1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-sched.h" 15 #include "blk-mq-tag.h" 16 #include "blk-wbt.h" 17 18 void blk_mq_sched_free_hctx_data(struct request_queue *q, 19 void (*exit)(struct blk_mq_hw_ctx *)) 20 { 21 struct blk_mq_hw_ctx *hctx; 22 int i; 23 24 queue_for_each_hw_ctx(q, hctx, i) { 25 if (exit && hctx->sched_data) 26 exit(hctx); 27 kfree(hctx->sched_data); 28 hctx->sched_data = NULL; 29 } 30 } 31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 32 33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size, 34 int (*init)(struct blk_mq_hw_ctx *), 35 void (*exit)(struct blk_mq_hw_ctx *)) 36 { 37 struct blk_mq_hw_ctx *hctx; 38 int ret; 39 int i; 40 41 queue_for_each_hw_ctx(q, hctx, i) { 42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node); 43 if (!hctx->sched_data) { 44 ret = -ENOMEM; 45 goto error; 46 } 47 48 if (init) { 49 ret = init(hctx); 50 if (ret) { 51 /* 52 * We don't want to give exit() a partially 53 * initialized sched_data. init() must clean up 54 * if it fails. 55 */ 56 kfree(hctx->sched_data); 57 hctx->sched_data = NULL; 58 goto error; 59 } 60 } 61 } 62 63 return 0; 64 error: 65 blk_mq_sched_free_hctx_data(q, exit); 66 return ret; 67 } 68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data); 69 70 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 71 struct request *rq, 72 struct bio *bio, 73 struct io_context *ioc) 74 { 75 struct io_cq *icq; 76 77 spin_lock_irq(q->queue_lock); 78 icq = ioc_lookup_icq(ioc, q); 79 spin_unlock_irq(q->queue_lock); 80 81 if (!icq) { 82 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 83 if (!icq) 84 return; 85 } 86 87 rq->elv.icq = icq; 88 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 89 rq->rq_flags |= RQF_ELVPRIV; 90 get_io_context(icq->ioc); 91 return; 92 } 93 94 rq->elv.icq = NULL; 95 } 96 97 static void blk_mq_sched_assign_ioc(struct request_queue *q, 98 struct request *rq, struct bio *bio) 99 { 100 struct io_context *ioc; 101 102 ioc = rq_ioc(bio); 103 if (ioc) 104 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 105 } 106 107 struct request *blk_mq_sched_get_request(struct request_queue *q, 108 struct bio *bio, 109 unsigned int op, 110 struct blk_mq_alloc_data *data) 111 { 112 struct elevator_queue *e = q->elevator; 113 struct blk_mq_hw_ctx *hctx; 114 struct blk_mq_ctx *ctx; 115 struct request *rq; 116 117 blk_queue_enter_live(q); 118 ctx = blk_mq_get_ctx(q); 119 hctx = blk_mq_map_queue(q, ctx->cpu); 120 121 blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx); 122 123 if (e) { 124 data->flags |= BLK_MQ_REQ_INTERNAL; 125 126 /* 127 * Flush requests are special and go directly to the 128 * dispatch list. 129 */ 130 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 131 rq = e->type->ops.mq.get_request(q, op, data); 132 if (rq) 133 rq->rq_flags |= RQF_QUEUED; 134 } else 135 rq = __blk_mq_alloc_request(data, op); 136 } else { 137 rq = __blk_mq_alloc_request(data, op); 138 if (rq) 139 data->hctx->tags->rqs[rq->tag] = rq; 140 } 141 142 if (rq) { 143 if (!op_is_flush(op)) { 144 rq->elv.icq = NULL; 145 if (e && e->type->icq_cache) 146 blk_mq_sched_assign_ioc(q, rq, bio); 147 } 148 data->hctx->queued++; 149 return rq; 150 } 151 152 blk_queue_exit(q); 153 return NULL; 154 } 155 156 void blk_mq_sched_put_request(struct request *rq) 157 { 158 struct request_queue *q = rq->q; 159 struct elevator_queue *e = q->elevator; 160 161 if (rq->rq_flags & RQF_ELVPRIV) { 162 blk_mq_sched_put_rq_priv(rq->q, rq); 163 if (rq->elv.icq) { 164 put_io_context(rq->elv.icq->ioc); 165 rq->elv.icq = NULL; 166 } 167 } 168 169 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 170 e->type->ops.mq.put_request(rq); 171 else 172 blk_mq_finish_request(rq); 173 } 174 175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 176 { 177 struct elevator_queue *e = hctx->queue->elevator; 178 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 179 bool did_work = false; 180 LIST_HEAD(rq_list); 181 182 if (unlikely(blk_mq_hctx_stopped(hctx))) 183 return; 184 185 hctx->run++; 186 187 /* 188 * If we have previous entries on our dispatch list, grab them first for 189 * more fair dispatch. 190 */ 191 if (!list_empty_careful(&hctx->dispatch)) { 192 spin_lock(&hctx->lock); 193 if (!list_empty(&hctx->dispatch)) 194 list_splice_init(&hctx->dispatch, &rq_list); 195 spin_unlock(&hctx->lock); 196 } 197 198 /* 199 * Only ask the scheduler for requests, if we didn't have residual 200 * requests from the dispatch list. This is to avoid the case where 201 * we only ever dispatch a fraction of the requests available because 202 * of low device queue depth. Once we pull requests out of the IO 203 * scheduler, we can no longer merge or sort them. So it's best to 204 * leave them there for as long as we can. Mark the hw queue as 205 * needing a restart in that case. 206 */ 207 if (!list_empty(&rq_list)) { 208 blk_mq_sched_mark_restart(hctx); 209 did_work = blk_mq_dispatch_rq_list(hctx, &rq_list); 210 } else if (!has_sched_dispatch) { 211 blk_mq_flush_busy_ctxs(hctx, &rq_list); 212 blk_mq_dispatch_rq_list(hctx, &rq_list); 213 } 214 215 /* 216 * We want to dispatch from the scheduler if we had no work left 217 * on the dispatch list, OR if we did have work but weren't able 218 * to make progress. 219 */ 220 if (!did_work && has_sched_dispatch) { 221 do { 222 struct request *rq; 223 224 rq = e->type->ops.mq.dispatch_request(hctx); 225 if (!rq) 226 break; 227 list_add(&rq->queuelist, &rq_list); 228 } while (blk_mq_dispatch_rq_list(hctx, &rq_list)); 229 } 230 } 231 232 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx, 233 struct list_head *rq_list, 234 struct request *(*get_rq)(struct blk_mq_hw_ctx *)) 235 { 236 do { 237 struct request *rq; 238 239 rq = get_rq(hctx); 240 if (!rq) 241 break; 242 243 list_add_tail(&rq->queuelist, rq_list); 244 } while (1); 245 } 246 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch); 247 248 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 249 struct request **merged_request) 250 { 251 struct request *rq; 252 253 switch (elv_merge(q, &rq, bio)) { 254 case ELEVATOR_BACK_MERGE: 255 if (!blk_mq_sched_allow_merge(q, rq, bio)) 256 return false; 257 if (!bio_attempt_back_merge(q, rq, bio)) 258 return false; 259 *merged_request = attempt_back_merge(q, rq); 260 if (!*merged_request) 261 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 262 return true; 263 case ELEVATOR_FRONT_MERGE: 264 if (!blk_mq_sched_allow_merge(q, rq, bio)) 265 return false; 266 if (!bio_attempt_front_merge(q, rq, bio)) 267 return false; 268 *merged_request = attempt_front_merge(q, rq); 269 if (!*merged_request) 270 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 271 return true; 272 default: 273 return false; 274 } 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 277 278 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 279 { 280 struct elevator_queue *e = q->elevator; 281 282 if (e->type->ops.mq.bio_merge) { 283 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 284 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 285 286 blk_mq_put_ctx(ctx); 287 return e->type->ops.mq.bio_merge(hctx, bio); 288 } 289 290 return false; 291 } 292 293 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 294 { 295 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 296 } 297 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 298 299 void blk_mq_sched_request_inserted(struct request *rq) 300 { 301 trace_block_rq_insert(rq->q, rq); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 304 305 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 306 struct request *rq) 307 { 308 if (rq->tag == -1) { 309 rq->rq_flags |= RQF_SORTED; 310 return false; 311 } 312 313 /* 314 * If we already have a real request tag, send directly to 315 * the dispatch list. 316 */ 317 spin_lock(&hctx->lock); 318 list_add(&rq->queuelist, &hctx->dispatch); 319 spin_unlock(&hctx->lock); 320 return true; 321 } 322 323 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 324 { 325 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { 326 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 327 if (blk_mq_hctx_has_pending(hctx)) 328 blk_mq_run_hw_queue(hctx, true); 329 } 330 } 331 332 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx) 333 { 334 unsigned int i; 335 336 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) 337 blk_mq_sched_restart_hctx(hctx); 338 else { 339 struct request_queue *q = hctx->queue; 340 341 if (!test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) 342 return; 343 344 clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags); 345 346 queue_for_each_hw_ctx(q, hctx, i) 347 blk_mq_sched_restart_hctx(hctx); 348 } 349 } 350 351 /* 352 * Add flush/fua to the queue. If we fail getting a driver tag, then 353 * punt to the requeue list. Requeue will re-invoke us from a context 354 * that's safe to block from. 355 */ 356 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 357 struct request *rq, bool can_block) 358 { 359 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 360 blk_insert_flush(rq); 361 blk_mq_run_hw_queue(hctx, true); 362 } else 363 blk_mq_add_to_requeue_list(rq, false, true); 364 } 365 366 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 367 bool run_queue, bool async, bool can_block) 368 { 369 struct request_queue *q = rq->q; 370 struct elevator_queue *e = q->elevator; 371 struct blk_mq_ctx *ctx = rq->mq_ctx; 372 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 373 374 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 375 blk_mq_sched_insert_flush(hctx, rq, can_block); 376 return; 377 } 378 379 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 380 goto run; 381 382 if (e && e->type->ops.mq.insert_requests) { 383 LIST_HEAD(list); 384 385 list_add(&rq->queuelist, &list); 386 e->type->ops.mq.insert_requests(hctx, &list, at_head); 387 } else { 388 spin_lock(&ctx->lock); 389 __blk_mq_insert_request(hctx, rq, at_head); 390 spin_unlock(&ctx->lock); 391 } 392 393 run: 394 if (run_queue) 395 blk_mq_run_hw_queue(hctx, async); 396 } 397 398 void blk_mq_sched_insert_requests(struct request_queue *q, 399 struct blk_mq_ctx *ctx, 400 struct list_head *list, bool run_queue_async) 401 { 402 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 403 struct elevator_queue *e = hctx->queue->elevator; 404 405 if (e) { 406 struct request *rq, *next; 407 408 /* 409 * We bypass requests that already have a driver tag assigned, 410 * which should only be flushes. Flushes are only ever inserted 411 * as single requests, so we shouldn't ever hit the 412 * WARN_ON_ONCE() below (but let's handle it just in case). 413 */ 414 list_for_each_entry_safe(rq, next, list, queuelist) { 415 if (WARN_ON_ONCE(rq->tag != -1)) { 416 list_del_init(&rq->queuelist); 417 blk_mq_sched_bypass_insert(hctx, rq); 418 } 419 } 420 } 421 422 if (e && e->type->ops.mq.insert_requests) 423 e->type->ops.mq.insert_requests(hctx, list, false); 424 else 425 blk_mq_insert_requests(hctx, ctx, list); 426 427 blk_mq_run_hw_queue(hctx, run_queue_async); 428 } 429 430 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 431 struct blk_mq_hw_ctx *hctx, 432 unsigned int hctx_idx) 433 { 434 if (hctx->sched_tags) { 435 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 436 blk_mq_free_rq_map(hctx->sched_tags); 437 hctx->sched_tags = NULL; 438 } 439 } 440 441 int blk_mq_sched_setup(struct request_queue *q) 442 { 443 struct blk_mq_tag_set *set = q->tag_set; 444 struct blk_mq_hw_ctx *hctx; 445 int ret, i; 446 447 /* 448 * Default to 256, since we don't split into sync/async like the 449 * old code did. Additionally, this is a per-hw queue depth. 450 */ 451 q->nr_requests = 2 * BLKDEV_MAX_RQ; 452 453 /* 454 * We're switching to using an IO scheduler, so setup the hctx 455 * scheduler tags and switch the request map from the regular 456 * tags to scheduler tags. First allocate what we need, so we 457 * can safely fail and fallback, if needed. 458 */ 459 ret = 0; 460 queue_for_each_hw_ctx(q, hctx, i) { 461 hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0); 462 if (!hctx->sched_tags) { 463 ret = -ENOMEM; 464 break; 465 } 466 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests); 467 if (ret) 468 break; 469 } 470 471 /* 472 * If we failed, free what we did allocate 473 */ 474 if (ret) { 475 queue_for_each_hw_ctx(q, hctx, i) { 476 if (!hctx->sched_tags) 477 continue; 478 blk_mq_sched_free_tags(set, hctx, i); 479 } 480 481 return ret; 482 } 483 484 return 0; 485 } 486 487 void blk_mq_sched_teardown(struct request_queue *q) 488 { 489 struct blk_mq_tag_set *set = q->tag_set; 490 struct blk_mq_hw_ctx *hctx; 491 int i; 492 493 queue_for_each_hw_ctx(q, hctx, i) 494 blk_mq_sched_free_tags(set, hctx, i); 495 } 496 497 int blk_mq_sched_init(struct request_queue *q) 498 { 499 int ret; 500 501 #if defined(CONFIG_DEFAULT_SQ_NONE) 502 if (q->nr_hw_queues == 1) 503 return 0; 504 #endif 505 #if defined(CONFIG_DEFAULT_MQ_NONE) 506 if (q->nr_hw_queues > 1) 507 return 0; 508 #endif 509 510 mutex_lock(&q->sysfs_lock); 511 ret = elevator_init(q, NULL); 512 mutex_unlock(&q->sysfs_lock); 513 514 return ret; 515 } 516