1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 #include <linux/prefetch.h> 26 27 #include <trace/events/block.h> 28 29 #include <linux/blk-mq.h> 30 #include "blk.h" 31 #include "blk-mq.h" 32 #include "blk-mq-tag.h" 33 #include "blk-stat.h" 34 #include "blk-wbt.h" 35 #include "blk-mq-sched.h" 36 37 static DEFINE_MUTEX(all_q_mutex); 38 static LIST_HEAD(all_q_list); 39 40 /* 41 * Check if any of the ctx's have pending work in this hardware queue 42 */ 43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 44 { 45 return sbitmap_any_bit_set(&hctx->ctx_map) || 46 !list_empty_careful(&hctx->dispatch) || 47 blk_mq_sched_has_work(hctx); 48 } 49 50 /* 51 * Mark this ctx as having pending work in this hardware queue 52 */ 53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 54 struct blk_mq_ctx *ctx) 55 { 56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 58 } 59 60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 61 struct blk_mq_ctx *ctx) 62 { 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 64 } 65 66 void blk_mq_freeze_queue_start(struct request_queue *q) 67 { 68 int freeze_depth; 69 70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 71 if (freeze_depth == 1) { 72 percpu_ref_kill(&q->q_usage_counter); 73 blk_mq_run_hw_queues(q, false); 74 } 75 } 76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 77 78 static void blk_mq_freeze_queue_wait(struct request_queue *q) 79 { 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 81 } 82 83 /* 84 * Guarantee no request is in use, so we can change any data structure of 85 * the queue afterward. 86 */ 87 void blk_freeze_queue(struct request_queue *q) 88 { 89 /* 90 * In the !blk_mq case we are only calling this to kill the 91 * q_usage_counter, otherwise this increases the freeze depth 92 * and waits for it to return to zero. For this reason there is 93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 94 * exported to drivers as the only user for unfreeze is blk_mq. 95 */ 96 blk_mq_freeze_queue_start(q); 97 blk_mq_freeze_queue_wait(q); 98 } 99 100 void blk_mq_freeze_queue(struct request_queue *q) 101 { 102 /* 103 * ...just an alias to keep freeze and unfreeze actions balanced 104 * in the blk_mq_* namespace 105 */ 106 blk_freeze_queue(q); 107 } 108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 109 110 void blk_mq_unfreeze_queue(struct request_queue *q) 111 { 112 int freeze_depth; 113 114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 115 WARN_ON_ONCE(freeze_depth < 0); 116 if (!freeze_depth) { 117 percpu_ref_reinit(&q->q_usage_counter); 118 wake_up_all(&q->mq_freeze_wq); 119 } 120 } 121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 122 123 /** 124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 125 * @q: request queue. 126 * 127 * Note: this function does not prevent that the struct request end_io() 128 * callback function is invoked. Additionally, it is not prevented that 129 * new queue_rq() calls occur unless the queue has been stopped first. 130 */ 131 void blk_mq_quiesce_queue(struct request_queue *q) 132 { 133 struct blk_mq_hw_ctx *hctx; 134 unsigned int i; 135 bool rcu = false; 136 137 blk_mq_stop_hw_queues(q); 138 139 queue_for_each_hw_ctx(q, hctx, i) { 140 if (hctx->flags & BLK_MQ_F_BLOCKING) 141 synchronize_srcu(&hctx->queue_rq_srcu); 142 else 143 rcu = true; 144 } 145 if (rcu) 146 synchronize_rcu(); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 149 150 void blk_mq_wake_waiters(struct request_queue *q) 151 { 152 struct blk_mq_hw_ctx *hctx; 153 unsigned int i; 154 155 queue_for_each_hw_ctx(q, hctx, i) 156 if (blk_mq_hw_queue_mapped(hctx)) 157 blk_mq_tag_wakeup_all(hctx->tags, true); 158 159 /* 160 * If we are called because the queue has now been marked as 161 * dying, we need to ensure that processes currently waiting on 162 * the queue are notified as well. 163 */ 164 wake_up_all(&q->mq_freeze_wq); 165 } 166 167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 168 { 169 return blk_mq_has_free_tags(hctx->tags); 170 } 171 EXPORT_SYMBOL(blk_mq_can_queue); 172 173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 174 struct request *rq, unsigned int op) 175 { 176 INIT_LIST_HEAD(&rq->queuelist); 177 /* csd/requeue_work/fifo_time is initialized before use */ 178 rq->q = q; 179 rq->mq_ctx = ctx; 180 rq->cmd_flags = op; 181 if (blk_queue_io_stat(q)) 182 rq->rq_flags |= RQF_IO_STAT; 183 /* do not touch atomic flags, it needs atomic ops against the timer */ 184 rq->cpu = -1; 185 INIT_HLIST_NODE(&rq->hash); 186 RB_CLEAR_NODE(&rq->rb_node); 187 rq->rq_disk = NULL; 188 rq->part = NULL; 189 rq->start_time = jiffies; 190 #ifdef CONFIG_BLK_CGROUP 191 rq->rl = NULL; 192 set_start_time_ns(rq); 193 rq->io_start_time_ns = 0; 194 #endif 195 rq->nr_phys_segments = 0; 196 #if defined(CONFIG_BLK_DEV_INTEGRITY) 197 rq->nr_integrity_segments = 0; 198 #endif 199 rq->special = NULL; 200 /* tag was already set */ 201 rq->errors = 0; 202 rq->extra_len = 0; 203 204 INIT_LIST_HEAD(&rq->timeout_list); 205 rq->timeout = 0; 206 207 rq->end_io = NULL; 208 rq->end_io_data = NULL; 209 rq->next_rq = NULL; 210 211 ctx->rq_dispatched[op_is_sync(op)]++; 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 214 215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 216 unsigned int op) 217 { 218 struct request *rq; 219 unsigned int tag; 220 221 tag = blk_mq_get_tag(data); 222 if (tag != BLK_MQ_TAG_FAIL) { 223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 224 225 rq = tags->static_rqs[tag]; 226 227 if (data->flags & BLK_MQ_REQ_INTERNAL) { 228 rq->tag = -1; 229 rq->internal_tag = tag; 230 } else { 231 if (blk_mq_tag_busy(data->hctx)) { 232 rq->rq_flags = RQF_MQ_INFLIGHT; 233 atomic_inc(&data->hctx->nr_active); 234 } 235 rq->tag = tag; 236 rq->internal_tag = -1; 237 } 238 239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 240 return rq; 241 } 242 243 return NULL; 244 } 245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 246 247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 248 unsigned int flags) 249 { 250 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 251 struct request *rq; 252 int ret; 253 254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 255 if (ret) 256 return ERR_PTR(ret); 257 258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 259 260 blk_mq_put_ctx(alloc_data.ctx); 261 blk_queue_exit(q); 262 263 if (!rq) 264 return ERR_PTR(-EWOULDBLOCK); 265 266 rq->__data_len = 0; 267 rq->__sector = (sector_t) -1; 268 rq->bio = rq->biotail = NULL; 269 return rq; 270 } 271 EXPORT_SYMBOL(blk_mq_alloc_request); 272 273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 274 unsigned int flags, unsigned int hctx_idx) 275 { 276 struct blk_mq_hw_ctx *hctx; 277 struct blk_mq_ctx *ctx; 278 struct request *rq; 279 struct blk_mq_alloc_data alloc_data; 280 int ret; 281 282 /* 283 * If the tag allocator sleeps we could get an allocation for a 284 * different hardware context. No need to complicate the low level 285 * allocator for this for the rare use case of a command tied to 286 * a specific queue. 287 */ 288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 289 return ERR_PTR(-EINVAL); 290 291 if (hctx_idx >= q->nr_hw_queues) 292 return ERR_PTR(-EIO); 293 294 ret = blk_queue_enter(q, true); 295 if (ret) 296 return ERR_PTR(ret); 297 298 /* 299 * Check if the hardware context is actually mapped to anything. 300 * If not tell the caller that it should skip this queue. 301 */ 302 hctx = q->queue_hw_ctx[hctx_idx]; 303 if (!blk_mq_hw_queue_mapped(hctx)) { 304 ret = -EXDEV; 305 goto out_queue_exit; 306 } 307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 308 309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 310 rq = __blk_mq_alloc_request(&alloc_data, rw); 311 if (!rq) { 312 ret = -EWOULDBLOCK; 313 goto out_queue_exit; 314 } 315 316 return rq; 317 318 out_queue_exit: 319 blk_queue_exit(q); 320 return ERR_PTR(ret); 321 } 322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 323 324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 325 struct request *rq) 326 { 327 const int sched_tag = rq->internal_tag; 328 struct request_queue *q = rq->q; 329 330 if (rq->rq_flags & RQF_MQ_INFLIGHT) 331 atomic_dec(&hctx->nr_active); 332 333 wbt_done(q->rq_wb, &rq->issue_stat); 334 rq->rq_flags = 0; 335 336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 338 if (rq->tag != -1) 339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 340 if (sched_tag != -1) 341 blk_mq_sched_completed_request(hctx, rq); 342 blk_mq_sched_restart_queues(hctx); 343 blk_queue_exit(q); 344 } 345 346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 347 struct request *rq) 348 { 349 struct blk_mq_ctx *ctx = rq->mq_ctx; 350 351 ctx->rq_completed[rq_is_sync(rq)]++; 352 __blk_mq_finish_request(hctx, ctx, rq); 353 } 354 355 void blk_mq_finish_request(struct request *rq) 356 { 357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 358 } 359 360 void blk_mq_free_request(struct request *rq) 361 { 362 blk_mq_sched_put_request(rq); 363 } 364 EXPORT_SYMBOL_GPL(blk_mq_free_request); 365 366 inline void __blk_mq_end_request(struct request *rq, int error) 367 { 368 blk_account_io_done(rq); 369 370 if (rq->end_io) { 371 wbt_done(rq->q->rq_wb, &rq->issue_stat); 372 rq->end_io(rq, error); 373 } else { 374 if (unlikely(blk_bidi_rq(rq))) 375 blk_mq_free_request(rq->next_rq); 376 blk_mq_free_request(rq); 377 } 378 } 379 EXPORT_SYMBOL(__blk_mq_end_request); 380 381 void blk_mq_end_request(struct request *rq, int error) 382 { 383 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 384 BUG(); 385 __blk_mq_end_request(rq, error); 386 } 387 EXPORT_SYMBOL(blk_mq_end_request); 388 389 static void __blk_mq_complete_request_remote(void *data) 390 { 391 struct request *rq = data; 392 393 rq->q->softirq_done_fn(rq); 394 } 395 396 static void blk_mq_ipi_complete_request(struct request *rq) 397 { 398 struct blk_mq_ctx *ctx = rq->mq_ctx; 399 bool shared = false; 400 int cpu; 401 402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 403 rq->q->softirq_done_fn(rq); 404 return; 405 } 406 407 cpu = get_cpu(); 408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 409 shared = cpus_share_cache(cpu, ctx->cpu); 410 411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 412 rq->csd.func = __blk_mq_complete_request_remote; 413 rq->csd.info = rq; 414 rq->csd.flags = 0; 415 smp_call_function_single_async(ctx->cpu, &rq->csd); 416 } else { 417 rq->q->softirq_done_fn(rq); 418 } 419 put_cpu(); 420 } 421 422 static void blk_mq_stat_add(struct request *rq) 423 { 424 if (rq->rq_flags & RQF_STATS) { 425 /* 426 * We could rq->mq_ctx here, but there's less of a risk 427 * of races if we have the completion event add the stats 428 * to the local software queue. 429 */ 430 struct blk_mq_ctx *ctx; 431 432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 434 } 435 } 436 437 static void __blk_mq_complete_request(struct request *rq) 438 { 439 struct request_queue *q = rq->q; 440 441 blk_mq_stat_add(rq); 442 443 if (!q->softirq_done_fn) 444 blk_mq_end_request(rq, rq->errors); 445 else 446 blk_mq_ipi_complete_request(rq); 447 } 448 449 /** 450 * blk_mq_complete_request - end I/O on a request 451 * @rq: the request being processed 452 * 453 * Description: 454 * Ends all I/O on a request. It does not handle partial completions. 455 * The actual completion happens out-of-order, through a IPI handler. 456 **/ 457 void blk_mq_complete_request(struct request *rq, int error) 458 { 459 struct request_queue *q = rq->q; 460 461 if (unlikely(blk_should_fake_timeout(q))) 462 return; 463 if (!blk_mark_rq_complete(rq)) { 464 rq->errors = error; 465 __blk_mq_complete_request(rq); 466 } 467 } 468 EXPORT_SYMBOL(blk_mq_complete_request); 469 470 int blk_mq_request_started(struct request *rq) 471 { 472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 473 } 474 EXPORT_SYMBOL_GPL(blk_mq_request_started); 475 476 void blk_mq_start_request(struct request *rq) 477 { 478 struct request_queue *q = rq->q; 479 480 blk_mq_sched_started_request(rq); 481 482 trace_block_rq_issue(q, rq); 483 484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 485 blk_stat_set_issue_time(&rq->issue_stat); 486 rq->rq_flags |= RQF_STATS; 487 wbt_issue(q->rq_wb, &rq->issue_stat); 488 } 489 490 blk_add_timer(rq); 491 492 /* 493 * Ensure that ->deadline is visible before set the started 494 * flag and clear the completed flag. 495 */ 496 smp_mb__before_atomic(); 497 498 /* 499 * Mark us as started and clear complete. Complete might have been 500 * set if requeue raced with timeout, which then marked it as 501 * complete. So be sure to clear complete again when we start 502 * the request, otherwise we'll ignore the completion event. 503 */ 504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 508 509 if (q->dma_drain_size && blk_rq_bytes(rq)) { 510 /* 511 * Make sure space for the drain appears. We know we can do 512 * this because max_hw_segments has been adjusted to be one 513 * fewer than the device can handle. 514 */ 515 rq->nr_phys_segments++; 516 } 517 } 518 EXPORT_SYMBOL(blk_mq_start_request); 519 520 static void __blk_mq_requeue_request(struct request *rq) 521 { 522 struct request_queue *q = rq->q; 523 524 trace_block_rq_requeue(q, rq); 525 wbt_requeue(q->rq_wb, &rq->issue_stat); 526 blk_mq_sched_requeue_request(rq); 527 528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 529 if (q->dma_drain_size && blk_rq_bytes(rq)) 530 rq->nr_phys_segments--; 531 } 532 } 533 534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 535 { 536 __blk_mq_requeue_request(rq); 537 538 BUG_ON(blk_queued_rq(rq)); 539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 540 } 541 EXPORT_SYMBOL(blk_mq_requeue_request); 542 543 static void blk_mq_requeue_work(struct work_struct *work) 544 { 545 struct request_queue *q = 546 container_of(work, struct request_queue, requeue_work.work); 547 LIST_HEAD(rq_list); 548 struct request *rq, *next; 549 unsigned long flags; 550 551 spin_lock_irqsave(&q->requeue_lock, flags); 552 list_splice_init(&q->requeue_list, &rq_list); 553 spin_unlock_irqrestore(&q->requeue_lock, flags); 554 555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 556 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 557 continue; 558 559 rq->rq_flags &= ~RQF_SOFTBARRIER; 560 list_del_init(&rq->queuelist); 561 blk_mq_sched_insert_request(rq, true, false, false, true); 562 } 563 564 while (!list_empty(&rq_list)) { 565 rq = list_entry(rq_list.next, struct request, queuelist); 566 list_del_init(&rq->queuelist); 567 blk_mq_sched_insert_request(rq, false, false, false, true); 568 } 569 570 blk_mq_run_hw_queues(q, false); 571 } 572 573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 574 bool kick_requeue_list) 575 { 576 struct request_queue *q = rq->q; 577 unsigned long flags; 578 579 /* 580 * We abuse this flag that is otherwise used by the I/O scheduler to 581 * request head insertation from the workqueue. 582 */ 583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 584 585 spin_lock_irqsave(&q->requeue_lock, flags); 586 if (at_head) { 587 rq->rq_flags |= RQF_SOFTBARRIER; 588 list_add(&rq->queuelist, &q->requeue_list); 589 } else { 590 list_add_tail(&rq->queuelist, &q->requeue_list); 591 } 592 spin_unlock_irqrestore(&q->requeue_lock, flags); 593 594 if (kick_requeue_list) 595 blk_mq_kick_requeue_list(q); 596 } 597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 598 599 void blk_mq_kick_requeue_list(struct request_queue *q) 600 { 601 kblockd_schedule_delayed_work(&q->requeue_work, 0); 602 } 603 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 604 605 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 606 unsigned long msecs) 607 { 608 kblockd_schedule_delayed_work(&q->requeue_work, 609 msecs_to_jiffies(msecs)); 610 } 611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 612 613 void blk_mq_abort_requeue_list(struct request_queue *q) 614 { 615 unsigned long flags; 616 LIST_HEAD(rq_list); 617 618 spin_lock_irqsave(&q->requeue_lock, flags); 619 list_splice_init(&q->requeue_list, &rq_list); 620 spin_unlock_irqrestore(&q->requeue_lock, flags); 621 622 while (!list_empty(&rq_list)) { 623 struct request *rq; 624 625 rq = list_first_entry(&rq_list, struct request, queuelist); 626 list_del_init(&rq->queuelist); 627 rq->errors = -EIO; 628 blk_mq_end_request(rq, rq->errors); 629 } 630 } 631 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 632 633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 634 { 635 if (tag < tags->nr_tags) { 636 prefetch(tags->rqs[tag]); 637 return tags->rqs[tag]; 638 } 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(blk_mq_tag_to_rq); 643 644 struct blk_mq_timeout_data { 645 unsigned long next; 646 unsigned int next_set; 647 }; 648 649 void blk_mq_rq_timed_out(struct request *req, bool reserved) 650 { 651 const struct blk_mq_ops *ops = req->q->mq_ops; 652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 653 654 /* 655 * We know that complete is set at this point. If STARTED isn't set 656 * anymore, then the request isn't active and the "timeout" should 657 * just be ignored. This can happen due to the bitflag ordering. 658 * Timeout first checks if STARTED is set, and if it is, assumes 659 * the request is active. But if we race with completion, then 660 * we both flags will get cleared. So check here again, and ignore 661 * a timeout event with a request that isn't active. 662 */ 663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 664 return; 665 666 if (ops->timeout) 667 ret = ops->timeout(req, reserved); 668 669 switch (ret) { 670 case BLK_EH_HANDLED: 671 __blk_mq_complete_request(req); 672 break; 673 case BLK_EH_RESET_TIMER: 674 blk_add_timer(req); 675 blk_clear_rq_complete(req); 676 break; 677 case BLK_EH_NOT_HANDLED: 678 break; 679 default: 680 printk(KERN_ERR "block: bad eh return: %d\n", ret); 681 break; 682 } 683 } 684 685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 686 struct request *rq, void *priv, bool reserved) 687 { 688 struct blk_mq_timeout_data *data = priv; 689 690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 691 /* 692 * If a request wasn't started before the queue was 693 * marked dying, kill it here or it'll go unnoticed. 694 */ 695 if (unlikely(blk_queue_dying(rq->q))) { 696 rq->errors = -EIO; 697 blk_mq_end_request(rq, rq->errors); 698 } 699 return; 700 } 701 702 if (time_after_eq(jiffies, rq->deadline)) { 703 if (!blk_mark_rq_complete(rq)) 704 blk_mq_rq_timed_out(rq, reserved); 705 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 706 data->next = rq->deadline; 707 data->next_set = 1; 708 } 709 } 710 711 static void blk_mq_timeout_work(struct work_struct *work) 712 { 713 struct request_queue *q = 714 container_of(work, struct request_queue, timeout_work); 715 struct blk_mq_timeout_data data = { 716 .next = 0, 717 .next_set = 0, 718 }; 719 int i; 720 721 /* A deadlock might occur if a request is stuck requiring a 722 * timeout at the same time a queue freeze is waiting 723 * completion, since the timeout code would not be able to 724 * acquire the queue reference here. 725 * 726 * That's why we don't use blk_queue_enter here; instead, we use 727 * percpu_ref_tryget directly, because we need to be able to 728 * obtain a reference even in the short window between the queue 729 * starting to freeze, by dropping the first reference in 730 * blk_mq_freeze_queue_start, and the moment the last request is 731 * consumed, marked by the instant q_usage_counter reaches 732 * zero. 733 */ 734 if (!percpu_ref_tryget(&q->q_usage_counter)) 735 return; 736 737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 738 739 if (data.next_set) { 740 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 741 mod_timer(&q->timeout, data.next); 742 } else { 743 struct blk_mq_hw_ctx *hctx; 744 745 queue_for_each_hw_ctx(q, hctx, i) { 746 /* the hctx may be unmapped, so check it here */ 747 if (blk_mq_hw_queue_mapped(hctx)) 748 blk_mq_tag_idle(hctx); 749 } 750 } 751 blk_queue_exit(q); 752 } 753 754 /* 755 * Reverse check our software queue for entries that we could potentially 756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 757 * too much time checking for merges. 758 */ 759 static bool blk_mq_attempt_merge(struct request_queue *q, 760 struct blk_mq_ctx *ctx, struct bio *bio) 761 { 762 struct request *rq; 763 int checked = 8; 764 765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 766 bool merged = false; 767 768 if (!checked--) 769 break; 770 771 if (!blk_rq_merge_ok(rq, bio)) 772 continue; 773 774 switch (blk_try_merge(rq, bio)) { 775 case ELEVATOR_BACK_MERGE: 776 if (blk_mq_sched_allow_merge(q, rq, bio)) 777 merged = bio_attempt_back_merge(q, rq, bio); 778 break; 779 case ELEVATOR_FRONT_MERGE: 780 if (blk_mq_sched_allow_merge(q, rq, bio)) 781 merged = bio_attempt_front_merge(q, rq, bio); 782 break; 783 case ELEVATOR_DISCARD_MERGE: 784 merged = bio_attempt_discard_merge(q, rq, bio); 785 break; 786 default: 787 continue; 788 } 789 790 if (merged) 791 ctx->rq_merged++; 792 return merged; 793 } 794 795 return false; 796 } 797 798 struct flush_busy_ctx_data { 799 struct blk_mq_hw_ctx *hctx; 800 struct list_head *list; 801 }; 802 803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 804 { 805 struct flush_busy_ctx_data *flush_data = data; 806 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 808 809 sbitmap_clear_bit(sb, bitnr); 810 spin_lock(&ctx->lock); 811 list_splice_tail_init(&ctx->rq_list, flush_data->list); 812 spin_unlock(&ctx->lock); 813 return true; 814 } 815 816 /* 817 * Process software queues that have been marked busy, splicing them 818 * to the for-dispatch 819 */ 820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 821 { 822 struct flush_busy_ctx_data data = { 823 .hctx = hctx, 824 .list = list, 825 }; 826 827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 828 } 829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 830 831 static inline unsigned int queued_to_index(unsigned int queued) 832 { 833 if (!queued) 834 return 0; 835 836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 837 } 838 839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 840 bool wait) 841 { 842 struct blk_mq_alloc_data data = { 843 .q = rq->q, 844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 846 }; 847 848 if (rq->tag != -1) { 849 done: 850 if (hctx) 851 *hctx = data.hctx; 852 return true; 853 } 854 855 rq->tag = blk_mq_get_tag(&data); 856 if (rq->tag >= 0) { 857 if (blk_mq_tag_busy(data.hctx)) { 858 rq->rq_flags |= RQF_MQ_INFLIGHT; 859 atomic_inc(&data.hctx->nr_active); 860 } 861 data.hctx->tags->rqs[rq->tag] = rq; 862 goto done; 863 } 864 865 return false; 866 } 867 868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 869 struct request *rq) 870 { 871 if (rq->tag == -1 || rq->internal_tag == -1) 872 return; 873 874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 875 rq->tag = -1; 876 877 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 878 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 879 atomic_dec(&hctx->nr_active); 880 } 881 } 882 883 /* 884 * If we fail getting a driver tag because all the driver tags are already 885 * assigned and on the dispatch list, BUT the first entry does not have a 886 * tag, then we could deadlock. For that case, move entries with assigned 887 * driver tags to the front, leaving the set of tagged requests in the 888 * same order, and the untagged set in the same order. 889 */ 890 static bool reorder_tags_to_front(struct list_head *list) 891 { 892 struct request *rq, *tmp, *first = NULL; 893 894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 895 if (rq == first) 896 break; 897 if (rq->tag != -1) { 898 list_move(&rq->queuelist, list); 899 if (!first) 900 first = rq; 901 } 902 } 903 904 return first != NULL; 905 } 906 907 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 908 { 909 struct request_queue *q = hctx->queue; 910 struct request *rq; 911 LIST_HEAD(driver_list); 912 struct list_head *dptr; 913 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 914 915 /* 916 * Start off with dptr being NULL, so we start the first request 917 * immediately, even if we have more pending. 918 */ 919 dptr = NULL; 920 921 /* 922 * Now process all the entries, sending them to the driver. 923 */ 924 queued = 0; 925 while (!list_empty(list)) { 926 struct blk_mq_queue_data bd; 927 928 rq = list_first_entry(list, struct request, queuelist); 929 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 930 if (!queued && reorder_tags_to_front(list)) 931 continue; 932 933 /* 934 * We failed getting a driver tag. Mark the queue(s) 935 * as needing a restart. Retry getting a tag again, 936 * in case the needed IO completed right before we 937 * marked the queue as needing a restart. 938 */ 939 blk_mq_sched_mark_restart(hctx); 940 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 941 break; 942 } 943 list_del_init(&rq->queuelist); 944 945 bd.rq = rq; 946 bd.list = dptr; 947 bd.last = list_empty(list); 948 949 ret = q->mq_ops->queue_rq(hctx, &bd); 950 switch (ret) { 951 case BLK_MQ_RQ_QUEUE_OK: 952 queued++; 953 break; 954 case BLK_MQ_RQ_QUEUE_BUSY: 955 blk_mq_put_driver_tag(hctx, rq); 956 list_add(&rq->queuelist, list); 957 __blk_mq_requeue_request(rq); 958 break; 959 default: 960 pr_err("blk-mq: bad return on queue: %d\n", ret); 961 case BLK_MQ_RQ_QUEUE_ERROR: 962 rq->errors = -EIO; 963 blk_mq_end_request(rq, rq->errors); 964 break; 965 } 966 967 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 968 break; 969 970 /* 971 * We've done the first request. If we have more than 1 972 * left in the list, set dptr to defer issue. 973 */ 974 if (!dptr && list->next != list->prev) 975 dptr = &driver_list; 976 } 977 978 hctx->dispatched[queued_to_index(queued)]++; 979 980 /* 981 * Any items that need requeuing? Stuff them into hctx->dispatch, 982 * that is where we will continue on next queue run. 983 */ 984 if (!list_empty(list)) { 985 spin_lock(&hctx->lock); 986 list_splice_init(list, &hctx->dispatch); 987 spin_unlock(&hctx->lock); 988 989 /* 990 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 991 * it's possible the queue is stopped and restarted again 992 * before this. Queue restart will dispatch requests. And since 993 * requests in rq_list aren't added into hctx->dispatch yet, 994 * the requests in rq_list might get lost. 995 * 996 * blk_mq_run_hw_queue() already checks the STOPPED bit 997 * 998 * If RESTART is set, then let completion restart the queue 999 * instead of potentially looping here. 1000 */ 1001 if (!blk_mq_sched_needs_restart(hctx)) 1002 blk_mq_run_hw_queue(hctx, true); 1003 } 1004 1005 return queued != 0; 1006 } 1007 1008 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1009 { 1010 int srcu_idx; 1011 1012 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1013 cpu_online(hctx->next_cpu)); 1014 1015 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1016 rcu_read_lock(); 1017 blk_mq_sched_dispatch_requests(hctx); 1018 rcu_read_unlock(); 1019 } else { 1020 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1021 blk_mq_sched_dispatch_requests(hctx); 1022 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1023 } 1024 } 1025 1026 /* 1027 * It'd be great if the workqueue API had a way to pass 1028 * in a mask and had some smarts for more clever placement. 1029 * For now we just round-robin here, switching for every 1030 * BLK_MQ_CPU_WORK_BATCH queued items. 1031 */ 1032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1033 { 1034 if (hctx->queue->nr_hw_queues == 1) 1035 return WORK_CPU_UNBOUND; 1036 1037 if (--hctx->next_cpu_batch <= 0) { 1038 int next_cpu; 1039 1040 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1041 if (next_cpu >= nr_cpu_ids) 1042 next_cpu = cpumask_first(hctx->cpumask); 1043 1044 hctx->next_cpu = next_cpu; 1045 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1046 } 1047 1048 return hctx->next_cpu; 1049 } 1050 1051 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1052 { 1053 if (unlikely(blk_mq_hctx_stopped(hctx) || 1054 !blk_mq_hw_queue_mapped(hctx))) 1055 return; 1056 1057 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1058 int cpu = get_cpu(); 1059 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1060 __blk_mq_run_hw_queue(hctx); 1061 put_cpu(); 1062 return; 1063 } 1064 1065 put_cpu(); 1066 } 1067 1068 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1069 } 1070 1071 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1072 { 1073 struct blk_mq_hw_ctx *hctx; 1074 int i; 1075 1076 queue_for_each_hw_ctx(q, hctx, i) { 1077 if (!blk_mq_hctx_has_pending(hctx) || 1078 blk_mq_hctx_stopped(hctx)) 1079 continue; 1080 1081 blk_mq_run_hw_queue(hctx, async); 1082 } 1083 } 1084 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1085 1086 /** 1087 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1088 * @q: request queue. 1089 * 1090 * The caller is responsible for serializing this function against 1091 * blk_mq_{start,stop}_hw_queue(). 1092 */ 1093 bool blk_mq_queue_stopped(struct request_queue *q) 1094 { 1095 struct blk_mq_hw_ctx *hctx; 1096 int i; 1097 1098 queue_for_each_hw_ctx(q, hctx, i) 1099 if (blk_mq_hctx_stopped(hctx)) 1100 return true; 1101 1102 return false; 1103 } 1104 EXPORT_SYMBOL(blk_mq_queue_stopped); 1105 1106 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1107 { 1108 cancel_work(&hctx->run_work); 1109 cancel_delayed_work(&hctx->delay_work); 1110 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1111 } 1112 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1113 1114 void blk_mq_stop_hw_queues(struct request_queue *q) 1115 { 1116 struct blk_mq_hw_ctx *hctx; 1117 int i; 1118 1119 queue_for_each_hw_ctx(q, hctx, i) 1120 blk_mq_stop_hw_queue(hctx); 1121 } 1122 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1123 1124 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1125 { 1126 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1127 1128 blk_mq_run_hw_queue(hctx, false); 1129 } 1130 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1131 1132 void blk_mq_start_hw_queues(struct request_queue *q) 1133 { 1134 struct blk_mq_hw_ctx *hctx; 1135 int i; 1136 1137 queue_for_each_hw_ctx(q, hctx, i) 1138 blk_mq_start_hw_queue(hctx); 1139 } 1140 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1141 1142 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1143 { 1144 if (!blk_mq_hctx_stopped(hctx)) 1145 return; 1146 1147 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1148 blk_mq_run_hw_queue(hctx, async); 1149 } 1150 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1151 1152 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1153 { 1154 struct blk_mq_hw_ctx *hctx; 1155 int i; 1156 1157 queue_for_each_hw_ctx(q, hctx, i) 1158 blk_mq_start_stopped_hw_queue(hctx, async); 1159 } 1160 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1161 1162 static void blk_mq_run_work_fn(struct work_struct *work) 1163 { 1164 struct blk_mq_hw_ctx *hctx; 1165 1166 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1167 1168 __blk_mq_run_hw_queue(hctx); 1169 } 1170 1171 static void blk_mq_delay_work_fn(struct work_struct *work) 1172 { 1173 struct blk_mq_hw_ctx *hctx; 1174 1175 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1176 1177 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1178 __blk_mq_run_hw_queue(hctx); 1179 } 1180 1181 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1182 { 1183 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1184 return; 1185 1186 blk_mq_stop_hw_queue(hctx); 1187 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1188 &hctx->delay_work, msecs_to_jiffies(msecs)); 1189 } 1190 EXPORT_SYMBOL(blk_mq_delay_queue); 1191 1192 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1193 struct request *rq, 1194 bool at_head) 1195 { 1196 struct blk_mq_ctx *ctx = rq->mq_ctx; 1197 1198 trace_block_rq_insert(hctx->queue, rq); 1199 1200 if (at_head) 1201 list_add(&rq->queuelist, &ctx->rq_list); 1202 else 1203 list_add_tail(&rq->queuelist, &ctx->rq_list); 1204 } 1205 1206 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1207 bool at_head) 1208 { 1209 struct blk_mq_ctx *ctx = rq->mq_ctx; 1210 1211 __blk_mq_insert_req_list(hctx, rq, at_head); 1212 blk_mq_hctx_mark_pending(hctx, ctx); 1213 } 1214 1215 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1216 struct list_head *list) 1217 1218 { 1219 /* 1220 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1221 * offline now 1222 */ 1223 spin_lock(&ctx->lock); 1224 while (!list_empty(list)) { 1225 struct request *rq; 1226 1227 rq = list_first_entry(list, struct request, queuelist); 1228 BUG_ON(rq->mq_ctx != ctx); 1229 list_del_init(&rq->queuelist); 1230 __blk_mq_insert_req_list(hctx, rq, false); 1231 } 1232 blk_mq_hctx_mark_pending(hctx, ctx); 1233 spin_unlock(&ctx->lock); 1234 } 1235 1236 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1237 { 1238 struct request *rqa = container_of(a, struct request, queuelist); 1239 struct request *rqb = container_of(b, struct request, queuelist); 1240 1241 return !(rqa->mq_ctx < rqb->mq_ctx || 1242 (rqa->mq_ctx == rqb->mq_ctx && 1243 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1244 } 1245 1246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1247 { 1248 struct blk_mq_ctx *this_ctx; 1249 struct request_queue *this_q; 1250 struct request *rq; 1251 LIST_HEAD(list); 1252 LIST_HEAD(ctx_list); 1253 unsigned int depth; 1254 1255 list_splice_init(&plug->mq_list, &list); 1256 1257 list_sort(NULL, &list, plug_ctx_cmp); 1258 1259 this_q = NULL; 1260 this_ctx = NULL; 1261 depth = 0; 1262 1263 while (!list_empty(&list)) { 1264 rq = list_entry_rq(list.next); 1265 list_del_init(&rq->queuelist); 1266 BUG_ON(!rq->q); 1267 if (rq->mq_ctx != this_ctx) { 1268 if (this_ctx) { 1269 trace_block_unplug(this_q, depth, from_schedule); 1270 blk_mq_sched_insert_requests(this_q, this_ctx, 1271 &ctx_list, 1272 from_schedule); 1273 } 1274 1275 this_ctx = rq->mq_ctx; 1276 this_q = rq->q; 1277 depth = 0; 1278 } 1279 1280 depth++; 1281 list_add_tail(&rq->queuelist, &ctx_list); 1282 } 1283 1284 /* 1285 * If 'this_ctx' is set, we know we have entries to complete 1286 * on 'ctx_list'. Do those. 1287 */ 1288 if (this_ctx) { 1289 trace_block_unplug(this_q, depth, from_schedule); 1290 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1291 from_schedule); 1292 } 1293 } 1294 1295 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1296 { 1297 init_request_from_bio(rq, bio); 1298 1299 blk_account_io_start(rq, true); 1300 } 1301 1302 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1303 { 1304 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1305 !blk_queue_nomerges(hctx->queue); 1306 } 1307 1308 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1309 struct blk_mq_ctx *ctx, 1310 struct request *rq, struct bio *bio) 1311 { 1312 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1313 blk_mq_bio_to_request(rq, bio); 1314 spin_lock(&ctx->lock); 1315 insert_rq: 1316 __blk_mq_insert_request(hctx, rq, false); 1317 spin_unlock(&ctx->lock); 1318 return false; 1319 } else { 1320 struct request_queue *q = hctx->queue; 1321 1322 spin_lock(&ctx->lock); 1323 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1324 blk_mq_bio_to_request(rq, bio); 1325 goto insert_rq; 1326 } 1327 1328 spin_unlock(&ctx->lock); 1329 __blk_mq_finish_request(hctx, ctx, rq); 1330 return true; 1331 } 1332 } 1333 1334 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1335 { 1336 if (rq->tag != -1) 1337 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1338 1339 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1340 } 1341 1342 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1343 { 1344 struct request_queue *q = rq->q; 1345 struct blk_mq_queue_data bd = { 1346 .rq = rq, 1347 .list = NULL, 1348 .last = 1 1349 }; 1350 struct blk_mq_hw_ctx *hctx; 1351 blk_qc_t new_cookie; 1352 int ret; 1353 1354 if (q->elevator) 1355 goto insert; 1356 1357 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1358 goto insert; 1359 1360 new_cookie = request_to_qc_t(hctx, rq); 1361 1362 /* 1363 * For OK queue, we are done. For error, kill it. Any other 1364 * error (busy), just add it to our list as we previously 1365 * would have done 1366 */ 1367 ret = q->mq_ops->queue_rq(hctx, &bd); 1368 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1369 *cookie = new_cookie; 1370 return; 1371 } 1372 1373 __blk_mq_requeue_request(rq); 1374 1375 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1376 *cookie = BLK_QC_T_NONE; 1377 rq->errors = -EIO; 1378 blk_mq_end_request(rq, rq->errors); 1379 return; 1380 } 1381 1382 insert: 1383 blk_mq_sched_insert_request(rq, false, true, true, false); 1384 } 1385 1386 /* 1387 * Multiple hardware queue variant. This will not use per-process plugs, 1388 * but will attempt to bypass the hctx queueing if we can go straight to 1389 * hardware for SYNC IO. 1390 */ 1391 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1392 { 1393 const int is_sync = op_is_sync(bio->bi_opf); 1394 const int is_flush_fua = op_is_flush(bio->bi_opf); 1395 struct blk_mq_alloc_data data = { .flags = 0 }; 1396 struct request *rq; 1397 unsigned int request_count = 0, srcu_idx; 1398 struct blk_plug *plug; 1399 struct request *same_queue_rq = NULL; 1400 blk_qc_t cookie; 1401 unsigned int wb_acct; 1402 1403 blk_queue_bounce(q, &bio); 1404 1405 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1406 bio_io_error(bio); 1407 return BLK_QC_T_NONE; 1408 } 1409 1410 blk_queue_split(q, &bio, q->bio_split); 1411 1412 if (!is_flush_fua && !blk_queue_nomerges(q) && 1413 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1414 return BLK_QC_T_NONE; 1415 1416 if (blk_mq_sched_bio_merge(q, bio)) 1417 return BLK_QC_T_NONE; 1418 1419 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1420 1421 trace_block_getrq(q, bio, bio->bi_opf); 1422 1423 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1424 if (unlikely(!rq)) { 1425 __wbt_done(q->rq_wb, wb_acct); 1426 return BLK_QC_T_NONE; 1427 } 1428 1429 wbt_track(&rq->issue_stat, wb_acct); 1430 1431 cookie = request_to_qc_t(data.hctx, rq); 1432 1433 if (unlikely(is_flush_fua)) { 1434 if (q->elevator) 1435 goto elv_insert; 1436 blk_mq_bio_to_request(rq, bio); 1437 blk_insert_flush(rq); 1438 goto run_queue; 1439 } 1440 1441 plug = current->plug; 1442 /* 1443 * If the driver supports defer issued based on 'last', then 1444 * queue it up like normal since we can potentially save some 1445 * CPU this way. 1446 */ 1447 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1448 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1449 struct request *old_rq = NULL; 1450 1451 blk_mq_bio_to_request(rq, bio); 1452 1453 /* 1454 * We do limited plugging. If the bio can be merged, do that. 1455 * Otherwise the existing request in the plug list will be 1456 * issued. So the plug list will have one request at most 1457 */ 1458 if (plug) { 1459 /* 1460 * The plug list might get flushed before this. If that 1461 * happens, same_queue_rq is invalid and plug list is 1462 * empty 1463 */ 1464 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1465 old_rq = same_queue_rq; 1466 list_del_init(&old_rq->queuelist); 1467 } 1468 list_add_tail(&rq->queuelist, &plug->mq_list); 1469 } else /* is_sync */ 1470 old_rq = rq; 1471 blk_mq_put_ctx(data.ctx); 1472 if (!old_rq) 1473 goto done; 1474 1475 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1476 rcu_read_lock(); 1477 blk_mq_try_issue_directly(old_rq, &cookie); 1478 rcu_read_unlock(); 1479 } else { 1480 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1481 blk_mq_try_issue_directly(old_rq, &cookie); 1482 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1483 } 1484 goto done; 1485 } 1486 1487 if (q->elevator) { 1488 elv_insert: 1489 blk_mq_put_ctx(data.ctx); 1490 blk_mq_bio_to_request(rq, bio); 1491 blk_mq_sched_insert_request(rq, false, true, 1492 !is_sync || is_flush_fua, true); 1493 goto done; 1494 } 1495 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1496 /* 1497 * For a SYNC request, send it to the hardware immediately. For 1498 * an ASYNC request, just ensure that we run it later on. The 1499 * latter allows for merging opportunities and more efficient 1500 * dispatching. 1501 */ 1502 run_queue: 1503 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1504 } 1505 blk_mq_put_ctx(data.ctx); 1506 done: 1507 return cookie; 1508 } 1509 1510 /* 1511 * Single hardware queue variant. This will attempt to use any per-process 1512 * plug for merging and IO deferral. 1513 */ 1514 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1515 { 1516 const int is_sync = op_is_sync(bio->bi_opf); 1517 const int is_flush_fua = op_is_flush(bio->bi_opf); 1518 struct blk_plug *plug; 1519 unsigned int request_count = 0; 1520 struct blk_mq_alloc_data data = { .flags = 0 }; 1521 struct request *rq; 1522 blk_qc_t cookie; 1523 unsigned int wb_acct; 1524 1525 blk_queue_bounce(q, &bio); 1526 1527 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1528 bio_io_error(bio); 1529 return BLK_QC_T_NONE; 1530 } 1531 1532 blk_queue_split(q, &bio, q->bio_split); 1533 1534 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1535 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1536 return BLK_QC_T_NONE; 1537 } else 1538 request_count = blk_plug_queued_count(q); 1539 1540 if (blk_mq_sched_bio_merge(q, bio)) 1541 return BLK_QC_T_NONE; 1542 1543 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1544 1545 trace_block_getrq(q, bio, bio->bi_opf); 1546 1547 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1548 if (unlikely(!rq)) { 1549 __wbt_done(q->rq_wb, wb_acct); 1550 return BLK_QC_T_NONE; 1551 } 1552 1553 wbt_track(&rq->issue_stat, wb_acct); 1554 1555 cookie = request_to_qc_t(data.hctx, rq); 1556 1557 if (unlikely(is_flush_fua)) { 1558 if (q->elevator) 1559 goto elv_insert; 1560 blk_mq_bio_to_request(rq, bio); 1561 blk_insert_flush(rq); 1562 goto run_queue; 1563 } 1564 1565 /* 1566 * A task plug currently exists. Since this is completely lockless, 1567 * utilize that to temporarily store requests until the task is 1568 * either done or scheduled away. 1569 */ 1570 plug = current->plug; 1571 if (plug) { 1572 struct request *last = NULL; 1573 1574 blk_mq_bio_to_request(rq, bio); 1575 1576 /* 1577 * @request_count may become stale because of schedule 1578 * out, so check the list again. 1579 */ 1580 if (list_empty(&plug->mq_list)) 1581 request_count = 0; 1582 if (!request_count) 1583 trace_block_plug(q); 1584 else 1585 last = list_entry_rq(plug->mq_list.prev); 1586 1587 blk_mq_put_ctx(data.ctx); 1588 1589 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1590 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1591 blk_flush_plug_list(plug, false); 1592 trace_block_plug(q); 1593 } 1594 1595 list_add_tail(&rq->queuelist, &plug->mq_list); 1596 return cookie; 1597 } 1598 1599 if (q->elevator) { 1600 elv_insert: 1601 blk_mq_put_ctx(data.ctx); 1602 blk_mq_bio_to_request(rq, bio); 1603 blk_mq_sched_insert_request(rq, false, true, 1604 !is_sync || is_flush_fua, true); 1605 goto done; 1606 } 1607 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1608 /* 1609 * For a SYNC request, send it to the hardware immediately. For 1610 * an ASYNC request, just ensure that we run it later on. The 1611 * latter allows for merging opportunities and more efficient 1612 * dispatching. 1613 */ 1614 run_queue: 1615 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1616 } 1617 1618 blk_mq_put_ctx(data.ctx); 1619 done: 1620 return cookie; 1621 } 1622 1623 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1624 unsigned int hctx_idx) 1625 { 1626 struct page *page; 1627 1628 if (tags->rqs && set->ops->exit_request) { 1629 int i; 1630 1631 for (i = 0; i < tags->nr_tags; i++) { 1632 struct request *rq = tags->static_rqs[i]; 1633 1634 if (!rq) 1635 continue; 1636 set->ops->exit_request(set->driver_data, rq, 1637 hctx_idx, i); 1638 tags->static_rqs[i] = NULL; 1639 } 1640 } 1641 1642 while (!list_empty(&tags->page_list)) { 1643 page = list_first_entry(&tags->page_list, struct page, lru); 1644 list_del_init(&page->lru); 1645 /* 1646 * Remove kmemleak object previously allocated in 1647 * blk_mq_init_rq_map(). 1648 */ 1649 kmemleak_free(page_address(page)); 1650 __free_pages(page, page->private); 1651 } 1652 } 1653 1654 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1655 { 1656 kfree(tags->rqs); 1657 tags->rqs = NULL; 1658 kfree(tags->static_rqs); 1659 tags->static_rqs = NULL; 1660 1661 blk_mq_free_tags(tags); 1662 } 1663 1664 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1665 unsigned int hctx_idx, 1666 unsigned int nr_tags, 1667 unsigned int reserved_tags) 1668 { 1669 struct blk_mq_tags *tags; 1670 1671 tags = blk_mq_init_tags(nr_tags, reserved_tags, 1672 set->numa_node, 1673 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1674 if (!tags) 1675 return NULL; 1676 1677 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1678 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1679 set->numa_node); 1680 if (!tags->rqs) { 1681 blk_mq_free_tags(tags); 1682 return NULL; 1683 } 1684 1685 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1686 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1687 set->numa_node); 1688 if (!tags->static_rqs) { 1689 kfree(tags->rqs); 1690 blk_mq_free_tags(tags); 1691 return NULL; 1692 } 1693 1694 return tags; 1695 } 1696 1697 static size_t order_to_size(unsigned int order) 1698 { 1699 return (size_t)PAGE_SIZE << order; 1700 } 1701 1702 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1703 unsigned int hctx_idx, unsigned int depth) 1704 { 1705 unsigned int i, j, entries_per_page, max_order = 4; 1706 size_t rq_size, left; 1707 1708 INIT_LIST_HEAD(&tags->page_list); 1709 1710 /* 1711 * rq_size is the size of the request plus driver payload, rounded 1712 * to the cacheline size 1713 */ 1714 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1715 cache_line_size()); 1716 left = rq_size * depth; 1717 1718 for (i = 0; i < depth; ) { 1719 int this_order = max_order; 1720 struct page *page; 1721 int to_do; 1722 void *p; 1723 1724 while (this_order && left < order_to_size(this_order - 1)) 1725 this_order--; 1726 1727 do { 1728 page = alloc_pages_node(set->numa_node, 1729 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1730 this_order); 1731 if (page) 1732 break; 1733 if (!this_order--) 1734 break; 1735 if (order_to_size(this_order) < rq_size) 1736 break; 1737 } while (1); 1738 1739 if (!page) 1740 goto fail; 1741 1742 page->private = this_order; 1743 list_add_tail(&page->lru, &tags->page_list); 1744 1745 p = page_address(page); 1746 /* 1747 * Allow kmemleak to scan these pages as they contain pointers 1748 * to additional allocations like via ops->init_request(). 1749 */ 1750 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1751 entries_per_page = order_to_size(this_order) / rq_size; 1752 to_do = min(entries_per_page, depth - i); 1753 left -= to_do * rq_size; 1754 for (j = 0; j < to_do; j++) { 1755 struct request *rq = p; 1756 1757 tags->static_rqs[i] = rq; 1758 if (set->ops->init_request) { 1759 if (set->ops->init_request(set->driver_data, 1760 rq, hctx_idx, i, 1761 set->numa_node)) { 1762 tags->static_rqs[i] = NULL; 1763 goto fail; 1764 } 1765 } 1766 1767 p += rq_size; 1768 i++; 1769 } 1770 } 1771 return 0; 1772 1773 fail: 1774 blk_mq_free_rqs(set, tags, hctx_idx); 1775 return -ENOMEM; 1776 } 1777 1778 /* 1779 * 'cpu' is going away. splice any existing rq_list entries from this 1780 * software queue to the hw queue dispatch list, and ensure that it 1781 * gets run. 1782 */ 1783 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1784 { 1785 struct blk_mq_hw_ctx *hctx; 1786 struct blk_mq_ctx *ctx; 1787 LIST_HEAD(tmp); 1788 1789 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1790 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1791 1792 spin_lock(&ctx->lock); 1793 if (!list_empty(&ctx->rq_list)) { 1794 list_splice_init(&ctx->rq_list, &tmp); 1795 blk_mq_hctx_clear_pending(hctx, ctx); 1796 } 1797 spin_unlock(&ctx->lock); 1798 1799 if (list_empty(&tmp)) 1800 return 0; 1801 1802 spin_lock(&hctx->lock); 1803 list_splice_tail_init(&tmp, &hctx->dispatch); 1804 spin_unlock(&hctx->lock); 1805 1806 blk_mq_run_hw_queue(hctx, true); 1807 return 0; 1808 } 1809 1810 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1811 { 1812 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1813 &hctx->cpuhp_dead); 1814 } 1815 1816 /* hctx->ctxs will be freed in queue's release handler */ 1817 static void blk_mq_exit_hctx(struct request_queue *q, 1818 struct blk_mq_tag_set *set, 1819 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1820 { 1821 unsigned flush_start_tag = set->queue_depth; 1822 1823 blk_mq_tag_idle(hctx); 1824 1825 if (set->ops->exit_request) 1826 set->ops->exit_request(set->driver_data, 1827 hctx->fq->flush_rq, hctx_idx, 1828 flush_start_tag + hctx_idx); 1829 1830 if (set->ops->exit_hctx) 1831 set->ops->exit_hctx(hctx, hctx_idx); 1832 1833 if (hctx->flags & BLK_MQ_F_BLOCKING) 1834 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1835 1836 blk_mq_remove_cpuhp(hctx); 1837 blk_free_flush_queue(hctx->fq); 1838 sbitmap_free(&hctx->ctx_map); 1839 } 1840 1841 static void blk_mq_exit_hw_queues(struct request_queue *q, 1842 struct blk_mq_tag_set *set, int nr_queue) 1843 { 1844 struct blk_mq_hw_ctx *hctx; 1845 unsigned int i; 1846 1847 queue_for_each_hw_ctx(q, hctx, i) { 1848 if (i == nr_queue) 1849 break; 1850 blk_mq_exit_hctx(q, set, hctx, i); 1851 } 1852 } 1853 1854 static void blk_mq_free_hw_queues(struct request_queue *q, 1855 struct blk_mq_tag_set *set) 1856 { 1857 struct blk_mq_hw_ctx *hctx; 1858 unsigned int i; 1859 1860 queue_for_each_hw_ctx(q, hctx, i) 1861 free_cpumask_var(hctx->cpumask); 1862 } 1863 1864 static int blk_mq_init_hctx(struct request_queue *q, 1865 struct blk_mq_tag_set *set, 1866 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1867 { 1868 int node; 1869 unsigned flush_start_tag = set->queue_depth; 1870 1871 node = hctx->numa_node; 1872 if (node == NUMA_NO_NODE) 1873 node = hctx->numa_node = set->numa_node; 1874 1875 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1876 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1877 spin_lock_init(&hctx->lock); 1878 INIT_LIST_HEAD(&hctx->dispatch); 1879 hctx->queue = q; 1880 hctx->queue_num = hctx_idx; 1881 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1882 1883 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1884 1885 hctx->tags = set->tags[hctx_idx]; 1886 1887 /* 1888 * Allocate space for all possible cpus to avoid allocation at 1889 * runtime 1890 */ 1891 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1892 GFP_KERNEL, node); 1893 if (!hctx->ctxs) 1894 goto unregister_cpu_notifier; 1895 1896 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1897 node)) 1898 goto free_ctxs; 1899 1900 hctx->nr_ctx = 0; 1901 1902 if (set->ops->init_hctx && 1903 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1904 goto free_bitmap; 1905 1906 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1907 if (!hctx->fq) 1908 goto exit_hctx; 1909 1910 if (set->ops->init_request && 1911 set->ops->init_request(set->driver_data, 1912 hctx->fq->flush_rq, hctx_idx, 1913 flush_start_tag + hctx_idx, node)) 1914 goto free_fq; 1915 1916 if (hctx->flags & BLK_MQ_F_BLOCKING) 1917 init_srcu_struct(&hctx->queue_rq_srcu); 1918 1919 return 0; 1920 1921 free_fq: 1922 kfree(hctx->fq); 1923 exit_hctx: 1924 if (set->ops->exit_hctx) 1925 set->ops->exit_hctx(hctx, hctx_idx); 1926 free_bitmap: 1927 sbitmap_free(&hctx->ctx_map); 1928 free_ctxs: 1929 kfree(hctx->ctxs); 1930 unregister_cpu_notifier: 1931 blk_mq_remove_cpuhp(hctx); 1932 return -1; 1933 } 1934 1935 static void blk_mq_init_cpu_queues(struct request_queue *q, 1936 unsigned int nr_hw_queues) 1937 { 1938 unsigned int i; 1939 1940 for_each_possible_cpu(i) { 1941 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1942 struct blk_mq_hw_ctx *hctx; 1943 1944 memset(__ctx, 0, sizeof(*__ctx)); 1945 __ctx->cpu = i; 1946 spin_lock_init(&__ctx->lock); 1947 INIT_LIST_HEAD(&__ctx->rq_list); 1948 __ctx->queue = q; 1949 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1950 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1951 1952 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1953 if (!cpu_online(i)) 1954 continue; 1955 1956 hctx = blk_mq_map_queue(q, i); 1957 1958 /* 1959 * Set local node, IFF we have more than one hw queue. If 1960 * not, we remain on the home node of the device 1961 */ 1962 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1963 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1964 } 1965 } 1966 1967 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 1968 { 1969 int ret = 0; 1970 1971 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 1972 set->queue_depth, set->reserved_tags); 1973 if (!set->tags[hctx_idx]) 1974 return false; 1975 1976 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 1977 set->queue_depth); 1978 if (!ret) 1979 return true; 1980 1981 blk_mq_free_rq_map(set->tags[hctx_idx]); 1982 set->tags[hctx_idx] = NULL; 1983 return false; 1984 } 1985 1986 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 1987 unsigned int hctx_idx) 1988 { 1989 if (set->tags[hctx_idx]) { 1990 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 1991 blk_mq_free_rq_map(set->tags[hctx_idx]); 1992 set->tags[hctx_idx] = NULL; 1993 } 1994 } 1995 1996 static void blk_mq_map_swqueue(struct request_queue *q, 1997 const struct cpumask *online_mask) 1998 { 1999 unsigned int i, hctx_idx; 2000 struct blk_mq_hw_ctx *hctx; 2001 struct blk_mq_ctx *ctx; 2002 struct blk_mq_tag_set *set = q->tag_set; 2003 2004 /* 2005 * Avoid others reading imcomplete hctx->cpumask through sysfs 2006 */ 2007 mutex_lock(&q->sysfs_lock); 2008 2009 queue_for_each_hw_ctx(q, hctx, i) { 2010 cpumask_clear(hctx->cpumask); 2011 hctx->nr_ctx = 0; 2012 } 2013 2014 /* 2015 * Map software to hardware queues 2016 */ 2017 for_each_possible_cpu(i) { 2018 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2019 if (!cpumask_test_cpu(i, online_mask)) 2020 continue; 2021 2022 hctx_idx = q->mq_map[i]; 2023 /* unmapped hw queue can be remapped after CPU topo changed */ 2024 if (!set->tags[hctx_idx] && 2025 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2026 /* 2027 * If tags initialization fail for some hctx, 2028 * that hctx won't be brought online. In this 2029 * case, remap the current ctx to hctx[0] which 2030 * is guaranteed to always have tags allocated 2031 */ 2032 q->mq_map[i] = 0; 2033 } 2034 2035 ctx = per_cpu_ptr(q->queue_ctx, i); 2036 hctx = blk_mq_map_queue(q, i); 2037 2038 cpumask_set_cpu(i, hctx->cpumask); 2039 ctx->index_hw = hctx->nr_ctx; 2040 hctx->ctxs[hctx->nr_ctx++] = ctx; 2041 } 2042 2043 mutex_unlock(&q->sysfs_lock); 2044 2045 queue_for_each_hw_ctx(q, hctx, i) { 2046 /* 2047 * If no software queues are mapped to this hardware queue, 2048 * disable it and free the request entries. 2049 */ 2050 if (!hctx->nr_ctx) { 2051 /* Never unmap queue 0. We need it as a 2052 * fallback in case of a new remap fails 2053 * allocation 2054 */ 2055 if (i && set->tags[i]) 2056 blk_mq_free_map_and_requests(set, i); 2057 2058 hctx->tags = NULL; 2059 continue; 2060 } 2061 2062 hctx->tags = set->tags[i]; 2063 WARN_ON(!hctx->tags); 2064 2065 /* 2066 * Set the map size to the number of mapped software queues. 2067 * This is more accurate and more efficient than looping 2068 * over all possibly mapped software queues. 2069 */ 2070 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2071 2072 /* 2073 * Initialize batch roundrobin counts 2074 */ 2075 hctx->next_cpu = cpumask_first(hctx->cpumask); 2076 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2077 } 2078 } 2079 2080 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2081 { 2082 struct blk_mq_hw_ctx *hctx; 2083 int i; 2084 2085 queue_for_each_hw_ctx(q, hctx, i) { 2086 if (shared) 2087 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2088 else 2089 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2090 } 2091 } 2092 2093 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2094 { 2095 struct request_queue *q; 2096 2097 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2098 blk_mq_freeze_queue(q); 2099 queue_set_hctx_shared(q, shared); 2100 blk_mq_unfreeze_queue(q); 2101 } 2102 } 2103 2104 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2105 { 2106 struct blk_mq_tag_set *set = q->tag_set; 2107 2108 mutex_lock(&set->tag_list_lock); 2109 list_del_init(&q->tag_set_list); 2110 if (list_is_singular(&set->tag_list)) { 2111 /* just transitioned to unshared */ 2112 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2113 /* update existing queue */ 2114 blk_mq_update_tag_set_depth(set, false); 2115 } 2116 mutex_unlock(&set->tag_list_lock); 2117 } 2118 2119 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2120 struct request_queue *q) 2121 { 2122 q->tag_set = set; 2123 2124 mutex_lock(&set->tag_list_lock); 2125 2126 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2127 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2128 set->flags |= BLK_MQ_F_TAG_SHARED; 2129 /* update existing queue */ 2130 blk_mq_update_tag_set_depth(set, true); 2131 } 2132 if (set->flags & BLK_MQ_F_TAG_SHARED) 2133 queue_set_hctx_shared(q, true); 2134 list_add_tail(&q->tag_set_list, &set->tag_list); 2135 2136 mutex_unlock(&set->tag_list_lock); 2137 } 2138 2139 /* 2140 * It is the actual release handler for mq, but we do it from 2141 * request queue's release handler for avoiding use-after-free 2142 * and headache because q->mq_kobj shouldn't have been introduced, 2143 * but we can't group ctx/kctx kobj without it. 2144 */ 2145 void blk_mq_release(struct request_queue *q) 2146 { 2147 struct blk_mq_hw_ctx *hctx; 2148 unsigned int i; 2149 2150 blk_mq_sched_teardown(q); 2151 2152 /* hctx kobj stays in hctx */ 2153 queue_for_each_hw_ctx(q, hctx, i) { 2154 if (!hctx) 2155 continue; 2156 kfree(hctx->ctxs); 2157 kfree(hctx); 2158 } 2159 2160 q->mq_map = NULL; 2161 2162 kfree(q->queue_hw_ctx); 2163 2164 /* ctx kobj stays in queue_ctx */ 2165 free_percpu(q->queue_ctx); 2166 } 2167 2168 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2169 { 2170 struct request_queue *uninit_q, *q; 2171 2172 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2173 if (!uninit_q) 2174 return ERR_PTR(-ENOMEM); 2175 2176 q = blk_mq_init_allocated_queue(set, uninit_q); 2177 if (IS_ERR(q)) 2178 blk_cleanup_queue(uninit_q); 2179 2180 return q; 2181 } 2182 EXPORT_SYMBOL(blk_mq_init_queue); 2183 2184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2185 struct request_queue *q) 2186 { 2187 int i, j; 2188 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2189 2190 blk_mq_sysfs_unregister(q); 2191 for (i = 0; i < set->nr_hw_queues; i++) { 2192 int node; 2193 2194 if (hctxs[i]) 2195 continue; 2196 2197 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2198 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2199 GFP_KERNEL, node); 2200 if (!hctxs[i]) 2201 break; 2202 2203 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2204 node)) { 2205 kfree(hctxs[i]); 2206 hctxs[i] = NULL; 2207 break; 2208 } 2209 2210 atomic_set(&hctxs[i]->nr_active, 0); 2211 hctxs[i]->numa_node = node; 2212 hctxs[i]->queue_num = i; 2213 2214 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2215 free_cpumask_var(hctxs[i]->cpumask); 2216 kfree(hctxs[i]); 2217 hctxs[i] = NULL; 2218 break; 2219 } 2220 blk_mq_hctx_kobj_init(hctxs[i]); 2221 } 2222 for (j = i; j < q->nr_hw_queues; j++) { 2223 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2224 2225 if (hctx) { 2226 if (hctx->tags) 2227 blk_mq_free_map_and_requests(set, j); 2228 blk_mq_exit_hctx(q, set, hctx, j); 2229 free_cpumask_var(hctx->cpumask); 2230 kobject_put(&hctx->kobj); 2231 kfree(hctx->ctxs); 2232 kfree(hctx); 2233 hctxs[j] = NULL; 2234 2235 } 2236 } 2237 q->nr_hw_queues = i; 2238 blk_mq_sysfs_register(q); 2239 } 2240 2241 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2242 struct request_queue *q) 2243 { 2244 /* mark the queue as mq asap */ 2245 q->mq_ops = set->ops; 2246 2247 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2248 if (!q->queue_ctx) 2249 goto err_exit; 2250 2251 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2252 GFP_KERNEL, set->numa_node); 2253 if (!q->queue_hw_ctx) 2254 goto err_percpu; 2255 2256 q->mq_map = set->mq_map; 2257 2258 blk_mq_realloc_hw_ctxs(set, q); 2259 if (!q->nr_hw_queues) 2260 goto err_hctxs; 2261 2262 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2263 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2264 2265 q->nr_queues = nr_cpu_ids; 2266 2267 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2268 2269 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2270 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2271 2272 q->sg_reserved_size = INT_MAX; 2273 2274 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2275 INIT_LIST_HEAD(&q->requeue_list); 2276 spin_lock_init(&q->requeue_lock); 2277 2278 if (q->nr_hw_queues > 1) 2279 blk_queue_make_request(q, blk_mq_make_request); 2280 else 2281 blk_queue_make_request(q, blk_sq_make_request); 2282 2283 /* 2284 * Do this after blk_queue_make_request() overrides it... 2285 */ 2286 q->nr_requests = set->queue_depth; 2287 2288 /* 2289 * Default to classic polling 2290 */ 2291 q->poll_nsec = -1; 2292 2293 if (set->ops->complete) 2294 blk_queue_softirq_done(q, set->ops->complete); 2295 2296 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2297 2298 get_online_cpus(); 2299 mutex_lock(&all_q_mutex); 2300 2301 list_add_tail(&q->all_q_node, &all_q_list); 2302 blk_mq_add_queue_tag_set(set, q); 2303 blk_mq_map_swqueue(q, cpu_online_mask); 2304 2305 mutex_unlock(&all_q_mutex); 2306 put_online_cpus(); 2307 2308 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2309 int ret; 2310 2311 ret = blk_mq_sched_init(q); 2312 if (ret) 2313 return ERR_PTR(ret); 2314 } 2315 2316 return q; 2317 2318 err_hctxs: 2319 kfree(q->queue_hw_ctx); 2320 err_percpu: 2321 free_percpu(q->queue_ctx); 2322 err_exit: 2323 q->mq_ops = NULL; 2324 return ERR_PTR(-ENOMEM); 2325 } 2326 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2327 2328 void blk_mq_free_queue(struct request_queue *q) 2329 { 2330 struct blk_mq_tag_set *set = q->tag_set; 2331 2332 mutex_lock(&all_q_mutex); 2333 list_del_init(&q->all_q_node); 2334 mutex_unlock(&all_q_mutex); 2335 2336 wbt_exit(q); 2337 2338 blk_mq_del_queue_tag_set(q); 2339 2340 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2341 blk_mq_free_hw_queues(q, set); 2342 } 2343 2344 /* Basically redo blk_mq_init_queue with queue frozen */ 2345 static void blk_mq_queue_reinit(struct request_queue *q, 2346 const struct cpumask *online_mask) 2347 { 2348 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2349 2350 blk_mq_sysfs_unregister(q); 2351 2352 /* 2353 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2354 * we should change hctx numa_node according to new topology (this 2355 * involves free and re-allocate memory, worthy doing?) 2356 */ 2357 2358 blk_mq_map_swqueue(q, online_mask); 2359 2360 blk_mq_sysfs_register(q); 2361 } 2362 2363 /* 2364 * New online cpumask which is going to be set in this hotplug event. 2365 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2366 * one-by-one and dynamically allocating this could result in a failure. 2367 */ 2368 static struct cpumask cpuhp_online_new; 2369 2370 static void blk_mq_queue_reinit_work(void) 2371 { 2372 struct request_queue *q; 2373 2374 mutex_lock(&all_q_mutex); 2375 /* 2376 * We need to freeze and reinit all existing queues. Freezing 2377 * involves synchronous wait for an RCU grace period and doing it 2378 * one by one may take a long time. Start freezing all queues in 2379 * one swoop and then wait for the completions so that freezing can 2380 * take place in parallel. 2381 */ 2382 list_for_each_entry(q, &all_q_list, all_q_node) 2383 blk_mq_freeze_queue_start(q); 2384 list_for_each_entry(q, &all_q_list, all_q_node) 2385 blk_mq_freeze_queue_wait(q); 2386 2387 list_for_each_entry(q, &all_q_list, all_q_node) 2388 blk_mq_queue_reinit(q, &cpuhp_online_new); 2389 2390 list_for_each_entry(q, &all_q_list, all_q_node) 2391 blk_mq_unfreeze_queue(q); 2392 2393 mutex_unlock(&all_q_mutex); 2394 } 2395 2396 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2397 { 2398 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2399 blk_mq_queue_reinit_work(); 2400 return 0; 2401 } 2402 2403 /* 2404 * Before hotadded cpu starts handling requests, new mappings must be 2405 * established. Otherwise, these requests in hw queue might never be 2406 * dispatched. 2407 * 2408 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2409 * for CPU0, and ctx1 for CPU1). 2410 * 2411 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2412 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2413 * 2414 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2415 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2416 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2417 * ignored. 2418 */ 2419 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2420 { 2421 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2422 cpumask_set_cpu(cpu, &cpuhp_online_new); 2423 blk_mq_queue_reinit_work(); 2424 return 0; 2425 } 2426 2427 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2428 { 2429 int i; 2430 2431 for (i = 0; i < set->nr_hw_queues; i++) 2432 if (!__blk_mq_alloc_rq_map(set, i)) 2433 goto out_unwind; 2434 2435 return 0; 2436 2437 out_unwind: 2438 while (--i >= 0) 2439 blk_mq_free_rq_map(set->tags[i]); 2440 2441 return -ENOMEM; 2442 } 2443 2444 /* 2445 * Allocate the request maps associated with this tag_set. Note that this 2446 * may reduce the depth asked for, if memory is tight. set->queue_depth 2447 * will be updated to reflect the allocated depth. 2448 */ 2449 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2450 { 2451 unsigned int depth; 2452 int err; 2453 2454 depth = set->queue_depth; 2455 do { 2456 err = __blk_mq_alloc_rq_maps(set); 2457 if (!err) 2458 break; 2459 2460 set->queue_depth >>= 1; 2461 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2462 err = -ENOMEM; 2463 break; 2464 } 2465 } while (set->queue_depth); 2466 2467 if (!set->queue_depth || err) { 2468 pr_err("blk-mq: failed to allocate request map\n"); 2469 return -ENOMEM; 2470 } 2471 2472 if (depth != set->queue_depth) 2473 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2474 depth, set->queue_depth); 2475 2476 return 0; 2477 } 2478 2479 /* 2480 * Alloc a tag set to be associated with one or more request queues. 2481 * May fail with EINVAL for various error conditions. May adjust the 2482 * requested depth down, if if it too large. In that case, the set 2483 * value will be stored in set->queue_depth. 2484 */ 2485 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2486 { 2487 int ret; 2488 2489 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2490 2491 if (!set->nr_hw_queues) 2492 return -EINVAL; 2493 if (!set->queue_depth) 2494 return -EINVAL; 2495 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2496 return -EINVAL; 2497 2498 if (!set->ops->queue_rq) 2499 return -EINVAL; 2500 2501 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2502 pr_info("blk-mq: reduced tag depth to %u\n", 2503 BLK_MQ_MAX_DEPTH); 2504 set->queue_depth = BLK_MQ_MAX_DEPTH; 2505 } 2506 2507 /* 2508 * If a crashdump is active, then we are potentially in a very 2509 * memory constrained environment. Limit us to 1 queue and 2510 * 64 tags to prevent using too much memory. 2511 */ 2512 if (is_kdump_kernel()) { 2513 set->nr_hw_queues = 1; 2514 set->queue_depth = min(64U, set->queue_depth); 2515 } 2516 /* 2517 * There is no use for more h/w queues than cpus. 2518 */ 2519 if (set->nr_hw_queues > nr_cpu_ids) 2520 set->nr_hw_queues = nr_cpu_ids; 2521 2522 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2523 GFP_KERNEL, set->numa_node); 2524 if (!set->tags) 2525 return -ENOMEM; 2526 2527 ret = -ENOMEM; 2528 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2529 GFP_KERNEL, set->numa_node); 2530 if (!set->mq_map) 2531 goto out_free_tags; 2532 2533 if (set->ops->map_queues) 2534 ret = set->ops->map_queues(set); 2535 else 2536 ret = blk_mq_map_queues(set); 2537 if (ret) 2538 goto out_free_mq_map; 2539 2540 ret = blk_mq_alloc_rq_maps(set); 2541 if (ret) 2542 goto out_free_mq_map; 2543 2544 mutex_init(&set->tag_list_lock); 2545 INIT_LIST_HEAD(&set->tag_list); 2546 2547 return 0; 2548 2549 out_free_mq_map: 2550 kfree(set->mq_map); 2551 set->mq_map = NULL; 2552 out_free_tags: 2553 kfree(set->tags); 2554 set->tags = NULL; 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2558 2559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2560 { 2561 int i; 2562 2563 for (i = 0; i < nr_cpu_ids; i++) 2564 blk_mq_free_map_and_requests(set, i); 2565 2566 kfree(set->mq_map); 2567 set->mq_map = NULL; 2568 2569 kfree(set->tags); 2570 set->tags = NULL; 2571 } 2572 EXPORT_SYMBOL(blk_mq_free_tag_set); 2573 2574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2575 { 2576 struct blk_mq_tag_set *set = q->tag_set; 2577 struct blk_mq_hw_ctx *hctx; 2578 int i, ret; 2579 2580 if (!set) 2581 return -EINVAL; 2582 2583 blk_mq_freeze_queue(q); 2584 blk_mq_quiesce_queue(q); 2585 2586 ret = 0; 2587 queue_for_each_hw_ctx(q, hctx, i) { 2588 if (!hctx->tags) 2589 continue; 2590 /* 2591 * If we're using an MQ scheduler, just update the scheduler 2592 * queue depth. This is similar to what the old code would do. 2593 */ 2594 if (!hctx->sched_tags) { 2595 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2596 min(nr, set->queue_depth), 2597 false); 2598 } else { 2599 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2600 nr, true); 2601 } 2602 if (ret) 2603 break; 2604 } 2605 2606 if (!ret) 2607 q->nr_requests = nr; 2608 2609 blk_mq_unfreeze_queue(q); 2610 blk_mq_start_stopped_hw_queues(q, true); 2611 2612 return ret; 2613 } 2614 2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2616 { 2617 struct request_queue *q; 2618 2619 if (nr_hw_queues > nr_cpu_ids) 2620 nr_hw_queues = nr_cpu_ids; 2621 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2622 return; 2623 2624 list_for_each_entry(q, &set->tag_list, tag_set_list) 2625 blk_mq_freeze_queue(q); 2626 2627 set->nr_hw_queues = nr_hw_queues; 2628 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2629 blk_mq_realloc_hw_ctxs(set, q); 2630 2631 /* 2632 * Manually set the make_request_fn as blk_queue_make_request 2633 * resets a lot of the queue settings. 2634 */ 2635 if (q->nr_hw_queues > 1) 2636 q->make_request_fn = blk_mq_make_request; 2637 else 2638 q->make_request_fn = blk_sq_make_request; 2639 2640 blk_mq_queue_reinit(q, cpu_online_mask); 2641 } 2642 2643 list_for_each_entry(q, &set->tag_list, tag_set_list) 2644 blk_mq_unfreeze_queue(q); 2645 } 2646 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2647 2648 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2649 struct blk_mq_hw_ctx *hctx, 2650 struct request *rq) 2651 { 2652 struct blk_rq_stat stat[2]; 2653 unsigned long ret = 0; 2654 2655 /* 2656 * If stats collection isn't on, don't sleep but turn it on for 2657 * future users 2658 */ 2659 if (!blk_stat_enable(q)) 2660 return 0; 2661 2662 /* 2663 * We don't have to do this once per IO, should optimize this 2664 * to just use the current window of stats until it changes 2665 */ 2666 memset(&stat, 0, sizeof(stat)); 2667 blk_hctx_stat_get(hctx, stat); 2668 2669 /* 2670 * As an optimistic guess, use half of the mean service time 2671 * for this type of request. We can (and should) make this smarter. 2672 * For instance, if the completion latencies are tight, we can 2673 * get closer than just half the mean. This is especially 2674 * important on devices where the completion latencies are longer 2675 * than ~10 usec. 2676 */ 2677 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2678 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2679 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2680 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2681 2682 return ret; 2683 } 2684 2685 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2686 struct blk_mq_hw_ctx *hctx, 2687 struct request *rq) 2688 { 2689 struct hrtimer_sleeper hs; 2690 enum hrtimer_mode mode; 2691 unsigned int nsecs; 2692 ktime_t kt; 2693 2694 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2695 return false; 2696 2697 /* 2698 * poll_nsec can be: 2699 * 2700 * -1: don't ever hybrid sleep 2701 * 0: use half of prev avg 2702 * >0: use this specific value 2703 */ 2704 if (q->poll_nsec == -1) 2705 return false; 2706 else if (q->poll_nsec > 0) 2707 nsecs = q->poll_nsec; 2708 else 2709 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2710 2711 if (!nsecs) 2712 return false; 2713 2714 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2715 2716 /* 2717 * This will be replaced with the stats tracking code, using 2718 * 'avg_completion_time / 2' as the pre-sleep target. 2719 */ 2720 kt = nsecs; 2721 2722 mode = HRTIMER_MODE_REL; 2723 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2724 hrtimer_set_expires(&hs.timer, kt); 2725 2726 hrtimer_init_sleeper(&hs, current); 2727 do { 2728 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2729 break; 2730 set_current_state(TASK_UNINTERRUPTIBLE); 2731 hrtimer_start_expires(&hs.timer, mode); 2732 if (hs.task) 2733 io_schedule(); 2734 hrtimer_cancel(&hs.timer); 2735 mode = HRTIMER_MODE_ABS; 2736 } while (hs.task && !signal_pending(current)); 2737 2738 __set_current_state(TASK_RUNNING); 2739 destroy_hrtimer_on_stack(&hs.timer); 2740 return true; 2741 } 2742 2743 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2744 { 2745 struct request_queue *q = hctx->queue; 2746 long state; 2747 2748 /* 2749 * If we sleep, have the caller restart the poll loop to reset 2750 * the state. Like for the other success return cases, the 2751 * caller is responsible for checking if the IO completed. If 2752 * the IO isn't complete, we'll get called again and will go 2753 * straight to the busy poll loop. 2754 */ 2755 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2756 return true; 2757 2758 hctx->poll_considered++; 2759 2760 state = current->state; 2761 while (!need_resched()) { 2762 int ret; 2763 2764 hctx->poll_invoked++; 2765 2766 ret = q->mq_ops->poll(hctx, rq->tag); 2767 if (ret > 0) { 2768 hctx->poll_success++; 2769 set_current_state(TASK_RUNNING); 2770 return true; 2771 } 2772 2773 if (signal_pending_state(state, current)) 2774 set_current_state(TASK_RUNNING); 2775 2776 if (current->state == TASK_RUNNING) 2777 return true; 2778 if (ret < 0) 2779 break; 2780 cpu_relax(); 2781 } 2782 2783 return false; 2784 } 2785 2786 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2787 { 2788 struct blk_mq_hw_ctx *hctx; 2789 struct blk_plug *plug; 2790 struct request *rq; 2791 2792 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2793 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2794 return false; 2795 2796 plug = current->plug; 2797 if (plug) 2798 blk_flush_plug_list(plug, false); 2799 2800 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2801 if (!blk_qc_t_is_internal(cookie)) 2802 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2803 else 2804 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2805 2806 return __blk_mq_poll(hctx, rq); 2807 } 2808 EXPORT_SYMBOL_GPL(blk_mq_poll); 2809 2810 void blk_mq_disable_hotplug(void) 2811 { 2812 mutex_lock(&all_q_mutex); 2813 } 2814 2815 void blk_mq_enable_hotplug(void) 2816 { 2817 mutex_unlock(&all_q_mutex); 2818 } 2819 2820 static int __init blk_mq_init(void) 2821 { 2822 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2823 blk_mq_hctx_notify_dead); 2824 2825 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2826 blk_mq_queue_reinit_prepare, 2827 blk_mq_queue_reinit_dead); 2828 return 0; 2829 } 2830 subsys_initcall(blk_mq_init); 2831