xref: /linux/block/blk-mq.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26 
27 #include <trace/events/block.h>
28 
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36 
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39 
40 /*
41  * Check if any of the ctx's have pending work in this hardware queue
42  */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 			!list_empty_careful(&hctx->dispatch) ||
47 			blk_mq_sched_has_work(hctx);
48 }
49 
50 /*
51  * Mark this ctx as having pending work in this hardware queue
52  */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 				     struct blk_mq_ctx *ctx)
55 {
56 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59 
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 				      struct blk_mq_ctx *ctx)
62 {
63 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65 
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 	int freeze_depth;
69 
70 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 	if (freeze_depth == 1) {
72 		percpu_ref_kill(&q->q_usage_counter);
73 		blk_mq_run_hw_queues(q, false);
74 	}
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82 
83 /*
84  * Guarantee no request is in use, so we can change any data structure of
85  * the queue afterward.
86  */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 	/*
90 	 * In the !blk_mq case we are only calling this to kill the
91 	 * q_usage_counter, otherwise this increases the freeze depth
92 	 * and waits for it to return to zero.  For this reason there is
93 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 	 * exported to drivers as the only user for unfreeze is blk_mq.
95 	 */
96 	blk_mq_freeze_queue_start(q);
97 	blk_mq_freeze_queue_wait(q);
98 }
99 
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 	/*
103 	 * ...just an alias to keep freeze and unfreeze actions balanced
104 	 * in the blk_mq_* namespace
105 	 */
106 	blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109 
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 	int freeze_depth;
113 
114 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 	WARN_ON_ONCE(freeze_depth < 0);
116 	if (!freeze_depth) {
117 		percpu_ref_reinit(&q->q_usage_counter);
118 		wake_up_all(&q->mq_freeze_wq);
119 	}
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122 
123 /**
124  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125  * @q: request queue.
126  *
127  * Note: this function does not prevent that the struct request end_io()
128  * callback function is invoked. Additionally, it is not prevented that
129  * new queue_rq() calls occur unless the queue has been stopped first.
130  */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 	struct blk_mq_hw_ctx *hctx;
134 	unsigned int i;
135 	bool rcu = false;
136 
137 	blk_mq_stop_hw_queues(q);
138 
139 	queue_for_each_hw_ctx(q, hctx, i) {
140 		if (hctx->flags & BLK_MQ_F_BLOCKING)
141 			synchronize_srcu(&hctx->queue_rq_srcu);
142 		else
143 			rcu = true;
144 	}
145 	if (rcu)
146 		synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149 
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 	struct blk_mq_hw_ctx *hctx;
153 	unsigned int i;
154 
155 	queue_for_each_hw_ctx(q, hctx, i)
156 		if (blk_mq_hw_queue_mapped(hctx))
157 			blk_mq_tag_wakeup_all(hctx->tags, true);
158 
159 	/*
160 	 * If we are called because the queue has now been marked as
161 	 * dying, we need to ensure that processes currently waiting on
162 	 * the queue are notified as well.
163 	 */
164 	wake_up_all(&q->mq_freeze_wq);
165 }
166 
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 	return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172 
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 			struct request *rq, unsigned int op)
175 {
176 	INIT_LIST_HEAD(&rq->queuelist);
177 	/* csd/requeue_work/fifo_time is initialized before use */
178 	rq->q = q;
179 	rq->mq_ctx = ctx;
180 	rq->cmd_flags = op;
181 	if (blk_queue_io_stat(q))
182 		rq->rq_flags |= RQF_IO_STAT;
183 	/* do not touch atomic flags, it needs atomic ops against the timer */
184 	rq->cpu = -1;
185 	INIT_HLIST_NODE(&rq->hash);
186 	RB_CLEAR_NODE(&rq->rb_node);
187 	rq->rq_disk = NULL;
188 	rq->part = NULL;
189 	rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 	rq->rl = NULL;
192 	set_start_time_ns(rq);
193 	rq->io_start_time_ns = 0;
194 #endif
195 	rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 	rq->nr_integrity_segments = 0;
198 #endif
199 	rq->special = NULL;
200 	/* tag was already set */
201 	rq->errors = 0;
202 	rq->extra_len = 0;
203 
204 	INIT_LIST_HEAD(&rq->timeout_list);
205 	rq->timeout = 0;
206 
207 	rq->end_io = NULL;
208 	rq->end_io_data = NULL;
209 	rq->next_rq = NULL;
210 
211 	ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214 
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 				       unsigned int op)
217 {
218 	struct request *rq;
219 	unsigned int tag;
220 
221 	tag = blk_mq_get_tag(data);
222 	if (tag != BLK_MQ_TAG_FAIL) {
223 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224 
225 		rq = tags->static_rqs[tag];
226 
227 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 			rq->tag = -1;
229 			rq->internal_tag = tag;
230 		} else {
231 			if (blk_mq_tag_busy(data->hctx)) {
232 				rq->rq_flags = RQF_MQ_INFLIGHT;
233 				atomic_inc(&data->hctx->nr_active);
234 			}
235 			rq->tag = tag;
236 			rq->internal_tag = -1;
237 		}
238 
239 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 		return rq;
241 	}
242 
243 	return NULL;
244 }
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246 
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 		unsigned int flags)
249 {
250 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 	struct request *rq;
252 	int ret;
253 
254 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 	if (ret)
256 		return ERR_PTR(ret);
257 
258 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259 
260 	blk_mq_put_ctx(alloc_data.ctx);
261 	blk_queue_exit(q);
262 
263 	if (!rq)
264 		return ERR_PTR(-EWOULDBLOCK);
265 
266 	rq->__data_len = 0;
267 	rq->__sector = (sector_t) -1;
268 	rq->bio = rq->biotail = NULL;
269 	return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272 
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 		unsigned int flags, unsigned int hctx_idx)
275 {
276 	struct blk_mq_hw_ctx *hctx;
277 	struct blk_mq_ctx *ctx;
278 	struct request *rq;
279 	struct blk_mq_alloc_data alloc_data;
280 	int ret;
281 
282 	/*
283 	 * If the tag allocator sleeps we could get an allocation for a
284 	 * different hardware context.  No need to complicate the low level
285 	 * allocator for this for the rare use case of a command tied to
286 	 * a specific queue.
287 	 */
288 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 		return ERR_PTR(-EINVAL);
290 
291 	if (hctx_idx >= q->nr_hw_queues)
292 		return ERR_PTR(-EIO);
293 
294 	ret = blk_queue_enter(q, true);
295 	if (ret)
296 		return ERR_PTR(ret);
297 
298 	/*
299 	 * Check if the hardware context is actually mapped to anything.
300 	 * If not tell the caller that it should skip this queue.
301 	 */
302 	hctx = q->queue_hw_ctx[hctx_idx];
303 	if (!blk_mq_hw_queue_mapped(hctx)) {
304 		ret = -EXDEV;
305 		goto out_queue_exit;
306 	}
307 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
308 
309 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 	rq = __blk_mq_alloc_request(&alloc_data, rw);
311 	if (!rq) {
312 		ret = -EWOULDBLOCK;
313 		goto out_queue_exit;
314 	}
315 
316 	return rq;
317 
318 out_queue_exit:
319 	blk_queue_exit(q);
320 	return ERR_PTR(ret);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
323 
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 			     struct request *rq)
326 {
327 	const int sched_tag = rq->internal_tag;
328 	struct request_queue *q = rq->q;
329 
330 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 		atomic_dec(&hctx->nr_active);
332 
333 	wbt_done(q->rq_wb, &rq->issue_stat);
334 	rq->rq_flags = 0;
335 
336 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 	if (rq->tag != -1)
339 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
340 	if (sched_tag != -1)
341 		blk_mq_sched_completed_request(hctx, rq);
342 	blk_mq_sched_restart_queues(hctx);
343 	blk_queue_exit(q);
344 }
345 
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347 				     struct request *rq)
348 {
349 	struct blk_mq_ctx *ctx = rq->mq_ctx;
350 
351 	ctx->rq_completed[rq_is_sync(rq)]++;
352 	__blk_mq_finish_request(hctx, ctx, rq);
353 }
354 
355 void blk_mq_finish_request(struct request *rq)
356 {
357 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 }
359 
360 void blk_mq_free_request(struct request *rq)
361 {
362 	blk_mq_sched_put_request(rq);
363 }
364 EXPORT_SYMBOL_GPL(blk_mq_free_request);
365 
366 inline void __blk_mq_end_request(struct request *rq, int error)
367 {
368 	blk_account_io_done(rq);
369 
370 	if (rq->end_io) {
371 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
372 		rq->end_io(rq, error);
373 	} else {
374 		if (unlikely(blk_bidi_rq(rq)))
375 			blk_mq_free_request(rq->next_rq);
376 		blk_mq_free_request(rq);
377 	}
378 }
379 EXPORT_SYMBOL(__blk_mq_end_request);
380 
381 void blk_mq_end_request(struct request *rq, int error)
382 {
383 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
384 		BUG();
385 	__blk_mq_end_request(rq, error);
386 }
387 EXPORT_SYMBOL(blk_mq_end_request);
388 
389 static void __blk_mq_complete_request_remote(void *data)
390 {
391 	struct request *rq = data;
392 
393 	rq->q->softirq_done_fn(rq);
394 }
395 
396 static void blk_mq_ipi_complete_request(struct request *rq)
397 {
398 	struct blk_mq_ctx *ctx = rq->mq_ctx;
399 	bool shared = false;
400 	int cpu;
401 
402 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 		rq->q->softirq_done_fn(rq);
404 		return;
405 	}
406 
407 	cpu = get_cpu();
408 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
409 		shared = cpus_share_cache(cpu, ctx->cpu);
410 
411 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412 		rq->csd.func = __blk_mq_complete_request_remote;
413 		rq->csd.info = rq;
414 		rq->csd.flags = 0;
415 		smp_call_function_single_async(ctx->cpu, &rq->csd);
416 	} else {
417 		rq->q->softirq_done_fn(rq);
418 	}
419 	put_cpu();
420 }
421 
422 static void blk_mq_stat_add(struct request *rq)
423 {
424 	if (rq->rq_flags & RQF_STATS) {
425 		/*
426 		 * We could rq->mq_ctx here, but there's less of a risk
427 		 * of races if we have the completion event add the stats
428 		 * to the local software queue.
429 		 */
430 		struct blk_mq_ctx *ctx;
431 
432 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
433 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
434 	}
435 }
436 
437 static void __blk_mq_complete_request(struct request *rq)
438 {
439 	struct request_queue *q = rq->q;
440 
441 	blk_mq_stat_add(rq);
442 
443 	if (!q->softirq_done_fn)
444 		blk_mq_end_request(rq, rq->errors);
445 	else
446 		blk_mq_ipi_complete_request(rq);
447 }
448 
449 /**
450  * blk_mq_complete_request - end I/O on a request
451  * @rq:		the request being processed
452  *
453  * Description:
454  *	Ends all I/O on a request. It does not handle partial completions.
455  *	The actual completion happens out-of-order, through a IPI handler.
456  **/
457 void blk_mq_complete_request(struct request *rq, int error)
458 {
459 	struct request_queue *q = rq->q;
460 
461 	if (unlikely(blk_should_fake_timeout(q)))
462 		return;
463 	if (!blk_mark_rq_complete(rq)) {
464 		rq->errors = error;
465 		__blk_mq_complete_request(rq);
466 	}
467 }
468 EXPORT_SYMBOL(blk_mq_complete_request);
469 
470 int blk_mq_request_started(struct request *rq)
471 {
472 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
473 }
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
475 
476 void blk_mq_start_request(struct request *rq)
477 {
478 	struct request_queue *q = rq->q;
479 
480 	blk_mq_sched_started_request(rq);
481 
482 	trace_block_rq_issue(q, rq);
483 
484 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 		blk_stat_set_issue_time(&rq->issue_stat);
486 		rq->rq_flags |= RQF_STATS;
487 		wbt_issue(q->rq_wb, &rq->issue_stat);
488 	}
489 
490 	blk_add_timer(rq);
491 
492 	/*
493 	 * Ensure that ->deadline is visible before set the started
494 	 * flag and clear the completed flag.
495 	 */
496 	smp_mb__before_atomic();
497 
498 	/*
499 	 * Mark us as started and clear complete. Complete might have been
500 	 * set if requeue raced with timeout, which then marked it as
501 	 * complete. So be sure to clear complete again when we start
502 	 * the request, otherwise we'll ignore the completion event.
503 	 */
504 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508 
509 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
510 		/*
511 		 * Make sure space for the drain appears.  We know we can do
512 		 * this because max_hw_segments has been adjusted to be one
513 		 * fewer than the device can handle.
514 		 */
515 		rq->nr_phys_segments++;
516 	}
517 }
518 EXPORT_SYMBOL(blk_mq_start_request);
519 
520 static void __blk_mq_requeue_request(struct request *rq)
521 {
522 	struct request_queue *q = rq->q;
523 
524 	trace_block_rq_requeue(q, rq);
525 	wbt_requeue(q->rq_wb, &rq->issue_stat);
526 	blk_mq_sched_requeue_request(rq);
527 
528 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529 		if (q->dma_drain_size && blk_rq_bytes(rq))
530 			rq->nr_phys_segments--;
531 	}
532 }
533 
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 {
536 	__blk_mq_requeue_request(rq);
537 
538 	BUG_ON(blk_queued_rq(rq));
539 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 }
541 EXPORT_SYMBOL(blk_mq_requeue_request);
542 
543 static void blk_mq_requeue_work(struct work_struct *work)
544 {
545 	struct request_queue *q =
546 		container_of(work, struct request_queue, requeue_work.work);
547 	LIST_HEAD(rq_list);
548 	struct request *rq, *next;
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(&q->requeue_lock, flags);
552 	list_splice_init(&q->requeue_list, &rq_list);
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 
555 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 			continue;
558 
559 		rq->rq_flags &= ~RQF_SOFTBARRIER;
560 		list_del_init(&rq->queuelist);
561 		blk_mq_sched_insert_request(rq, true, false, false, true);
562 	}
563 
564 	while (!list_empty(&rq_list)) {
565 		rq = list_entry(rq_list.next, struct request, queuelist);
566 		list_del_init(&rq->queuelist);
567 		blk_mq_sched_insert_request(rq, false, false, false, true);
568 	}
569 
570 	blk_mq_run_hw_queues(q, false);
571 }
572 
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574 				bool kick_requeue_list)
575 {
576 	struct request_queue *q = rq->q;
577 	unsigned long flags;
578 
579 	/*
580 	 * We abuse this flag that is otherwise used by the I/O scheduler to
581 	 * request head insertation from the workqueue.
582 	 */
583 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 
585 	spin_lock_irqsave(&q->requeue_lock, flags);
586 	if (at_head) {
587 		rq->rq_flags |= RQF_SOFTBARRIER;
588 		list_add(&rq->queuelist, &q->requeue_list);
589 	} else {
590 		list_add_tail(&rq->queuelist, &q->requeue_list);
591 	}
592 	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 
594 	if (kick_requeue_list)
595 		blk_mq_kick_requeue_list(q);
596 }
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
598 
599 void blk_mq_kick_requeue_list(struct request_queue *q)
600 {
601 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 }
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
604 
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606 				    unsigned long msecs)
607 {
608 	kblockd_schedule_delayed_work(&q->requeue_work,
609 				      msecs_to_jiffies(msecs));
610 }
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
612 
613 void blk_mq_abort_requeue_list(struct request_queue *q)
614 {
615 	unsigned long flags;
616 	LIST_HEAD(rq_list);
617 
618 	spin_lock_irqsave(&q->requeue_lock, flags);
619 	list_splice_init(&q->requeue_list, &rq_list);
620 	spin_unlock_irqrestore(&q->requeue_lock, flags);
621 
622 	while (!list_empty(&rq_list)) {
623 		struct request *rq;
624 
625 		rq = list_first_entry(&rq_list, struct request, queuelist);
626 		list_del_init(&rq->queuelist);
627 		rq->errors = -EIO;
628 		blk_mq_end_request(rq, rq->errors);
629 	}
630 }
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
632 
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
634 {
635 	if (tag < tags->nr_tags) {
636 		prefetch(tags->rqs[tag]);
637 		return tags->rqs[tag];
638 	}
639 
640 	return NULL;
641 }
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
643 
644 struct blk_mq_timeout_data {
645 	unsigned long next;
646 	unsigned int next_set;
647 };
648 
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
650 {
651 	const struct blk_mq_ops *ops = req->q->mq_ops;
652 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 
654 	/*
655 	 * We know that complete is set at this point. If STARTED isn't set
656 	 * anymore, then the request isn't active and the "timeout" should
657 	 * just be ignored. This can happen due to the bitflag ordering.
658 	 * Timeout first checks if STARTED is set, and if it is, assumes
659 	 * the request is active. But if we race with completion, then
660 	 * we both flags will get cleared. So check here again, and ignore
661 	 * a timeout event with a request that isn't active.
662 	 */
663 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664 		return;
665 
666 	if (ops->timeout)
667 		ret = ops->timeout(req, reserved);
668 
669 	switch (ret) {
670 	case BLK_EH_HANDLED:
671 		__blk_mq_complete_request(req);
672 		break;
673 	case BLK_EH_RESET_TIMER:
674 		blk_add_timer(req);
675 		blk_clear_rq_complete(req);
676 		break;
677 	case BLK_EH_NOT_HANDLED:
678 		break;
679 	default:
680 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
681 		break;
682 	}
683 }
684 
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686 		struct request *rq, void *priv, bool reserved)
687 {
688 	struct blk_mq_timeout_data *data = priv;
689 
690 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
691 		/*
692 		 * If a request wasn't started before the queue was
693 		 * marked dying, kill it here or it'll go unnoticed.
694 		 */
695 		if (unlikely(blk_queue_dying(rq->q))) {
696 			rq->errors = -EIO;
697 			blk_mq_end_request(rq, rq->errors);
698 		}
699 		return;
700 	}
701 
702 	if (time_after_eq(jiffies, rq->deadline)) {
703 		if (!blk_mark_rq_complete(rq))
704 			blk_mq_rq_timed_out(rq, reserved);
705 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 		data->next = rq->deadline;
707 		data->next_set = 1;
708 	}
709 }
710 
711 static void blk_mq_timeout_work(struct work_struct *work)
712 {
713 	struct request_queue *q =
714 		container_of(work, struct request_queue, timeout_work);
715 	struct blk_mq_timeout_data data = {
716 		.next		= 0,
717 		.next_set	= 0,
718 	};
719 	int i;
720 
721 	/* A deadlock might occur if a request is stuck requiring a
722 	 * timeout at the same time a queue freeze is waiting
723 	 * completion, since the timeout code would not be able to
724 	 * acquire the queue reference here.
725 	 *
726 	 * That's why we don't use blk_queue_enter here; instead, we use
727 	 * percpu_ref_tryget directly, because we need to be able to
728 	 * obtain a reference even in the short window between the queue
729 	 * starting to freeze, by dropping the first reference in
730 	 * blk_mq_freeze_queue_start, and the moment the last request is
731 	 * consumed, marked by the instant q_usage_counter reaches
732 	 * zero.
733 	 */
734 	if (!percpu_ref_tryget(&q->q_usage_counter))
735 		return;
736 
737 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738 
739 	if (data.next_set) {
740 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 		mod_timer(&q->timeout, data.next);
742 	} else {
743 		struct blk_mq_hw_ctx *hctx;
744 
745 		queue_for_each_hw_ctx(q, hctx, i) {
746 			/* the hctx may be unmapped, so check it here */
747 			if (blk_mq_hw_queue_mapped(hctx))
748 				blk_mq_tag_idle(hctx);
749 		}
750 	}
751 	blk_queue_exit(q);
752 }
753 
754 /*
755  * Reverse check our software queue for entries that we could potentially
756  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757  * too much time checking for merges.
758  */
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 				 struct blk_mq_ctx *ctx, struct bio *bio)
761 {
762 	struct request *rq;
763 	int checked = 8;
764 
765 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 		bool merged = false;
767 
768 		if (!checked--)
769 			break;
770 
771 		if (!blk_rq_merge_ok(rq, bio))
772 			continue;
773 
774 		switch (blk_try_merge(rq, bio)) {
775 		case ELEVATOR_BACK_MERGE:
776 			if (blk_mq_sched_allow_merge(q, rq, bio))
777 				merged = bio_attempt_back_merge(q, rq, bio);
778 			break;
779 		case ELEVATOR_FRONT_MERGE:
780 			if (blk_mq_sched_allow_merge(q, rq, bio))
781 				merged = bio_attempt_front_merge(q, rq, bio);
782 			break;
783 		case ELEVATOR_DISCARD_MERGE:
784 			merged = bio_attempt_discard_merge(q, rq, bio);
785 			break;
786 		default:
787 			continue;
788 		}
789 
790 		if (merged)
791 			ctx->rq_merged++;
792 		return merged;
793 	}
794 
795 	return false;
796 }
797 
798 struct flush_busy_ctx_data {
799 	struct blk_mq_hw_ctx *hctx;
800 	struct list_head *list;
801 };
802 
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805 	struct flush_busy_ctx_data *flush_data = data;
806 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808 
809 	sbitmap_clear_bit(sb, bitnr);
810 	spin_lock(&ctx->lock);
811 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 	spin_unlock(&ctx->lock);
813 	return true;
814 }
815 
816 /*
817  * Process software queues that have been marked busy, splicing them
818  * to the for-dispatch
819  */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822 	struct flush_busy_ctx_data data = {
823 		.hctx = hctx,
824 		.list = list,
825 	};
826 
827 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830 
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833 	if (!queued)
834 		return 0;
835 
836 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838 
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 			   bool wait)
841 {
842 	struct blk_mq_alloc_data data = {
843 		.q = rq->q,
844 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 	};
847 
848 	if (rq->tag != -1) {
849 done:
850 		if (hctx)
851 			*hctx = data.hctx;
852 		return true;
853 	}
854 
855 	rq->tag = blk_mq_get_tag(&data);
856 	if (rq->tag >= 0) {
857 		if (blk_mq_tag_busy(data.hctx)) {
858 			rq->rq_flags |= RQF_MQ_INFLIGHT;
859 			atomic_inc(&data.hctx->nr_active);
860 		}
861 		data.hctx->tags->rqs[rq->tag] = rq;
862 		goto done;
863 	}
864 
865 	return false;
866 }
867 
868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
869 				  struct request *rq)
870 {
871 	if (rq->tag == -1 || rq->internal_tag == -1)
872 		return;
873 
874 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 	rq->tag = -1;
876 
877 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 		atomic_dec(&hctx->nr_active);
880 	}
881 }
882 
883 /*
884  * If we fail getting a driver tag because all the driver tags are already
885  * assigned and on the dispatch list, BUT the first entry does not have a
886  * tag, then we could deadlock. For that case, move entries with assigned
887  * driver tags to the front, leaving the set of tagged requests in the
888  * same order, and the untagged set in the same order.
889  */
890 static bool reorder_tags_to_front(struct list_head *list)
891 {
892 	struct request *rq, *tmp, *first = NULL;
893 
894 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
895 		if (rq == first)
896 			break;
897 		if (rq->tag != -1) {
898 			list_move(&rq->queuelist, list);
899 			if (!first)
900 				first = rq;
901 		}
902 	}
903 
904 	return first != NULL;
905 }
906 
907 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 {
909 	struct request_queue *q = hctx->queue;
910 	struct request *rq;
911 	LIST_HEAD(driver_list);
912 	struct list_head *dptr;
913 	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
914 
915 	/*
916 	 * Start off with dptr being NULL, so we start the first request
917 	 * immediately, even if we have more pending.
918 	 */
919 	dptr = NULL;
920 
921 	/*
922 	 * Now process all the entries, sending them to the driver.
923 	 */
924 	queued = 0;
925 	while (!list_empty(list)) {
926 		struct blk_mq_queue_data bd;
927 
928 		rq = list_first_entry(list, struct request, queuelist);
929 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
930 			if (!queued && reorder_tags_to_front(list))
931 				continue;
932 
933 			/*
934 			 * We failed getting a driver tag. Mark the queue(s)
935 			 * as needing a restart. Retry getting a tag again,
936 			 * in case the needed IO completed right before we
937 			 * marked the queue as needing a restart.
938 			 */
939 			blk_mq_sched_mark_restart(hctx);
940 			if (!blk_mq_get_driver_tag(rq, &hctx, false))
941 				break;
942 		}
943 		list_del_init(&rq->queuelist);
944 
945 		bd.rq = rq;
946 		bd.list = dptr;
947 		bd.last = list_empty(list);
948 
949 		ret = q->mq_ops->queue_rq(hctx, &bd);
950 		switch (ret) {
951 		case BLK_MQ_RQ_QUEUE_OK:
952 			queued++;
953 			break;
954 		case BLK_MQ_RQ_QUEUE_BUSY:
955 			blk_mq_put_driver_tag(hctx, rq);
956 			list_add(&rq->queuelist, list);
957 			__blk_mq_requeue_request(rq);
958 			break;
959 		default:
960 			pr_err("blk-mq: bad return on queue: %d\n", ret);
961 		case BLK_MQ_RQ_QUEUE_ERROR:
962 			rq->errors = -EIO;
963 			blk_mq_end_request(rq, rq->errors);
964 			break;
965 		}
966 
967 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
968 			break;
969 
970 		/*
971 		 * We've done the first request. If we have more than 1
972 		 * left in the list, set dptr to defer issue.
973 		 */
974 		if (!dptr && list->next != list->prev)
975 			dptr = &driver_list;
976 	}
977 
978 	hctx->dispatched[queued_to_index(queued)]++;
979 
980 	/*
981 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
982 	 * that is where we will continue on next queue run.
983 	 */
984 	if (!list_empty(list)) {
985 		spin_lock(&hctx->lock);
986 		list_splice_init(list, &hctx->dispatch);
987 		spin_unlock(&hctx->lock);
988 
989 		/*
990 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
991 		 * it's possible the queue is stopped and restarted again
992 		 * before this. Queue restart will dispatch requests. And since
993 		 * requests in rq_list aren't added into hctx->dispatch yet,
994 		 * the requests in rq_list might get lost.
995 		 *
996 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
997 		 *
998 		 * If RESTART is set, then let completion restart the queue
999 		 * instead of potentially looping here.
1000 		 */
1001 		if (!blk_mq_sched_needs_restart(hctx))
1002 			blk_mq_run_hw_queue(hctx, true);
1003 	}
1004 
1005 	return queued != 0;
1006 }
1007 
1008 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1009 {
1010 	int srcu_idx;
1011 
1012 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1013 		cpu_online(hctx->next_cpu));
1014 
1015 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1016 		rcu_read_lock();
1017 		blk_mq_sched_dispatch_requests(hctx);
1018 		rcu_read_unlock();
1019 	} else {
1020 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1021 		blk_mq_sched_dispatch_requests(hctx);
1022 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1023 	}
1024 }
1025 
1026 /*
1027  * It'd be great if the workqueue API had a way to pass
1028  * in a mask and had some smarts for more clever placement.
1029  * For now we just round-robin here, switching for every
1030  * BLK_MQ_CPU_WORK_BATCH queued items.
1031  */
1032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1033 {
1034 	if (hctx->queue->nr_hw_queues == 1)
1035 		return WORK_CPU_UNBOUND;
1036 
1037 	if (--hctx->next_cpu_batch <= 0) {
1038 		int next_cpu;
1039 
1040 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1041 		if (next_cpu >= nr_cpu_ids)
1042 			next_cpu = cpumask_first(hctx->cpumask);
1043 
1044 		hctx->next_cpu = next_cpu;
1045 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1046 	}
1047 
1048 	return hctx->next_cpu;
1049 }
1050 
1051 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1052 {
1053 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1054 		     !blk_mq_hw_queue_mapped(hctx)))
1055 		return;
1056 
1057 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1058 		int cpu = get_cpu();
1059 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1060 			__blk_mq_run_hw_queue(hctx);
1061 			put_cpu();
1062 			return;
1063 		}
1064 
1065 		put_cpu();
1066 	}
1067 
1068 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1069 }
1070 
1071 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1072 {
1073 	struct blk_mq_hw_ctx *hctx;
1074 	int i;
1075 
1076 	queue_for_each_hw_ctx(q, hctx, i) {
1077 		if (!blk_mq_hctx_has_pending(hctx) ||
1078 		    blk_mq_hctx_stopped(hctx))
1079 			continue;
1080 
1081 		blk_mq_run_hw_queue(hctx, async);
1082 	}
1083 }
1084 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1085 
1086 /**
1087  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1088  * @q: request queue.
1089  *
1090  * The caller is responsible for serializing this function against
1091  * blk_mq_{start,stop}_hw_queue().
1092  */
1093 bool blk_mq_queue_stopped(struct request_queue *q)
1094 {
1095 	struct blk_mq_hw_ctx *hctx;
1096 	int i;
1097 
1098 	queue_for_each_hw_ctx(q, hctx, i)
1099 		if (blk_mq_hctx_stopped(hctx))
1100 			return true;
1101 
1102 	return false;
1103 }
1104 EXPORT_SYMBOL(blk_mq_queue_stopped);
1105 
1106 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1107 {
1108 	cancel_work(&hctx->run_work);
1109 	cancel_delayed_work(&hctx->delay_work);
1110 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1111 }
1112 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1113 
1114 void blk_mq_stop_hw_queues(struct request_queue *q)
1115 {
1116 	struct blk_mq_hw_ctx *hctx;
1117 	int i;
1118 
1119 	queue_for_each_hw_ctx(q, hctx, i)
1120 		blk_mq_stop_hw_queue(hctx);
1121 }
1122 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1123 
1124 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1125 {
1126 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1127 
1128 	blk_mq_run_hw_queue(hctx, false);
1129 }
1130 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1131 
1132 void blk_mq_start_hw_queues(struct request_queue *q)
1133 {
1134 	struct blk_mq_hw_ctx *hctx;
1135 	int i;
1136 
1137 	queue_for_each_hw_ctx(q, hctx, i)
1138 		blk_mq_start_hw_queue(hctx);
1139 }
1140 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1141 
1142 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1143 {
1144 	if (!blk_mq_hctx_stopped(hctx))
1145 		return;
1146 
1147 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1148 	blk_mq_run_hw_queue(hctx, async);
1149 }
1150 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1151 
1152 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1153 {
1154 	struct blk_mq_hw_ctx *hctx;
1155 	int i;
1156 
1157 	queue_for_each_hw_ctx(q, hctx, i)
1158 		blk_mq_start_stopped_hw_queue(hctx, async);
1159 }
1160 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1161 
1162 static void blk_mq_run_work_fn(struct work_struct *work)
1163 {
1164 	struct blk_mq_hw_ctx *hctx;
1165 
1166 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1167 
1168 	__blk_mq_run_hw_queue(hctx);
1169 }
1170 
1171 static void blk_mq_delay_work_fn(struct work_struct *work)
1172 {
1173 	struct blk_mq_hw_ctx *hctx;
1174 
1175 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1176 
1177 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1178 		__blk_mq_run_hw_queue(hctx);
1179 }
1180 
1181 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1182 {
1183 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1184 		return;
1185 
1186 	blk_mq_stop_hw_queue(hctx);
1187 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1188 			&hctx->delay_work, msecs_to_jiffies(msecs));
1189 }
1190 EXPORT_SYMBOL(blk_mq_delay_queue);
1191 
1192 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1193 					    struct request *rq,
1194 					    bool at_head)
1195 {
1196 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1197 
1198 	trace_block_rq_insert(hctx->queue, rq);
1199 
1200 	if (at_head)
1201 		list_add(&rq->queuelist, &ctx->rq_list);
1202 	else
1203 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1204 }
1205 
1206 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1207 			     bool at_head)
1208 {
1209 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1210 
1211 	__blk_mq_insert_req_list(hctx, rq, at_head);
1212 	blk_mq_hctx_mark_pending(hctx, ctx);
1213 }
1214 
1215 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1216 			    struct list_head *list)
1217 
1218 {
1219 	/*
1220 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1221 	 * offline now
1222 	 */
1223 	spin_lock(&ctx->lock);
1224 	while (!list_empty(list)) {
1225 		struct request *rq;
1226 
1227 		rq = list_first_entry(list, struct request, queuelist);
1228 		BUG_ON(rq->mq_ctx != ctx);
1229 		list_del_init(&rq->queuelist);
1230 		__blk_mq_insert_req_list(hctx, rq, false);
1231 	}
1232 	blk_mq_hctx_mark_pending(hctx, ctx);
1233 	spin_unlock(&ctx->lock);
1234 }
1235 
1236 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1237 {
1238 	struct request *rqa = container_of(a, struct request, queuelist);
1239 	struct request *rqb = container_of(b, struct request, queuelist);
1240 
1241 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1242 		 (rqa->mq_ctx == rqb->mq_ctx &&
1243 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1244 }
1245 
1246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1247 {
1248 	struct blk_mq_ctx *this_ctx;
1249 	struct request_queue *this_q;
1250 	struct request *rq;
1251 	LIST_HEAD(list);
1252 	LIST_HEAD(ctx_list);
1253 	unsigned int depth;
1254 
1255 	list_splice_init(&plug->mq_list, &list);
1256 
1257 	list_sort(NULL, &list, plug_ctx_cmp);
1258 
1259 	this_q = NULL;
1260 	this_ctx = NULL;
1261 	depth = 0;
1262 
1263 	while (!list_empty(&list)) {
1264 		rq = list_entry_rq(list.next);
1265 		list_del_init(&rq->queuelist);
1266 		BUG_ON(!rq->q);
1267 		if (rq->mq_ctx != this_ctx) {
1268 			if (this_ctx) {
1269 				trace_block_unplug(this_q, depth, from_schedule);
1270 				blk_mq_sched_insert_requests(this_q, this_ctx,
1271 								&ctx_list,
1272 								from_schedule);
1273 			}
1274 
1275 			this_ctx = rq->mq_ctx;
1276 			this_q = rq->q;
1277 			depth = 0;
1278 		}
1279 
1280 		depth++;
1281 		list_add_tail(&rq->queuelist, &ctx_list);
1282 	}
1283 
1284 	/*
1285 	 * If 'this_ctx' is set, we know we have entries to complete
1286 	 * on 'ctx_list'. Do those.
1287 	 */
1288 	if (this_ctx) {
1289 		trace_block_unplug(this_q, depth, from_schedule);
1290 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1291 						from_schedule);
1292 	}
1293 }
1294 
1295 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1296 {
1297 	init_request_from_bio(rq, bio);
1298 
1299 	blk_account_io_start(rq, true);
1300 }
1301 
1302 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1303 {
1304 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1305 		!blk_queue_nomerges(hctx->queue);
1306 }
1307 
1308 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1309 					 struct blk_mq_ctx *ctx,
1310 					 struct request *rq, struct bio *bio)
1311 {
1312 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1313 		blk_mq_bio_to_request(rq, bio);
1314 		spin_lock(&ctx->lock);
1315 insert_rq:
1316 		__blk_mq_insert_request(hctx, rq, false);
1317 		spin_unlock(&ctx->lock);
1318 		return false;
1319 	} else {
1320 		struct request_queue *q = hctx->queue;
1321 
1322 		spin_lock(&ctx->lock);
1323 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1324 			blk_mq_bio_to_request(rq, bio);
1325 			goto insert_rq;
1326 		}
1327 
1328 		spin_unlock(&ctx->lock);
1329 		__blk_mq_finish_request(hctx, ctx, rq);
1330 		return true;
1331 	}
1332 }
1333 
1334 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1335 {
1336 	if (rq->tag != -1)
1337 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1338 
1339 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1340 }
1341 
1342 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1343 {
1344 	struct request_queue *q = rq->q;
1345 	struct blk_mq_queue_data bd = {
1346 		.rq = rq,
1347 		.list = NULL,
1348 		.last = 1
1349 	};
1350 	struct blk_mq_hw_ctx *hctx;
1351 	blk_qc_t new_cookie;
1352 	int ret;
1353 
1354 	if (q->elevator)
1355 		goto insert;
1356 
1357 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1358 		goto insert;
1359 
1360 	new_cookie = request_to_qc_t(hctx, rq);
1361 
1362 	/*
1363 	 * For OK queue, we are done. For error, kill it. Any other
1364 	 * error (busy), just add it to our list as we previously
1365 	 * would have done
1366 	 */
1367 	ret = q->mq_ops->queue_rq(hctx, &bd);
1368 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1369 		*cookie = new_cookie;
1370 		return;
1371 	}
1372 
1373 	__blk_mq_requeue_request(rq);
1374 
1375 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1376 		*cookie = BLK_QC_T_NONE;
1377 		rq->errors = -EIO;
1378 		blk_mq_end_request(rq, rq->errors);
1379 		return;
1380 	}
1381 
1382 insert:
1383 	blk_mq_sched_insert_request(rq, false, true, true, false);
1384 }
1385 
1386 /*
1387  * Multiple hardware queue variant. This will not use per-process plugs,
1388  * but will attempt to bypass the hctx queueing if we can go straight to
1389  * hardware for SYNC IO.
1390  */
1391 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1392 {
1393 	const int is_sync = op_is_sync(bio->bi_opf);
1394 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1395 	struct blk_mq_alloc_data data = { .flags = 0 };
1396 	struct request *rq;
1397 	unsigned int request_count = 0, srcu_idx;
1398 	struct blk_plug *plug;
1399 	struct request *same_queue_rq = NULL;
1400 	blk_qc_t cookie;
1401 	unsigned int wb_acct;
1402 
1403 	blk_queue_bounce(q, &bio);
1404 
1405 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1406 		bio_io_error(bio);
1407 		return BLK_QC_T_NONE;
1408 	}
1409 
1410 	blk_queue_split(q, &bio, q->bio_split);
1411 
1412 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1413 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1414 		return BLK_QC_T_NONE;
1415 
1416 	if (blk_mq_sched_bio_merge(q, bio))
1417 		return BLK_QC_T_NONE;
1418 
1419 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1420 
1421 	trace_block_getrq(q, bio, bio->bi_opf);
1422 
1423 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1424 	if (unlikely(!rq)) {
1425 		__wbt_done(q->rq_wb, wb_acct);
1426 		return BLK_QC_T_NONE;
1427 	}
1428 
1429 	wbt_track(&rq->issue_stat, wb_acct);
1430 
1431 	cookie = request_to_qc_t(data.hctx, rq);
1432 
1433 	if (unlikely(is_flush_fua)) {
1434 		if (q->elevator)
1435 			goto elv_insert;
1436 		blk_mq_bio_to_request(rq, bio);
1437 		blk_insert_flush(rq);
1438 		goto run_queue;
1439 	}
1440 
1441 	plug = current->plug;
1442 	/*
1443 	 * If the driver supports defer issued based on 'last', then
1444 	 * queue it up like normal since we can potentially save some
1445 	 * CPU this way.
1446 	 */
1447 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1448 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1449 		struct request *old_rq = NULL;
1450 
1451 		blk_mq_bio_to_request(rq, bio);
1452 
1453 		/*
1454 		 * We do limited plugging. If the bio can be merged, do that.
1455 		 * Otherwise the existing request in the plug list will be
1456 		 * issued. So the plug list will have one request at most
1457 		 */
1458 		if (plug) {
1459 			/*
1460 			 * The plug list might get flushed before this. If that
1461 			 * happens, same_queue_rq is invalid and plug list is
1462 			 * empty
1463 			 */
1464 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1465 				old_rq = same_queue_rq;
1466 				list_del_init(&old_rq->queuelist);
1467 			}
1468 			list_add_tail(&rq->queuelist, &plug->mq_list);
1469 		} else /* is_sync */
1470 			old_rq = rq;
1471 		blk_mq_put_ctx(data.ctx);
1472 		if (!old_rq)
1473 			goto done;
1474 
1475 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1476 			rcu_read_lock();
1477 			blk_mq_try_issue_directly(old_rq, &cookie);
1478 			rcu_read_unlock();
1479 		} else {
1480 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1481 			blk_mq_try_issue_directly(old_rq, &cookie);
1482 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1483 		}
1484 		goto done;
1485 	}
1486 
1487 	if (q->elevator) {
1488 elv_insert:
1489 		blk_mq_put_ctx(data.ctx);
1490 		blk_mq_bio_to_request(rq, bio);
1491 		blk_mq_sched_insert_request(rq, false, true,
1492 						!is_sync || is_flush_fua, true);
1493 		goto done;
1494 	}
1495 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1496 		/*
1497 		 * For a SYNC request, send it to the hardware immediately. For
1498 		 * an ASYNC request, just ensure that we run it later on. The
1499 		 * latter allows for merging opportunities and more efficient
1500 		 * dispatching.
1501 		 */
1502 run_queue:
1503 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1504 	}
1505 	blk_mq_put_ctx(data.ctx);
1506 done:
1507 	return cookie;
1508 }
1509 
1510 /*
1511  * Single hardware queue variant. This will attempt to use any per-process
1512  * plug for merging and IO deferral.
1513  */
1514 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1515 {
1516 	const int is_sync = op_is_sync(bio->bi_opf);
1517 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1518 	struct blk_plug *plug;
1519 	unsigned int request_count = 0;
1520 	struct blk_mq_alloc_data data = { .flags = 0 };
1521 	struct request *rq;
1522 	blk_qc_t cookie;
1523 	unsigned int wb_acct;
1524 
1525 	blk_queue_bounce(q, &bio);
1526 
1527 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1528 		bio_io_error(bio);
1529 		return BLK_QC_T_NONE;
1530 	}
1531 
1532 	blk_queue_split(q, &bio, q->bio_split);
1533 
1534 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1535 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1536 			return BLK_QC_T_NONE;
1537 	} else
1538 		request_count = blk_plug_queued_count(q);
1539 
1540 	if (blk_mq_sched_bio_merge(q, bio))
1541 		return BLK_QC_T_NONE;
1542 
1543 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1544 
1545 	trace_block_getrq(q, bio, bio->bi_opf);
1546 
1547 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1548 	if (unlikely(!rq)) {
1549 		__wbt_done(q->rq_wb, wb_acct);
1550 		return BLK_QC_T_NONE;
1551 	}
1552 
1553 	wbt_track(&rq->issue_stat, wb_acct);
1554 
1555 	cookie = request_to_qc_t(data.hctx, rq);
1556 
1557 	if (unlikely(is_flush_fua)) {
1558 		if (q->elevator)
1559 			goto elv_insert;
1560 		blk_mq_bio_to_request(rq, bio);
1561 		blk_insert_flush(rq);
1562 		goto run_queue;
1563 	}
1564 
1565 	/*
1566 	 * A task plug currently exists. Since this is completely lockless,
1567 	 * utilize that to temporarily store requests until the task is
1568 	 * either done or scheduled away.
1569 	 */
1570 	plug = current->plug;
1571 	if (plug) {
1572 		struct request *last = NULL;
1573 
1574 		blk_mq_bio_to_request(rq, bio);
1575 
1576 		/*
1577 		 * @request_count may become stale because of schedule
1578 		 * out, so check the list again.
1579 		 */
1580 		if (list_empty(&plug->mq_list))
1581 			request_count = 0;
1582 		if (!request_count)
1583 			trace_block_plug(q);
1584 		else
1585 			last = list_entry_rq(plug->mq_list.prev);
1586 
1587 		blk_mq_put_ctx(data.ctx);
1588 
1589 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1590 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 			blk_flush_plug_list(plug, false);
1592 			trace_block_plug(q);
1593 		}
1594 
1595 		list_add_tail(&rq->queuelist, &plug->mq_list);
1596 		return cookie;
1597 	}
1598 
1599 	if (q->elevator) {
1600 elv_insert:
1601 		blk_mq_put_ctx(data.ctx);
1602 		blk_mq_bio_to_request(rq, bio);
1603 		blk_mq_sched_insert_request(rq, false, true,
1604 						!is_sync || is_flush_fua, true);
1605 		goto done;
1606 	}
1607 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1608 		/*
1609 		 * For a SYNC request, send it to the hardware immediately. For
1610 		 * an ASYNC request, just ensure that we run it later on. The
1611 		 * latter allows for merging opportunities and more efficient
1612 		 * dispatching.
1613 		 */
1614 run_queue:
1615 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1616 	}
1617 
1618 	blk_mq_put_ctx(data.ctx);
1619 done:
1620 	return cookie;
1621 }
1622 
1623 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1624 		     unsigned int hctx_idx)
1625 {
1626 	struct page *page;
1627 
1628 	if (tags->rqs && set->ops->exit_request) {
1629 		int i;
1630 
1631 		for (i = 0; i < tags->nr_tags; i++) {
1632 			struct request *rq = tags->static_rqs[i];
1633 
1634 			if (!rq)
1635 				continue;
1636 			set->ops->exit_request(set->driver_data, rq,
1637 						hctx_idx, i);
1638 			tags->static_rqs[i] = NULL;
1639 		}
1640 	}
1641 
1642 	while (!list_empty(&tags->page_list)) {
1643 		page = list_first_entry(&tags->page_list, struct page, lru);
1644 		list_del_init(&page->lru);
1645 		/*
1646 		 * Remove kmemleak object previously allocated in
1647 		 * blk_mq_init_rq_map().
1648 		 */
1649 		kmemleak_free(page_address(page));
1650 		__free_pages(page, page->private);
1651 	}
1652 }
1653 
1654 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1655 {
1656 	kfree(tags->rqs);
1657 	tags->rqs = NULL;
1658 	kfree(tags->static_rqs);
1659 	tags->static_rqs = NULL;
1660 
1661 	blk_mq_free_tags(tags);
1662 }
1663 
1664 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1665 					unsigned int hctx_idx,
1666 					unsigned int nr_tags,
1667 					unsigned int reserved_tags)
1668 {
1669 	struct blk_mq_tags *tags;
1670 
1671 	tags = blk_mq_init_tags(nr_tags, reserved_tags,
1672 				set->numa_node,
1673 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1674 	if (!tags)
1675 		return NULL;
1676 
1677 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1678 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1679 				 set->numa_node);
1680 	if (!tags->rqs) {
1681 		blk_mq_free_tags(tags);
1682 		return NULL;
1683 	}
1684 
1685 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1686 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1687 				 set->numa_node);
1688 	if (!tags->static_rqs) {
1689 		kfree(tags->rqs);
1690 		blk_mq_free_tags(tags);
1691 		return NULL;
1692 	}
1693 
1694 	return tags;
1695 }
1696 
1697 static size_t order_to_size(unsigned int order)
1698 {
1699 	return (size_t)PAGE_SIZE << order;
1700 }
1701 
1702 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1703 		     unsigned int hctx_idx, unsigned int depth)
1704 {
1705 	unsigned int i, j, entries_per_page, max_order = 4;
1706 	size_t rq_size, left;
1707 
1708 	INIT_LIST_HEAD(&tags->page_list);
1709 
1710 	/*
1711 	 * rq_size is the size of the request plus driver payload, rounded
1712 	 * to the cacheline size
1713 	 */
1714 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1715 				cache_line_size());
1716 	left = rq_size * depth;
1717 
1718 	for (i = 0; i < depth; ) {
1719 		int this_order = max_order;
1720 		struct page *page;
1721 		int to_do;
1722 		void *p;
1723 
1724 		while (this_order && left < order_to_size(this_order - 1))
1725 			this_order--;
1726 
1727 		do {
1728 			page = alloc_pages_node(set->numa_node,
1729 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1730 				this_order);
1731 			if (page)
1732 				break;
1733 			if (!this_order--)
1734 				break;
1735 			if (order_to_size(this_order) < rq_size)
1736 				break;
1737 		} while (1);
1738 
1739 		if (!page)
1740 			goto fail;
1741 
1742 		page->private = this_order;
1743 		list_add_tail(&page->lru, &tags->page_list);
1744 
1745 		p = page_address(page);
1746 		/*
1747 		 * Allow kmemleak to scan these pages as they contain pointers
1748 		 * to additional allocations like via ops->init_request().
1749 		 */
1750 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1751 		entries_per_page = order_to_size(this_order) / rq_size;
1752 		to_do = min(entries_per_page, depth - i);
1753 		left -= to_do * rq_size;
1754 		for (j = 0; j < to_do; j++) {
1755 			struct request *rq = p;
1756 
1757 			tags->static_rqs[i] = rq;
1758 			if (set->ops->init_request) {
1759 				if (set->ops->init_request(set->driver_data,
1760 						rq, hctx_idx, i,
1761 						set->numa_node)) {
1762 					tags->static_rqs[i] = NULL;
1763 					goto fail;
1764 				}
1765 			}
1766 
1767 			p += rq_size;
1768 			i++;
1769 		}
1770 	}
1771 	return 0;
1772 
1773 fail:
1774 	blk_mq_free_rqs(set, tags, hctx_idx);
1775 	return -ENOMEM;
1776 }
1777 
1778 /*
1779  * 'cpu' is going away. splice any existing rq_list entries from this
1780  * software queue to the hw queue dispatch list, and ensure that it
1781  * gets run.
1782  */
1783 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1784 {
1785 	struct blk_mq_hw_ctx *hctx;
1786 	struct blk_mq_ctx *ctx;
1787 	LIST_HEAD(tmp);
1788 
1789 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1790 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1791 
1792 	spin_lock(&ctx->lock);
1793 	if (!list_empty(&ctx->rq_list)) {
1794 		list_splice_init(&ctx->rq_list, &tmp);
1795 		blk_mq_hctx_clear_pending(hctx, ctx);
1796 	}
1797 	spin_unlock(&ctx->lock);
1798 
1799 	if (list_empty(&tmp))
1800 		return 0;
1801 
1802 	spin_lock(&hctx->lock);
1803 	list_splice_tail_init(&tmp, &hctx->dispatch);
1804 	spin_unlock(&hctx->lock);
1805 
1806 	blk_mq_run_hw_queue(hctx, true);
1807 	return 0;
1808 }
1809 
1810 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1811 {
1812 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1813 					    &hctx->cpuhp_dead);
1814 }
1815 
1816 /* hctx->ctxs will be freed in queue's release handler */
1817 static void blk_mq_exit_hctx(struct request_queue *q,
1818 		struct blk_mq_tag_set *set,
1819 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1820 {
1821 	unsigned flush_start_tag = set->queue_depth;
1822 
1823 	blk_mq_tag_idle(hctx);
1824 
1825 	if (set->ops->exit_request)
1826 		set->ops->exit_request(set->driver_data,
1827 				       hctx->fq->flush_rq, hctx_idx,
1828 				       flush_start_tag + hctx_idx);
1829 
1830 	if (set->ops->exit_hctx)
1831 		set->ops->exit_hctx(hctx, hctx_idx);
1832 
1833 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1834 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1835 
1836 	blk_mq_remove_cpuhp(hctx);
1837 	blk_free_flush_queue(hctx->fq);
1838 	sbitmap_free(&hctx->ctx_map);
1839 }
1840 
1841 static void blk_mq_exit_hw_queues(struct request_queue *q,
1842 		struct blk_mq_tag_set *set, int nr_queue)
1843 {
1844 	struct blk_mq_hw_ctx *hctx;
1845 	unsigned int i;
1846 
1847 	queue_for_each_hw_ctx(q, hctx, i) {
1848 		if (i == nr_queue)
1849 			break;
1850 		blk_mq_exit_hctx(q, set, hctx, i);
1851 	}
1852 }
1853 
1854 static void blk_mq_free_hw_queues(struct request_queue *q,
1855 		struct blk_mq_tag_set *set)
1856 {
1857 	struct blk_mq_hw_ctx *hctx;
1858 	unsigned int i;
1859 
1860 	queue_for_each_hw_ctx(q, hctx, i)
1861 		free_cpumask_var(hctx->cpumask);
1862 }
1863 
1864 static int blk_mq_init_hctx(struct request_queue *q,
1865 		struct blk_mq_tag_set *set,
1866 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1867 {
1868 	int node;
1869 	unsigned flush_start_tag = set->queue_depth;
1870 
1871 	node = hctx->numa_node;
1872 	if (node == NUMA_NO_NODE)
1873 		node = hctx->numa_node = set->numa_node;
1874 
1875 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1876 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1877 	spin_lock_init(&hctx->lock);
1878 	INIT_LIST_HEAD(&hctx->dispatch);
1879 	hctx->queue = q;
1880 	hctx->queue_num = hctx_idx;
1881 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1882 
1883 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1884 
1885 	hctx->tags = set->tags[hctx_idx];
1886 
1887 	/*
1888 	 * Allocate space for all possible cpus to avoid allocation at
1889 	 * runtime
1890 	 */
1891 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1892 					GFP_KERNEL, node);
1893 	if (!hctx->ctxs)
1894 		goto unregister_cpu_notifier;
1895 
1896 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1897 			      node))
1898 		goto free_ctxs;
1899 
1900 	hctx->nr_ctx = 0;
1901 
1902 	if (set->ops->init_hctx &&
1903 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1904 		goto free_bitmap;
1905 
1906 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1907 	if (!hctx->fq)
1908 		goto exit_hctx;
1909 
1910 	if (set->ops->init_request &&
1911 	    set->ops->init_request(set->driver_data,
1912 				   hctx->fq->flush_rq, hctx_idx,
1913 				   flush_start_tag + hctx_idx, node))
1914 		goto free_fq;
1915 
1916 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1917 		init_srcu_struct(&hctx->queue_rq_srcu);
1918 
1919 	return 0;
1920 
1921  free_fq:
1922 	kfree(hctx->fq);
1923  exit_hctx:
1924 	if (set->ops->exit_hctx)
1925 		set->ops->exit_hctx(hctx, hctx_idx);
1926  free_bitmap:
1927 	sbitmap_free(&hctx->ctx_map);
1928  free_ctxs:
1929 	kfree(hctx->ctxs);
1930  unregister_cpu_notifier:
1931 	blk_mq_remove_cpuhp(hctx);
1932 	return -1;
1933 }
1934 
1935 static void blk_mq_init_cpu_queues(struct request_queue *q,
1936 				   unsigned int nr_hw_queues)
1937 {
1938 	unsigned int i;
1939 
1940 	for_each_possible_cpu(i) {
1941 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1942 		struct blk_mq_hw_ctx *hctx;
1943 
1944 		memset(__ctx, 0, sizeof(*__ctx));
1945 		__ctx->cpu = i;
1946 		spin_lock_init(&__ctx->lock);
1947 		INIT_LIST_HEAD(&__ctx->rq_list);
1948 		__ctx->queue = q;
1949 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1950 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1951 
1952 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1953 		if (!cpu_online(i))
1954 			continue;
1955 
1956 		hctx = blk_mq_map_queue(q, i);
1957 
1958 		/*
1959 		 * Set local node, IFF we have more than one hw queue. If
1960 		 * not, we remain on the home node of the device
1961 		 */
1962 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1963 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1964 	}
1965 }
1966 
1967 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1968 {
1969 	int ret = 0;
1970 
1971 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1972 					set->queue_depth, set->reserved_tags);
1973 	if (!set->tags[hctx_idx])
1974 		return false;
1975 
1976 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1977 				set->queue_depth);
1978 	if (!ret)
1979 		return true;
1980 
1981 	blk_mq_free_rq_map(set->tags[hctx_idx]);
1982 	set->tags[hctx_idx] = NULL;
1983 	return false;
1984 }
1985 
1986 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1987 					 unsigned int hctx_idx)
1988 {
1989 	if (set->tags[hctx_idx]) {
1990 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1991 		blk_mq_free_rq_map(set->tags[hctx_idx]);
1992 		set->tags[hctx_idx] = NULL;
1993 	}
1994 }
1995 
1996 static void blk_mq_map_swqueue(struct request_queue *q,
1997 			       const struct cpumask *online_mask)
1998 {
1999 	unsigned int i, hctx_idx;
2000 	struct blk_mq_hw_ctx *hctx;
2001 	struct blk_mq_ctx *ctx;
2002 	struct blk_mq_tag_set *set = q->tag_set;
2003 
2004 	/*
2005 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2006 	 */
2007 	mutex_lock(&q->sysfs_lock);
2008 
2009 	queue_for_each_hw_ctx(q, hctx, i) {
2010 		cpumask_clear(hctx->cpumask);
2011 		hctx->nr_ctx = 0;
2012 	}
2013 
2014 	/*
2015 	 * Map software to hardware queues
2016 	 */
2017 	for_each_possible_cpu(i) {
2018 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2019 		if (!cpumask_test_cpu(i, online_mask))
2020 			continue;
2021 
2022 		hctx_idx = q->mq_map[i];
2023 		/* unmapped hw queue can be remapped after CPU topo changed */
2024 		if (!set->tags[hctx_idx] &&
2025 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2026 			/*
2027 			 * If tags initialization fail for some hctx,
2028 			 * that hctx won't be brought online.  In this
2029 			 * case, remap the current ctx to hctx[0] which
2030 			 * is guaranteed to always have tags allocated
2031 			 */
2032 			q->mq_map[i] = 0;
2033 		}
2034 
2035 		ctx = per_cpu_ptr(q->queue_ctx, i);
2036 		hctx = blk_mq_map_queue(q, i);
2037 
2038 		cpumask_set_cpu(i, hctx->cpumask);
2039 		ctx->index_hw = hctx->nr_ctx;
2040 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2041 	}
2042 
2043 	mutex_unlock(&q->sysfs_lock);
2044 
2045 	queue_for_each_hw_ctx(q, hctx, i) {
2046 		/*
2047 		 * If no software queues are mapped to this hardware queue,
2048 		 * disable it and free the request entries.
2049 		 */
2050 		if (!hctx->nr_ctx) {
2051 			/* Never unmap queue 0.  We need it as a
2052 			 * fallback in case of a new remap fails
2053 			 * allocation
2054 			 */
2055 			if (i && set->tags[i])
2056 				blk_mq_free_map_and_requests(set, i);
2057 
2058 			hctx->tags = NULL;
2059 			continue;
2060 		}
2061 
2062 		hctx->tags = set->tags[i];
2063 		WARN_ON(!hctx->tags);
2064 
2065 		/*
2066 		 * Set the map size to the number of mapped software queues.
2067 		 * This is more accurate and more efficient than looping
2068 		 * over all possibly mapped software queues.
2069 		 */
2070 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2071 
2072 		/*
2073 		 * Initialize batch roundrobin counts
2074 		 */
2075 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2076 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2077 	}
2078 }
2079 
2080 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2081 {
2082 	struct blk_mq_hw_ctx *hctx;
2083 	int i;
2084 
2085 	queue_for_each_hw_ctx(q, hctx, i) {
2086 		if (shared)
2087 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2088 		else
2089 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2090 	}
2091 }
2092 
2093 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2094 {
2095 	struct request_queue *q;
2096 
2097 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2098 		blk_mq_freeze_queue(q);
2099 		queue_set_hctx_shared(q, shared);
2100 		blk_mq_unfreeze_queue(q);
2101 	}
2102 }
2103 
2104 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2105 {
2106 	struct blk_mq_tag_set *set = q->tag_set;
2107 
2108 	mutex_lock(&set->tag_list_lock);
2109 	list_del_init(&q->tag_set_list);
2110 	if (list_is_singular(&set->tag_list)) {
2111 		/* just transitioned to unshared */
2112 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2113 		/* update existing queue */
2114 		blk_mq_update_tag_set_depth(set, false);
2115 	}
2116 	mutex_unlock(&set->tag_list_lock);
2117 }
2118 
2119 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2120 				     struct request_queue *q)
2121 {
2122 	q->tag_set = set;
2123 
2124 	mutex_lock(&set->tag_list_lock);
2125 
2126 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2127 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2128 		set->flags |= BLK_MQ_F_TAG_SHARED;
2129 		/* update existing queue */
2130 		blk_mq_update_tag_set_depth(set, true);
2131 	}
2132 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2133 		queue_set_hctx_shared(q, true);
2134 	list_add_tail(&q->tag_set_list, &set->tag_list);
2135 
2136 	mutex_unlock(&set->tag_list_lock);
2137 }
2138 
2139 /*
2140  * It is the actual release handler for mq, but we do it from
2141  * request queue's release handler for avoiding use-after-free
2142  * and headache because q->mq_kobj shouldn't have been introduced,
2143  * but we can't group ctx/kctx kobj without it.
2144  */
2145 void blk_mq_release(struct request_queue *q)
2146 {
2147 	struct blk_mq_hw_ctx *hctx;
2148 	unsigned int i;
2149 
2150 	blk_mq_sched_teardown(q);
2151 
2152 	/* hctx kobj stays in hctx */
2153 	queue_for_each_hw_ctx(q, hctx, i) {
2154 		if (!hctx)
2155 			continue;
2156 		kfree(hctx->ctxs);
2157 		kfree(hctx);
2158 	}
2159 
2160 	q->mq_map = NULL;
2161 
2162 	kfree(q->queue_hw_ctx);
2163 
2164 	/* ctx kobj stays in queue_ctx */
2165 	free_percpu(q->queue_ctx);
2166 }
2167 
2168 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2169 {
2170 	struct request_queue *uninit_q, *q;
2171 
2172 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2173 	if (!uninit_q)
2174 		return ERR_PTR(-ENOMEM);
2175 
2176 	q = blk_mq_init_allocated_queue(set, uninit_q);
2177 	if (IS_ERR(q))
2178 		blk_cleanup_queue(uninit_q);
2179 
2180 	return q;
2181 }
2182 EXPORT_SYMBOL(blk_mq_init_queue);
2183 
2184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2185 						struct request_queue *q)
2186 {
2187 	int i, j;
2188 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2189 
2190 	blk_mq_sysfs_unregister(q);
2191 	for (i = 0; i < set->nr_hw_queues; i++) {
2192 		int node;
2193 
2194 		if (hctxs[i])
2195 			continue;
2196 
2197 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2198 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2199 					GFP_KERNEL, node);
2200 		if (!hctxs[i])
2201 			break;
2202 
2203 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2204 						node)) {
2205 			kfree(hctxs[i]);
2206 			hctxs[i] = NULL;
2207 			break;
2208 		}
2209 
2210 		atomic_set(&hctxs[i]->nr_active, 0);
2211 		hctxs[i]->numa_node = node;
2212 		hctxs[i]->queue_num = i;
2213 
2214 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2215 			free_cpumask_var(hctxs[i]->cpumask);
2216 			kfree(hctxs[i]);
2217 			hctxs[i] = NULL;
2218 			break;
2219 		}
2220 		blk_mq_hctx_kobj_init(hctxs[i]);
2221 	}
2222 	for (j = i; j < q->nr_hw_queues; j++) {
2223 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2224 
2225 		if (hctx) {
2226 			if (hctx->tags)
2227 				blk_mq_free_map_and_requests(set, j);
2228 			blk_mq_exit_hctx(q, set, hctx, j);
2229 			free_cpumask_var(hctx->cpumask);
2230 			kobject_put(&hctx->kobj);
2231 			kfree(hctx->ctxs);
2232 			kfree(hctx);
2233 			hctxs[j] = NULL;
2234 
2235 		}
2236 	}
2237 	q->nr_hw_queues = i;
2238 	blk_mq_sysfs_register(q);
2239 }
2240 
2241 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2242 						  struct request_queue *q)
2243 {
2244 	/* mark the queue as mq asap */
2245 	q->mq_ops = set->ops;
2246 
2247 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2248 	if (!q->queue_ctx)
2249 		goto err_exit;
2250 
2251 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2252 						GFP_KERNEL, set->numa_node);
2253 	if (!q->queue_hw_ctx)
2254 		goto err_percpu;
2255 
2256 	q->mq_map = set->mq_map;
2257 
2258 	blk_mq_realloc_hw_ctxs(set, q);
2259 	if (!q->nr_hw_queues)
2260 		goto err_hctxs;
2261 
2262 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2263 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2264 
2265 	q->nr_queues = nr_cpu_ids;
2266 
2267 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2268 
2269 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2270 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2271 
2272 	q->sg_reserved_size = INT_MAX;
2273 
2274 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2275 	INIT_LIST_HEAD(&q->requeue_list);
2276 	spin_lock_init(&q->requeue_lock);
2277 
2278 	if (q->nr_hw_queues > 1)
2279 		blk_queue_make_request(q, blk_mq_make_request);
2280 	else
2281 		blk_queue_make_request(q, blk_sq_make_request);
2282 
2283 	/*
2284 	 * Do this after blk_queue_make_request() overrides it...
2285 	 */
2286 	q->nr_requests = set->queue_depth;
2287 
2288 	/*
2289 	 * Default to classic polling
2290 	 */
2291 	q->poll_nsec = -1;
2292 
2293 	if (set->ops->complete)
2294 		blk_queue_softirq_done(q, set->ops->complete);
2295 
2296 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2297 
2298 	get_online_cpus();
2299 	mutex_lock(&all_q_mutex);
2300 
2301 	list_add_tail(&q->all_q_node, &all_q_list);
2302 	blk_mq_add_queue_tag_set(set, q);
2303 	blk_mq_map_swqueue(q, cpu_online_mask);
2304 
2305 	mutex_unlock(&all_q_mutex);
2306 	put_online_cpus();
2307 
2308 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2309 		int ret;
2310 
2311 		ret = blk_mq_sched_init(q);
2312 		if (ret)
2313 			return ERR_PTR(ret);
2314 	}
2315 
2316 	return q;
2317 
2318 err_hctxs:
2319 	kfree(q->queue_hw_ctx);
2320 err_percpu:
2321 	free_percpu(q->queue_ctx);
2322 err_exit:
2323 	q->mq_ops = NULL;
2324 	return ERR_PTR(-ENOMEM);
2325 }
2326 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2327 
2328 void blk_mq_free_queue(struct request_queue *q)
2329 {
2330 	struct blk_mq_tag_set	*set = q->tag_set;
2331 
2332 	mutex_lock(&all_q_mutex);
2333 	list_del_init(&q->all_q_node);
2334 	mutex_unlock(&all_q_mutex);
2335 
2336 	wbt_exit(q);
2337 
2338 	blk_mq_del_queue_tag_set(q);
2339 
2340 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2341 	blk_mq_free_hw_queues(q, set);
2342 }
2343 
2344 /* Basically redo blk_mq_init_queue with queue frozen */
2345 static void blk_mq_queue_reinit(struct request_queue *q,
2346 				const struct cpumask *online_mask)
2347 {
2348 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2349 
2350 	blk_mq_sysfs_unregister(q);
2351 
2352 	/*
2353 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2354 	 * we should change hctx numa_node according to new topology (this
2355 	 * involves free and re-allocate memory, worthy doing?)
2356 	 */
2357 
2358 	blk_mq_map_swqueue(q, online_mask);
2359 
2360 	blk_mq_sysfs_register(q);
2361 }
2362 
2363 /*
2364  * New online cpumask which is going to be set in this hotplug event.
2365  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2366  * one-by-one and dynamically allocating this could result in a failure.
2367  */
2368 static struct cpumask cpuhp_online_new;
2369 
2370 static void blk_mq_queue_reinit_work(void)
2371 {
2372 	struct request_queue *q;
2373 
2374 	mutex_lock(&all_q_mutex);
2375 	/*
2376 	 * We need to freeze and reinit all existing queues.  Freezing
2377 	 * involves synchronous wait for an RCU grace period and doing it
2378 	 * one by one may take a long time.  Start freezing all queues in
2379 	 * one swoop and then wait for the completions so that freezing can
2380 	 * take place in parallel.
2381 	 */
2382 	list_for_each_entry(q, &all_q_list, all_q_node)
2383 		blk_mq_freeze_queue_start(q);
2384 	list_for_each_entry(q, &all_q_list, all_q_node)
2385 		blk_mq_freeze_queue_wait(q);
2386 
2387 	list_for_each_entry(q, &all_q_list, all_q_node)
2388 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2389 
2390 	list_for_each_entry(q, &all_q_list, all_q_node)
2391 		blk_mq_unfreeze_queue(q);
2392 
2393 	mutex_unlock(&all_q_mutex);
2394 }
2395 
2396 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2397 {
2398 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2399 	blk_mq_queue_reinit_work();
2400 	return 0;
2401 }
2402 
2403 /*
2404  * Before hotadded cpu starts handling requests, new mappings must be
2405  * established.  Otherwise, these requests in hw queue might never be
2406  * dispatched.
2407  *
2408  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2409  * for CPU0, and ctx1 for CPU1).
2410  *
2411  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2412  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2413  *
2414  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2415  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2416  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2417  * ignored.
2418  */
2419 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2420 {
2421 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2422 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2423 	blk_mq_queue_reinit_work();
2424 	return 0;
2425 }
2426 
2427 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2428 {
2429 	int i;
2430 
2431 	for (i = 0; i < set->nr_hw_queues; i++)
2432 		if (!__blk_mq_alloc_rq_map(set, i))
2433 			goto out_unwind;
2434 
2435 	return 0;
2436 
2437 out_unwind:
2438 	while (--i >= 0)
2439 		blk_mq_free_rq_map(set->tags[i]);
2440 
2441 	return -ENOMEM;
2442 }
2443 
2444 /*
2445  * Allocate the request maps associated with this tag_set. Note that this
2446  * may reduce the depth asked for, if memory is tight. set->queue_depth
2447  * will be updated to reflect the allocated depth.
2448  */
2449 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2450 {
2451 	unsigned int depth;
2452 	int err;
2453 
2454 	depth = set->queue_depth;
2455 	do {
2456 		err = __blk_mq_alloc_rq_maps(set);
2457 		if (!err)
2458 			break;
2459 
2460 		set->queue_depth >>= 1;
2461 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2462 			err = -ENOMEM;
2463 			break;
2464 		}
2465 	} while (set->queue_depth);
2466 
2467 	if (!set->queue_depth || err) {
2468 		pr_err("blk-mq: failed to allocate request map\n");
2469 		return -ENOMEM;
2470 	}
2471 
2472 	if (depth != set->queue_depth)
2473 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2474 						depth, set->queue_depth);
2475 
2476 	return 0;
2477 }
2478 
2479 /*
2480  * Alloc a tag set to be associated with one or more request queues.
2481  * May fail with EINVAL for various error conditions. May adjust the
2482  * requested depth down, if if it too large. In that case, the set
2483  * value will be stored in set->queue_depth.
2484  */
2485 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2486 {
2487 	int ret;
2488 
2489 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2490 
2491 	if (!set->nr_hw_queues)
2492 		return -EINVAL;
2493 	if (!set->queue_depth)
2494 		return -EINVAL;
2495 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2496 		return -EINVAL;
2497 
2498 	if (!set->ops->queue_rq)
2499 		return -EINVAL;
2500 
2501 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2502 		pr_info("blk-mq: reduced tag depth to %u\n",
2503 			BLK_MQ_MAX_DEPTH);
2504 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2505 	}
2506 
2507 	/*
2508 	 * If a crashdump is active, then we are potentially in a very
2509 	 * memory constrained environment. Limit us to 1 queue and
2510 	 * 64 tags to prevent using too much memory.
2511 	 */
2512 	if (is_kdump_kernel()) {
2513 		set->nr_hw_queues = 1;
2514 		set->queue_depth = min(64U, set->queue_depth);
2515 	}
2516 	/*
2517 	 * There is no use for more h/w queues than cpus.
2518 	 */
2519 	if (set->nr_hw_queues > nr_cpu_ids)
2520 		set->nr_hw_queues = nr_cpu_ids;
2521 
2522 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2523 				 GFP_KERNEL, set->numa_node);
2524 	if (!set->tags)
2525 		return -ENOMEM;
2526 
2527 	ret = -ENOMEM;
2528 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2529 			GFP_KERNEL, set->numa_node);
2530 	if (!set->mq_map)
2531 		goto out_free_tags;
2532 
2533 	if (set->ops->map_queues)
2534 		ret = set->ops->map_queues(set);
2535 	else
2536 		ret = blk_mq_map_queues(set);
2537 	if (ret)
2538 		goto out_free_mq_map;
2539 
2540 	ret = blk_mq_alloc_rq_maps(set);
2541 	if (ret)
2542 		goto out_free_mq_map;
2543 
2544 	mutex_init(&set->tag_list_lock);
2545 	INIT_LIST_HEAD(&set->tag_list);
2546 
2547 	return 0;
2548 
2549 out_free_mq_map:
2550 	kfree(set->mq_map);
2551 	set->mq_map = NULL;
2552 out_free_tags:
2553 	kfree(set->tags);
2554 	set->tags = NULL;
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2558 
2559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2560 {
2561 	int i;
2562 
2563 	for (i = 0; i < nr_cpu_ids; i++)
2564 		blk_mq_free_map_and_requests(set, i);
2565 
2566 	kfree(set->mq_map);
2567 	set->mq_map = NULL;
2568 
2569 	kfree(set->tags);
2570 	set->tags = NULL;
2571 }
2572 EXPORT_SYMBOL(blk_mq_free_tag_set);
2573 
2574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2575 {
2576 	struct blk_mq_tag_set *set = q->tag_set;
2577 	struct blk_mq_hw_ctx *hctx;
2578 	int i, ret;
2579 
2580 	if (!set)
2581 		return -EINVAL;
2582 
2583 	blk_mq_freeze_queue(q);
2584 	blk_mq_quiesce_queue(q);
2585 
2586 	ret = 0;
2587 	queue_for_each_hw_ctx(q, hctx, i) {
2588 		if (!hctx->tags)
2589 			continue;
2590 		/*
2591 		 * If we're using an MQ scheduler, just update the scheduler
2592 		 * queue depth. This is similar to what the old code would do.
2593 		 */
2594 		if (!hctx->sched_tags) {
2595 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2596 							min(nr, set->queue_depth),
2597 							false);
2598 		} else {
2599 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2600 							nr, true);
2601 		}
2602 		if (ret)
2603 			break;
2604 	}
2605 
2606 	if (!ret)
2607 		q->nr_requests = nr;
2608 
2609 	blk_mq_unfreeze_queue(q);
2610 	blk_mq_start_stopped_hw_queues(q, true);
2611 
2612 	return ret;
2613 }
2614 
2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2616 {
2617 	struct request_queue *q;
2618 
2619 	if (nr_hw_queues > nr_cpu_ids)
2620 		nr_hw_queues = nr_cpu_ids;
2621 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2622 		return;
2623 
2624 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2625 		blk_mq_freeze_queue(q);
2626 
2627 	set->nr_hw_queues = nr_hw_queues;
2628 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2629 		blk_mq_realloc_hw_ctxs(set, q);
2630 
2631 		/*
2632 		 * Manually set the make_request_fn as blk_queue_make_request
2633 		 * resets a lot of the queue settings.
2634 		 */
2635 		if (q->nr_hw_queues > 1)
2636 			q->make_request_fn = blk_mq_make_request;
2637 		else
2638 			q->make_request_fn = blk_sq_make_request;
2639 
2640 		blk_mq_queue_reinit(q, cpu_online_mask);
2641 	}
2642 
2643 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2644 		blk_mq_unfreeze_queue(q);
2645 }
2646 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2647 
2648 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2649 				       struct blk_mq_hw_ctx *hctx,
2650 				       struct request *rq)
2651 {
2652 	struct blk_rq_stat stat[2];
2653 	unsigned long ret = 0;
2654 
2655 	/*
2656 	 * If stats collection isn't on, don't sleep but turn it on for
2657 	 * future users
2658 	 */
2659 	if (!blk_stat_enable(q))
2660 		return 0;
2661 
2662 	/*
2663 	 * We don't have to do this once per IO, should optimize this
2664 	 * to just use the current window of stats until it changes
2665 	 */
2666 	memset(&stat, 0, sizeof(stat));
2667 	blk_hctx_stat_get(hctx, stat);
2668 
2669 	/*
2670 	 * As an optimistic guess, use half of the mean service time
2671 	 * for this type of request. We can (and should) make this smarter.
2672 	 * For instance, if the completion latencies are tight, we can
2673 	 * get closer than just half the mean. This is especially
2674 	 * important on devices where the completion latencies are longer
2675 	 * than ~10 usec.
2676 	 */
2677 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2678 		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2679 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2680 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2681 
2682 	return ret;
2683 }
2684 
2685 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2686 				     struct blk_mq_hw_ctx *hctx,
2687 				     struct request *rq)
2688 {
2689 	struct hrtimer_sleeper hs;
2690 	enum hrtimer_mode mode;
2691 	unsigned int nsecs;
2692 	ktime_t kt;
2693 
2694 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2695 		return false;
2696 
2697 	/*
2698 	 * poll_nsec can be:
2699 	 *
2700 	 * -1:	don't ever hybrid sleep
2701 	 *  0:	use half of prev avg
2702 	 * >0:	use this specific value
2703 	 */
2704 	if (q->poll_nsec == -1)
2705 		return false;
2706 	else if (q->poll_nsec > 0)
2707 		nsecs = q->poll_nsec;
2708 	else
2709 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2710 
2711 	if (!nsecs)
2712 		return false;
2713 
2714 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2715 
2716 	/*
2717 	 * This will be replaced with the stats tracking code, using
2718 	 * 'avg_completion_time / 2' as the pre-sleep target.
2719 	 */
2720 	kt = nsecs;
2721 
2722 	mode = HRTIMER_MODE_REL;
2723 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2724 	hrtimer_set_expires(&hs.timer, kt);
2725 
2726 	hrtimer_init_sleeper(&hs, current);
2727 	do {
2728 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2729 			break;
2730 		set_current_state(TASK_UNINTERRUPTIBLE);
2731 		hrtimer_start_expires(&hs.timer, mode);
2732 		if (hs.task)
2733 			io_schedule();
2734 		hrtimer_cancel(&hs.timer);
2735 		mode = HRTIMER_MODE_ABS;
2736 	} while (hs.task && !signal_pending(current));
2737 
2738 	__set_current_state(TASK_RUNNING);
2739 	destroy_hrtimer_on_stack(&hs.timer);
2740 	return true;
2741 }
2742 
2743 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2744 {
2745 	struct request_queue *q = hctx->queue;
2746 	long state;
2747 
2748 	/*
2749 	 * If we sleep, have the caller restart the poll loop to reset
2750 	 * the state. Like for the other success return cases, the
2751 	 * caller is responsible for checking if the IO completed. If
2752 	 * the IO isn't complete, we'll get called again and will go
2753 	 * straight to the busy poll loop.
2754 	 */
2755 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2756 		return true;
2757 
2758 	hctx->poll_considered++;
2759 
2760 	state = current->state;
2761 	while (!need_resched()) {
2762 		int ret;
2763 
2764 		hctx->poll_invoked++;
2765 
2766 		ret = q->mq_ops->poll(hctx, rq->tag);
2767 		if (ret > 0) {
2768 			hctx->poll_success++;
2769 			set_current_state(TASK_RUNNING);
2770 			return true;
2771 		}
2772 
2773 		if (signal_pending_state(state, current))
2774 			set_current_state(TASK_RUNNING);
2775 
2776 		if (current->state == TASK_RUNNING)
2777 			return true;
2778 		if (ret < 0)
2779 			break;
2780 		cpu_relax();
2781 	}
2782 
2783 	return false;
2784 }
2785 
2786 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2787 {
2788 	struct blk_mq_hw_ctx *hctx;
2789 	struct blk_plug *plug;
2790 	struct request *rq;
2791 
2792 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2793 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2794 		return false;
2795 
2796 	plug = current->plug;
2797 	if (plug)
2798 		blk_flush_plug_list(plug, false);
2799 
2800 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2801 	if (!blk_qc_t_is_internal(cookie))
2802 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2803 	else
2804 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2805 
2806 	return __blk_mq_poll(hctx, rq);
2807 }
2808 EXPORT_SYMBOL_GPL(blk_mq_poll);
2809 
2810 void blk_mq_disable_hotplug(void)
2811 {
2812 	mutex_lock(&all_q_mutex);
2813 }
2814 
2815 void blk_mq_enable_hotplug(void)
2816 {
2817 	mutex_unlock(&all_q_mutex);
2818 }
2819 
2820 static int __init blk_mq_init(void)
2821 {
2822 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2823 				blk_mq_hctx_notify_dead);
2824 
2825 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2826 				  blk_mq_queue_reinit_prepare,
2827 				  blk_mq_queue_reinit_dead);
2828 	return 0;
2829 }
2830 subsys_initcall(blk_mq_init);
2831