1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 if (!idx) 164 return; 165 idx--; 166 167 BIO_BUG_ON(idx >= BVEC_POOL_NR); 168 169 if (idx == BVEC_POOL_MAX) { 170 mempool_free(bv, pool); 171 } else { 172 struct biovec_slab *bvs = bvec_slabs + idx; 173 174 kmem_cache_free(bvs->slab, bv); 175 } 176 } 177 178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 179 mempool_t *pool) 180 { 181 struct bio_vec *bvl; 182 183 /* 184 * see comment near bvec_array define! 185 */ 186 switch (nr) { 187 case 1: 188 *idx = 0; 189 break; 190 case 2 ... 4: 191 *idx = 1; 192 break; 193 case 5 ... 16: 194 *idx = 2; 195 break; 196 case 17 ... 64: 197 *idx = 3; 198 break; 199 case 65 ... 128: 200 *idx = 4; 201 break; 202 case 129 ... BIO_MAX_PAGES: 203 *idx = 5; 204 break; 205 default: 206 return NULL; 207 } 208 209 /* 210 * idx now points to the pool we want to allocate from. only the 211 * 1-vec entry pool is mempool backed. 212 */ 213 if (*idx == BVEC_POOL_MAX) { 214 fallback: 215 bvl = mempool_alloc(pool, gfp_mask); 216 } else { 217 struct biovec_slab *bvs = bvec_slabs + *idx; 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 219 220 /* 221 * Make this allocation restricted and don't dump info on 222 * allocation failures, since we'll fallback to the mempool 223 * in case of failure. 224 */ 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 226 227 /* 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 229 * is set, retry with the 1-entry mempool 230 */ 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 233 *idx = BVEC_POOL_MAX; 234 goto fallback; 235 } 236 } 237 238 (*idx)++; 239 return bvl; 240 } 241 242 static void __bio_free(struct bio *bio) 243 { 244 bio_disassociate_task(bio); 245 246 if (bio_integrity(bio)) 247 bio_integrity_free(bio); 248 } 249 250 static void bio_free(struct bio *bio) 251 { 252 struct bio_set *bs = bio->bi_pool; 253 void *p; 254 255 __bio_free(bio); 256 257 if (bs) { 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 259 260 /* 261 * If we have front padding, adjust the bio pointer before freeing 262 */ 263 p = bio; 264 p -= bs->front_pad; 265 266 mempool_free(p, bs->bio_pool); 267 } else { 268 /* Bio was allocated by bio_kmalloc() */ 269 kfree(bio); 270 } 271 } 272 273 void bio_init(struct bio *bio, struct bio_vec *table, 274 unsigned short max_vecs) 275 { 276 memset(bio, 0, sizeof(*bio)); 277 atomic_set(&bio->__bi_remaining, 1); 278 atomic_set(&bio->__bi_cnt, 1); 279 280 bio->bi_io_vec = table; 281 bio->bi_max_vecs = max_vecs; 282 } 283 EXPORT_SYMBOL(bio_init); 284 285 /** 286 * bio_reset - reinitialize a bio 287 * @bio: bio to reset 288 * 289 * Description: 290 * After calling bio_reset(), @bio will be in the same state as a freshly 291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 292 * preserved are the ones that are initialized by bio_alloc_bioset(). See 293 * comment in struct bio. 294 */ 295 void bio_reset(struct bio *bio) 296 { 297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 298 299 __bio_free(bio); 300 301 memset(bio, 0, BIO_RESET_BYTES); 302 bio->bi_flags = flags; 303 atomic_set(&bio->__bi_remaining, 1); 304 } 305 EXPORT_SYMBOL(bio_reset); 306 307 static struct bio *__bio_chain_endio(struct bio *bio) 308 { 309 struct bio *parent = bio->bi_private; 310 311 if (!parent->bi_error) 312 parent->bi_error = bio->bi_error; 313 bio_put(bio); 314 return parent; 315 } 316 317 static void bio_chain_endio(struct bio *bio) 318 { 319 bio_endio(__bio_chain_endio(bio)); 320 } 321 322 /** 323 * bio_chain - chain bio completions 324 * @bio: the target bio 325 * @parent: the @bio's parent bio 326 * 327 * The caller won't have a bi_end_io called when @bio completes - instead, 328 * @parent's bi_end_io won't be called until both @parent and @bio have 329 * completed; the chained bio will also be freed when it completes. 330 * 331 * The caller must not set bi_private or bi_end_io in @bio. 332 */ 333 void bio_chain(struct bio *bio, struct bio *parent) 334 { 335 BUG_ON(bio->bi_private || bio->bi_end_io); 336 337 bio->bi_private = parent; 338 bio->bi_end_io = bio_chain_endio; 339 bio_inc_remaining(parent); 340 } 341 EXPORT_SYMBOL(bio_chain); 342 343 static void bio_alloc_rescue(struct work_struct *work) 344 { 345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 346 struct bio *bio; 347 348 while (1) { 349 spin_lock(&bs->rescue_lock); 350 bio = bio_list_pop(&bs->rescue_list); 351 spin_unlock(&bs->rescue_lock); 352 353 if (!bio) 354 break; 355 356 generic_make_request(bio); 357 } 358 } 359 360 static void punt_bios_to_rescuer(struct bio_set *bs) 361 { 362 struct bio_list punt, nopunt; 363 struct bio *bio; 364 365 /* 366 * In order to guarantee forward progress we must punt only bios that 367 * were allocated from this bio_set; otherwise, if there was a bio on 368 * there for a stacking driver higher up in the stack, processing it 369 * could require allocating bios from this bio_set, and doing that from 370 * our own rescuer would be bad. 371 * 372 * Since bio lists are singly linked, pop them all instead of trying to 373 * remove from the middle of the list: 374 */ 375 376 bio_list_init(&punt); 377 bio_list_init(&nopunt); 378 379 while ((bio = bio_list_pop(current->bio_list))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 382 *current->bio_list = nopunt; 383 384 spin_lock(&bs->rescue_lock); 385 bio_list_merge(&bs->rescue_list, &punt); 386 spin_unlock(&bs->rescue_lock); 387 388 queue_work(bs->rescue_workqueue, &bs->rescue_work); 389 } 390 391 /** 392 * bio_alloc_bioset - allocate a bio for I/O 393 * @gfp_mask: the GFP_ mask given to the slab allocator 394 * @nr_iovecs: number of iovecs to pre-allocate 395 * @bs: the bio_set to allocate from. 396 * 397 * Description: 398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 399 * backed by the @bs's mempool. 400 * 401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 402 * always be able to allocate a bio. This is due to the mempool guarantees. 403 * To make this work, callers must never allocate more than 1 bio at a time 404 * from this pool. Callers that need to allocate more than 1 bio must always 405 * submit the previously allocated bio for IO before attempting to allocate 406 * a new one. Failure to do so can cause deadlocks under memory pressure. 407 * 408 * Note that when running under generic_make_request() (i.e. any block 409 * driver), bios are not submitted until after you return - see the code in 410 * generic_make_request() that converts recursion into iteration, to prevent 411 * stack overflows. 412 * 413 * This would normally mean allocating multiple bios under 414 * generic_make_request() would be susceptible to deadlocks, but we have 415 * deadlock avoidance code that resubmits any blocked bios from a rescuer 416 * thread. 417 * 418 * However, we do not guarantee forward progress for allocations from other 419 * mempools. Doing multiple allocations from the same mempool under 420 * generic_make_request() should be avoided - instead, use bio_set's front_pad 421 * for per bio allocations. 422 * 423 * RETURNS: 424 * Pointer to new bio on success, NULL on failure. 425 */ 426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 427 { 428 gfp_t saved_gfp = gfp_mask; 429 unsigned front_pad; 430 unsigned inline_vecs; 431 struct bio_vec *bvl = NULL; 432 struct bio *bio; 433 void *p; 434 435 if (!bs) { 436 if (nr_iovecs > UIO_MAXIOV) 437 return NULL; 438 439 p = kmalloc(sizeof(struct bio) + 440 nr_iovecs * sizeof(struct bio_vec), 441 gfp_mask); 442 front_pad = 0; 443 inline_vecs = nr_iovecs; 444 } else { 445 /* should not use nobvec bioset for nr_iovecs > 0 */ 446 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 447 return NULL; 448 /* 449 * generic_make_request() converts recursion to iteration; this 450 * means if we're running beneath it, any bios we allocate and 451 * submit will not be submitted (and thus freed) until after we 452 * return. 453 * 454 * This exposes us to a potential deadlock if we allocate 455 * multiple bios from the same bio_set() while running 456 * underneath generic_make_request(). If we were to allocate 457 * multiple bios (say a stacking block driver that was splitting 458 * bios), we would deadlock if we exhausted the mempool's 459 * reserve. 460 * 461 * We solve this, and guarantee forward progress, with a rescuer 462 * workqueue per bio_set. If we go to allocate and there are 463 * bios on current->bio_list, we first try the allocation 464 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 465 * bios we would be blocking to the rescuer workqueue before 466 * we retry with the original gfp_flags. 467 */ 468 469 if (current->bio_list && !bio_list_empty(current->bio_list)) 470 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 471 472 p = mempool_alloc(bs->bio_pool, gfp_mask); 473 if (!p && gfp_mask != saved_gfp) { 474 punt_bios_to_rescuer(bs); 475 gfp_mask = saved_gfp; 476 p = mempool_alloc(bs->bio_pool, gfp_mask); 477 } 478 479 front_pad = bs->front_pad; 480 inline_vecs = BIO_INLINE_VECS; 481 } 482 483 if (unlikely(!p)) 484 return NULL; 485 486 bio = p + front_pad; 487 bio_init(bio, NULL, 0); 488 489 if (nr_iovecs > inline_vecs) { 490 unsigned long idx = 0; 491 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 493 if (!bvl && gfp_mask != saved_gfp) { 494 punt_bios_to_rescuer(bs); 495 gfp_mask = saved_gfp; 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 497 } 498 499 if (unlikely(!bvl)) 500 goto err_free; 501 502 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 503 } else if (nr_iovecs) { 504 bvl = bio->bi_inline_vecs; 505 } 506 507 bio->bi_pool = bs; 508 bio->bi_max_vecs = nr_iovecs; 509 bio->bi_io_vec = bvl; 510 return bio; 511 512 err_free: 513 mempool_free(p, bs->bio_pool); 514 return NULL; 515 } 516 EXPORT_SYMBOL(bio_alloc_bioset); 517 518 void zero_fill_bio(struct bio *bio) 519 { 520 unsigned long flags; 521 struct bio_vec bv; 522 struct bvec_iter iter; 523 524 bio_for_each_segment(bv, bio, iter) { 525 char *data = bvec_kmap_irq(&bv, &flags); 526 memset(data, 0, bv.bv_len); 527 flush_dcache_page(bv.bv_page); 528 bvec_kunmap_irq(data, &flags); 529 } 530 } 531 EXPORT_SYMBOL(zero_fill_bio); 532 533 /** 534 * bio_put - release a reference to a bio 535 * @bio: bio to release reference to 536 * 537 * Description: 538 * Put a reference to a &struct bio, either one you have gotten with 539 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 540 **/ 541 void bio_put(struct bio *bio) 542 { 543 if (!bio_flagged(bio, BIO_REFFED)) 544 bio_free(bio); 545 else { 546 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 547 548 /* 549 * last put frees it 550 */ 551 if (atomic_dec_and_test(&bio->__bi_cnt)) 552 bio_free(bio); 553 } 554 } 555 EXPORT_SYMBOL(bio_put); 556 557 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 558 { 559 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 560 blk_recount_segments(q, bio); 561 562 return bio->bi_phys_segments; 563 } 564 EXPORT_SYMBOL(bio_phys_segments); 565 566 /** 567 * __bio_clone_fast - clone a bio that shares the original bio's biovec 568 * @bio: destination bio 569 * @bio_src: bio to clone 570 * 571 * Clone a &bio. Caller will own the returned bio, but not 572 * the actual data it points to. Reference count of returned 573 * bio will be one. 574 * 575 * Caller must ensure that @bio_src is not freed before @bio. 576 */ 577 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 578 { 579 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 580 581 /* 582 * most users will be overriding ->bi_bdev with a new target, 583 * so we don't set nor calculate new physical/hw segment counts here 584 */ 585 bio->bi_bdev = bio_src->bi_bdev; 586 bio_set_flag(bio, BIO_CLONED); 587 bio->bi_opf = bio_src->bi_opf; 588 bio->bi_iter = bio_src->bi_iter; 589 bio->bi_io_vec = bio_src->bi_io_vec; 590 591 bio_clone_blkcg_association(bio, bio_src); 592 } 593 EXPORT_SYMBOL(__bio_clone_fast); 594 595 /** 596 * bio_clone_fast - clone a bio that shares the original bio's biovec 597 * @bio: bio to clone 598 * @gfp_mask: allocation priority 599 * @bs: bio_set to allocate from 600 * 601 * Like __bio_clone_fast, only also allocates the returned bio 602 */ 603 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 604 { 605 struct bio *b; 606 607 b = bio_alloc_bioset(gfp_mask, 0, bs); 608 if (!b) 609 return NULL; 610 611 __bio_clone_fast(b, bio); 612 613 if (bio_integrity(bio)) { 614 int ret; 615 616 ret = bio_integrity_clone(b, bio, gfp_mask); 617 618 if (ret < 0) { 619 bio_put(b); 620 return NULL; 621 } 622 } 623 624 return b; 625 } 626 EXPORT_SYMBOL(bio_clone_fast); 627 628 /** 629 * bio_clone_bioset - clone a bio 630 * @bio_src: bio to clone 631 * @gfp_mask: allocation priority 632 * @bs: bio_set to allocate from 633 * 634 * Clone bio. Caller will own the returned bio, but not the actual data it 635 * points to. Reference count of returned bio will be one. 636 */ 637 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 638 struct bio_set *bs) 639 { 640 struct bvec_iter iter; 641 struct bio_vec bv; 642 struct bio *bio; 643 644 /* 645 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 646 * bio_src->bi_io_vec to bio->bi_io_vec. 647 * 648 * We can't do that anymore, because: 649 * 650 * - The point of cloning the biovec is to produce a bio with a biovec 651 * the caller can modify: bi_idx and bi_bvec_done should be 0. 652 * 653 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 654 * we tried to clone the whole thing bio_alloc_bioset() would fail. 655 * But the clone should succeed as long as the number of biovecs we 656 * actually need to allocate is fewer than BIO_MAX_PAGES. 657 * 658 * - Lastly, bi_vcnt should not be looked at or relied upon by code 659 * that does not own the bio - reason being drivers don't use it for 660 * iterating over the biovec anymore, so expecting it to be kept up 661 * to date (i.e. for clones that share the parent biovec) is just 662 * asking for trouble and would force extra work on 663 * __bio_clone_fast() anyways. 664 */ 665 666 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 667 if (!bio) 668 return NULL; 669 bio->bi_bdev = bio_src->bi_bdev; 670 bio->bi_opf = bio_src->bi_opf; 671 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 672 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 673 674 switch (bio_op(bio)) { 675 case REQ_OP_DISCARD: 676 case REQ_OP_SECURE_ERASE: 677 case REQ_OP_WRITE_ZEROES: 678 break; 679 case REQ_OP_WRITE_SAME: 680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 681 break; 682 default: 683 bio_for_each_segment(bv, bio_src, iter) 684 bio->bi_io_vec[bio->bi_vcnt++] = bv; 685 break; 686 } 687 688 if (bio_integrity(bio_src)) { 689 int ret; 690 691 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 692 if (ret < 0) { 693 bio_put(bio); 694 return NULL; 695 } 696 } 697 698 bio_clone_blkcg_association(bio, bio_src); 699 700 return bio; 701 } 702 EXPORT_SYMBOL(bio_clone_bioset); 703 704 /** 705 * bio_add_pc_page - attempt to add page to bio 706 * @q: the target queue 707 * @bio: destination bio 708 * @page: page to add 709 * @len: vec entry length 710 * @offset: vec entry offset 711 * 712 * Attempt to add a page to the bio_vec maplist. This can fail for a 713 * number of reasons, such as the bio being full or target block device 714 * limitations. The target block device must allow bio's up to PAGE_SIZE, 715 * so it is always possible to add a single page to an empty bio. 716 * 717 * This should only be used by REQ_PC bios. 718 */ 719 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 720 *page, unsigned int len, unsigned int offset) 721 { 722 int retried_segments = 0; 723 struct bio_vec *bvec; 724 725 /* 726 * cloned bio must not modify vec list 727 */ 728 if (unlikely(bio_flagged(bio, BIO_CLONED))) 729 return 0; 730 731 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 732 return 0; 733 734 /* 735 * For filesystems with a blocksize smaller than the pagesize 736 * we will often be called with the same page as last time and 737 * a consecutive offset. Optimize this special case. 738 */ 739 if (bio->bi_vcnt > 0) { 740 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 741 742 if (page == prev->bv_page && 743 offset == prev->bv_offset + prev->bv_len) { 744 prev->bv_len += len; 745 bio->bi_iter.bi_size += len; 746 goto done; 747 } 748 749 /* 750 * If the queue doesn't support SG gaps and adding this 751 * offset would create a gap, disallow it. 752 */ 753 if (bvec_gap_to_prev(q, prev, offset)) 754 return 0; 755 } 756 757 if (bio->bi_vcnt >= bio->bi_max_vecs) 758 return 0; 759 760 /* 761 * setup the new entry, we might clear it again later if we 762 * cannot add the page 763 */ 764 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 765 bvec->bv_page = page; 766 bvec->bv_len = len; 767 bvec->bv_offset = offset; 768 bio->bi_vcnt++; 769 bio->bi_phys_segments++; 770 bio->bi_iter.bi_size += len; 771 772 /* 773 * Perform a recount if the number of segments is greater 774 * than queue_max_segments(q). 775 */ 776 777 while (bio->bi_phys_segments > queue_max_segments(q)) { 778 779 if (retried_segments) 780 goto failed; 781 782 retried_segments = 1; 783 blk_recount_segments(q, bio); 784 } 785 786 /* If we may be able to merge these biovecs, force a recount */ 787 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 788 bio_clear_flag(bio, BIO_SEG_VALID); 789 790 done: 791 return len; 792 793 failed: 794 bvec->bv_page = NULL; 795 bvec->bv_len = 0; 796 bvec->bv_offset = 0; 797 bio->bi_vcnt--; 798 bio->bi_iter.bi_size -= len; 799 blk_recount_segments(q, bio); 800 return 0; 801 } 802 EXPORT_SYMBOL(bio_add_pc_page); 803 804 /** 805 * bio_add_page - attempt to add page to bio 806 * @bio: destination bio 807 * @page: page to add 808 * @len: vec entry length 809 * @offset: vec entry offset 810 * 811 * Attempt to add a page to the bio_vec maplist. This will only fail 812 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 813 */ 814 int bio_add_page(struct bio *bio, struct page *page, 815 unsigned int len, unsigned int offset) 816 { 817 struct bio_vec *bv; 818 819 /* 820 * cloned bio must not modify vec list 821 */ 822 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 823 return 0; 824 825 /* 826 * For filesystems with a blocksize smaller than the pagesize 827 * we will often be called with the same page as last time and 828 * a consecutive offset. Optimize this special case. 829 */ 830 if (bio->bi_vcnt > 0) { 831 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 832 833 if (page == bv->bv_page && 834 offset == bv->bv_offset + bv->bv_len) { 835 bv->bv_len += len; 836 goto done; 837 } 838 } 839 840 if (bio->bi_vcnt >= bio->bi_max_vecs) 841 return 0; 842 843 bv = &bio->bi_io_vec[bio->bi_vcnt]; 844 bv->bv_page = page; 845 bv->bv_len = len; 846 bv->bv_offset = offset; 847 848 bio->bi_vcnt++; 849 done: 850 bio->bi_iter.bi_size += len; 851 return len; 852 } 853 EXPORT_SYMBOL(bio_add_page); 854 855 /** 856 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 857 * @bio: bio to add pages to 858 * @iter: iov iterator describing the region to be mapped 859 * 860 * Pins as many pages from *iter and appends them to @bio's bvec array. The 861 * pages will have to be released using put_page() when done. 862 */ 863 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 864 { 865 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 866 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 867 struct page **pages = (struct page **)bv; 868 size_t offset, diff; 869 ssize_t size; 870 871 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 872 if (unlikely(size <= 0)) 873 return size ? size : -EFAULT; 874 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 875 876 /* 877 * Deep magic below: We need to walk the pinned pages backwards 878 * because we are abusing the space allocated for the bio_vecs 879 * for the page array. Because the bio_vecs are larger than the 880 * page pointers by definition this will always work. But it also 881 * means we can't use bio_add_page, so any changes to it's semantics 882 * need to be reflected here as well. 883 */ 884 bio->bi_iter.bi_size += size; 885 bio->bi_vcnt += nr_pages; 886 887 diff = (nr_pages * PAGE_SIZE - offset) - size; 888 while (nr_pages--) { 889 bv[nr_pages].bv_page = pages[nr_pages]; 890 bv[nr_pages].bv_len = PAGE_SIZE; 891 bv[nr_pages].bv_offset = 0; 892 } 893 894 bv[0].bv_offset += offset; 895 bv[0].bv_len -= offset; 896 if (diff) 897 bv[bio->bi_vcnt - 1].bv_len -= diff; 898 899 iov_iter_advance(iter, size); 900 return 0; 901 } 902 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 903 904 struct submit_bio_ret { 905 struct completion event; 906 int error; 907 }; 908 909 static void submit_bio_wait_endio(struct bio *bio) 910 { 911 struct submit_bio_ret *ret = bio->bi_private; 912 913 ret->error = bio->bi_error; 914 complete(&ret->event); 915 } 916 917 /** 918 * submit_bio_wait - submit a bio, and wait until it completes 919 * @bio: The &struct bio which describes the I/O 920 * 921 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 922 * bio_endio() on failure. 923 */ 924 int submit_bio_wait(struct bio *bio) 925 { 926 struct submit_bio_ret ret; 927 928 init_completion(&ret.event); 929 bio->bi_private = &ret; 930 bio->bi_end_io = submit_bio_wait_endio; 931 bio->bi_opf |= REQ_SYNC; 932 submit_bio(bio); 933 wait_for_completion_io(&ret.event); 934 935 return ret.error; 936 } 937 EXPORT_SYMBOL(submit_bio_wait); 938 939 /** 940 * bio_advance - increment/complete a bio by some number of bytes 941 * @bio: bio to advance 942 * @bytes: number of bytes to complete 943 * 944 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 945 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 946 * be updated on the last bvec as well. 947 * 948 * @bio will then represent the remaining, uncompleted portion of the io. 949 */ 950 void bio_advance(struct bio *bio, unsigned bytes) 951 { 952 if (bio_integrity(bio)) 953 bio_integrity_advance(bio, bytes); 954 955 bio_advance_iter(bio, &bio->bi_iter, bytes); 956 } 957 EXPORT_SYMBOL(bio_advance); 958 959 /** 960 * bio_alloc_pages - allocates a single page for each bvec in a bio 961 * @bio: bio to allocate pages for 962 * @gfp_mask: flags for allocation 963 * 964 * Allocates pages up to @bio->bi_vcnt. 965 * 966 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 967 * freed. 968 */ 969 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 970 { 971 int i; 972 struct bio_vec *bv; 973 974 bio_for_each_segment_all(bv, bio, i) { 975 bv->bv_page = alloc_page(gfp_mask); 976 if (!bv->bv_page) { 977 while (--bv >= bio->bi_io_vec) 978 __free_page(bv->bv_page); 979 return -ENOMEM; 980 } 981 } 982 983 return 0; 984 } 985 EXPORT_SYMBOL(bio_alloc_pages); 986 987 /** 988 * bio_copy_data - copy contents of data buffers from one chain of bios to 989 * another 990 * @src: source bio list 991 * @dst: destination bio list 992 * 993 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 994 * @src and @dst as linked lists of bios. 995 * 996 * Stops when it reaches the end of either @src or @dst - that is, copies 997 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 998 */ 999 void bio_copy_data(struct bio *dst, struct bio *src) 1000 { 1001 struct bvec_iter src_iter, dst_iter; 1002 struct bio_vec src_bv, dst_bv; 1003 void *src_p, *dst_p; 1004 unsigned bytes; 1005 1006 src_iter = src->bi_iter; 1007 dst_iter = dst->bi_iter; 1008 1009 while (1) { 1010 if (!src_iter.bi_size) { 1011 src = src->bi_next; 1012 if (!src) 1013 break; 1014 1015 src_iter = src->bi_iter; 1016 } 1017 1018 if (!dst_iter.bi_size) { 1019 dst = dst->bi_next; 1020 if (!dst) 1021 break; 1022 1023 dst_iter = dst->bi_iter; 1024 } 1025 1026 src_bv = bio_iter_iovec(src, src_iter); 1027 dst_bv = bio_iter_iovec(dst, dst_iter); 1028 1029 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1030 1031 src_p = kmap_atomic(src_bv.bv_page); 1032 dst_p = kmap_atomic(dst_bv.bv_page); 1033 1034 memcpy(dst_p + dst_bv.bv_offset, 1035 src_p + src_bv.bv_offset, 1036 bytes); 1037 1038 kunmap_atomic(dst_p); 1039 kunmap_atomic(src_p); 1040 1041 bio_advance_iter(src, &src_iter, bytes); 1042 bio_advance_iter(dst, &dst_iter, bytes); 1043 } 1044 } 1045 EXPORT_SYMBOL(bio_copy_data); 1046 1047 struct bio_map_data { 1048 int is_our_pages; 1049 struct iov_iter iter; 1050 struct iovec iov[]; 1051 }; 1052 1053 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1054 gfp_t gfp_mask) 1055 { 1056 if (iov_count > UIO_MAXIOV) 1057 return NULL; 1058 1059 return kmalloc(sizeof(struct bio_map_data) + 1060 sizeof(struct iovec) * iov_count, gfp_mask); 1061 } 1062 1063 /** 1064 * bio_copy_from_iter - copy all pages from iov_iter to bio 1065 * @bio: The &struct bio which describes the I/O as destination 1066 * @iter: iov_iter as source 1067 * 1068 * Copy all pages from iov_iter to bio. 1069 * Returns 0 on success, or error on failure. 1070 */ 1071 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1072 { 1073 int i; 1074 struct bio_vec *bvec; 1075 1076 bio_for_each_segment_all(bvec, bio, i) { 1077 ssize_t ret; 1078 1079 ret = copy_page_from_iter(bvec->bv_page, 1080 bvec->bv_offset, 1081 bvec->bv_len, 1082 &iter); 1083 1084 if (!iov_iter_count(&iter)) 1085 break; 1086 1087 if (ret < bvec->bv_len) 1088 return -EFAULT; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /** 1095 * bio_copy_to_iter - copy all pages from bio to iov_iter 1096 * @bio: The &struct bio which describes the I/O as source 1097 * @iter: iov_iter as destination 1098 * 1099 * Copy all pages from bio to iov_iter. 1100 * Returns 0 on success, or error on failure. 1101 */ 1102 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1103 { 1104 int i; 1105 struct bio_vec *bvec; 1106 1107 bio_for_each_segment_all(bvec, bio, i) { 1108 ssize_t ret; 1109 1110 ret = copy_page_to_iter(bvec->bv_page, 1111 bvec->bv_offset, 1112 bvec->bv_len, 1113 &iter); 1114 1115 if (!iov_iter_count(&iter)) 1116 break; 1117 1118 if (ret < bvec->bv_len) 1119 return -EFAULT; 1120 } 1121 1122 return 0; 1123 } 1124 1125 void bio_free_pages(struct bio *bio) 1126 { 1127 struct bio_vec *bvec; 1128 int i; 1129 1130 bio_for_each_segment_all(bvec, bio, i) 1131 __free_page(bvec->bv_page); 1132 } 1133 EXPORT_SYMBOL(bio_free_pages); 1134 1135 /** 1136 * bio_uncopy_user - finish previously mapped bio 1137 * @bio: bio being terminated 1138 * 1139 * Free pages allocated from bio_copy_user_iov() and write back data 1140 * to user space in case of a read. 1141 */ 1142 int bio_uncopy_user(struct bio *bio) 1143 { 1144 struct bio_map_data *bmd = bio->bi_private; 1145 int ret = 0; 1146 1147 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1148 /* 1149 * if we're in a workqueue, the request is orphaned, so 1150 * don't copy into a random user address space, just free 1151 * and return -EINTR so user space doesn't expect any data. 1152 */ 1153 if (!current->mm) 1154 ret = -EINTR; 1155 else if (bio_data_dir(bio) == READ) 1156 ret = bio_copy_to_iter(bio, bmd->iter); 1157 if (bmd->is_our_pages) 1158 bio_free_pages(bio); 1159 } 1160 kfree(bmd); 1161 bio_put(bio); 1162 return ret; 1163 } 1164 1165 /** 1166 * bio_copy_user_iov - copy user data to bio 1167 * @q: destination block queue 1168 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1169 * @iter: iovec iterator 1170 * @gfp_mask: memory allocation flags 1171 * 1172 * Prepares and returns a bio for indirect user io, bouncing data 1173 * to/from kernel pages as necessary. Must be paired with 1174 * call bio_uncopy_user() on io completion. 1175 */ 1176 struct bio *bio_copy_user_iov(struct request_queue *q, 1177 struct rq_map_data *map_data, 1178 const struct iov_iter *iter, 1179 gfp_t gfp_mask) 1180 { 1181 struct bio_map_data *bmd; 1182 struct page *page; 1183 struct bio *bio; 1184 int i, ret; 1185 int nr_pages = 0; 1186 unsigned int len = iter->count; 1187 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1188 1189 for (i = 0; i < iter->nr_segs; i++) { 1190 unsigned long uaddr; 1191 unsigned long end; 1192 unsigned long start; 1193 1194 uaddr = (unsigned long) iter->iov[i].iov_base; 1195 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1196 >> PAGE_SHIFT; 1197 start = uaddr >> PAGE_SHIFT; 1198 1199 /* 1200 * Overflow, abort 1201 */ 1202 if (end < start) 1203 return ERR_PTR(-EINVAL); 1204 1205 nr_pages += end - start; 1206 } 1207 1208 if (offset) 1209 nr_pages++; 1210 1211 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1212 if (!bmd) 1213 return ERR_PTR(-ENOMEM); 1214 1215 /* 1216 * We need to do a deep copy of the iov_iter including the iovecs. 1217 * The caller provided iov might point to an on-stack or otherwise 1218 * shortlived one. 1219 */ 1220 bmd->is_our_pages = map_data ? 0 : 1; 1221 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1222 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1223 iter->nr_segs, iter->count); 1224 1225 ret = -ENOMEM; 1226 bio = bio_kmalloc(gfp_mask, nr_pages); 1227 if (!bio) 1228 goto out_bmd; 1229 1230 ret = 0; 1231 1232 if (map_data) { 1233 nr_pages = 1 << map_data->page_order; 1234 i = map_data->offset / PAGE_SIZE; 1235 } 1236 while (len) { 1237 unsigned int bytes = PAGE_SIZE; 1238 1239 bytes -= offset; 1240 1241 if (bytes > len) 1242 bytes = len; 1243 1244 if (map_data) { 1245 if (i == map_data->nr_entries * nr_pages) { 1246 ret = -ENOMEM; 1247 break; 1248 } 1249 1250 page = map_data->pages[i / nr_pages]; 1251 page += (i % nr_pages); 1252 1253 i++; 1254 } else { 1255 page = alloc_page(q->bounce_gfp | gfp_mask); 1256 if (!page) { 1257 ret = -ENOMEM; 1258 break; 1259 } 1260 } 1261 1262 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1263 break; 1264 1265 len -= bytes; 1266 offset = 0; 1267 } 1268 1269 if (ret) 1270 goto cleanup; 1271 1272 /* 1273 * success 1274 */ 1275 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1276 (map_data && map_data->from_user)) { 1277 ret = bio_copy_from_iter(bio, *iter); 1278 if (ret) 1279 goto cleanup; 1280 } 1281 1282 bio->bi_private = bmd; 1283 return bio; 1284 cleanup: 1285 if (!map_data) 1286 bio_free_pages(bio); 1287 bio_put(bio); 1288 out_bmd: 1289 kfree(bmd); 1290 return ERR_PTR(ret); 1291 } 1292 1293 /** 1294 * bio_map_user_iov - map user iovec into bio 1295 * @q: the struct request_queue for the bio 1296 * @iter: iovec iterator 1297 * @gfp_mask: memory allocation flags 1298 * 1299 * Map the user space address into a bio suitable for io to a block 1300 * device. Returns an error pointer in case of error. 1301 */ 1302 struct bio *bio_map_user_iov(struct request_queue *q, 1303 const struct iov_iter *iter, 1304 gfp_t gfp_mask) 1305 { 1306 int j; 1307 int nr_pages = 0; 1308 struct page **pages; 1309 struct bio *bio; 1310 int cur_page = 0; 1311 int ret, offset; 1312 struct iov_iter i; 1313 struct iovec iov; 1314 1315 iov_for_each(iov, i, *iter) { 1316 unsigned long uaddr = (unsigned long) iov.iov_base; 1317 unsigned long len = iov.iov_len; 1318 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1319 unsigned long start = uaddr >> PAGE_SHIFT; 1320 1321 /* 1322 * Overflow, abort 1323 */ 1324 if (end < start) 1325 return ERR_PTR(-EINVAL); 1326 1327 nr_pages += end - start; 1328 /* 1329 * buffer must be aligned to at least logical block size for now 1330 */ 1331 if (uaddr & queue_dma_alignment(q)) 1332 return ERR_PTR(-EINVAL); 1333 } 1334 1335 if (!nr_pages) 1336 return ERR_PTR(-EINVAL); 1337 1338 bio = bio_kmalloc(gfp_mask, nr_pages); 1339 if (!bio) 1340 return ERR_PTR(-ENOMEM); 1341 1342 ret = -ENOMEM; 1343 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1344 if (!pages) 1345 goto out; 1346 1347 iov_for_each(iov, i, *iter) { 1348 unsigned long uaddr = (unsigned long) iov.iov_base; 1349 unsigned long len = iov.iov_len; 1350 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1351 unsigned long start = uaddr >> PAGE_SHIFT; 1352 const int local_nr_pages = end - start; 1353 const int page_limit = cur_page + local_nr_pages; 1354 1355 ret = get_user_pages_fast(uaddr, local_nr_pages, 1356 (iter->type & WRITE) != WRITE, 1357 &pages[cur_page]); 1358 if (ret < local_nr_pages) { 1359 ret = -EFAULT; 1360 goto out_unmap; 1361 } 1362 1363 offset = offset_in_page(uaddr); 1364 for (j = cur_page; j < page_limit; j++) { 1365 unsigned int bytes = PAGE_SIZE - offset; 1366 1367 if (len <= 0) 1368 break; 1369 1370 if (bytes > len) 1371 bytes = len; 1372 1373 /* 1374 * sorry... 1375 */ 1376 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1377 bytes) 1378 break; 1379 1380 len -= bytes; 1381 offset = 0; 1382 } 1383 1384 cur_page = j; 1385 /* 1386 * release the pages we didn't map into the bio, if any 1387 */ 1388 while (j < page_limit) 1389 put_page(pages[j++]); 1390 } 1391 1392 kfree(pages); 1393 1394 bio_set_flag(bio, BIO_USER_MAPPED); 1395 1396 /* 1397 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1398 * it would normally disappear when its bi_end_io is run. 1399 * however, we need it for the unmap, so grab an extra 1400 * reference to it 1401 */ 1402 bio_get(bio); 1403 return bio; 1404 1405 out_unmap: 1406 for (j = 0; j < nr_pages; j++) { 1407 if (!pages[j]) 1408 break; 1409 put_page(pages[j]); 1410 } 1411 out: 1412 kfree(pages); 1413 bio_put(bio); 1414 return ERR_PTR(ret); 1415 } 1416 1417 static void __bio_unmap_user(struct bio *bio) 1418 { 1419 struct bio_vec *bvec; 1420 int i; 1421 1422 /* 1423 * make sure we dirty pages we wrote to 1424 */ 1425 bio_for_each_segment_all(bvec, bio, i) { 1426 if (bio_data_dir(bio) == READ) 1427 set_page_dirty_lock(bvec->bv_page); 1428 1429 put_page(bvec->bv_page); 1430 } 1431 1432 bio_put(bio); 1433 } 1434 1435 /** 1436 * bio_unmap_user - unmap a bio 1437 * @bio: the bio being unmapped 1438 * 1439 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1440 * process context. 1441 * 1442 * bio_unmap_user() may sleep. 1443 */ 1444 void bio_unmap_user(struct bio *bio) 1445 { 1446 __bio_unmap_user(bio); 1447 bio_put(bio); 1448 } 1449 1450 static void bio_map_kern_endio(struct bio *bio) 1451 { 1452 bio_put(bio); 1453 } 1454 1455 /** 1456 * bio_map_kern - map kernel address into bio 1457 * @q: the struct request_queue for the bio 1458 * @data: pointer to buffer to map 1459 * @len: length in bytes 1460 * @gfp_mask: allocation flags for bio allocation 1461 * 1462 * Map the kernel address into a bio suitable for io to a block 1463 * device. Returns an error pointer in case of error. 1464 */ 1465 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1466 gfp_t gfp_mask) 1467 { 1468 unsigned long kaddr = (unsigned long)data; 1469 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1470 unsigned long start = kaddr >> PAGE_SHIFT; 1471 const int nr_pages = end - start; 1472 int offset, i; 1473 struct bio *bio; 1474 1475 bio = bio_kmalloc(gfp_mask, nr_pages); 1476 if (!bio) 1477 return ERR_PTR(-ENOMEM); 1478 1479 offset = offset_in_page(kaddr); 1480 for (i = 0; i < nr_pages; i++) { 1481 unsigned int bytes = PAGE_SIZE - offset; 1482 1483 if (len <= 0) 1484 break; 1485 1486 if (bytes > len) 1487 bytes = len; 1488 1489 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1490 offset) < bytes) { 1491 /* we don't support partial mappings */ 1492 bio_put(bio); 1493 return ERR_PTR(-EINVAL); 1494 } 1495 1496 data += bytes; 1497 len -= bytes; 1498 offset = 0; 1499 } 1500 1501 bio->bi_end_io = bio_map_kern_endio; 1502 return bio; 1503 } 1504 EXPORT_SYMBOL(bio_map_kern); 1505 1506 static void bio_copy_kern_endio(struct bio *bio) 1507 { 1508 bio_free_pages(bio); 1509 bio_put(bio); 1510 } 1511 1512 static void bio_copy_kern_endio_read(struct bio *bio) 1513 { 1514 char *p = bio->bi_private; 1515 struct bio_vec *bvec; 1516 int i; 1517 1518 bio_for_each_segment_all(bvec, bio, i) { 1519 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1520 p += bvec->bv_len; 1521 } 1522 1523 bio_copy_kern_endio(bio); 1524 } 1525 1526 /** 1527 * bio_copy_kern - copy kernel address into bio 1528 * @q: the struct request_queue for the bio 1529 * @data: pointer to buffer to copy 1530 * @len: length in bytes 1531 * @gfp_mask: allocation flags for bio and page allocation 1532 * @reading: data direction is READ 1533 * 1534 * copy the kernel address into a bio suitable for io to a block 1535 * device. Returns an error pointer in case of error. 1536 */ 1537 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1538 gfp_t gfp_mask, int reading) 1539 { 1540 unsigned long kaddr = (unsigned long)data; 1541 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1542 unsigned long start = kaddr >> PAGE_SHIFT; 1543 struct bio *bio; 1544 void *p = data; 1545 int nr_pages = 0; 1546 1547 /* 1548 * Overflow, abort 1549 */ 1550 if (end < start) 1551 return ERR_PTR(-EINVAL); 1552 1553 nr_pages = end - start; 1554 bio = bio_kmalloc(gfp_mask, nr_pages); 1555 if (!bio) 1556 return ERR_PTR(-ENOMEM); 1557 1558 while (len) { 1559 struct page *page; 1560 unsigned int bytes = PAGE_SIZE; 1561 1562 if (bytes > len) 1563 bytes = len; 1564 1565 page = alloc_page(q->bounce_gfp | gfp_mask); 1566 if (!page) 1567 goto cleanup; 1568 1569 if (!reading) 1570 memcpy(page_address(page), p, bytes); 1571 1572 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1573 break; 1574 1575 len -= bytes; 1576 p += bytes; 1577 } 1578 1579 if (reading) { 1580 bio->bi_end_io = bio_copy_kern_endio_read; 1581 bio->bi_private = data; 1582 } else { 1583 bio->bi_end_io = bio_copy_kern_endio; 1584 } 1585 1586 return bio; 1587 1588 cleanup: 1589 bio_free_pages(bio); 1590 bio_put(bio); 1591 return ERR_PTR(-ENOMEM); 1592 } 1593 1594 /* 1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1596 * for performing direct-IO in BIOs. 1597 * 1598 * The problem is that we cannot run set_page_dirty() from interrupt context 1599 * because the required locks are not interrupt-safe. So what we can do is to 1600 * mark the pages dirty _before_ performing IO. And in interrupt context, 1601 * check that the pages are still dirty. If so, fine. If not, redirty them 1602 * in process context. 1603 * 1604 * We special-case compound pages here: normally this means reads into hugetlb 1605 * pages. The logic in here doesn't really work right for compound pages 1606 * because the VM does not uniformly chase down the head page in all cases. 1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1608 * handle them at all. So we skip compound pages here at an early stage. 1609 * 1610 * Note that this code is very hard to test under normal circumstances because 1611 * direct-io pins the pages with get_user_pages(). This makes 1612 * is_page_cache_freeable return false, and the VM will not clean the pages. 1613 * But other code (eg, flusher threads) could clean the pages if they are mapped 1614 * pagecache. 1615 * 1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1617 * deferred bio dirtying paths. 1618 */ 1619 1620 /* 1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1622 */ 1623 void bio_set_pages_dirty(struct bio *bio) 1624 { 1625 struct bio_vec *bvec; 1626 int i; 1627 1628 bio_for_each_segment_all(bvec, bio, i) { 1629 struct page *page = bvec->bv_page; 1630 1631 if (page && !PageCompound(page)) 1632 set_page_dirty_lock(page); 1633 } 1634 } 1635 1636 static void bio_release_pages(struct bio *bio) 1637 { 1638 struct bio_vec *bvec; 1639 int i; 1640 1641 bio_for_each_segment_all(bvec, bio, i) { 1642 struct page *page = bvec->bv_page; 1643 1644 if (page) 1645 put_page(page); 1646 } 1647 } 1648 1649 /* 1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1651 * If they are, then fine. If, however, some pages are clean then they must 1652 * have been written out during the direct-IO read. So we take another ref on 1653 * the BIO and the offending pages and re-dirty the pages in process context. 1654 * 1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1656 * here on. It will run one put_page() against each page and will run one 1657 * bio_put() against the BIO. 1658 */ 1659 1660 static void bio_dirty_fn(struct work_struct *work); 1661 1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1663 static DEFINE_SPINLOCK(bio_dirty_lock); 1664 static struct bio *bio_dirty_list; 1665 1666 /* 1667 * This runs in process context 1668 */ 1669 static void bio_dirty_fn(struct work_struct *work) 1670 { 1671 unsigned long flags; 1672 struct bio *bio; 1673 1674 spin_lock_irqsave(&bio_dirty_lock, flags); 1675 bio = bio_dirty_list; 1676 bio_dirty_list = NULL; 1677 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1678 1679 while (bio) { 1680 struct bio *next = bio->bi_private; 1681 1682 bio_set_pages_dirty(bio); 1683 bio_release_pages(bio); 1684 bio_put(bio); 1685 bio = next; 1686 } 1687 } 1688 1689 void bio_check_pages_dirty(struct bio *bio) 1690 { 1691 struct bio_vec *bvec; 1692 int nr_clean_pages = 0; 1693 int i; 1694 1695 bio_for_each_segment_all(bvec, bio, i) { 1696 struct page *page = bvec->bv_page; 1697 1698 if (PageDirty(page) || PageCompound(page)) { 1699 put_page(page); 1700 bvec->bv_page = NULL; 1701 } else { 1702 nr_clean_pages++; 1703 } 1704 } 1705 1706 if (nr_clean_pages) { 1707 unsigned long flags; 1708 1709 spin_lock_irqsave(&bio_dirty_lock, flags); 1710 bio->bi_private = bio_dirty_list; 1711 bio_dirty_list = bio; 1712 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1713 schedule_work(&bio_dirty_work); 1714 } else { 1715 bio_put(bio); 1716 } 1717 } 1718 1719 void generic_start_io_acct(int rw, unsigned long sectors, 1720 struct hd_struct *part) 1721 { 1722 int cpu = part_stat_lock(); 1723 1724 part_round_stats(cpu, part); 1725 part_stat_inc(cpu, part, ios[rw]); 1726 part_stat_add(cpu, part, sectors[rw], sectors); 1727 part_inc_in_flight(part, rw); 1728 1729 part_stat_unlock(); 1730 } 1731 EXPORT_SYMBOL(generic_start_io_acct); 1732 1733 void generic_end_io_acct(int rw, struct hd_struct *part, 1734 unsigned long start_time) 1735 { 1736 unsigned long duration = jiffies - start_time; 1737 int cpu = part_stat_lock(); 1738 1739 part_stat_add(cpu, part, ticks[rw], duration); 1740 part_round_stats(cpu, part); 1741 part_dec_in_flight(part, rw); 1742 1743 part_stat_unlock(); 1744 } 1745 EXPORT_SYMBOL(generic_end_io_acct); 1746 1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1748 void bio_flush_dcache_pages(struct bio *bi) 1749 { 1750 struct bio_vec bvec; 1751 struct bvec_iter iter; 1752 1753 bio_for_each_segment(bvec, bi, iter) 1754 flush_dcache_page(bvec.bv_page); 1755 } 1756 EXPORT_SYMBOL(bio_flush_dcache_pages); 1757 #endif 1758 1759 static inline bool bio_remaining_done(struct bio *bio) 1760 { 1761 /* 1762 * If we're not chaining, then ->__bi_remaining is always 1 and 1763 * we always end io on the first invocation. 1764 */ 1765 if (!bio_flagged(bio, BIO_CHAIN)) 1766 return true; 1767 1768 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1769 1770 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1771 bio_clear_flag(bio, BIO_CHAIN); 1772 return true; 1773 } 1774 1775 return false; 1776 } 1777 1778 /** 1779 * bio_endio - end I/O on a bio 1780 * @bio: bio 1781 * 1782 * Description: 1783 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1784 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1785 * bio unless they own it and thus know that it has an end_io function. 1786 **/ 1787 void bio_endio(struct bio *bio) 1788 { 1789 again: 1790 if (!bio_remaining_done(bio)) 1791 return; 1792 1793 /* 1794 * Need to have a real endio function for chained bios, otherwise 1795 * various corner cases will break (like stacking block devices that 1796 * save/restore bi_end_io) - however, we want to avoid unbounded 1797 * recursion and blowing the stack. Tail call optimization would 1798 * handle this, but compiling with frame pointers also disables 1799 * gcc's sibling call optimization. 1800 */ 1801 if (bio->bi_end_io == bio_chain_endio) { 1802 bio = __bio_chain_endio(bio); 1803 goto again; 1804 } 1805 1806 if (bio->bi_end_io) 1807 bio->bi_end_io(bio); 1808 } 1809 EXPORT_SYMBOL(bio_endio); 1810 1811 /** 1812 * bio_split - split a bio 1813 * @bio: bio to split 1814 * @sectors: number of sectors to split from the front of @bio 1815 * @gfp: gfp mask 1816 * @bs: bio set to allocate from 1817 * 1818 * Allocates and returns a new bio which represents @sectors from the start of 1819 * @bio, and updates @bio to represent the remaining sectors. 1820 * 1821 * Unless this is a discard request the newly allocated bio will point 1822 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1823 * @bio is not freed before the split. 1824 */ 1825 struct bio *bio_split(struct bio *bio, int sectors, 1826 gfp_t gfp, struct bio_set *bs) 1827 { 1828 struct bio *split = NULL; 1829 1830 BUG_ON(sectors <= 0); 1831 BUG_ON(sectors >= bio_sectors(bio)); 1832 1833 split = bio_clone_fast(bio, gfp, bs); 1834 if (!split) 1835 return NULL; 1836 1837 split->bi_iter.bi_size = sectors << 9; 1838 1839 if (bio_integrity(split)) 1840 bio_integrity_trim(split, 0, sectors); 1841 1842 bio_advance(bio, split->bi_iter.bi_size); 1843 1844 return split; 1845 } 1846 EXPORT_SYMBOL(bio_split); 1847 1848 /** 1849 * bio_trim - trim a bio 1850 * @bio: bio to trim 1851 * @offset: number of sectors to trim from the front of @bio 1852 * @size: size we want to trim @bio to, in sectors 1853 */ 1854 void bio_trim(struct bio *bio, int offset, int size) 1855 { 1856 /* 'bio' is a cloned bio which we need to trim to match 1857 * the given offset and size. 1858 */ 1859 1860 size <<= 9; 1861 if (offset == 0 && size == bio->bi_iter.bi_size) 1862 return; 1863 1864 bio_clear_flag(bio, BIO_SEG_VALID); 1865 1866 bio_advance(bio, offset << 9); 1867 1868 bio->bi_iter.bi_size = size; 1869 } 1870 EXPORT_SYMBOL_GPL(bio_trim); 1871 1872 /* 1873 * create memory pools for biovec's in a bio_set. 1874 * use the global biovec slabs created for general use. 1875 */ 1876 mempool_t *biovec_create_pool(int pool_entries) 1877 { 1878 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1879 1880 return mempool_create_slab_pool(pool_entries, bp->slab); 1881 } 1882 1883 void bioset_free(struct bio_set *bs) 1884 { 1885 if (bs->rescue_workqueue) 1886 destroy_workqueue(bs->rescue_workqueue); 1887 1888 if (bs->bio_pool) 1889 mempool_destroy(bs->bio_pool); 1890 1891 if (bs->bvec_pool) 1892 mempool_destroy(bs->bvec_pool); 1893 1894 bioset_integrity_free(bs); 1895 bio_put_slab(bs); 1896 1897 kfree(bs); 1898 } 1899 EXPORT_SYMBOL(bioset_free); 1900 1901 static struct bio_set *__bioset_create(unsigned int pool_size, 1902 unsigned int front_pad, 1903 bool create_bvec_pool) 1904 { 1905 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1906 struct bio_set *bs; 1907 1908 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1909 if (!bs) 1910 return NULL; 1911 1912 bs->front_pad = front_pad; 1913 1914 spin_lock_init(&bs->rescue_lock); 1915 bio_list_init(&bs->rescue_list); 1916 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1917 1918 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1919 if (!bs->bio_slab) { 1920 kfree(bs); 1921 return NULL; 1922 } 1923 1924 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1925 if (!bs->bio_pool) 1926 goto bad; 1927 1928 if (create_bvec_pool) { 1929 bs->bvec_pool = biovec_create_pool(pool_size); 1930 if (!bs->bvec_pool) 1931 goto bad; 1932 } 1933 1934 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1935 if (!bs->rescue_workqueue) 1936 goto bad; 1937 1938 return bs; 1939 bad: 1940 bioset_free(bs); 1941 return NULL; 1942 } 1943 1944 /** 1945 * bioset_create - Create a bio_set 1946 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1947 * @front_pad: Number of bytes to allocate in front of the returned bio 1948 * 1949 * Description: 1950 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1951 * to ask for a number of bytes to be allocated in front of the bio. 1952 * Front pad allocation is useful for embedding the bio inside 1953 * another structure, to avoid allocating extra data to go with the bio. 1954 * Note that the bio must be embedded at the END of that structure always, 1955 * or things will break badly. 1956 */ 1957 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1958 { 1959 return __bioset_create(pool_size, front_pad, true); 1960 } 1961 EXPORT_SYMBOL(bioset_create); 1962 1963 /** 1964 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1965 * @pool_size: Number of bio to cache in the mempool 1966 * @front_pad: Number of bytes to allocate in front of the returned bio 1967 * 1968 * Description: 1969 * Same functionality as bioset_create() except that mempool is not 1970 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1971 */ 1972 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1973 { 1974 return __bioset_create(pool_size, front_pad, false); 1975 } 1976 EXPORT_SYMBOL(bioset_create_nobvec); 1977 1978 #ifdef CONFIG_BLK_CGROUP 1979 1980 /** 1981 * bio_associate_blkcg - associate a bio with the specified blkcg 1982 * @bio: target bio 1983 * @blkcg_css: css of the blkcg to associate 1984 * 1985 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1986 * treat @bio as if it were issued by a task which belongs to the blkcg. 1987 * 1988 * This function takes an extra reference of @blkcg_css which will be put 1989 * when @bio is released. The caller must own @bio and is responsible for 1990 * synchronizing calls to this function. 1991 */ 1992 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1993 { 1994 if (unlikely(bio->bi_css)) 1995 return -EBUSY; 1996 css_get(blkcg_css); 1997 bio->bi_css = blkcg_css; 1998 return 0; 1999 } 2000 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2001 2002 /** 2003 * bio_associate_current - associate a bio with %current 2004 * @bio: target bio 2005 * 2006 * Associate @bio with %current if it hasn't been associated yet. Block 2007 * layer will treat @bio as if it were issued by %current no matter which 2008 * task actually issues it. 2009 * 2010 * This function takes an extra reference of @task's io_context and blkcg 2011 * which will be put when @bio is released. The caller must own @bio, 2012 * ensure %current->io_context exists, and is responsible for synchronizing 2013 * calls to this function. 2014 */ 2015 int bio_associate_current(struct bio *bio) 2016 { 2017 struct io_context *ioc; 2018 2019 if (bio->bi_css) 2020 return -EBUSY; 2021 2022 ioc = current->io_context; 2023 if (!ioc) 2024 return -ENOENT; 2025 2026 get_io_context_active(ioc); 2027 bio->bi_ioc = ioc; 2028 bio->bi_css = task_get_css(current, io_cgrp_id); 2029 return 0; 2030 } 2031 EXPORT_SYMBOL_GPL(bio_associate_current); 2032 2033 /** 2034 * bio_disassociate_task - undo bio_associate_current() 2035 * @bio: target bio 2036 */ 2037 void bio_disassociate_task(struct bio *bio) 2038 { 2039 if (bio->bi_ioc) { 2040 put_io_context(bio->bi_ioc); 2041 bio->bi_ioc = NULL; 2042 } 2043 if (bio->bi_css) { 2044 css_put(bio->bi_css); 2045 bio->bi_css = NULL; 2046 } 2047 } 2048 2049 /** 2050 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2051 * @dst: destination bio 2052 * @src: source bio 2053 */ 2054 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2055 { 2056 if (src->bi_css) 2057 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2058 } 2059 2060 #endif /* CONFIG_BLK_CGROUP */ 2061 2062 static void __init biovec_init_slabs(void) 2063 { 2064 int i; 2065 2066 for (i = 0; i < BVEC_POOL_NR; i++) { 2067 int size; 2068 struct biovec_slab *bvs = bvec_slabs + i; 2069 2070 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2071 bvs->slab = NULL; 2072 continue; 2073 } 2074 2075 size = bvs->nr_vecs * sizeof(struct bio_vec); 2076 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2077 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2078 } 2079 } 2080 2081 static int __init init_bio(void) 2082 { 2083 bio_slab_max = 2; 2084 bio_slab_nr = 0; 2085 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2086 if (!bio_slabs) 2087 panic("bio: can't allocate bios\n"); 2088 2089 bio_integrity_init(); 2090 biovec_init_slabs(); 2091 2092 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2093 if (!fs_bio_set) 2094 panic("bio: can't allocate bios\n"); 2095 2096 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2097 panic("bio: can't create integrity pool\n"); 2098 2099 return 0; 2100 } 2101 subsys_initcall(init_bio); 2102