xref: /linux/block/bio.c (revision c42bca92be928ce7dece5fc04cf68d0e37ee6718)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 /*
29  * Test patch to inline a certain number of bi_io_vec's inside the bio
30  * itself, to shrink a bio data allocation from two mempool calls to one
31  */
32 #define BIO_INLINE_VECS		4
33 
34 /*
35  * if you change this list, also change bvec_alloc or things will
36  * break badly! cannot be bigger than what you can fit into an
37  * unsigned short
38  */
39 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
40 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
41 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
42 };
43 #undef BV
44 
45 /*
46  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
47  * IO code that does not need private memory pools.
48  */
49 struct bio_set fs_bio_set;
50 EXPORT_SYMBOL(fs_bio_set);
51 
52 /*
53  * Our slab pool management
54  */
55 struct bio_slab {
56 	struct kmem_cache *slab;
57 	unsigned int slab_ref;
58 	unsigned int slab_size;
59 	char name[8];
60 };
61 static DEFINE_MUTEX(bio_slab_lock);
62 static DEFINE_XARRAY(bio_slabs);
63 
64 static struct bio_slab *create_bio_slab(unsigned int size)
65 {
66 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
67 
68 	if (!bslab)
69 		return NULL;
70 
71 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
72 	bslab->slab = kmem_cache_create(bslab->name, size,
73 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
74 	if (!bslab->slab)
75 		goto fail_alloc_slab;
76 
77 	bslab->slab_ref = 1;
78 	bslab->slab_size = size;
79 
80 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
81 		return bslab;
82 
83 	kmem_cache_destroy(bslab->slab);
84 
85 fail_alloc_slab:
86 	kfree(bslab);
87 	return NULL;
88 }
89 
90 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
91 {
92 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
93 }
94 
95 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
96 {
97 	unsigned int size = bs_bio_slab_size(bs);
98 	struct bio_slab *bslab;
99 
100 	mutex_lock(&bio_slab_lock);
101 	bslab = xa_load(&bio_slabs, size);
102 	if (bslab)
103 		bslab->slab_ref++;
104 	else
105 		bslab = create_bio_slab(size);
106 	mutex_unlock(&bio_slab_lock);
107 
108 	if (bslab)
109 		return bslab->slab;
110 	return NULL;
111 }
112 
113 static void bio_put_slab(struct bio_set *bs)
114 {
115 	struct bio_slab *bslab = NULL;
116 	unsigned int slab_size = bs_bio_slab_size(bs);
117 
118 	mutex_lock(&bio_slab_lock);
119 
120 	bslab = xa_load(&bio_slabs, slab_size);
121 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
122 		goto out;
123 
124 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
125 
126 	WARN_ON(!bslab->slab_ref);
127 
128 	if (--bslab->slab_ref)
129 		goto out;
130 
131 	xa_erase(&bio_slabs, slab_size);
132 
133 	kmem_cache_destroy(bslab->slab);
134 	kfree(bslab);
135 
136 out:
137 	mutex_unlock(&bio_slab_lock);
138 }
139 
140 unsigned int bvec_nr_vecs(unsigned short idx)
141 {
142 	return bvec_slabs[--idx].nr_vecs;
143 }
144 
145 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
146 {
147 	if (!idx)
148 		return;
149 	idx--;
150 
151 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
152 
153 	if (idx == BVEC_POOL_MAX) {
154 		mempool_free(bv, pool);
155 	} else {
156 		struct biovec_slab *bvs = bvec_slabs + idx;
157 
158 		kmem_cache_free(bvs->slab, bv);
159 	}
160 }
161 
162 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
163 			   mempool_t *pool)
164 {
165 	struct bio_vec *bvl;
166 
167 	/*
168 	 * see comment near bvec_array define!
169 	 */
170 	switch (nr) {
171 	case 1:
172 		*idx = 0;
173 		break;
174 	case 2 ... 4:
175 		*idx = 1;
176 		break;
177 	case 5 ... 16:
178 		*idx = 2;
179 		break;
180 	case 17 ... 64:
181 		*idx = 3;
182 		break;
183 	case 65 ... 128:
184 		*idx = 4;
185 		break;
186 	case 129 ... BIO_MAX_PAGES:
187 		*idx = 5;
188 		break;
189 	default:
190 		return NULL;
191 	}
192 
193 	/*
194 	 * idx now points to the pool we want to allocate from. only the
195 	 * 1-vec entry pool is mempool backed.
196 	 */
197 	if (*idx == BVEC_POOL_MAX) {
198 fallback:
199 		bvl = mempool_alloc(pool, gfp_mask);
200 	} else {
201 		struct biovec_slab *bvs = bvec_slabs + *idx;
202 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
203 
204 		/*
205 		 * Make this allocation restricted and don't dump info on
206 		 * allocation failures, since we'll fallback to the mempool
207 		 * in case of failure.
208 		 */
209 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
210 
211 		/*
212 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
213 		 * is set, retry with the 1-entry mempool
214 		 */
215 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
216 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
217 			*idx = BVEC_POOL_MAX;
218 			goto fallback;
219 		}
220 	}
221 
222 	(*idx)++;
223 	return bvl;
224 }
225 
226 void bio_uninit(struct bio *bio)
227 {
228 #ifdef CONFIG_BLK_CGROUP
229 	if (bio->bi_blkg) {
230 		blkg_put(bio->bi_blkg);
231 		bio->bi_blkg = NULL;
232 	}
233 #endif
234 	if (bio_integrity(bio))
235 		bio_integrity_free(bio);
236 
237 	bio_crypt_free_ctx(bio);
238 }
239 EXPORT_SYMBOL(bio_uninit);
240 
241 static void bio_free(struct bio *bio)
242 {
243 	struct bio_set *bs = bio->bi_pool;
244 	void *p;
245 
246 	bio_uninit(bio);
247 
248 	if (bs) {
249 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
250 
251 		/*
252 		 * If we have front padding, adjust the bio pointer before freeing
253 		 */
254 		p = bio;
255 		p -= bs->front_pad;
256 
257 		mempool_free(p, &bs->bio_pool);
258 	} else {
259 		/* Bio was allocated by bio_kmalloc() */
260 		kfree(bio);
261 	}
262 }
263 
264 /*
265  * Users of this function have their own bio allocation. Subsequently,
266  * they must remember to pair any call to bio_init() with bio_uninit()
267  * when IO has completed, or when the bio is released.
268  */
269 void bio_init(struct bio *bio, struct bio_vec *table,
270 	      unsigned short max_vecs)
271 {
272 	memset(bio, 0, sizeof(*bio));
273 	atomic_set(&bio->__bi_remaining, 1);
274 	atomic_set(&bio->__bi_cnt, 1);
275 
276 	bio->bi_io_vec = table;
277 	bio->bi_max_vecs = max_vecs;
278 }
279 EXPORT_SYMBOL(bio_init);
280 
281 /**
282  * bio_reset - reinitialize a bio
283  * @bio:	bio to reset
284  *
285  * Description:
286  *   After calling bio_reset(), @bio will be in the same state as a freshly
287  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
288  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
289  *   comment in struct bio.
290  */
291 void bio_reset(struct bio *bio)
292 {
293 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294 
295 	bio_uninit(bio);
296 
297 	memset(bio, 0, BIO_RESET_BYTES);
298 	bio->bi_flags = flags;
299 	atomic_set(&bio->__bi_remaining, 1);
300 }
301 EXPORT_SYMBOL(bio_reset);
302 
303 static struct bio *__bio_chain_endio(struct bio *bio)
304 {
305 	struct bio *parent = bio->bi_private;
306 
307 	if (!parent->bi_status)
308 		parent->bi_status = bio->bi_status;
309 	bio_put(bio);
310 	return parent;
311 }
312 
313 static void bio_chain_endio(struct bio *bio)
314 {
315 	bio_endio(__bio_chain_endio(bio));
316 }
317 
318 /**
319  * bio_chain - chain bio completions
320  * @bio: the target bio
321  * @parent: the parent bio of @bio
322  *
323  * The caller won't have a bi_end_io called when @bio completes - instead,
324  * @parent's bi_end_io won't be called until both @parent and @bio have
325  * completed; the chained bio will also be freed when it completes.
326  *
327  * The caller must not set bi_private or bi_end_io in @bio.
328  */
329 void bio_chain(struct bio *bio, struct bio *parent)
330 {
331 	BUG_ON(bio->bi_private || bio->bi_end_io);
332 
333 	bio->bi_private = parent;
334 	bio->bi_end_io	= bio_chain_endio;
335 	bio_inc_remaining(parent);
336 }
337 EXPORT_SYMBOL(bio_chain);
338 
339 static void bio_alloc_rescue(struct work_struct *work)
340 {
341 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 	struct bio *bio;
343 
344 	while (1) {
345 		spin_lock(&bs->rescue_lock);
346 		bio = bio_list_pop(&bs->rescue_list);
347 		spin_unlock(&bs->rescue_lock);
348 
349 		if (!bio)
350 			break;
351 
352 		submit_bio_noacct(bio);
353 	}
354 }
355 
356 static void punt_bios_to_rescuer(struct bio_set *bs)
357 {
358 	struct bio_list punt, nopunt;
359 	struct bio *bio;
360 
361 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
362 		return;
363 	/*
364 	 * In order to guarantee forward progress we must punt only bios that
365 	 * were allocated from this bio_set; otherwise, if there was a bio on
366 	 * there for a stacking driver higher up in the stack, processing it
367 	 * could require allocating bios from this bio_set, and doing that from
368 	 * our own rescuer would be bad.
369 	 *
370 	 * Since bio lists are singly linked, pop them all instead of trying to
371 	 * remove from the middle of the list:
372 	 */
373 
374 	bio_list_init(&punt);
375 	bio_list_init(&nopunt);
376 
377 	while ((bio = bio_list_pop(&current->bio_list[0])))
378 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
379 	current->bio_list[0] = nopunt;
380 
381 	bio_list_init(&nopunt);
382 	while ((bio = bio_list_pop(&current->bio_list[1])))
383 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 	current->bio_list[1] = nopunt;
385 
386 	spin_lock(&bs->rescue_lock);
387 	bio_list_merge(&bs->rescue_list, &punt);
388 	spin_unlock(&bs->rescue_lock);
389 
390 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
391 }
392 
393 /**
394  * bio_alloc_bioset - allocate a bio for I/O
395  * @gfp_mask:   the GFP_* mask given to the slab allocator
396  * @nr_iovecs:	number of iovecs to pre-allocate
397  * @bs:		the bio_set to allocate from.
398  *
399  * Description:
400  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
401  *   backed by the @bs's mempool.
402  *
403  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
404  *   always be able to allocate a bio. This is due to the mempool guarantees.
405  *   To make this work, callers must never allocate more than 1 bio at a time
406  *   from this pool. Callers that need to allocate more than 1 bio must always
407  *   submit the previously allocated bio for IO before attempting to allocate
408  *   a new one. Failure to do so can cause deadlocks under memory pressure.
409  *
410  *   Note that when running under submit_bio_noacct() (i.e. any block
411  *   driver), bios are not submitted until after you return - see the code in
412  *   submit_bio_noacct() that converts recursion into iteration, to prevent
413  *   stack overflows.
414  *
415  *   This would normally mean allocating multiple bios under
416  *   submit_bio_noacct() would be susceptible to deadlocks, but we have
417  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
418  *   thread.
419  *
420  *   However, we do not guarantee forward progress for allocations from other
421  *   mempools. Doing multiple allocations from the same mempool under
422  *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
423  *   for per bio allocations.
424  *
425  *   RETURNS:
426  *   Pointer to new bio on success, NULL on failure.
427  */
428 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
429 			     struct bio_set *bs)
430 {
431 	gfp_t saved_gfp = gfp_mask;
432 	unsigned front_pad;
433 	unsigned inline_vecs;
434 	struct bio_vec *bvl = NULL;
435 	struct bio *bio;
436 	void *p;
437 
438 	if (!bs) {
439 		if (nr_iovecs > UIO_MAXIOV)
440 			return NULL;
441 
442 		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
443 		front_pad = 0;
444 		inline_vecs = nr_iovecs;
445 	} else {
446 		/* should not use nobvec bioset for nr_iovecs > 0 */
447 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 				 nr_iovecs > 0))
449 			return NULL;
450 		/*
451 		 * submit_bio_noacct() converts recursion to iteration; this
452 		 * means if we're running beneath it, any bios we allocate and
453 		 * submit will not be submitted (and thus freed) until after we
454 		 * return.
455 		 *
456 		 * This exposes us to a potential deadlock if we allocate
457 		 * multiple bios from the same bio_set() while running
458 		 * underneath submit_bio_noacct(). If we were to allocate
459 		 * multiple bios (say a stacking block driver that was splitting
460 		 * bios), we would deadlock if we exhausted the mempool's
461 		 * reserve.
462 		 *
463 		 * We solve this, and guarantee forward progress, with a rescuer
464 		 * workqueue per bio_set. If we go to allocate and there are
465 		 * bios on current->bio_list, we first try the allocation
466 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 		 * bios we would be blocking to the rescuer workqueue before
468 		 * we retry with the original gfp_flags.
469 		 */
470 
471 		if (current->bio_list &&
472 		    (!bio_list_empty(&current->bio_list[0]) ||
473 		     !bio_list_empty(&current->bio_list[1])) &&
474 		    bs->rescue_workqueue)
475 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476 
477 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 		if (!p && gfp_mask != saved_gfp) {
479 			punt_bios_to_rescuer(bs);
480 			gfp_mask = saved_gfp;
481 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		}
483 
484 		front_pad = bs->front_pad;
485 		inline_vecs = BIO_INLINE_VECS;
486 	}
487 
488 	if (unlikely(!p))
489 		return NULL;
490 
491 	bio = p + front_pad;
492 	bio_init(bio, NULL, 0);
493 
494 	if (nr_iovecs > inline_vecs) {
495 		unsigned long idx = 0;
496 
497 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 		if (!bvl && gfp_mask != saved_gfp) {
499 			punt_bios_to_rescuer(bs);
500 			gfp_mask = saved_gfp;
501 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		}
503 
504 		if (unlikely(!bvl))
505 			goto err_free;
506 
507 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508 		bio->bi_max_vecs = bvec_nr_vecs(idx);
509 	} else if (nr_iovecs) {
510 		bvl = bio->bi_inline_vecs;
511 		bio->bi_max_vecs = inline_vecs;
512 	}
513 
514 	bio->bi_pool = bs;
515 	bio->bi_io_vec = bvl;
516 	return bio;
517 
518 err_free:
519 	mempool_free(p, &bs->bio_pool);
520 	return NULL;
521 }
522 EXPORT_SYMBOL(bio_alloc_bioset);
523 
524 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
525 {
526 	unsigned long flags;
527 	struct bio_vec bv;
528 	struct bvec_iter iter;
529 
530 	__bio_for_each_segment(bv, bio, iter, start) {
531 		char *data = bvec_kmap_irq(&bv, &flags);
532 		memset(data, 0, bv.bv_len);
533 		flush_dcache_page(bv.bv_page);
534 		bvec_kunmap_irq(data, &flags);
535 	}
536 }
537 EXPORT_SYMBOL(zero_fill_bio_iter);
538 
539 /**
540  * bio_truncate - truncate the bio to small size of @new_size
541  * @bio:	the bio to be truncated
542  * @new_size:	new size for truncating the bio
543  *
544  * Description:
545  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
546  *   REQ_OP_READ, zero the truncated part. This function should only
547  *   be used for handling corner cases, such as bio eod.
548  */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 	struct bio_vec bv;
552 	struct bvec_iter iter;
553 	unsigned int done = 0;
554 	bool truncated = false;
555 
556 	if (new_size >= bio->bi_iter.bi_size)
557 		return;
558 
559 	if (bio_op(bio) != REQ_OP_READ)
560 		goto exit;
561 
562 	bio_for_each_segment(bv, bio, iter) {
563 		if (done + bv.bv_len > new_size) {
564 			unsigned offset;
565 
566 			if (!truncated)
567 				offset = new_size - done;
568 			else
569 				offset = 0;
570 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 			truncated = true;
572 		}
573 		done += bv.bv_len;
574 	}
575 
576  exit:
577 	/*
578 	 * Don't touch bvec table here and make it really immutable, since
579 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 	 * in its .end_bio() callback.
581 	 *
582 	 * It is enough to truncate bio by updating .bi_size since we can make
583 	 * correct bvec with the updated .bi_size for drivers.
584 	 */
585 	bio->bi_iter.bi_size = new_size;
586 }
587 
588 /**
589  * guard_bio_eod - truncate a BIO to fit the block device
590  * @bio:	bio to truncate
591  *
592  * This allows us to do IO even on the odd last sectors of a device, even if the
593  * block size is some multiple of the physical sector size.
594  *
595  * We'll just truncate the bio to the size of the device, and clear the end of
596  * the buffer head manually.  Truly out-of-range accesses will turn into actual
597  * I/O errors, this only handles the "we need to be able to do I/O at the final
598  * sector" case.
599  */
600 void guard_bio_eod(struct bio *bio)
601 {
602 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603 
604 	if (!maxsector)
605 		return;
606 
607 	/*
608 	 * If the *whole* IO is past the end of the device,
609 	 * let it through, and the IO layer will turn it into
610 	 * an EIO.
611 	 */
612 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 		return;
614 
615 	maxsector -= bio->bi_iter.bi_sector;
616 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 		return;
618 
619 	bio_truncate(bio, maxsector << 9);
620 }
621 
622 /**
623  * bio_put - release a reference to a bio
624  * @bio:   bio to release reference to
625  *
626  * Description:
627  *   Put a reference to a &struct bio, either one you have gotten with
628  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
629  **/
630 void bio_put(struct bio *bio)
631 {
632 	if (!bio_flagged(bio, BIO_REFFED))
633 		bio_free(bio);
634 	else {
635 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
636 
637 		/*
638 		 * last put frees it
639 		 */
640 		if (atomic_dec_and_test(&bio->__bi_cnt))
641 			bio_free(bio);
642 	}
643 }
644 EXPORT_SYMBOL(bio_put);
645 
646 /**
647  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
648  * 	@bio: destination bio
649  * 	@bio_src: bio to clone
650  *
651  *	Clone a &bio. Caller will own the returned bio, but not
652  *	the actual data it points to. Reference count of returned
653  * 	bio will be one.
654  *
655  * 	Caller must ensure that @bio_src is not freed before @bio.
656  */
657 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
658 {
659 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
660 
661 	/*
662 	 * most users will be overriding ->bi_bdev with a new target,
663 	 * so we don't set nor calculate new physical/hw segment counts here
664 	 */
665 	bio->bi_bdev = bio_src->bi_bdev;
666 	bio_set_flag(bio, BIO_CLONED);
667 	if (bio_flagged(bio_src, BIO_THROTTLED))
668 		bio_set_flag(bio, BIO_THROTTLED);
669 	bio->bi_opf = bio_src->bi_opf;
670 	bio->bi_ioprio = bio_src->bi_ioprio;
671 	bio->bi_write_hint = bio_src->bi_write_hint;
672 	bio->bi_iter = bio_src->bi_iter;
673 	bio->bi_io_vec = bio_src->bi_io_vec;
674 
675 	bio_clone_blkg_association(bio, bio_src);
676 	blkcg_bio_issue_init(bio);
677 }
678 EXPORT_SYMBOL(__bio_clone_fast);
679 
680 /**
681  *	bio_clone_fast - clone a bio that shares the original bio's biovec
682  *	@bio: bio to clone
683  *	@gfp_mask: allocation priority
684  *	@bs: bio_set to allocate from
685  *
686  * 	Like __bio_clone_fast, only also allocates the returned bio
687  */
688 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
689 {
690 	struct bio *b;
691 
692 	b = bio_alloc_bioset(gfp_mask, 0, bs);
693 	if (!b)
694 		return NULL;
695 
696 	__bio_clone_fast(b, bio);
697 
698 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
699 		goto err_put;
700 
701 	if (bio_integrity(bio) &&
702 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
703 		goto err_put;
704 
705 	return b;
706 
707 err_put:
708 	bio_put(b);
709 	return NULL;
710 }
711 EXPORT_SYMBOL(bio_clone_fast);
712 
713 const char *bio_devname(struct bio *bio, char *buf)
714 {
715 	return bdevname(bio->bi_bdev, buf);
716 }
717 EXPORT_SYMBOL(bio_devname);
718 
719 static inline bool page_is_mergeable(const struct bio_vec *bv,
720 		struct page *page, unsigned int len, unsigned int off,
721 		bool *same_page)
722 {
723 	size_t bv_end = bv->bv_offset + bv->bv_len;
724 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
725 	phys_addr_t page_addr = page_to_phys(page);
726 
727 	if (vec_end_addr + 1 != page_addr + off)
728 		return false;
729 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
730 		return false;
731 
732 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
733 	if (*same_page)
734 		return true;
735 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
736 }
737 
738 /*
739  * Try to merge a page into a segment, while obeying the hardware segment
740  * size limit.  This is not for normal read/write bios, but for passthrough
741  * or Zone Append operations that we can't split.
742  */
743 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
744 				 struct page *page, unsigned len,
745 				 unsigned offset, bool *same_page)
746 {
747 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
748 	unsigned long mask = queue_segment_boundary(q);
749 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
750 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
751 
752 	if ((addr1 | mask) != (addr2 | mask))
753 		return false;
754 	if (bv->bv_len + len > queue_max_segment_size(q))
755 		return false;
756 	return __bio_try_merge_page(bio, page, len, offset, same_page);
757 }
758 
759 /**
760  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
761  * @q: the target queue
762  * @bio: destination bio
763  * @page: page to add
764  * @len: vec entry length
765  * @offset: vec entry offset
766  * @max_sectors: maximum number of sectors that can be added
767  * @same_page: return if the segment has been merged inside the same page
768  *
769  * Add a page to a bio while respecting the hardware max_sectors, max_segment
770  * and gap limitations.
771  */
772 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
773 		struct page *page, unsigned int len, unsigned int offset,
774 		unsigned int max_sectors, bool *same_page)
775 {
776 	struct bio_vec *bvec;
777 
778 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
779 		return 0;
780 
781 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
782 		return 0;
783 
784 	if (bio->bi_vcnt > 0) {
785 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
786 			return len;
787 
788 		/*
789 		 * If the queue doesn't support SG gaps and adding this segment
790 		 * would create a gap, disallow it.
791 		 */
792 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
793 		if (bvec_gap_to_prev(q, bvec, offset))
794 			return 0;
795 	}
796 
797 	if (bio_full(bio, len))
798 		return 0;
799 
800 	if (bio->bi_vcnt >= queue_max_segments(q))
801 		return 0;
802 
803 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
804 	bvec->bv_page = page;
805 	bvec->bv_len = len;
806 	bvec->bv_offset = offset;
807 	bio->bi_vcnt++;
808 	bio->bi_iter.bi_size += len;
809 	return len;
810 }
811 
812 /**
813  * bio_add_pc_page	- attempt to add page to passthrough bio
814  * @q: the target queue
815  * @bio: destination bio
816  * @page: page to add
817  * @len: vec entry length
818  * @offset: vec entry offset
819  *
820  * Attempt to add a page to the bio_vec maplist. This can fail for a
821  * number of reasons, such as the bio being full or target block device
822  * limitations. The target block device must allow bio's up to PAGE_SIZE,
823  * so it is always possible to add a single page to an empty bio.
824  *
825  * This should only be used by passthrough bios.
826  */
827 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
828 		struct page *page, unsigned int len, unsigned int offset)
829 {
830 	bool same_page = false;
831 	return bio_add_hw_page(q, bio, page, len, offset,
832 			queue_max_hw_sectors(q), &same_page);
833 }
834 EXPORT_SYMBOL(bio_add_pc_page);
835 
836 /**
837  * __bio_try_merge_page - try appending data to an existing bvec.
838  * @bio: destination bio
839  * @page: start page to add
840  * @len: length of the data to add
841  * @off: offset of the data relative to @page
842  * @same_page: return if the segment has been merged inside the same page
843  *
844  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
845  * useful optimisation for file systems with a block size smaller than the
846  * page size.
847  *
848  * Warn if (@len, @off) crosses pages in case that @same_page is true.
849  *
850  * Return %true on success or %false on failure.
851  */
852 bool __bio_try_merge_page(struct bio *bio, struct page *page,
853 		unsigned int len, unsigned int off, bool *same_page)
854 {
855 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
856 		return false;
857 
858 	if (bio->bi_vcnt > 0) {
859 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
860 
861 		if (page_is_mergeable(bv, page, len, off, same_page)) {
862 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
863 				*same_page = false;
864 				return false;
865 			}
866 			bv->bv_len += len;
867 			bio->bi_iter.bi_size += len;
868 			return true;
869 		}
870 	}
871 	return false;
872 }
873 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
874 
875 /**
876  * __bio_add_page - add page(s) to a bio in a new segment
877  * @bio: destination bio
878  * @page: start page to add
879  * @len: length of the data to add, may cross pages
880  * @off: offset of the data relative to @page, may cross pages
881  *
882  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
883  * that @bio has space for another bvec.
884  */
885 void __bio_add_page(struct bio *bio, struct page *page,
886 		unsigned int len, unsigned int off)
887 {
888 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
889 
890 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
891 	WARN_ON_ONCE(bio_full(bio, len));
892 
893 	bv->bv_page = page;
894 	bv->bv_offset = off;
895 	bv->bv_len = len;
896 
897 	bio->bi_iter.bi_size += len;
898 	bio->bi_vcnt++;
899 
900 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
901 		bio_set_flag(bio, BIO_WORKINGSET);
902 }
903 EXPORT_SYMBOL_GPL(__bio_add_page);
904 
905 /**
906  *	bio_add_page	-	attempt to add page(s) to bio
907  *	@bio: destination bio
908  *	@page: start page to add
909  *	@len: vec entry length, may cross pages
910  *	@offset: vec entry offset relative to @page, may cross pages
911  *
912  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
913  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
914  */
915 int bio_add_page(struct bio *bio, struct page *page,
916 		 unsigned int len, unsigned int offset)
917 {
918 	bool same_page = false;
919 
920 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
921 		if (bio_full(bio, len))
922 			return 0;
923 		__bio_add_page(bio, page, len, offset);
924 	}
925 	return len;
926 }
927 EXPORT_SYMBOL(bio_add_page);
928 
929 void bio_release_pages(struct bio *bio, bool mark_dirty)
930 {
931 	struct bvec_iter_all iter_all;
932 	struct bio_vec *bvec;
933 
934 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
935 		return;
936 
937 	bio_for_each_segment_all(bvec, bio, iter_all) {
938 		if (mark_dirty && !PageCompound(bvec->bv_page))
939 			set_page_dirty_lock(bvec->bv_page);
940 		put_page(bvec->bv_page);
941 	}
942 }
943 EXPORT_SYMBOL_GPL(bio_release_pages);
944 
945 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
946 {
947 	WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
948 
949 	bio->bi_vcnt = iter->nr_segs;
950 	bio->bi_max_vecs = iter->nr_segs;
951 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
952 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
953 	bio->bi_iter.bi_size = iter->count;
954 
955 	iov_iter_advance(iter, iter->count);
956 	return 0;
957 }
958 
959 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
960 
961 /**
962  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
963  * @bio: bio to add pages to
964  * @iter: iov iterator describing the region to be mapped
965  *
966  * Pins pages from *iter and appends them to @bio's bvec array. The
967  * pages will have to be released using put_page() when done.
968  * For multi-segment *iter, this function only adds pages from the
969  * next non-empty segment of the iov iterator.
970  */
971 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
972 {
973 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
974 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
975 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
976 	struct page **pages = (struct page **)bv;
977 	bool same_page = false;
978 	ssize_t size, left;
979 	unsigned len, i;
980 	size_t offset;
981 
982 	/*
983 	 * Move page array up in the allocated memory for the bio vecs as far as
984 	 * possible so that we can start filling biovecs from the beginning
985 	 * without overwriting the temporary page array.
986 	*/
987 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
988 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
989 
990 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
991 	if (unlikely(size <= 0))
992 		return size ? size : -EFAULT;
993 
994 	for (left = size, i = 0; left > 0; left -= len, i++) {
995 		struct page *page = pages[i];
996 
997 		len = min_t(size_t, PAGE_SIZE - offset, left);
998 
999 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1000 			if (same_page)
1001 				put_page(page);
1002 		} else {
1003 			if (WARN_ON_ONCE(bio_full(bio, len)))
1004                                 return -EINVAL;
1005 			__bio_add_page(bio, page, len, offset);
1006 		}
1007 		offset = 0;
1008 	}
1009 
1010 	iov_iter_advance(iter, size);
1011 	return 0;
1012 }
1013 
1014 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1015 {
1016 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1017 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1018 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1019 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1020 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1021 	struct page **pages = (struct page **)bv;
1022 	ssize_t size, left;
1023 	unsigned len, i;
1024 	size_t offset;
1025 	int ret = 0;
1026 
1027 	if (WARN_ON_ONCE(!max_append_sectors))
1028 		return 0;
1029 
1030 	/*
1031 	 * Move page array up in the allocated memory for the bio vecs as far as
1032 	 * possible so that we can start filling biovecs from the beginning
1033 	 * without overwriting the temporary page array.
1034 	 */
1035 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1036 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1037 
1038 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1039 	if (unlikely(size <= 0))
1040 		return size ? size : -EFAULT;
1041 
1042 	for (left = size, i = 0; left > 0; left -= len, i++) {
1043 		struct page *page = pages[i];
1044 		bool same_page = false;
1045 
1046 		len = min_t(size_t, PAGE_SIZE - offset, left);
1047 		if (bio_add_hw_page(q, bio, page, len, offset,
1048 				max_append_sectors, &same_page) != len) {
1049 			ret = -EINVAL;
1050 			break;
1051 		}
1052 		if (same_page)
1053 			put_page(page);
1054 		offset = 0;
1055 	}
1056 
1057 	iov_iter_advance(iter, size - left);
1058 	return ret;
1059 }
1060 
1061 /**
1062  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1063  * @bio: bio to add pages to
1064  * @iter: iov iterator describing the region to be added
1065  *
1066  * This takes either an iterator pointing to user memory, or one pointing to
1067  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1068  * map them into the kernel. On IO completion, the caller should put those
1069  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1070  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1071  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1072  * completed by a call to ->ki_complete() or returns with an error other than
1073  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1074  * on IO completion. If it isn't, then pages should be released.
1075  *
1076  * The function tries, but does not guarantee, to pin as many pages as
1077  * fit into the bio, or are requested in @iter, whatever is smaller. If
1078  * MM encounters an error pinning the requested pages, it stops. Error
1079  * is returned only if 0 pages could be pinned.
1080  *
1081  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1082  * responsible for setting BIO_WORKINGSET if necessary.
1083  */
1084 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1085 {
1086 	int ret = 0;
1087 
1088 	if (iov_iter_is_bvec(iter)) {
1089 		if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1090 			return -EINVAL;
1091 		bio_iov_bvec_set(bio, iter);
1092 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1093 		return 0;
1094 	} else {
1095 		do {
1096 			if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1097 				ret = __bio_iov_append_get_pages(bio, iter);
1098 			else
1099 				ret = __bio_iov_iter_get_pages(bio, iter);
1100 		} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1101 	}
1102 
1103 	/* don't account direct I/O as memory stall */
1104 	bio_clear_flag(bio, BIO_WORKINGSET);
1105 	return bio->bi_vcnt ? 0 : ret;
1106 }
1107 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1108 
1109 static void submit_bio_wait_endio(struct bio *bio)
1110 {
1111 	complete(bio->bi_private);
1112 }
1113 
1114 /**
1115  * submit_bio_wait - submit a bio, and wait until it completes
1116  * @bio: The &struct bio which describes the I/O
1117  *
1118  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1119  * bio_endio() on failure.
1120  *
1121  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1122  * result in bio reference to be consumed. The caller must drop the reference
1123  * on his own.
1124  */
1125 int submit_bio_wait(struct bio *bio)
1126 {
1127 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1128 			bio->bi_bdev->bd_disk->lockdep_map);
1129 	unsigned long hang_check;
1130 
1131 	bio->bi_private = &done;
1132 	bio->bi_end_io = submit_bio_wait_endio;
1133 	bio->bi_opf |= REQ_SYNC;
1134 	submit_bio(bio);
1135 
1136 	/* Prevent hang_check timer from firing at us during very long I/O */
1137 	hang_check = sysctl_hung_task_timeout_secs;
1138 	if (hang_check)
1139 		while (!wait_for_completion_io_timeout(&done,
1140 					hang_check * (HZ/2)))
1141 			;
1142 	else
1143 		wait_for_completion_io(&done);
1144 
1145 	return blk_status_to_errno(bio->bi_status);
1146 }
1147 EXPORT_SYMBOL(submit_bio_wait);
1148 
1149 /**
1150  * bio_advance - increment/complete a bio by some number of bytes
1151  * @bio:	bio to advance
1152  * @bytes:	number of bytes to complete
1153  *
1154  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1155  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1156  * be updated on the last bvec as well.
1157  *
1158  * @bio will then represent the remaining, uncompleted portion of the io.
1159  */
1160 void bio_advance(struct bio *bio, unsigned bytes)
1161 {
1162 	if (bio_integrity(bio))
1163 		bio_integrity_advance(bio, bytes);
1164 
1165 	bio_crypt_advance(bio, bytes);
1166 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1167 }
1168 EXPORT_SYMBOL(bio_advance);
1169 
1170 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1171 			struct bio *src, struct bvec_iter *src_iter)
1172 {
1173 	struct bio_vec src_bv, dst_bv;
1174 	void *src_p, *dst_p;
1175 	unsigned bytes;
1176 
1177 	while (src_iter->bi_size && dst_iter->bi_size) {
1178 		src_bv = bio_iter_iovec(src, *src_iter);
1179 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1180 
1181 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1182 
1183 		src_p = kmap_atomic(src_bv.bv_page);
1184 		dst_p = kmap_atomic(dst_bv.bv_page);
1185 
1186 		memcpy(dst_p + dst_bv.bv_offset,
1187 		       src_p + src_bv.bv_offset,
1188 		       bytes);
1189 
1190 		kunmap_atomic(dst_p);
1191 		kunmap_atomic(src_p);
1192 
1193 		flush_dcache_page(dst_bv.bv_page);
1194 
1195 		bio_advance_iter_single(src, src_iter, bytes);
1196 		bio_advance_iter_single(dst, dst_iter, bytes);
1197 	}
1198 }
1199 EXPORT_SYMBOL(bio_copy_data_iter);
1200 
1201 /**
1202  * bio_copy_data - copy contents of data buffers from one bio to another
1203  * @src: source bio
1204  * @dst: destination bio
1205  *
1206  * Stops when it reaches the end of either @src or @dst - that is, copies
1207  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1208  */
1209 void bio_copy_data(struct bio *dst, struct bio *src)
1210 {
1211 	struct bvec_iter src_iter = src->bi_iter;
1212 	struct bvec_iter dst_iter = dst->bi_iter;
1213 
1214 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1215 }
1216 EXPORT_SYMBOL(bio_copy_data);
1217 
1218 /**
1219  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1220  * another
1221  * @src: source bio list
1222  * @dst: destination bio list
1223  *
1224  * Stops when it reaches the end of either the @src list or @dst list - that is,
1225  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1226  * bios).
1227  */
1228 void bio_list_copy_data(struct bio *dst, struct bio *src)
1229 {
1230 	struct bvec_iter src_iter = src->bi_iter;
1231 	struct bvec_iter dst_iter = dst->bi_iter;
1232 
1233 	while (1) {
1234 		if (!src_iter.bi_size) {
1235 			src = src->bi_next;
1236 			if (!src)
1237 				break;
1238 
1239 			src_iter = src->bi_iter;
1240 		}
1241 
1242 		if (!dst_iter.bi_size) {
1243 			dst = dst->bi_next;
1244 			if (!dst)
1245 				break;
1246 
1247 			dst_iter = dst->bi_iter;
1248 		}
1249 
1250 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1251 	}
1252 }
1253 EXPORT_SYMBOL(bio_list_copy_data);
1254 
1255 void bio_free_pages(struct bio *bio)
1256 {
1257 	struct bio_vec *bvec;
1258 	struct bvec_iter_all iter_all;
1259 
1260 	bio_for_each_segment_all(bvec, bio, iter_all)
1261 		__free_page(bvec->bv_page);
1262 }
1263 EXPORT_SYMBOL(bio_free_pages);
1264 
1265 /*
1266  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1267  * for performing direct-IO in BIOs.
1268  *
1269  * The problem is that we cannot run set_page_dirty() from interrupt context
1270  * because the required locks are not interrupt-safe.  So what we can do is to
1271  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1272  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1273  * in process context.
1274  *
1275  * We special-case compound pages here: normally this means reads into hugetlb
1276  * pages.  The logic in here doesn't really work right for compound pages
1277  * because the VM does not uniformly chase down the head page in all cases.
1278  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1279  * handle them at all.  So we skip compound pages here at an early stage.
1280  *
1281  * Note that this code is very hard to test under normal circumstances because
1282  * direct-io pins the pages with get_user_pages().  This makes
1283  * is_page_cache_freeable return false, and the VM will not clean the pages.
1284  * But other code (eg, flusher threads) could clean the pages if they are mapped
1285  * pagecache.
1286  *
1287  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1288  * deferred bio dirtying paths.
1289  */
1290 
1291 /*
1292  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1293  */
1294 void bio_set_pages_dirty(struct bio *bio)
1295 {
1296 	struct bio_vec *bvec;
1297 	struct bvec_iter_all iter_all;
1298 
1299 	bio_for_each_segment_all(bvec, bio, iter_all) {
1300 		if (!PageCompound(bvec->bv_page))
1301 			set_page_dirty_lock(bvec->bv_page);
1302 	}
1303 }
1304 
1305 /*
1306  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1307  * If they are, then fine.  If, however, some pages are clean then they must
1308  * have been written out during the direct-IO read.  So we take another ref on
1309  * the BIO and re-dirty the pages in process context.
1310  *
1311  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1312  * here on.  It will run one put_page() against each page and will run one
1313  * bio_put() against the BIO.
1314  */
1315 
1316 static void bio_dirty_fn(struct work_struct *work);
1317 
1318 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1319 static DEFINE_SPINLOCK(bio_dirty_lock);
1320 static struct bio *bio_dirty_list;
1321 
1322 /*
1323  * This runs in process context
1324  */
1325 static void bio_dirty_fn(struct work_struct *work)
1326 {
1327 	struct bio *bio, *next;
1328 
1329 	spin_lock_irq(&bio_dirty_lock);
1330 	next = bio_dirty_list;
1331 	bio_dirty_list = NULL;
1332 	spin_unlock_irq(&bio_dirty_lock);
1333 
1334 	while ((bio = next) != NULL) {
1335 		next = bio->bi_private;
1336 
1337 		bio_release_pages(bio, true);
1338 		bio_put(bio);
1339 	}
1340 }
1341 
1342 void bio_check_pages_dirty(struct bio *bio)
1343 {
1344 	struct bio_vec *bvec;
1345 	unsigned long flags;
1346 	struct bvec_iter_all iter_all;
1347 
1348 	bio_for_each_segment_all(bvec, bio, iter_all) {
1349 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1350 			goto defer;
1351 	}
1352 
1353 	bio_release_pages(bio, false);
1354 	bio_put(bio);
1355 	return;
1356 defer:
1357 	spin_lock_irqsave(&bio_dirty_lock, flags);
1358 	bio->bi_private = bio_dirty_list;
1359 	bio_dirty_list = bio;
1360 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1361 	schedule_work(&bio_dirty_work);
1362 }
1363 
1364 static inline bool bio_remaining_done(struct bio *bio)
1365 {
1366 	/*
1367 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1368 	 * we always end io on the first invocation.
1369 	 */
1370 	if (!bio_flagged(bio, BIO_CHAIN))
1371 		return true;
1372 
1373 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1374 
1375 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1376 		bio_clear_flag(bio, BIO_CHAIN);
1377 		return true;
1378 	}
1379 
1380 	return false;
1381 }
1382 
1383 /**
1384  * bio_endio - end I/O on a bio
1385  * @bio:	bio
1386  *
1387  * Description:
1388  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1389  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1390  *   bio unless they own it and thus know that it has an end_io function.
1391  *
1392  *   bio_endio() can be called several times on a bio that has been chained
1393  *   using bio_chain().  The ->bi_end_io() function will only be called the
1394  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1395  *   generated if BIO_TRACE_COMPLETION is set.
1396  **/
1397 void bio_endio(struct bio *bio)
1398 {
1399 again:
1400 	if (!bio_remaining_done(bio))
1401 		return;
1402 	if (!bio_integrity_endio(bio))
1403 		return;
1404 
1405 	if (bio->bi_bdev)
1406 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1407 
1408 	/*
1409 	 * Need to have a real endio function for chained bios, otherwise
1410 	 * various corner cases will break (like stacking block devices that
1411 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1412 	 * recursion and blowing the stack. Tail call optimization would
1413 	 * handle this, but compiling with frame pointers also disables
1414 	 * gcc's sibling call optimization.
1415 	 */
1416 	if (bio->bi_end_io == bio_chain_endio) {
1417 		bio = __bio_chain_endio(bio);
1418 		goto again;
1419 	}
1420 
1421 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1422 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1423 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1424 	}
1425 
1426 	blk_throtl_bio_endio(bio);
1427 	/* release cgroup info */
1428 	bio_uninit(bio);
1429 	if (bio->bi_end_io)
1430 		bio->bi_end_io(bio);
1431 }
1432 EXPORT_SYMBOL(bio_endio);
1433 
1434 /**
1435  * bio_split - split a bio
1436  * @bio:	bio to split
1437  * @sectors:	number of sectors to split from the front of @bio
1438  * @gfp:	gfp mask
1439  * @bs:		bio set to allocate from
1440  *
1441  * Allocates and returns a new bio which represents @sectors from the start of
1442  * @bio, and updates @bio to represent the remaining sectors.
1443  *
1444  * Unless this is a discard request the newly allocated bio will point
1445  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1446  * neither @bio nor @bs are freed before the split bio.
1447  */
1448 struct bio *bio_split(struct bio *bio, int sectors,
1449 		      gfp_t gfp, struct bio_set *bs)
1450 {
1451 	struct bio *split;
1452 
1453 	BUG_ON(sectors <= 0);
1454 	BUG_ON(sectors >= bio_sectors(bio));
1455 
1456 	/* Zone append commands cannot be split */
1457 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1458 		return NULL;
1459 
1460 	split = bio_clone_fast(bio, gfp, bs);
1461 	if (!split)
1462 		return NULL;
1463 
1464 	split->bi_iter.bi_size = sectors << 9;
1465 
1466 	if (bio_integrity(split))
1467 		bio_integrity_trim(split);
1468 
1469 	bio_advance(bio, split->bi_iter.bi_size);
1470 
1471 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1472 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1473 
1474 	return split;
1475 }
1476 EXPORT_SYMBOL(bio_split);
1477 
1478 /**
1479  * bio_trim - trim a bio
1480  * @bio:	bio to trim
1481  * @offset:	number of sectors to trim from the front of @bio
1482  * @size:	size we want to trim @bio to, in sectors
1483  */
1484 void bio_trim(struct bio *bio, int offset, int size)
1485 {
1486 	/* 'bio' is a cloned bio which we need to trim to match
1487 	 * the given offset and size.
1488 	 */
1489 
1490 	size <<= 9;
1491 	if (offset == 0 && size == bio->bi_iter.bi_size)
1492 		return;
1493 
1494 	bio_advance(bio, offset << 9);
1495 	bio->bi_iter.bi_size = size;
1496 
1497 	if (bio_integrity(bio))
1498 		bio_integrity_trim(bio);
1499 
1500 }
1501 EXPORT_SYMBOL_GPL(bio_trim);
1502 
1503 /*
1504  * create memory pools for biovec's in a bio_set.
1505  * use the global biovec slabs created for general use.
1506  */
1507 int biovec_init_pool(mempool_t *pool, int pool_entries)
1508 {
1509 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1510 
1511 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1512 }
1513 
1514 /*
1515  * bioset_exit - exit a bioset initialized with bioset_init()
1516  *
1517  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1518  * kzalloc()).
1519  */
1520 void bioset_exit(struct bio_set *bs)
1521 {
1522 	if (bs->rescue_workqueue)
1523 		destroy_workqueue(bs->rescue_workqueue);
1524 	bs->rescue_workqueue = NULL;
1525 
1526 	mempool_exit(&bs->bio_pool);
1527 	mempool_exit(&bs->bvec_pool);
1528 
1529 	bioset_integrity_free(bs);
1530 	if (bs->bio_slab)
1531 		bio_put_slab(bs);
1532 	bs->bio_slab = NULL;
1533 }
1534 EXPORT_SYMBOL(bioset_exit);
1535 
1536 /**
1537  * bioset_init - Initialize a bio_set
1538  * @bs:		pool to initialize
1539  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1540  * @front_pad:	Number of bytes to allocate in front of the returned bio
1541  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1542  *              and %BIOSET_NEED_RESCUER
1543  *
1544  * Description:
1545  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1546  *    to ask for a number of bytes to be allocated in front of the bio.
1547  *    Front pad allocation is useful for embedding the bio inside
1548  *    another structure, to avoid allocating extra data to go with the bio.
1549  *    Note that the bio must be embedded at the END of that structure always,
1550  *    or things will break badly.
1551  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1552  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1553  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1554  *    dispatch queued requests when the mempool runs out of space.
1555  *
1556  */
1557 int bioset_init(struct bio_set *bs,
1558 		unsigned int pool_size,
1559 		unsigned int front_pad,
1560 		int flags)
1561 {
1562 	bs->front_pad = front_pad;
1563 	if (flags & BIOSET_NEED_BVECS)
1564 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1565 	else
1566 		bs->back_pad = 0;
1567 
1568 	spin_lock_init(&bs->rescue_lock);
1569 	bio_list_init(&bs->rescue_list);
1570 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1571 
1572 	bs->bio_slab = bio_find_or_create_slab(bs);
1573 	if (!bs->bio_slab)
1574 		return -ENOMEM;
1575 
1576 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1577 		goto bad;
1578 
1579 	if ((flags & BIOSET_NEED_BVECS) &&
1580 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1581 		goto bad;
1582 
1583 	if (!(flags & BIOSET_NEED_RESCUER))
1584 		return 0;
1585 
1586 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1587 	if (!bs->rescue_workqueue)
1588 		goto bad;
1589 
1590 	return 0;
1591 bad:
1592 	bioset_exit(bs);
1593 	return -ENOMEM;
1594 }
1595 EXPORT_SYMBOL(bioset_init);
1596 
1597 /*
1598  * Initialize and setup a new bio_set, based on the settings from
1599  * another bio_set.
1600  */
1601 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1602 {
1603 	int flags;
1604 
1605 	flags = 0;
1606 	if (src->bvec_pool.min_nr)
1607 		flags |= BIOSET_NEED_BVECS;
1608 	if (src->rescue_workqueue)
1609 		flags |= BIOSET_NEED_RESCUER;
1610 
1611 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1612 }
1613 EXPORT_SYMBOL(bioset_init_from_src);
1614 
1615 static void __init biovec_init_slabs(void)
1616 {
1617 	int i;
1618 
1619 	for (i = 0; i < BVEC_POOL_NR; i++) {
1620 		int size;
1621 		struct biovec_slab *bvs = bvec_slabs + i;
1622 
1623 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1624 			bvs->slab = NULL;
1625 			continue;
1626 		}
1627 
1628 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1629 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1630                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1631 	}
1632 }
1633 
1634 static int __init init_bio(void)
1635 {
1636 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1637 
1638 	bio_integrity_init();
1639 	biovec_init_slabs();
1640 
1641 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1642 		panic("bio: can't allocate bios\n");
1643 
1644 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1645 		panic("bio: can't create integrity pool\n");
1646 
1647 	return 0;
1648 }
1649 subsys_initcall(init_bio);
1650