-directional payload.
1628  */
1629 struct vpu_ipc_msg_payload_pwr_d0i3_enter {
1630 	/**
1631 	 * 0: VPU_JSM_MSG_PWR_D0I3_ENTER_DONE is not sent to the host driver
1632 	 *    The driver will poll for D0i2 Idle state transitions.
1633 	 * 1: VPU_JSM_MSG_PWR_D0I3_ENTER_DONE is sent after VPU state save is complete
1634 	 */
1635 	u32 send_response;
1636 	u32 reserved_0;
1637 };
1638 
1639 /**
1640  * Payload for @ref VPU_JSM_MSG_DCT_ENABLE message.
1641  *
1642  * Default values for DCT active/inactive times are 5.3ms and 30ms respectively,
1643  * corresponding to a 85% duty cycle. This payload allows the host to tune these
1644  * values according to application requirements.
1645  */
1646 struct vpu_ipc_msg_payload_pwr_dct_control {
1647 	/** Duty cycle active time in microseconds */
1648 	u32 dct_active_us;
1649 	/** Duty cycle inactive time in microseconds */
1650 	u32 dct_inactive_us;
1651 };
1652 
1653 /*
1654  * Payloads union, used to define complete message format.
1655  */
1656 union vpu_ipc_msg_payload {
1657 	struct vpu_ipc_msg_payload_engine_reset engine_reset;
1658 	struct vpu_ipc_msg_payload_engine_preempt engine_preempt;
1659 	struct vpu_ipc_msg_payload_register_db register_db;
1660 	struct vpu_ipc_msg_payload_unregister_db unregister_db;
1661 	struct vpu_ipc_msg_payload_query_engine_hb query_engine_hb;
1662 	struct vpu_ipc_msg_payload_power_level power_level;
1663 	struct vpu_jsm_metric_streamer_start metric_streamer_start;
1664 	struct vpu_jsm_metric_streamer_stop metric_streamer_stop;
1665 	struct vpu_jsm_metric_streamer_update metric_streamer_update;
1666 	struct vpu_ipc_msg_payload_ssid_release ssid_release;
1667 	struct vpu_jsm_hws_register_db hws_register_db;
1668 	struct vpu_ipc_msg_payload_job_done job_done;
1669 	struct vpu_ipc_msg_payload_native_fence_signalled native_fence_signalled;
1670 	struct vpu_ipc_msg_payload_engine_reset_done engine_reset_done;
1671 	struct vpu_ipc_msg_payload_engine_preempt_done engine_preempt_done;
1672 	struct vpu_ipc_msg_payload_register_db_done register_db_done;
1673 	struct vpu_ipc_msg_payload_unregister_db_done unregister_db_done;
1674 	struct vpu_ipc_msg_payload_query_engine_hb_done query_engine_hb_done;
1675 	struct vpu_ipc_msg_payload_get_power_level_count_done get_power_level_count_done;
1676 	struct vpu_jsm_metric_streamer_done metric_streamer_done;
1677 	struct vpu_ipc_msg_payload_trace_config trace_config;
1678 	struct vpu_ipc_msg_payload_trace_capability_rsp trace_capability;
1679 	struct vpu_ipc_msg_payload_trace_get_name trace_get_name;
1680 	struct vpu_ipc_msg_payload_trace_get_name_rsp trace_get_name_rsp;
1681 	struct vpu_ipc_msg_payload_dyndbg_control dyndbg_control;
1682 	struct vpu_ipc_msg_payload_hws_priority_band_setup hws_priority_band_setup;
1683 	struct vpu_ipc_msg_payload_hws_create_cmdq hws_create_cmdq;
1684 	struct vpu_ipc_msg_payload_hws_create_cmdq_rsp hws_create_cmdq_rsp;
1685 	struct vpu_ipc_msg_payload_hws_destroy_cmdq hws_destroy_cmdq;
1686 	struct vpu_ipc_msg_payload_hws_set_context_sched_properties
1687 		hws_set_context_sched_properties;
1688 	struct vpu_ipc_msg_payload_hws_set_scheduling_log hws_set_scheduling_log;
1689 	struct vpu_ipc_msg_payload_hws_scheduling_log_notification hws_scheduling_log_notification;
1690 	struct vpu_ipc_msg_payload_hws_suspend_cmdq hws_suspend_cmdq;
1691 	struct vpu_ipc_msg_payload_hws_resume_cmdq hws_resume_cmdq;
1692 	struct vpu_ipc_msg_payload_hws_resume_engine hws_resume_engine;
1693 	struct vpu_ipc_msg_payload_pwr_d0i3_enter pwr_d0i3_enter;
1694 	struct vpu_ipc_msg_payload_pwr_dct_control pwr_dct_control;
1695 };
1696 
1697 /**
1698  * Host <-> NPU IPC message base structure.
1699  *
1700  * NOTE: All instances of this object must be aligned on a 64B boundary
1701  * to allow proper handling of VPU cache operations.
1702  */
1703 struct vpu_jsm_msg {
1704 	/** Reserved */
1705 	u64 reserved_0;
1706 	/** Message type, see @ref vpu_ipc_msg_type. */
1707 	u32 type;
1708 	/** Buffer status, see @ref vpu_ipc_msg_status. */
1709 	u32 status;
1710 	/**
1711 	 * Request ID, provided by the host in a request message and passed
1712 	 * back by VPU in the response message.
1713 	 */
1714 	u32 request_id;
1715 	/** Request return code set by the VPU, see VPU_JSM_STATUS_* defines. */
1716 	u32 result;
1717 	u64 reserved_1;
1718 	/** Message payload depending on message type, see vpu_ipc_msg_payload union. */
1719 	union vpu_ipc_msg_payload payload;
1720 };
1721 
1722 #pragma pack(pop)
1723 
1724 #endif
1725 
1726 ///@}
1727