xref: /linux/block/bio.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 	      unsigned short max_vecs)
275 {
276 	memset(bio, 0, sizeof(*bio));
277 	atomic_set(&bio->__bi_remaining, 1);
278 	atomic_set(&bio->__bi_cnt, 1);
279 
280 	bio->bi_io_vec = table;
281 	bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284 
285 /**
286  * bio_reset - reinitialize a bio
287  * @bio:	bio to reset
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
295 void bio_reset(struct bio *bio)
296 {
297 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298 
299 	__bio_free(bio);
300 
301 	memset(bio, 0, BIO_RESET_BYTES);
302 	bio->bi_flags = flags;
303 	atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (!parent->bi_error)
312 		parent->bi_error = bio->bi_error;
313 	bio_put(bio);
314 	return parent;
315 }
316 
317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the @bio's parent bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 	struct bio *bio;
347 
348 	while (1) {
349 		spin_lock(&bs->rescue_lock);
350 		bio = bio_list_pop(&bs->rescue_list);
351 		spin_unlock(&bs->rescue_lock);
352 
353 		if (!bio)
354 			break;
355 
356 		generic_make_request(bio);
357 	}
358 }
359 
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 	struct bio_list punt, nopunt;
363 	struct bio *bio;
364 
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(current->bio_list)))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 
382 	*current->bio_list = nopunt;
383 
384 	spin_lock(&bs->rescue_lock);
385 	bio_list_merge(&bs->rescue_list, &punt);
386 	spin_unlock(&bs->rescue_lock);
387 
388 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390 
391 /**
392  * bio_alloc_bioset - allocate a bio for I/O
393  * @gfp_mask:   the GFP_ mask given to the slab allocator
394  * @nr_iovecs:	number of iovecs to pre-allocate
395  * @bs:		the bio_set to allocate from.
396  *
397  * Description:
398  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399  *   backed by the @bs's mempool.
400  *
401  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402  *   always be able to allocate a bio. This is due to the mempool guarantees.
403  *   To make this work, callers must never allocate more than 1 bio at a time
404  *   from this pool. Callers that need to allocate more than 1 bio must always
405  *   submit the previously allocated bio for IO before attempting to allocate
406  *   a new one. Failure to do so can cause deadlocks under memory pressure.
407  *
408  *   Note that when running under generic_make_request() (i.e. any block
409  *   driver), bios are not submitted until after you return - see the code in
410  *   generic_make_request() that converts recursion into iteration, to prevent
411  *   stack overflows.
412  *
413  *   This would normally mean allocating multiple bios under
414  *   generic_make_request() would be susceptible to deadlocks, but we have
415  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
416  *   thread.
417  *
418  *   However, we do not guarantee forward progress for allocations from other
419  *   mempools. Doing multiple allocations from the same mempool under
420  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
421  *   for per bio allocations.
422  *
423  *   RETURNS:
424  *   Pointer to new bio on success, NULL on failure.
425  */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 			return NULL;
448 		/*
449 		 * generic_make_request() converts recursion to iteration; this
450 		 * means if we're running beneath it, any bios we allocate and
451 		 * submit will not be submitted (and thus freed) until after we
452 		 * return.
453 		 *
454 		 * This exposes us to a potential deadlock if we allocate
455 		 * multiple bios from the same bio_set() while running
456 		 * underneath generic_make_request(). If we were to allocate
457 		 * multiple bios (say a stacking block driver that was splitting
458 		 * bios), we would deadlock if we exhausted the mempool's
459 		 * reserve.
460 		 *
461 		 * We solve this, and guarantee forward progress, with a rescuer
462 		 * workqueue per bio_set. If we go to allocate and there are
463 		 * bios on current->bio_list, we first try the allocation
464 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 		 * bios we would be blocking to the rescuer workqueue before
466 		 * we retry with the original gfp_flags.
467 		 */
468 
469 		if (current->bio_list && !bio_list_empty(current->bio_list))
470 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
471 
472 		p = mempool_alloc(bs->bio_pool, gfp_mask);
473 		if (!p && gfp_mask != saved_gfp) {
474 			punt_bios_to_rescuer(bs);
475 			gfp_mask = saved_gfp;
476 			p = mempool_alloc(bs->bio_pool, gfp_mask);
477 		}
478 
479 		front_pad = bs->front_pad;
480 		inline_vecs = BIO_INLINE_VECS;
481 	}
482 
483 	if (unlikely(!p))
484 		return NULL;
485 
486 	bio = p + front_pad;
487 	bio_init(bio, NULL, 0);
488 
489 	if (nr_iovecs > inline_vecs) {
490 		unsigned long idx = 0;
491 
492 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 		if (!bvl && gfp_mask != saved_gfp) {
494 			punt_bios_to_rescuer(bs);
495 			gfp_mask = saved_gfp;
496 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
497 		}
498 
499 		if (unlikely(!bvl))
500 			goto err_free;
501 
502 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
503 	} else if (nr_iovecs) {
504 		bvl = bio->bi_inline_vecs;
505 	}
506 
507 	bio->bi_pool = bs;
508 	bio->bi_max_vecs = nr_iovecs;
509 	bio->bi_io_vec = bvl;
510 	return bio;
511 
512 err_free:
513 	mempool_free(p, bs->bio_pool);
514 	return NULL;
515 }
516 EXPORT_SYMBOL(bio_alloc_bioset);
517 
518 void zero_fill_bio(struct bio *bio)
519 {
520 	unsigned long flags;
521 	struct bio_vec bv;
522 	struct bvec_iter iter;
523 
524 	bio_for_each_segment(bv, bio, iter) {
525 		char *data = bvec_kmap_irq(&bv, &flags);
526 		memset(data, 0, bv.bv_len);
527 		flush_dcache_page(bv.bv_page);
528 		bvec_kunmap_irq(data, &flags);
529 	}
530 }
531 EXPORT_SYMBOL(zero_fill_bio);
532 
533 /**
534  * bio_put - release a reference to a bio
535  * @bio:   bio to release reference to
536  *
537  * Description:
538  *   Put a reference to a &struct bio, either one you have gotten with
539  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
540  **/
541 void bio_put(struct bio *bio)
542 {
543 	if (!bio_flagged(bio, BIO_REFFED))
544 		bio_free(bio);
545 	else {
546 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
547 
548 		/*
549 		 * last put frees it
550 		 */
551 		if (atomic_dec_and_test(&bio->__bi_cnt))
552 			bio_free(bio);
553 	}
554 }
555 EXPORT_SYMBOL(bio_put);
556 
557 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
558 {
559 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
560 		blk_recount_segments(q, bio);
561 
562 	return bio->bi_phys_segments;
563 }
564 EXPORT_SYMBOL(bio_phys_segments);
565 
566 /**
567  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
568  * 	@bio: destination bio
569  * 	@bio_src: bio to clone
570  *
571  *	Clone a &bio. Caller will own the returned bio, but not
572  *	the actual data it points to. Reference count of returned
573  * 	bio will be one.
574  *
575  * 	Caller must ensure that @bio_src is not freed before @bio.
576  */
577 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
578 {
579 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
580 
581 	/*
582 	 * most users will be overriding ->bi_bdev with a new target,
583 	 * so we don't set nor calculate new physical/hw segment counts here
584 	 */
585 	bio->bi_bdev = bio_src->bi_bdev;
586 	bio_set_flag(bio, BIO_CLONED);
587 	bio->bi_opf = bio_src->bi_opf;
588 	bio->bi_iter = bio_src->bi_iter;
589 	bio->bi_io_vec = bio_src->bi_io_vec;
590 
591 	bio_clone_blkcg_association(bio, bio_src);
592 }
593 EXPORT_SYMBOL(__bio_clone_fast);
594 
595 /**
596  *	bio_clone_fast - clone a bio that shares the original bio's biovec
597  *	@bio: bio to clone
598  *	@gfp_mask: allocation priority
599  *	@bs: bio_set to allocate from
600  *
601  * 	Like __bio_clone_fast, only also allocates the returned bio
602  */
603 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
604 {
605 	struct bio *b;
606 
607 	b = bio_alloc_bioset(gfp_mask, 0, bs);
608 	if (!b)
609 		return NULL;
610 
611 	__bio_clone_fast(b, bio);
612 
613 	if (bio_integrity(bio)) {
614 		int ret;
615 
616 		ret = bio_integrity_clone(b, bio, gfp_mask);
617 
618 		if (ret < 0) {
619 			bio_put(b);
620 			return NULL;
621 		}
622 	}
623 
624 	return b;
625 }
626 EXPORT_SYMBOL(bio_clone_fast);
627 
628 /**
629  * 	bio_clone_bioset - clone a bio
630  * 	@bio_src: bio to clone
631  *	@gfp_mask: allocation priority
632  *	@bs: bio_set to allocate from
633  *
634  *	Clone bio. Caller will own the returned bio, but not the actual data it
635  *	points to. Reference count of returned bio will be one.
636  */
637 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
638 			     struct bio_set *bs)
639 {
640 	struct bvec_iter iter;
641 	struct bio_vec bv;
642 	struct bio *bio;
643 
644 	/*
645 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
646 	 * bio_src->bi_io_vec to bio->bi_io_vec.
647 	 *
648 	 * We can't do that anymore, because:
649 	 *
650 	 *  - The point of cloning the biovec is to produce a bio with a biovec
651 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
652 	 *
653 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
654 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
655 	 *    But the clone should succeed as long as the number of biovecs we
656 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
657 	 *
658 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
659 	 *    that does not own the bio - reason being drivers don't use it for
660 	 *    iterating over the biovec anymore, so expecting it to be kept up
661 	 *    to date (i.e. for clones that share the parent biovec) is just
662 	 *    asking for trouble and would force extra work on
663 	 *    __bio_clone_fast() anyways.
664 	 */
665 
666 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
667 	if (!bio)
668 		return NULL;
669 	bio->bi_bdev		= bio_src->bi_bdev;
670 	bio->bi_opf		= bio_src->bi_opf;
671 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
672 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
673 
674 	switch (bio_op(bio)) {
675 	case REQ_OP_DISCARD:
676 	case REQ_OP_SECURE_ERASE:
677 	case REQ_OP_WRITE_ZEROES:
678 		break;
679 	case REQ_OP_WRITE_SAME:
680 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 		break;
682 	default:
683 		bio_for_each_segment(bv, bio_src, iter)
684 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
685 		break;
686 	}
687 
688 	if (bio_integrity(bio_src)) {
689 		int ret;
690 
691 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 		if (ret < 0) {
693 			bio_put(bio);
694 			return NULL;
695 		}
696 	}
697 
698 	bio_clone_blkcg_association(bio, bio_src);
699 
700 	return bio;
701 }
702 EXPORT_SYMBOL(bio_clone_bioset);
703 
704 /**
705  *	bio_add_pc_page	-	attempt to add page to bio
706  *	@q: the target queue
707  *	@bio: destination bio
708  *	@page: page to add
709  *	@len: vec entry length
710  *	@offset: vec entry offset
711  *
712  *	Attempt to add a page to the bio_vec maplist. This can fail for a
713  *	number of reasons, such as the bio being full or target block device
714  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
715  *	so it is always possible to add a single page to an empty bio.
716  *
717  *	This should only be used by REQ_PC bios.
718  */
719 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
720 		    *page, unsigned int len, unsigned int offset)
721 {
722 	int retried_segments = 0;
723 	struct bio_vec *bvec;
724 
725 	/*
726 	 * cloned bio must not modify vec list
727 	 */
728 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
729 		return 0;
730 
731 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
732 		return 0;
733 
734 	/*
735 	 * For filesystems with a blocksize smaller than the pagesize
736 	 * we will often be called with the same page as last time and
737 	 * a consecutive offset.  Optimize this special case.
738 	 */
739 	if (bio->bi_vcnt > 0) {
740 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
741 
742 		if (page == prev->bv_page &&
743 		    offset == prev->bv_offset + prev->bv_len) {
744 			prev->bv_len += len;
745 			bio->bi_iter.bi_size += len;
746 			goto done;
747 		}
748 
749 		/*
750 		 * If the queue doesn't support SG gaps and adding this
751 		 * offset would create a gap, disallow it.
752 		 */
753 		if (bvec_gap_to_prev(q, prev, offset))
754 			return 0;
755 	}
756 
757 	if (bio->bi_vcnt >= bio->bi_max_vecs)
758 		return 0;
759 
760 	/*
761 	 * setup the new entry, we might clear it again later if we
762 	 * cannot add the page
763 	 */
764 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
765 	bvec->bv_page = page;
766 	bvec->bv_len = len;
767 	bvec->bv_offset = offset;
768 	bio->bi_vcnt++;
769 	bio->bi_phys_segments++;
770 	bio->bi_iter.bi_size += len;
771 
772 	/*
773 	 * Perform a recount if the number of segments is greater
774 	 * than queue_max_segments(q).
775 	 */
776 
777 	while (bio->bi_phys_segments > queue_max_segments(q)) {
778 
779 		if (retried_segments)
780 			goto failed;
781 
782 		retried_segments = 1;
783 		blk_recount_segments(q, bio);
784 	}
785 
786 	/* If we may be able to merge these biovecs, force a recount */
787 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
788 		bio_clear_flag(bio, BIO_SEG_VALID);
789 
790  done:
791 	return len;
792 
793  failed:
794 	bvec->bv_page = NULL;
795 	bvec->bv_len = 0;
796 	bvec->bv_offset = 0;
797 	bio->bi_vcnt--;
798 	bio->bi_iter.bi_size -= len;
799 	blk_recount_segments(q, bio);
800 	return 0;
801 }
802 EXPORT_SYMBOL(bio_add_pc_page);
803 
804 /**
805  *	bio_add_page	-	attempt to add page to bio
806  *	@bio: destination bio
807  *	@page: page to add
808  *	@len: vec entry length
809  *	@offset: vec entry offset
810  *
811  *	Attempt to add a page to the bio_vec maplist. This will only fail
812  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
813  */
814 int bio_add_page(struct bio *bio, struct page *page,
815 		 unsigned int len, unsigned int offset)
816 {
817 	struct bio_vec *bv;
818 
819 	/*
820 	 * cloned bio must not modify vec list
821 	 */
822 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
823 		return 0;
824 
825 	/*
826 	 * For filesystems with a blocksize smaller than the pagesize
827 	 * we will often be called with the same page as last time and
828 	 * a consecutive offset.  Optimize this special case.
829 	 */
830 	if (bio->bi_vcnt > 0) {
831 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
832 
833 		if (page == bv->bv_page &&
834 		    offset == bv->bv_offset + bv->bv_len) {
835 			bv->bv_len += len;
836 			goto done;
837 		}
838 	}
839 
840 	if (bio->bi_vcnt >= bio->bi_max_vecs)
841 		return 0;
842 
843 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
844 	bv->bv_page	= page;
845 	bv->bv_len	= len;
846 	bv->bv_offset	= offset;
847 
848 	bio->bi_vcnt++;
849 done:
850 	bio->bi_iter.bi_size += len;
851 	return len;
852 }
853 EXPORT_SYMBOL(bio_add_page);
854 
855 /**
856  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
857  * @bio: bio to add pages to
858  * @iter: iov iterator describing the region to be mapped
859  *
860  * Pins as many pages from *iter and appends them to @bio's bvec array. The
861  * pages will have to be released using put_page() when done.
862  */
863 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
864 {
865 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
866 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
867 	struct page **pages = (struct page **)bv;
868 	size_t offset, diff;
869 	ssize_t size;
870 
871 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
872 	if (unlikely(size <= 0))
873 		return size ? size : -EFAULT;
874 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
875 
876 	/*
877 	 * Deep magic below:  We need to walk the pinned pages backwards
878 	 * because we are abusing the space allocated for the bio_vecs
879 	 * for the page array.  Because the bio_vecs are larger than the
880 	 * page pointers by definition this will always work.  But it also
881 	 * means we can't use bio_add_page, so any changes to it's semantics
882 	 * need to be reflected here as well.
883 	 */
884 	bio->bi_iter.bi_size += size;
885 	bio->bi_vcnt += nr_pages;
886 
887 	diff = (nr_pages * PAGE_SIZE - offset) - size;
888 	while (nr_pages--) {
889 		bv[nr_pages].bv_page = pages[nr_pages];
890 		bv[nr_pages].bv_len = PAGE_SIZE;
891 		bv[nr_pages].bv_offset = 0;
892 	}
893 
894 	bv[0].bv_offset += offset;
895 	bv[0].bv_len -= offset;
896 	if (diff)
897 		bv[bio->bi_vcnt - 1].bv_len -= diff;
898 
899 	iov_iter_advance(iter, size);
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
903 
904 struct submit_bio_ret {
905 	struct completion event;
906 	int error;
907 };
908 
909 static void submit_bio_wait_endio(struct bio *bio)
910 {
911 	struct submit_bio_ret *ret = bio->bi_private;
912 
913 	ret->error = bio->bi_error;
914 	complete(&ret->event);
915 }
916 
917 /**
918  * submit_bio_wait - submit a bio, and wait until it completes
919  * @bio: The &struct bio which describes the I/O
920  *
921  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
922  * bio_endio() on failure.
923  */
924 int submit_bio_wait(struct bio *bio)
925 {
926 	struct submit_bio_ret ret;
927 
928 	init_completion(&ret.event);
929 	bio->bi_private = &ret;
930 	bio->bi_end_io = submit_bio_wait_endio;
931 	bio->bi_opf |= REQ_SYNC;
932 	submit_bio(bio);
933 	wait_for_completion_io(&ret.event);
934 
935 	return ret.error;
936 }
937 EXPORT_SYMBOL(submit_bio_wait);
938 
939 /**
940  * bio_advance - increment/complete a bio by some number of bytes
941  * @bio:	bio to advance
942  * @bytes:	number of bytes to complete
943  *
944  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
945  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
946  * be updated on the last bvec as well.
947  *
948  * @bio will then represent the remaining, uncompleted portion of the io.
949  */
950 void bio_advance(struct bio *bio, unsigned bytes)
951 {
952 	if (bio_integrity(bio))
953 		bio_integrity_advance(bio, bytes);
954 
955 	bio_advance_iter(bio, &bio->bi_iter, bytes);
956 }
957 EXPORT_SYMBOL(bio_advance);
958 
959 /**
960  * bio_alloc_pages - allocates a single page for each bvec in a bio
961  * @bio: bio to allocate pages for
962  * @gfp_mask: flags for allocation
963  *
964  * Allocates pages up to @bio->bi_vcnt.
965  *
966  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
967  * freed.
968  */
969 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
970 {
971 	int i;
972 	struct bio_vec *bv;
973 
974 	bio_for_each_segment_all(bv, bio, i) {
975 		bv->bv_page = alloc_page(gfp_mask);
976 		if (!bv->bv_page) {
977 			while (--bv >= bio->bi_io_vec)
978 				__free_page(bv->bv_page);
979 			return -ENOMEM;
980 		}
981 	}
982 
983 	return 0;
984 }
985 EXPORT_SYMBOL(bio_alloc_pages);
986 
987 /**
988  * bio_copy_data - copy contents of data buffers from one chain of bios to
989  * another
990  * @src: source bio list
991  * @dst: destination bio list
992  *
993  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
994  * @src and @dst as linked lists of bios.
995  *
996  * Stops when it reaches the end of either @src or @dst - that is, copies
997  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
998  */
999 void bio_copy_data(struct bio *dst, struct bio *src)
1000 {
1001 	struct bvec_iter src_iter, dst_iter;
1002 	struct bio_vec src_bv, dst_bv;
1003 	void *src_p, *dst_p;
1004 	unsigned bytes;
1005 
1006 	src_iter = src->bi_iter;
1007 	dst_iter = dst->bi_iter;
1008 
1009 	while (1) {
1010 		if (!src_iter.bi_size) {
1011 			src = src->bi_next;
1012 			if (!src)
1013 				break;
1014 
1015 			src_iter = src->bi_iter;
1016 		}
1017 
1018 		if (!dst_iter.bi_size) {
1019 			dst = dst->bi_next;
1020 			if (!dst)
1021 				break;
1022 
1023 			dst_iter = dst->bi_iter;
1024 		}
1025 
1026 		src_bv = bio_iter_iovec(src, src_iter);
1027 		dst_bv = bio_iter_iovec(dst, dst_iter);
1028 
1029 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1030 
1031 		src_p = kmap_atomic(src_bv.bv_page);
1032 		dst_p = kmap_atomic(dst_bv.bv_page);
1033 
1034 		memcpy(dst_p + dst_bv.bv_offset,
1035 		       src_p + src_bv.bv_offset,
1036 		       bytes);
1037 
1038 		kunmap_atomic(dst_p);
1039 		kunmap_atomic(src_p);
1040 
1041 		bio_advance_iter(src, &src_iter, bytes);
1042 		bio_advance_iter(dst, &dst_iter, bytes);
1043 	}
1044 }
1045 EXPORT_SYMBOL(bio_copy_data);
1046 
1047 struct bio_map_data {
1048 	int is_our_pages;
1049 	struct iov_iter iter;
1050 	struct iovec iov[];
1051 };
1052 
1053 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1054 					       gfp_t gfp_mask)
1055 {
1056 	if (iov_count > UIO_MAXIOV)
1057 		return NULL;
1058 
1059 	return kmalloc(sizeof(struct bio_map_data) +
1060 		       sizeof(struct iovec) * iov_count, gfp_mask);
1061 }
1062 
1063 /**
1064  * bio_copy_from_iter - copy all pages from iov_iter to bio
1065  * @bio: The &struct bio which describes the I/O as destination
1066  * @iter: iov_iter as source
1067  *
1068  * Copy all pages from iov_iter to bio.
1069  * Returns 0 on success, or error on failure.
1070  */
1071 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1072 {
1073 	int i;
1074 	struct bio_vec *bvec;
1075 
1076 	bio_for_each_segment_all(bvec, bio, i) {
1077 		ssize_t ret;
1078 
1079 		ret = copy_page_from_iter(bvec->bv_page,
1080 					  bvec->bv_offset,
1081 					  bvec->bv_len,
1082 					  &iter);
1083 
1084 		if (!iov_iter_count(&iter))
1085 			break;
1086 
1087 		if (ret < bvec->bv_len)
1088 			return -EFAULT;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * bio_copy_to_iter - copy all pages from bio to iov_iter
1096  * @bio: The &struct bio which describes the I/O as source
1097  * @iter: iov_iter as destination
1098  *
1099  * Copy all pages from bio to iov_iter.
1100  * Returns 0 on success, or error on failure.
1101  */
1102 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103 {
1104 	int i;
1105 	struct bio_vec *bvec;
1106 
1107 	bio_for_each_segment_all(bvec, bio, i) {
1108 		ssize_t ret;
1109 
1110 		ret = copy_page_to_iter(bvec->bv_page,
1111 					bvec->bv_offset,
1112 					bvec->bv_len,
1113 					&iter);
1114 
1115 		if (!iov_iter_count(&iter))
1116 			break;
1117 
1118 		if (ret < bvec->bv_len)
1119 			return -EFAULT;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 void bio_free_pages(struct bio *bio)
1126 {
1127 	struct bio_vec *bvec;
1128 	int i;
1129 
1130 	bio_for_each_segment_all(bvec, bio, i)
1131 		__free_page(bvec->bv_page);
1132 }
1133 EXPORT_SYMBOL(bio_free_pages);
1134 
1135 /**
1136  *	bio_uncopy_user	-	finish previously mapped bio
1137  *	@bio: bio being terminated
1138  *
1139  *	Free pages allocated from bio_copy_user_iov() and write back data
1140  *	to user space in case of a read.
1141  */
1142 int bio_uncopy_user(struct bio *bio)
1143 {
1144 	struct bio_map_data *bmd = bio->bi_private;
1145 	int ret = 0;
1146 
1147 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148 		/*
1149 		 * if we're in a workqueue, the request is orphaned, so
1150 		 * don't copy into a random user address space, just free
1151 		 * and return -EINTR so user space doesn't expect any data.
1152 		 */
1153 		if (!current->mm)
1154 			ret = -EINTR;
1155 		else if (bio_data_dir(bio) == READ)
1156 			ret = bio_copy_to_iter(bio, bmd->iter);
1157 		if (bmd->is_our_pages)
1158 			bio_free_pages(bio);
1159 	}
1160 	kfree(bmd);
1161 	bio_put(bio);
1162 	return ret;
1163 }
1164 
1165 /**
1166  *	bio_copy_user_iov	-	copy user data to bio
1167  *	@q:		destination block queue
1168  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1169  *	@iter:		iovec iterator
1170  *	@gfp_mask:	memory allocation flags
1171  *
1172  *	Prepares and returns a bio for indirect user io, bouncing data
1173  *	to/from kernel pages as necessary. Must be paired with
1174  *	call bio_uncopy_user() on io completion.
1175  */
1176 struct bio *bio_copy_user_iov(struct request_queue *q,
1177 			      struct rq_map_data *map_data,
1178 			      const struct iov_iter *iter,
1179 			      gfp_t gfp_mask)
1180 {
1181 	struct bio_map_data *bmd;
1182 	struct page *page;
1183 	struct bio *bio;
1184 	int i, ret;
1185 	int nr_pages = 0;
1186 	unsigned int len = iter->count;
1187 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1188 
1189 	for (i = 0; i < iter->nr_segs; i++) {
1190 		unsigned long uaddr;
1191 		unsigned long end;
1192 		unsigned long start;
1193 
1194 		uaddr = (unsigned long) iter->iov[i].iov_base;
1195 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1196 			>> PAGE_SHIFT;
1197 		start = uaddr >> PAGE_SHIFT;
1198 
1199 		/*
1200 		 * Overflow, abort
1201 		 */
1202 		if (end < start)
1203 			return ERR_PTR(-EINVAL);
1204 
1205 		nr_pages += end - start;
1206 	}
1207 
1208 	if (offset)
1209 		nr_pages++;
1210 
1211 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1212 	if (!bmd)
1213 		return ERR_PTR(-ENOMEM);
1214 
1215 	/*
1216 	 * We need to do a deep copy of the iov_iter including the iovecs.
1217 	 * The caller provided iov might point to an on-stack or otherwise
1218 	 * shortlived one.
1219 	 */
1220 	bmd->is_our_pages = map_data ? 0 : 1;
1221 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1222 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1223 			iter->nr_segs, iter->count);
1224 
1225 	ret = -ENOMEM;
1226 	bio = bio_kmalloc(gfp_mask, nr_pages);
1227 	if (!bio)
1228 		goto out_bmd;
1229 
1230 	ret = 0;
1231 
1232 	if (map_data) {
1233 		nr_pages = 1 << map_data->page_order;
1234 		i = map_data->offset / PAGE_SIZE;
1235 	}
1236 	while (len) {
1237 		unsigned int bytes = PAGE_SIZE;
1238 
1239 		bytes -= offset;
1240 
1241 		if (bytes > len)
1242 			bytes = len;
1243 
1244 		if (map_data) {
1245 			if (i == map_data->nr_entries * nr_pages) {
1246 				ret = -ENOMEM;
1247 				break;
1248 			}
1249 
1250 			page = map_data->pages[i / nr_pages];
1251 			page += (i % nr_pages);
1252 
1253 			i++;
1254 		} else {
1255 			page = alloc_page(q->bounce_gfp | gfp_mask);
1256 			if (!page) {
1257 				ret = -ENOMEM;
1258 				break;
1259 			}
1260 		}
1261 
1262 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1263 			break;
1264 
1265 		len -= bytes;
1266 		offset = 0;
1267 	}
1268 
1269 	if (ret)
1270 		goto cleanup;
1271 
1272 	/*
1273 	 * success
1274 	 */
1275 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1276 	    (map_data && map_data->from_user)) {
1277 		ret = bio_copy_from_iter(bio, *iter);
1278 		if (ret)
1279 			goto cleanup;
1280 	}
1281 
1282 	bio->bi_private = bmd;
1283 	return bio;
1284 cleanup:
1285 	if (!map_data)
1286 		bio_free_pages(bio);
1287 	bio_put(bio);
1288 out_bmd:
1289 	kfree(bmd);
1290 	return ERR_PTR(ret);
1291 }
1292 
1293 /**
1294  *	bio_map_user_iov - map user iovec into bio
1295  *	@q:		the struct request_queue for the bio
1296  *	@iter:		iovec iterator
1297  *	@gfp_mask:	memory allocation flags
1298  *
1299  *	Map the user space address into a bio suitable for io to a block
1300  *	device. Returns an error pointer in case of error.
1301  */
1302 struct bio *bio_map_user_iov(struct request_queue *q,
1303 			     const struct iov_iter *iter,
1304 			     gfp_t gfp_mask)
1305 {
1306 	int j;
1307 	int nr_pages = 0;
1308 	struct page **pages;
1309 	struct bio *bio;
1310 	int cur_page = 0;
1311 	int ret, offset;
1312 	struct iov_iter i;
1313 	struct iovec iov;
1314 
1315 	iov_for_each(iov, i, *iter) {
1316 		unsigned long uaddr = (unsigned long) iov.iov_base;
1317 		unsigned long len = iov.iov_len;
1318 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319 		unsigned long start = uaddr >> PAGE_SHIFT;
1320 
1321 		/*
1322 		 * Overflow, abort
1323 		 */
1324 		if (end < start)
1325 			return ERR_PTR(-EINVAL);
1326 
1327 		nr_pages += end - start;
1328 		/*
1329 		 * buffer must be aligned to at least logical block size for now
1330 		 */
1331 		if (uaddr & queue_dma_alignment(q))
1332 			return ERR_PTR(-EINVAL);
1333 	}
1334 
1335 	if (!nr_pages)
1336 		return ERR_PTR(-EINVAL);
1337 
1338 	bio = bio_kmalloc(gfp_mask, nr_pages);
1339 	if (!bio)
1340 		return ERR_PTR(-ENOMEM);
1341 
1342 	ret = -ENOMEM;
1343 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1344 	if (!pages)
1345 		goto out;
1346 
1347 	iov_for_each(iov, i, *iter) {
1348 		unsigned long uaddr = (unsigned long) iov.iov_base;
1349 		unsigned long len = iov.iov_len;
1350 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1351 		unsigned long start = uaddr >> PAGE_SHIFT;
1352 		const int local_nr_pages = end - start;
1353 		const int page_limit = cur_page + local_nr_pages;
1354 
1355 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1356 				(iter->type & WRITE) != WRITE,
1357 				&pages[cur_page]);
1358 		if (ret < local_nr_pages) {
1359 			ret = -EFAULT;
1360 			goto out_unmap;
1361 		}
1362 
1363 		offset = offset_in_page(uaddr);
1364 		for (j = cur_page; j < page_limit; j++) {
1365 			unsigned int bytes = PAGE_SIZE - offset;
1366 
1367 			if (len <= 0)
1368 				break;
1369 
1370 			if (bytes > len)
1371 				bytes = len;
1372 
1373 			/*
1374 			 * sorry...
1375 			 */
1376 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1377 					    bytes)
1378 				break;
1379 
1380 			len -= bytes;
1381 			offset = 0;
1382 		}
1383 
1384 		cur_page = j;
1385 		/*
1386 		 * release the pages we didn't map into the bio, if any
1387 		 */
1388 		while (j < page_limit)
1389 			put_page(pages[j++]);
1390 	}
1391 
1392 	kfree(pages);
1393 
1394 	bio_set_flag(bio, BIO_USER_MAPPED);
1395 
1396 	/*
1397 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1398 	 * it would normally disappear when its bi_end_io is run.
1399 	 * however, we need it for the unmap, so grab an extra
1400 	 * reference to it
1401 	 */
1402 	bio_get(bio);
1403 	return bio;
1404 
1405  out_unmap:
1406 	for (j = 0; j < nr_pages; j++) {
1407 		if (!pages[j])
1408 			break;
1409 		put_page(pages[j]);
1410 	}
1411  out:
1412 	kfree(pages);
1413 	bio_put(bio);
1414 	return ERR_PTR(ret);
1415 }
1416 
1417 static void __bio_unmap_user(struct bio *bio)
1418 {
1419 	struct bio_vec *bvec;
1420 	int i;
1421 
1422 	/*
1423 	 * make sure we dirty pages we wrote to
1424 	 */
1425 	bio_for_each_segment_all(bvec, bio, i) {
1426 		if (bio_data_dir(bio) == READ)
1427 			set_page_dirty_lock(bvec->bv_page);
1428 
1429 		put_page(bvec->bv_page);
1430 	}
1431 
1432 	bio_put(bio);
1433 }
1434 
1435 /**
1436  *	bio_unmap_user	-	unmap a bio
1437  *	@bio:		the bio being unmapped
1438  *
1439  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1440  *	process context.
1441  *
1442  *	bio_unmap_user() may sleep.
1443  */
1444 void bio_unmap_user(struct bio *bio)
1445 {
1446 	__bio_unmap_user(bio);
1447 	bio_put(bio);
1448 }
1449 
1450 static void bio_map_kern_endio(struct bio *bio)
1451 {
1452 	bio_put(bio);
1453 }
1454 
1455 /**
1456  *	bio_map_kern	-	map kernel address into bio
1457  *	@q: the struct request_queue for the bio
1458  *	@data: pointer to buffer to map
1459  *	@len: length in bytes
1460  *	@gfp_mask: allocation flags for bio allocation
1461  *
1462  *	Map the kernel address into a bio suitable for io to a block
1463  *	device. Returns an error pointer in case of error.
1464  */
1465 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1466 			 gfp_t gfp_mask)
1467 {
1468 	unsigned long kaddr = (unsigned long)data;
1469 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1470 	unsigned long start = kaddr >> PAGE_SHIFT;
1471 	const int nr_pages = end - start;
1472 	int offset, i;
1473 	struct bio *bio;
1474 
1475 	bio = bio_kmalloc(gfp_mask, nr_pages);
1476 	if (!bio)
1477 		return ERR_PTR(-ENOMEM);
1478 
1479 	offset = offset_in_page(kaddr);
1480 	for (i = 0; i < nr_pages; i++) {
1481 		unsigned int bytes = PAGE_SIZE - offset;
1482 
1483 		if (len <= 0)
1484 			break;
1485 
1486 		if (bytes > len)
1487 			bytes = len;
1488 
1489 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1490 				    offset) < bytes) {
1491 			/* we don't support partial mappings */
1492 			bio_put(bio);
1493 			return ERR_PTR(-EINVAL);
1494 		}
1495 
1496 		data += bytes;
1497 		len -= bytes;
1498 		offset = 0;
1499 	}
1500 
1501 	bio->bi_end_io = bio_map_kern_endio;
1502 	return bio;
1503 }
1504 EXPORT_SYMBOL(bio_map_kern);
1505 
1506 static void bio_copy_kern_endio(struct bio *bio)
1507 {
1508 	bio_free_pages(bio);
1509 	bio_put(bio);
1510 }
1511 
1512 static void bio_copy_kern_endio_read(struct bio *bio)
1513 {
1514 	char *p = bio->bi_private;
1515 	struct bio_vec *bvec;
1516 	int i;
1517 
1518 	bio_for_each_segment_all(bvec, bio, i) {
1519 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1520 		p += bvec->bv_len;
1521 	}
1522 
1523 	bio_copy_kern_endio(bio);
1524 }
1525 
1526 /**
1527  *	bio_copy_kern	-	copy kernel address into bio
1528  *	@q: the struct request_queue for the bio
1529  *	@data: pointer to buffer to copy
1530  *	@len: length in bytes
1531  *	@gfp_mask: allocation flags for bio and page allocation
1532  *	@reading: data direction is READ
1533  *
1534  *	copy the kernel address into a bio suitable for io to a block
1535  *	device. Returns an error pointer in case of error.
1536  */
1537 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1538 			  gfp_t gfp_mask, int reading)
1539 {
1540 	unsigned long kaddr = (unsigned long)data;
1541 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1542 	unsigned long start = kaddr >> PAGE_SHIFT;
1543 	struct bio *bio;
1544 	void *p = data;
1545 	int nr_pages = 0;
1546 
1547 	/*
1548 	 * Overflow, abort
1549 	 */
1550 	if (end < start)
1551 		return ERR_PTR(-EINVAL);
1552 
1553 	nr_pages = end - start;
1554 	bio = bio_kmalloc(gfp_mask, nr_pages);
1555 	if (!bio)
1556 		return ERR_PTR(-ENOMEM);
1557 
1558 	while (len) {
1559 		struct page *page;
1560 		unsigned int bytes = PAGE_SIZE;
1561 
1562 		if (bytes > len)
1563 			bytes = len;
1564 
1565 		page = alloc_page(q->bounce_gfp | gfp_mask);
1566 		if (!page)
1567 			goto cleanup;
1568 
1569 		if (!reading)
1570 			memcpy(page_address(page), p, bytes);
1571 
1572 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1573 			break;
1574 
1575 		len -= bytes;
1576 		p += bytes;
1577 	}
1578 
1579 	if (reading) {
1580 		bio->bi_end_io = bio_copy_kern_endio_read;
1581 		bio->bi_private = data;
1582 	} else {
1583 		bio->bi_end_io = bio_copy_kern_endio;
1584 	}
1585 
1586 	return bio;
1587 
1588 cleanup:
1589 	bio_free_pages(bio);
1590 	bio_put(bio);
1591 	return ERR_PTR(-ENOMEM);
1592 }
1593 
1594 /*
1595  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596  * for performing direct-IO in BIOs.
1597  *
1598  * The problem is that we cannot run set_page_dirty() from interrupt context
1599  * because the required locks are not interrupt-safe.  So what we can do is to
1600  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1601  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1602  * in process context.
1603  *
1604  * We special-case compound pages here: normally this means reads into hugetlb
1605  * pages.  The logic in here doesn't really work right for compound pages
1606  * because the VM does not uniformly chase down the head page in all cases.
1607  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608  * handle them at all.  So we skip compound pages here at an early stage.
1609  *
1610  * Note that this code is very hard to test under normal circumstances because
1611  * direct-io pins the pages with get_user_pages().  This makes
1612  * is_page_cache_freeable return false, and the VM will not clean the pages.
1613  * But other code (eg, flusher threads) could clean the pages if they are mapped
1614  * pagecache.
1615  *
1616  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617  * deferred bio dirtying paths.
1618  */
1619 
1620 /*
1621  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1622  */
1623 void bio_set_pages_dirty(struct bio *bio)
1624 {
1625 	struct bio_vec *bvec;
1626 	int i;
1627 
1628 	bio_for_each_segment_all(bvec, bio, i) {
1629 		struct page *page = bvec->bv_page;
1630 
1631 		if (page && !PageCompound(page))
1632 			set_page_dirty_lock(page);
1633 	}
1634 }
1635 
1636 static void bio_release_pages(struct bio *bio)
1637 {
1638 	struct bio_vec *bvec;
1639 	int i;
1640 
1641 	bio_for_each_segment_all(bvec, bio, i) {
1642 		struct page *page = bvec->bv_page;
1643 
1644 		if (page)
1645 			put_page(page);
1646 	}
1647 }
1648 
1649 /*
1650  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651  * If they are, then fine.  If, however, some pages are clean then they must
1652  * have been written out during the direct-IO read.  So we take another ref on
1653  * the BIO and the offending pages and re-dirty the pages in process context.
1654  *
1655  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656  * here on.  It will run one put_page() against each page and will run one
1657  * bio_put() against the BIO.
1658  */
1659 
1660 static void bio_dirty_fn(struct work_struct *work);
1661 
1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1663 static DEFINE_SPINLOCK(bio_dirty_lock);
1664 static struct bio *bio_dirty_list;
1665 
1666 /*
1667  * This runs in process context
1668  */
1669 static void bio_dirty_fn(struct work_struct *work)
1670 {
1671 	unsigned long flags;
1672 	struct bio *bio;
1673 
1674 	spin_lock_irqsave(&bio_dirty_lock, flags);
1675 	bio = bio_dirty_list;
1676 	bio_dirty_list = NULL;
1677 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1678 
1679 	while (bio) {
1680 		struct bio *next = bio->bi_private;
1681 
1682 		bio_set_pages_dirty(bio);
1683 		bio_release_pages(bio);
1684 		bio_put(bio);
1685 		bio = next;
1686 	}
1687 }
1688 
1689 void bio_check_pages_dirty(struct bio *bio)
1690 {
1691 	struct bio_vec *bvec;
1692 	int nr_clean_pages = 0;
1693 	int i;
1694 
1695 	bio_for_each_segment_all(bvec, bio, i) {
1696 		struct page *page = bvec->bv_page;
1697 
1698 		if (PageDirty(page) || PageCompound(page)) {
1699 			put_page(page);
1700 			bvec->bv_page = NULL;
1701 		} else {
1702 			nr_clean_pages++;
1703 		}
1704 	}
1705 
1706 	if (nr_clean_pages) {
1707 		unsigned long flags;
1708 
1709 		spin_lock_irqsave(&bio_dirty_lock, flags);
1710 		bio->bi_private = bio_dirty_list;
1711 		bio_dirty_list = bio;
1712 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 		schedule_work(&bio_dirty_work);
1714 	} else {
1715 		bio_put(bio);
1716 	}
1717 }
1718 
1719 void generic_start_io_acct(int rw, unsigned long sectors,
1720 			   struct hd_struct *part)
1721 {
1722 	int cpu = part_stat_lock();
1723 
1724 	part_round_stats(cpu, part);
1725 	part_stat_inc(cpu, part, ios[rw]);
1726 	part_stat_add(cpu, part, sectors[rw], sectors);
1727 	part_inc_in_flight(part, rw);
1728 
1729 	part_stat_unlock();
1730 }
1731 EXPORT_SYMBOL(generic_start_io_acct);
1732 
1733 void generic_end_io_acct(int rw, struct hd_struct *part,
1734 			 unsigned long start_time)
1735 {
1736 	unsigned long duration = jiffies - start_time;
1737 	int cpu = part_stat_lock();
1738 
1739 	part_stat_add(cpu, part, ticks[rw], duration);
1740 	part_round_stats(cpu, part);
1741 	part_dec_in_flight(part, rw);
1742 
1743 	part_stat_unlock();
1744 }
1745 EXPORT_SYMBOL(generic_end_io_acct);
1746 
1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1748 void bio_flush_dcache_pages(struct bio *bi)
1749 {
1750 	struct bio_vec bvec;
1751 	struct bvec_iter iter;
1752 
1753 	bio_for_each_segment(bvec, bi, iter)
1754 		flush_dcache_page(bvec.bv_page);
1755 }
1756 EXPORT_SYMBOL(bio_flush_dcache_pages);
1757 #endif
1758 
1759 static inline bool bio_remaining_done(struct bio *bio)
1760 {
1761 	/*
1762 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1763 	 * we always end io on the first invocation.
1764 	 */
1765 	if (!bio_flagged(bio, BIO_CHAIN))
1766 		return true;
1767 
1768 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1769 
1770 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1771 		bio_clear_flag(bio, BIO_CHAIN);
1772 		return true;
1773 	}
1774 
1775 	return false;
1776 }
1777 
1778 /**
1779  * bio_endio - end I/O on a bio
1780  * @bio:	bio
1781  *
1782  * Description:
1783  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1784  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1785  *   bio unless they own it and thus know that it has an end_io function.
1786  **/
1787 void bio_endio(struct bio *bio)
1788 {
1789 again:
1790 	if (!bio_remaining_done(bio))
1791 		return;
1792 
1793 	/*
1794 	 * Need to have a real endio function for chained bios, otherwise
1795 	 * various corner cases will break (like stacking block devices that
1796 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1797 	 * recursion and blowing the stack. Tail call optimization would
1798 	 * handle this, but compiling with frame pointers also disables
1799 	 * gcc's sibling call optimization.
1800 	 */
1801 	if (bio->bi_end_io == bio_chain_endio) {
1802 		bio = __bio_chain_endio(bio);
1803 		goto again;
1804 	}
1805 
1806 	if (bio->bi_end_io)
1807 		bio->bi_end_io(bio);
1808 }
1809 EXPORT_SYMBOL(bio_endio);
1810 
1811 /**
1812  * bio_split - split a bio
1813  * @bio:	bio to split
1814  * @sectors:	number of sectors to split from the front of @bio
1815  * @gfp:	gfp mask
1816  * @bs:		bio set to allocate from
1817  *
1818  * Allocates and returns a new bio which represents @sectors from the start of
1819  * @bio, and updates @bio to represent the remaining sectors.
1820  *
1821  * Unless this is a discard request the newly allocated bio will point
1822  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1823  * @bio is not freed before the split.
1824  */
1825 struct bio *bio_split(struct bio *bio, int sectors,
1826 		      gfp_t gfp, struct bio_set *bs)
1827 {
1828 	struct bio *split = NULL;
1829 
1830 	BUG_ON(sectors <= 0);
1831 	BUG_ON(sectors >= bio_sectors(bio));
1832 
1833 	split = bio_clone_fast(bio, gfp, bs);
1834 	if (!split)
1835 		return NULL;
1836 
1837 	split->bi_iter.bi_size = sectors << 9;
1838 
1839 	if (bio_integrity(split))
1840 		bio_integrity_trim(split, 0, sectors);
1841 
1842 	bio_advance(bio, split->bi_iter.bi_size);
1843 
1844 	return split;
1845 }
1846 EXPORT_SYMBOL(bio_split);
1847 
1848 /**
1849  * bio_trim - trim a bio
1850  * @bio:	bio to trim
1851  * @offset:	number of sectors to trim from the front of @bio
1852  * @size:	size we want to trim @bio to, in sectors
1853  */
1854 void bio_trim(struct bio *bio, int offset, int size)
1855 {
1856 	/* 'bio' is a cloned bio which we need to trim to match
1857 	 * the given offset and size.
1858 	 */
1859 
1860 	size <<= 9;
1861 	if (offset == 0 && size == bio->bi_iter.bi_size)
1862 		return;
1863 
1864 	bio_clear_flag(bio, BIO_SEG_VALID);
1865 
1866 	bio_advance(bio, offset << 9);
1867 
1868 	bio->bi_iter.bi_size = size;
1869 }
1870 EXPORT_SYMBOL_GPL(bio_trim);
1871 
1872 /*
1873  * create memory pools for biovec's in a bio_set.
1874  * use the global biovec slabs created for general use.
1875  */
1876 mempool_t *biovec_create_pool(int pool_entries)
1877 {
1878 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1879 
1880 	return mempool_create_slab_pool(pool_entries, bp->slab);
1881 }
1882 
1883 void bioset_free(struct bio_set *bs)
1884 {
1885 	if (bs->rescue_workqueue)
1886 		destroy_workqueue(bs->rescue_workqueue);
1887 
1888 	if (bs->bio_pool)
1889 		mempool_destroy(bs->bio_pool);
1890 
1891 	if (bs->bvec_pool)
1892 		mempool_destroy(bs->bvec_pool);
1893 
1894 	bioset_integrity_free(bs);
1895 	bio_put_slab(bs);
1896 
1897 	kfree(bs);
1898 }
1899 EXPORT_SYMBOL(bioset_free);
1900 
1901 static struct bio_set *__bioset_create(unsigned int pool_size,
1902 				       unsigned int front_pad,
1903 				       bool create_bvec_pool)
1904 {
1905 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1906 	struct bio_set *bs;
1907 
1908 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1909 	if (!bs)
1910 		return NULL;
1911 
1912 	bs->front_pad = front_pad;
1913 
1914 	spin_lock_init(&bs->rescue_lock);
1915 	bio_list_init(&bs->rescue_list);
1916 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1917 
1918 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1919 	if (!bs->bio_slab) {
1920 		kfree(bs);
1921 		return NULL;
1922 	}
1923 
1924 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1925 	if (!bs->bio_pool)
1926 		goto bad;
1927 
1928 	if (create_bvec_pool) {
1929 		bs->bvec_pool = biovec_create_pool(pool_size);
1930 		if (!bs->bvec_pool)
1931 			goto bad;
1932 	}
1933 
1934 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1935 	if (!bs->rescue_workqueue)
1936 		goto bad;
1937 
1938 	return bs;
1939 bad:
1940 	bioset_free(bs);
1941 	return NULL;
1942 }
1943 
1944 /**
1945  * bioset_create  - Create a bio_set
1946  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1947  * @front_pad:	Number of bytes to allocate in front of the returned bio
1948  *
1949  * Description:
1950  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1951  *    to ask for a number of bytes to be allocated in front of the bio.
1952  *    Front pad allocation is useful for embedding the bio inside
1953  *    another structure, to avoid allocating extra data to go with the bio.
1954  *    Note that the bio must be embedded at the END of that structure always,
1955  *    or things will break badly.
1956  */
1957 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1958 {
1959 	return __bioset_create(pool_size, front_pad, true);
1960 }
1961 EXPORT_SYMBOL(bioset_create);
1962 
1963 /**
1964  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1965  * @pool_size:	Number of bio to cache in the mempool
1966  * @front_pad:	Number of bytes to allocate in front of the returned bio
1967  *
1968  * Description:
1969  *    Same functionality as bioset_create() except that mempool is not
1970  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1971  */
1972 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1973 {
1974 	return __bioset_create(pool_size, front_pad, false);
1975 }
1976 EXPORT_SYMBOL(bioset_create_nobvec);
1977 
1978 #ifdef CONFIG_BLK_CGROUP
1979 
1980 /**
1981  * bio_associate_blkcg - associate a bio with the specified blkcg
1982  * @bio: target bio
1983  * @blkcg_css: css of the blkcg to associate
1984  *
1985  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1986  * treat @bio as if it were issued by a task which belongs to the blkcg.
1987  *
1988  * This function takes an extra reference of @blkcg_css which will be put
1989  * when @bio is released.  The caller must own @bio and is responsible for
1990  * synchronizing calls to this function.
1991  */
1992 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1993 {
1994 	if (unlikely(bio->bi_css))
1995 		return -EBUSY;
1996 	css_get(blkcg_css);
1997 	bio->bi_css = blkcg_css;
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2001 
2002 /**
2003  * bio_associate_current - associate a bio with %current
2004  * @bio: target bio
2005  *
2006  * Associate @bio with %current if it hasn't been associated yet.  Block
2007  * layer will treat @bio as if it were issued by %current no matter which
2008  * task actually issues it.
2009  *
2010  * This function takes an extra reference of @task's io_context and blkcg
2011  * which will be put when @bio is released.  The caller must own @bio,
2012  * ensure %current->io_context exists, and is responsible for synchronizing
2013  * calls to this function.
2014  */
2015 int bio_associate_current(struct bio *bio)
2016 {
2017 	struct io_context *ioc;
2018 
2019 	if (bio->bi_css)
2020 		return -EBUSY;
2021 
2022 	ioc = current->io_context;
2023 	if (!ioc)
2024 		return -ENOENT;
2025 
2026 	get_io_context_active(ioc);
2027 	bio->bi_ioc = ioc;
2028 	bio->bi_css = task_get_css(current, io_cgrp_id);
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(bio_associate_current);
2032 
2033 /**
2034  * bio_disassociate_task - undo bio_associate_current()
2035  * @bio: target bio
2036  */
2037 void bio_disassociate_task(struct bio *bio)
2038 {
2039 	if (bio->bi_ioc) {
2040 		put_io_context(bio->bi_ioc);
2041 		bio->bi_ioc = NULL;
2042 	}
2043 	if (bio->bi_css) {
2044 		css_put(bio->bi_css);
2045 		bio->bi_css = NULL;
2046 	}
2047 }
2048 
2049 /**
2050  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2051  * @dst: destination bio
2052  * @src: source bio
2053  */
2054 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2055 {
2056 	if (src->bi_css)
2057 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2058 }
2059 
2060 #endif /* CONFIG_BLK_CGROUP */
2061 
2062 static void __init biovec_init_slabs(void)
2063 {
2064 	int i;
2065 
2066 	for (i = 0; i < BVEC_POOL_NR; i++) {
2067 		int size;
2068 		struct biovec_slab *bvs = bvec_slabs + i;
2069 
2070 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2071 			bvs->slab = NULL;
2072 			continue;
2073 		}
2074 
2075 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2076 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2077                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2078 	}
2079 }
2080 
2081 static int __init init_bio(void)
2082 {
2083 	bio_slab_max = 2;
2084 	bio_slab_nr = 0;
2085 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2086 	if (!bio_slabs)
2087 		panic("bio: can't allocate bios\n");
2088 
2089 	bio_integrity_init();
2090 	biovec_init_slabs();
2091 
2092 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2093 	if (!fs_bio_set)
2094 		panic("bio: can't allocate bios\n");
2095 
2096 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2097 		panic("bio: can't create integrity pool\n");
2098 
2099 	return 0;
2100 }
2101 subsys_initcall(init_bio);
2102