1 /* 2 * Budget Fair Queueing (BFQ) I/O scheduler. 3 * 4 * Based on ideas and code from CFQ: 5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 6 * 7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 8 * Paolo Valente <paolo.valente@unimore.it> 9 * 10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 11 * Arianna Avanzini <avanzini@google.com> 12 * 13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License as 17 * published by the Free Software Foundation; either version 2 of the 18 * License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * BFQ is a proportional-share I/O scheduler, with some extra 26 * low-latency capabilities. BFQ also supports full hierarchical 27 * scheduling through cgroups. Next paragraphs provide an introduction 28 * on BFQ inner workings. Details on BFQ benefits, usage and 29 * limitations can be found in Documentation/block/bfq-iosched.txt. 30 * 31 * BFQ is a proportional-share storage-I/O scheduling algorithm based 32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns 33 * budgets, measured in number of sectors, to processes instead of 34 * time slices. The device is not granted to the in-service process 35 * for a given time slice, but until it has exhausted its assigned 36 * budget. This change from the time to the service domain enables BFQ 37 * to distribute the device throughput among processes as desired, 38 * without any distortion due to throughput fluctuations, or to device 39 * internal queueing. BFQ uses an ad hoc internal scheduler, called 40 * B-WF2Q+, to schedule processes according to their budgets. More 41 * precisely, BFQ schedules queues associated with processes. Each 42 * process/queue is assigned a user-configurable weight, and B-WF2Q+ 43 * guarantees that each queue receives a fraction of the throughput 44 * proportional to its weight. Thanks to the accurate policy of 45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 46 * processes issuing sequential requests (to boost the throughput), 47 * and yet guarantee a low latency to interactive and soft real-time 48 * applications. 49 * 50 * In particular, to provide these low-latency guarantees, BFQ 51 * explicitly privileges the I/O of two classes of time-sensitive 52 * applications: interactive and soft real-time. This feature enables 53 * BFQ to provide applications in these classes with a very low 54 * latency. Finally, BFQ also features additional heuristics for 55 * preserving both a low latency and a high throughput on NCQ-capable, 56 * rotational or flash-based devices, and to get the job done quickly 57 * for applications consisting in many I/O-bound processes. 58 * 59 * NOTE: if the main or only goal, with a given device, is to achieve 60 * the maximum-possible throughput at all times, then do switch off 61 * all low-latency heuristics for that device, by setting low_latency 62 * to 0. 63 * 64 * BFQ is described in [1], where also a reference to the initial, more 65 * theoretical paper on BFQ can be found. The interested reader can find 66 * in the latter paper full details on the main algorithm, as well as 67 * formulas of the guarantees and formal proofs of all the properties. 68 * With respect to the version of BFQ presented in these papers, this 69 * implementation adds a few more heuristics, such as the one that 70 * guarantees a low latency to soft real-time applications, and a 71 * hierarchical extension based on H-WF2Q+. 72 * 73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 75 * with O(log N) complexity derives from the one introduced with EEVDF 76 * in [3]. 77 * 78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 79 * Scheduler", Proceedings of the First Workshop on Mobile System 80 * Technologies (MST-2015), May 2015. 81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 82 * 83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 85 * Oct 1997. 86 * 87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 88 * 89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 90 * First: A Flexible and Accurate Mechanism for Proportional Share 91 * Resource Allocation", technical report. 92 * 93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 94 */ 95 #include <linux/module.h> 96 #include <linux/slab.h> 97 #include <linux/blkdev.h> 98 #include <linux/cgroup.h> 99 #include <linux/elevator.h> 100 #include <linux/ktime.h> 101 #include <linux/rbtree.h> 102 #include <linux/ioprio.h> 103 #include <linux/sbitmap.h> 104 #include <linux/delay.h> 105 106 #include "blk.h" 107 #include "blk-mq.h" 108 #include "blk-mq-tag.h" 109 #include "blk-mq-sched.h" 110 #include "bfq-iosched.h" 111 #include "blk-wbt.h" 112 113 #define BFQ_BFQQ_FNS(name) \ 114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 115 { \ 116 __set_bit(BFQQF_##name, &(bfqq)->flags); \ 117 } \ 118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 119 { \ 120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 121 } \ 122 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 123 { \ 124 return test_bit(BFQQF_##name, &(bfqq)->flags); \ 125 } 126 127 BFQ_BFQQ_FNS(just_created); 128 BFQ_BFQQ_FNS(busy); 129 BFQ_BFQQ_FNS(wait_request); 130 BFQ_BFQQ_FNS(non_blocking_wait_rq); 131 BFQ_BFQQ_FNS(fifo_expire); 132 BFQ_BFQQ_FNS(has_short_ttime); 133 BFQ_BFQQ_FNS(sync); 134 BFQ_BFQQ_FNS(IO_bound); 135 BFQ_BFQQ_FNS(in_large_burst); 136 BFQ_BFQQ_FNS(coop); 137 BFQ_BFQQ_FNS(split_coop); 138 BFQ_BFQQ_FNS(softrt_update); 139 #undef BFQ_BFQQ_FNS \ 140 141 /* Expiration time of sync (0) and async (1) requests, in ns. */ 142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 143 144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 145 static const int bfq_back_max = 16 * 1024; 146 147 /* Penalty of a backwards seek, in number of sectors. */ 148 static const int bfq_back_penalty = 2; 149 150 /* Idling period duration, in ns. */ 151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125; 152 153 /* Minimum number of assigned budgets for which stats are safe to compute. */ 154 static const int bfq_stats_min_budgets = 194; 155 156 /* Default maximum budget values, in sectors and number of requests. */ 157 static const int bfq_default_max_budget = 16 * 1024; 158 159 /* 160 * Async to sync throughput distribution is controlled as follows: 161 * when an async request is served, the entity is charged the number 162 * of sectors of the request, multiplied by the factor below 163 */ 164 static const int bfq_async_charge_factor = 10; 165 166 /* Default timeout values, in jiffies, approximating CFQ defaults. */ 167 const int bfq_timeout = HZ / 8; 168 169 static struct kmem_cache *bfq_pool; 170 171 /* Below this threshold (in ns), we consider thinktime immediate. */ 172 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 173 174 /* hw_tag detection: parallel requests threshold and min samples needed. */ 175 #define BFQ_HW_QUEUE_THRESHOLD 4 176 #define BFQ_HW_QUEUE_SAMPLES 32 177 178 #define BFQQ_SEEK_THR (sector_t)(8 * 100) 179 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 180 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 181 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) 182 183 /* Min number of samples required to perform peak-rate update */ 184 #define BFQ_RATE_MIN_SAMPLES 32 185 /* Min observation time interval required to perform a peak-rate update (ns) */ 186 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 187 /* Target observation time interval for a peak-rate update (ns) */ 188 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 189 190 /* Shift used for peak rate fixed precision calculations. */ 191 #define BFQ_RATE_SHIFT 16 192 193 /* 194 * By default, BFQ computes the duration of the weight raising for 195 * interactive applications automatically, using the following formula: 196 * duration = (R / r) * T, where r is the peak rate of the device, and 197 * R and T are two reference parameters. 198 * In particular, R is the peak rate of the reference device (see below), 199 * and T is a reference time: given the systems that are likely to be 200 * installed on the reference device according to its speed class, T is 201 * about the maximum time needed, under BFQ and while reading two files in 202 * parallel, to load typical large applications on these systems. 203 * In practice, the slower/faster the device at hand is, the more/less it 204 * takes to load applications with respect to the reference device. 205 * Accordingly, the longer/shorter BFQ grants weight raising to interactive 206 * applications. 207 * 208 * BFQ uses four different reference pairs (R, T), depending on: 209 * . whether the device is rotational or non-rotational; 210 * . whether the device is slow, such as old or portable HDDs, as well as 211 * SD cards, or fast, such as newer HDDs and SSDs. 212 * 213 * The device's speed class is dynamically (re)detected in 214 * bfq_update_peak_rate() every time the estimated peak rate is updated. 215 * 216 * In the following definitions, R_slow[0]/R_fast[0] and 217 * T_slow[0]/T_fast[0] are the reference values for a slow/fast 218 * rotational device, whereas R_slow[1]/R_fast[1] and 219 * T_slow[1]/T_fast[1] are the reference values for a slow/fast 220 * non-rotational device. Finally, device_speed_thresh are the 221 * thresholds used to switch between speed classes. The reference 222 * rates are not the actual peak rates of the devices used as a 223 * reference, but slightly lower values. The reason for using these 224 * slightly lower values is that the peak-rate estimator tends to 225 * yield slightly lower values than the actual peak rate (it can yield 226 * the actual peak rate only if there is only one process doing I/O, 227 * and the process does sequential I/O). 228 * 229 * Both the reference peak rates and the thresholds are measured in 230 * sectors/usec, left-shifted by BFQ_RATE_SHIFT. 231 */ 232 static int R_slow[2] = {1000, 10700}; 233 static int R_fast[2] = {14000, 33000}; 234 /* 235 * To improve readability, a conversion function is used to initialize the 236 * following arrays, which entails that they can be initialized only in a 237 * function. 238 */ 239 static int T_slow[2]; 240 static int T_fast[2]; 241 static int device_speed_thresh[2]; 242 243 #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0]) 244 #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 245 246 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) 247 { 248 return bic->bfqq[is_sync]; 249 } 250 251 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) 252 { 253 bic->bfqq[is_sync] = bfqq; 254 } 255 256 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 257 { 258 return bic->icq.q->elevator->elevator_data; 259 } 260 261 /** 262 * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 263 * @icq: the iocontext queue. 264 */ 265 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 266 { 267 /* bic->icq is the first member, %NULL will convert to %NULL */ 268 return container_of(icq, struct bfq_io_cq, icq); 269 } 270 271 /** 272 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 273 * @bfqd: the lookup key. 274 * @ioc: the io_context of the process doing I/O. 275 * @q: the request queue. 276 */ 277 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, 278 struct io_context *ioc, 279 struct request_queue *q) 280 { 281 if (ioc) { 282 unsigned long flags; 283 struct bfq_io_cq *icq; 284 285 spin_lock_irqsave(q->queue_lock, flags); 286 icq = icq_to_bic(ioc_lookup_icq(ioc, q)); 287 spin_unlock_irqrestore(q->queue_lock, flags); 288 289 return icq; 290 } 291 292 return NULL; 293 } 294 295 /* 296 * Scheduler run of queue, if there are requests pending and no one in the 297 * driver that will restart queueing. 298 */ 299 void bfq_schedule_dispatch(struct bfq_data *bfqd) 300 { 301 if (bfqd->queued != 0) { 302 bfq_log(bfqd, "schedule dispatch"); 303 blk_mq_run_hw_queues(bfqd->queue, true); 304 } 305 } 306 307 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 308 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) 309 310 #define bfq_sample_valid(samples) ((samples) > 80) 311 312 /* 313 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 314 * We choose the request that is closesr to the head right now. Distance 315 * behind the head is penalized and only allowed to a certain extent. 316 */ 317 static struct request *bfq_choose_req(struct bfq_data *bfqd, 318 struct request *rq1, 319 struct request *rq2, 320 sector_t last) 321 { 322 sector_t s1, s2, d1 = 0, d2 = 0; 323 unsigned long back_max; 324 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 325 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 326 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 327 328 if (!rq1 || rq1 == rq2) 329 return rq2; 330 if (!rq2) 331 return rq1; 332 333 if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 334 return rq1; 335 else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 336 return rq2; 337 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 338 return rq1; 339 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 340 return rq2; 341 342 s1 = blk_rq_pos(rq1); 343 s2 = blk_rq_pos(rq2); 344 345 /* 346 * By definition, 1KiB is 2 sectors. 347 */ 348 back_max = bfqd->bfq_back_max * 2; 349 350 /* 351 * Strict one way elevator _except_ in the case where we allow 352 * short backward seeks which are biased as twice the cost of a 353 * similar forward seek. 354 */ 355 if (s1 >= last) 356 d1 = s1 - last; 357 else if (s1 + back_max >= last) 358 d1 = (last - s1) * bfqd->bfq_back_penalty; 359 else 360 wrap |= BFQ_RQ1_WRAP; 361 362 if (s2 >= last) 363 d2 = s2 - last; 364 else if (s2 + back_max >= last) 365 d2 = (last - s2) * bfqd->bfq_back_penalty; 366 else 367 wrap |= BFQ_RQ2_WRAP; 368 369 /* Found required data */ 370 371 /* 372 * By doing switch() on the bit mask "wrap" we avoid having to 373 * check two variables for all permutations: --> faster! 374 */ 375 switch (wrap) { 376 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 377 if (d1 < d2) 378 return rq1; 379 else if (d2 < d1) 380 return rq2; 381 382 if (s1 >= s2) 383 return rq1; 384 else 385 return rq2; 386 387 case BFQ_RQ2_WRAP: 388 return rq1; 389 case BFQ_RQ1_WRAP: 390 return rq2; 391 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 392 default: 393 /* 394 * Since both rqs are wrapped, 395 * start with the one that's further behind head 396 * (--> only *one* back seek required), 397 * since back seek takes more time than forward. 398 */ 399 if (s1 <= s2) 400 return rq1; 401 else 402 return rq2; 403 } 404 } 405 406 static struct bfq_queue * 407 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 408 sector_t sector, struct rb_node **ret_parent, 409 struct rb_node ***rb_link) 410 { 411 struct rb_node **p, *parent; 412 struct bfq_queue *bfqq = NULL; 413 414 parent = NULL; 415 p = &root->rb_node; 416 while (*p) { 417 struct rb_node **n; 418 419 parent = *p; 420 bfqq = rb_entry(parent, struct bfq_queue, pos_node); 421 422 /* 423 * Sort strictly based on sector. Smallest to the left, 424 * largest to the right. 425 */ 426 if (sector > blk_rq_pos(bfqq->next_rq)) 427 n = &(*p)->rb_right; 428 else if (sector < blk_rq_pos(bfqq->next_rq)) 429 n = &(*p)->rb_left; 430 else 431 break; 432 p = n; 433 bfqq = NULL; 434 } 435 436 *ret_parent = parent; 437 if (rb_link) 438 *rb_link = p; 439 440 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 441 (unsigned long long)sector, 442 bfqq ? bfqq->pid : 0); 443 444 return bfqq; 445 } 446 447 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 448 { 449 struct rb_node **p, *parent; 450 struct bfq_queue *__bfqq; 451 452 if (bfqq->pos_root) { 453 rb_erase(&bfqq->pos_node, bfqq->pos_root); 454 bfqq->pos_root = NULL; 455 } 456 457 if (bfq_class_idle(bfqq)) 458 return; 459 if (!bfqq->next_rq) 460 return; 461 462 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 463 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 464 blk_rq_pos(bfqq->next_rq), &parent, &p); 465 if (!__bfqq) { 466 rb_link_node(&bfqq->pos_node, parent, p); 467 rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 468 } else 469 bfqq->pos_root = NULL; 470 } 471 472 /* 473 * Tell whether there are active queues or groups with differentiated weights. 474 */ 475 static bool bfq_differentiated_weights(struct bfq_data *bfqd) 476 { 477 /* 478 * For weights to differ, at least one of the trees must contain 479 * at least two nodes. 480 */ 481 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) && 482 (bfqd->queue_weights_tree.rb_node->rb_left || 483 bfqd->queue_weights_tree.rb_node->rb_right) 484 #ifdef CONFIG_BFQ_GROUP_IOSCHED 485 ) || 486 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) && 487 (bfqd->group_weights_tree.rb_node->rb_left || 488 bfqd->group_weights_tree.rb_node->rb_right) 489 #endif 490 ); 491 } 492 493 /* 494 * The following function returns true if every queue must receive the 495 * same share of the throughput (this condition is used when deciding 496 * whether idling may be disabled, see the comments in the function 497 * bfq_bfqq_may_idle()). 498 * 499 * Such a scenario occurs when: 500 * 1) all active queues have the same weight, 501 * 2) all active groups at the same level in the groups tree have the same 502 * weight, 503 * 3) all active groups at the same level in the groups tree have the same 504 * number of children. 505 * 506 * Unfortunately, keeping the necessary state for evaluating exactly the 507 * above symmetry conditions would be quite complex and time-consuming. 508 * Therefore this function evaluates, instead, the following stronger 509 * sub-conditions, for which it is much easier to maintain the needed 510 * state: 511 * 1) all active queues have the same weight, 512 * 2) all active groups have the same weight, 513 * 3) all active groups have at most one active child each. 514 * In particular, the last two conditions are always true if hierarchical 515 * support and the cgroups interface are not enabled, thus no state needs 516 * to be maintained in this case. 517 */ 518 static bool bfq_symmetric_scenario(struct bfq_data *bfqd) 519 { 520 return !bfq_differentiated_weights(bfqd); 521 } 522 523 /* 524 * If the weight-counter tree passed as input contains no counter for 525 * the weight of the input entity, then add that counter; otherwise just 526 * increment the existing counter. 527 * 528 * Note that weight-counter trees contain few nodes in mostly symmetric 529 * scenarios. For example, if all queues have the same weight, then the 530 * weight-counter tree for the queues may contain at most one node. 531 * This holds even if low_latency is on, because weight-raised queues 532 * are not inserted in the tree. 533 * In most scenarios, the rate at which nodes are created/destroyed 534 * should be low too. 535 */ 536 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, 537 struct rb_root *root) 538 { 539 struct rb_node **new = &(root->rb_node), *parent = NULL; 540 541 /* 542 * Do not insert if the entity is already associated with a 543 * counter, which happens if: 544 * 1) the entity is associated with a queue, 545 * 2) a request arrival has caused the queue to become both 546 * non-weight-raised, and hence change its weight, and 547 * backlogged; in this respect, each of the two events 548 * causes an invocation of this function, 549 * 3) this is the invocation of this function caused by the 550 * second event. This second invocation is actually useless, 551 * and we handle this fact by exiting immediately. More 552 * efficient or clearer solutions might possibly be adopted. 553 */ 554 if (entity->weight_counter) 555 return; 556 557 while (*new) { 558 struct bfq_weight_counter *__counter = container_of(*new, 559 struct bfq_weight_counter, 560 weights_node); 561 parent = *new; 562 563 if (entity->weight == __counter->weight) { 564 entity->weight_counter = __counter; 565 goto inc_counter; 566 } 567 if (entity->weight < __counter->weight) 568 new = &((*new)->rb_left); 569 else 570 new = &((*new)->rb_right); 571 } 572 573 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 574 GFP_ATOMIC); 575 576 /* 577 * In the unlucky event of an allocation failure, we just 578 * exit. This will cause the weight of entity to not be 579 * considered in bfq_differentiated_weights, which, in its 580 * turn, causes the scenario to be deemed wrongly symmetric in 581 * case entity's weight would have been the only weight making 582 * the scenario asymmetric. On the bright side, no unbalance 583 * will however occur when entity becomes inactive again (the 584 * invocation of this function is triggered by an activation 585 * of entity). In fact, bfq_weights_tree_remove does nothing 586 * if !entity->weight_counter. 587 */ 588 if (unlikely(!entity->weight_counter)) 589 return; 590 591 entity->weight_counter->weight = entity->weight; 592 rb_link_node(&entity->weight_counter->weights_node, parent, new); 593 rb_insert_color(&entity->weight_counter->weights_node, root); 594 595 inc_counter: 596 entity->weight_counter->num_active++; 597 } 598 599 /* 600 * Decrement the weight counter associated with the entity, and, if the 601 * counter reaches 0, remove the counter from the tree. 602 * See the comments to the function bfq_weights_tree_add() for considerations 603 * about overhead. 604 */ 605 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, 606 struct rb_root *root) 607 { 608 if (!entity->weight_counter) 609 return; 610 611 entity->weight_counter->num_active--; 612 if (entity->weight_counter->num_active > 0) 613 goto reset_entity_pointer; 614 615 rb_erase(&entity->weight_counter->weights_node, root); 616 kfree(entity->weight_counter); 617 618 reset_entity_pointer: 619 entity->weight_counter = NULL; 620 } 621 622 /* 623 * Return expired entry, or NULL to just start from scratch in rbtree. 624 */ 625 static struct request *bfq_check_fifo(struct bfq_queue *bfqq, 626 struct request *last) 627 { 628 struct request *rq; 629 630 if (bfq_bfqq_fifo_expire(bfqq)) 631 return NULL; 632 633 bfq_mark_bfqq_fifo_expire(bfqq); 634 635 rq = rq_entry_fifo(bfqq->fifo.next); 636 637 if (rq == last || ktime_get_ns() < rq->fifo_time) 638 return NULL; 639 640 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 641 return rq; 642 } 643 644 static struct request *bfq_find_next_rq(struct bfq_data *bfqd, 645 struct bfq_queue *bfqq, 646 struct request *last) 647 { 648 struct rb_node *rbnext = rb_next(&last->rb_node); 649 struct rb_node *rbprev = rb_prev(&last->rb_node); 650 struct request *next, *prev = NULL; 651 652 /* Follow expired path, else get first next available. */ 653 next = bfq_check_fifo(bfqq, last); 654 if (next) 655 return next; 656 657 if (rbprev) 658 prev = rb_entry_rq(rbprev); 659 660 if (rbnext) 661 next = rb_entry_rq(rbnext); 662 else { 663 rbnext = rb_first(&bfqq->sort_list); 664 if (rbnext && rbnext != &last->rb_node) 665 next = rb_entry_rq(rbnext); 666 } 667 668 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 669 } 670 671 /* see the definition of bfq_async_charge_factor for details */ 672 static unsigned long bfq_serv_to_charge(struct request *rq, 673 struct bfq_queue *bfqq) 674 { 675 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) 676 return blk_rq_sectors(rq); 677 678 /* 679 * If there are no weight-raised queues, then amplify service 680 * by just the async charge factor; otherwise amplify service 681 * by twice the async charge factor, to further reduce latency 682 * for weight-raised queues. 683 */ 684 if (bfqq->bfqd->wr_busy_queues == 0) 685 return blk_rq_sectors(rq) * bfq_async_charge_factor; 686 687 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor; 688 } 689 690 /** 691 * bfq_updated_next_req - update the queue after a new next_rq selection. 692 * @bfqd: the device data the queue belongs to. 693 * @bfqq: the queue to update. 694 * 695 * If the first request of a queue changes we make sure that the queue 696 * has enough budget to serve at least its first request (if the 697 * request has grown). We do this because if the queue has not enough 698 * budget for its first request, it has to go through two dispatch 699 * rounds to actually get it dispatched. 700 */ 701 static void bfq_updated_next_req(struct bfq_data *bfqd, 702 struct bfq_queue *bfqq) 703 { 704 struct bfq_entity *entity = &bfqq->entity; 705 struct request *next_rq = bfqq->next_rq; 706 unsigned long new_budget; 707 708 if (!next_rq) 709 return; 710 711 if (bfqq == bfqd->in_service_queue) 712 /* 713 * In order not to break guarantees, budgets cannot be 714 * changed after an entity has been selected. 715 */ 716 return; 717 718 new_budget = max_t(unsigned long, bfqq->max_budget, 719 bfq_serv_to_charge(next_rq, bfqq)); 720 if (entity->budget != new_budget) { 721 entity->budget = new_budget; 722 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 723 new_budget); 724 bfq_requeue_bfqq(bfqd, bfqq, false); 725 } 726 } 727 728 static unsigned int bfq_wr_duration(struct bfq_data *bfqd) 729 { 730 u64 dur; 731 732 if (bfqd->bfq_wr_max_time > 0) 733 return bfqd->bfq_wr_max_time; 734 735 dur = bfqd->RT_prod; 736 do_div(dur, bfqd->peak_rate); 737 738 /* 739 * Limit duration between 3 and 13 seconds. Tests show that 740 * higher values than 13 seconds often yield the opposite of 741 * the desired result, i.e., worsen responsiveness by letting 742 * non-interactive and non-soft-real-time applications 743 * preserve weight raising for a too long time interval. 744 * 745 * On the other end, lower values than 3 seconds make it 746 * difficult for most interactive tasks to complete their jobs 747 * before weight-raising finishes. 748 */ 749 if (dur > msecs_to_jiffies(13000)) 750 dur = msecs_to_jiffies(13000); 751 else if (dur < msecs_to_jiffies(3000)) 752 dur = msecs_to_jiffies(3000); 753 754 return dur; 755 } 756 757 /* switch back from soft real-time to interactive weight raising */ 758 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq, 759 struct bfq_data *bfqd) 760 { 761 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 762 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 763 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt; 764 } 765 766 static void 767 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd, 768 struct bfq_io_cq *bic, bool bfq_already_existing) 769 { 770 unsigned int old_wr_coeff = bfqq->wr_coeff; 771 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq); 772 773 if (bic->saved_has_short_ttime) 774 bfq_mark_bfqq_has_short_ttime(bfqq); 775 else 776 bfq_clear_bfqq_has_short_ttime(bfqq); 777 778 if (bic->saved_IO_bound) 779 bfq_mark_bfqq_IO_bound(bfqq); 780 else 781 bfq_clear_bfqq_IO_bound(bfqq); 782 783 bfqq->ttime = bic->saved_ttime; 784 bfqq->wr_coeff = bic->saved_wr_coeff; 785 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt; 786 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish; 787 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time; 788 789 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 790 time_is_before_jiffies(bfqq->last_wr_start_finish + 791 bfqq->wr_cur_max_time))) { 792 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 793 !bfq_bfqq_in_large_burst(bfqq) && 794 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt + 795 bfq_wr_duration(bfqd))) { 796 switch_back_to_interactive_wr(bfqq, bfqd); 797 } else { 798 bfqq->wr_coeff = 1; 799 bfq_log_bfqq(bfqq->bfqd, bfqq, 800 "resume state: switching off wr"); 801 } 802 } 803 804 /* make sure weight will be updated, however we got here */ 805 bfqq->entity.prio_changed = 1; 806 807 if (likely(!busy)) 808 return; 809 810 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) 811 bfqd->wr_busy_queues++; 812 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) 813 bfqd->wr_busy_queues--; 814 } 815 816 static int bfqq_process_refs(struct bfq_queue *bfqq) 817 { 818 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st; 819 } 820 821 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 822 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 823 { 824 struct bfq_queue *item; 825 struct hlist_node *n; 826 827 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 828 hlist_del_init(&item->burst_list_node); 829 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 830 bfqd->burst_size = 1; 831 bfqd->burst_parent_entity = bfqq->entity.parent; 832 } 833 834 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 835 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 836 { 837 /* Increment burst size to take into account also bfqq */ 838 bfqd->burst_size++; 839 840 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 841 struct bfq_queue *pos, *bfqq_item; 842 struct hlist_node *n; 843 844 /* 845 * Enough queues have been activated shortly after each 846 * other to consider this burst as large. 847 */ 848 bfqd->large_burst = true; 849 850 /* 851 * We can now mark all queues in the burst list as 852 * belonging to a large burst. 853 */ 854 hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 855 burst_list_node) 856 bfq_mark_bfqq_in_large_burst(bfqq_item); 857 bfq_mark_bfqq_in_large_burst(bfqq); 858 859 /* 860 * From now on, and until the current burst finishes, any 861 * new queue being activated shortly after the last queue 862 * was inserted in the burst can be immediately marked as 863 * belonging to a large burst. So the burst list is not 864 * needed any more. Remove it. 865 */ 866 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 867 burst_list_node) 868 hlist_del_init(&pos->burst_list_node); 869 } else /* 870 * Burst not yet large: add bfqq to the burst list. Do 871 * not increment the ref counter for bfqq, because bfqq 872 * is removed from the burst list before freeing bfqq 873 * in put_queue. 874 */ 875 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 876 } 877 878 /* 879 * If many queues belonging to the same group happen to be created 880 * shortly after each other, then the processes associated with these 881 * queues have typically a common goal. In particular, bursts of queue 882 * creations are usually caused by services or applications that spawn 883 * many parallel threads/processes. Examples are systemd during boot, 884 * or git grep. To help these processes get their job done as soon as 885 * possible, it is usually better to not grant either weight-raising 886 * or device idling to their queues. 887 * 888 * In this comment we describe, firstly, the reasons why this fact 889 * holds, and, secondly, the next function, which implements the main 890 * steps needed to properly mark these queues so that they can then be 891 * treated in a different way. 892 * 893 * The above services or applications benefit mostly from a high 894 * throughput: the quicker the requests of the activated queues are 895 * cumulatively served, the sooner the target job of these queues gets 896 * completed. As a consequence, weight-raising any of these queues, 897 * which also implies idling the device for it, is almost always 898 * counterproductive. In most cases it just lowers throughput. 899 * 900 * On the other hand, a burst of queue creations may be caused also by 901 * the start of an application that does not consist of a lot of 902 * parallel I/O-bound threads. In fact, with a complex application, 903 * several short processes may need to be executed to start-up the 904 * application. In this respect, to start an application as quickly as 905 * possible, the best thing to do is in any case to privilege the I/O 906 * related to the application with respect to all other 907 * I/O. Therefore, the best strategy to start as quickly as possible 908 * an application that causes a burst of queue creations is to 909 * weight-raise all the queues created during the burst. This is the 910 * exact opposite of the best strategy for the other type of bursts. 911 * 912 * In the end, to take the best action for each of the two cases, the 913 * two types of bursts need to be distinguished. Fortunately, this 914 * seems relatively easy, by looking at the sizes of the bursts. In 915 * particular, we found a threshold such that only bursts with a 916 * larger size than that threshold are apparently caused by 917 * services or commands such as systemd or git grep. For brevity, 918 * hereafter we call just 'large' these bursts. BFQ *does not* 919 * weight-raise queues whose creation occurs in a large burst. In 920 * addition, for each of these queues BFQ performs or does not perform 921 * idling depending on which choice boosts the throughput more. The 922 * exact choice depends on the device and request pattern at 923 * hand. 924 * 925 * Unfortunately, false positives may occur while an interactive task 926 * is starting (e.g., an application is being started). The 927 * consequence is that the queues associated with the task do not 928 * enjoy weight raising as expected. Fortunately these false positives 929 * are very rare. They typically occur if some service happens to 930 * start doing I/O exactly when the interactive task starts. 931 * 932 * Turning back to the next function, it implements all the steps 933 * needed to detect the occurrence of a large burst and to properly 934 * mark all the queues belonging to it (so that they can then be 935 * treated in a different way). This goal is achieved by maintaining a 936 * "burst list" that holds, temporarily, the queues that belong to the 937 * burst in progress. The list is then used to mark these queues as 938 * belonging to a large burst if the burst does become large. The main 939 * steps are the following. 940 * 941 * . when the very first queue is created, the queue is inserted into the 942 * list (as it could be the first queue in a possible burst) 943 * 944 * . if the current burst has not yet become large, and a queue Q that does 945 * not yet belong to the burst is activated shortly after the last time 946 * at which a new queue entered the burst list, then the function appends 947 * Q to the burst list 948 * 949 * . if, as a consequence of the previous step, the burst size reaches 950 * the large-burst threshold, then 951 * 952 * . all the queues in the burst list are marked as belonging to a 953 * large burst 954 * 955 * . the burst list is deleted; in fact, the burst list already served 956 * its purpose (keeping temporarily track of the queues in a burst, 957 * so as to be able to mark them as belonging to a large burst in the 958 * previous sub-step), and now is not needed any more 959 * 960 * . the device enters a large-burst mode 961 * 962 * . if a queue Q that does not belong to the burst is created while 963 * the device is in large-burst mode and shortly after the last time 964 * at which a queue either entered the burst list or was marked as 965 * belonging to the current large burst, then Q is immediately marked 966 * as belonging to a large burst. 967 * 968 * . if a queue Q that does not belong to the burst is created a while 969 * later, i.e., not shortly after, than the last time at which a queue 970 * either entered the burst list or was marked as belonging to the 971 * current large burst, then the current burst is deemed as finished and: 972 * 973 * . the large-burst mode is reset if set 974 * 975 * . the burst list is emptied 976 * 977 * . Q is inserted in the burst list, as Q may be the first queue 978 * in a possible new burst (then the burst list contains just Q 979 * after this step). 980 */ 981 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 982 { 983 /* 984 * If bfqq is already in the burst list or is part of a large 985 * burst, or finally has just been split, then there is 986 * nothing else to do. 987 */ 988 if (!hlist_unhashed(&bfqq->burst_list_node) || 989 bfq_bfqq_in_large_burst(bfqq) || 990 time_is_after_eq_jiffies(bfqq->split_time + 991 msecs_to_jiffies(10))) 992 return; 993 994 /* 995 * If bfqq's creation happens late enough, or bfqq belongs to 996 * a different group than the burst group, then the current 997 * burst is finished, and related data structures must be 998 * reset. 999 * 1000 * In this respect, consider the special case where bfqq is 1001 * the very first queue created after BFQ is selected for this 1002 * device. In this case, last_ins_in_burst and 1003 * burst_parent_entity are not yet significant when we get 1004 * here. But it is easy to verify that, whether or not the 1005 * following condition is true, bfqq will end up being 1006 * inserted into the burst list. In particular the list will 1007 * happen to contain only bfqq. And this is exactly what has 1008 * to happen, as bfqq may be the first queue of the first 1009 * burst. 1010 */ 1011 if (time_is_before_jiffies(bfqd->last_ins_in_burst + 1012 bfqd->bfq_burst_interval) || 1013 bfqq->entity.parent != bfqd->burst_parent_entity) { 1014 bfqd->large_burst = false; 1015 bfq_reset_burst_list(bfqd, bfqq); 1016 goto end; 1017 } 1018 1019 /* 1020 * If we get here, then bfqq is being activated shortly after the 1021 * last queue. So, if the current burst is also large, we can mark 1022 * bfqq as belonging to this large burst immediately. 1023 */ 1024 if (bfqd->large_burst) { 1025 bfq_mark_bfqq_in_large_burst(bfqq); 1026 goto end; 1027 } 1028 1029 /* 1030 * If we get here, then a large-burst state has not yet been 1031 * reached, but bfqq is being activated shortly after the last 1032 * queue. Then we add bfqq to the burst. 1033 */ 1034 bfq_add_to_burst(bfqd, bfqq); 1035 end: 1036 /* 1037 * At this point, bfqq either has been added to the current 1038 * burst or has caused the current burst to terminate and a 1039 * possible new burst to start. In particular, in the second 1040 * case, bfqq has become the first queue in the possible new 1041 * burst. In both cases last_ins_in_burst needs to be moved 1042 * forward. 1043 */ 1044 bfqd->last_ins_in_burst = jiffies; 1045 } 1046 1047 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 1048 { 1049 struct bfq_entity *entity = &bfqq->entity; 1050 1051 return entity->budget - entity->service; 1052 } 1053 1054 /* 1055 * If enough samples have been computed, return the current max budget 1056 * stored in bfqd, which is dynamically updated according to the 1057 * estimated disk peak rate; otherwise return the default max budget 1058 */ 1059 static int bfq_max_budget(struct bfq_data *bfqd) 1060 { 1061 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1062 return bfq_default_max_budget; 1063 else 1064 return bfqd->bfq_max_budget; 1065 } 1066 1067 /* 1068 * Return min budget, which is a fraction of the current or default 1069 * max budget (trying with 1/32) 1070 */ 1071 static int bfq_min_budget(struct bfq_data *bfqd) 1072 { 1073 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1074 return bfq_default_max_budget / 32; 1075 else 1076 return bfqd->bfq_max_budget / 32; 1077 } 1078 1079 /* 1080 * The next function, invoked after the input queue bfqq switches from 1081 * idle to busy, updates the budget of bfqq. The function also tells 1082 * whether the in-service queue should be expired, by returning 1083 * true. The purpose of expiring the in-service queue is to give bfqq 1084 * the chance to possibly preempt the in-service queue, and the reason 1085 * for preempting the in-service queue is to achieve one of the two 1086 * goals below. 1087 * 1088 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 1089 * expired because it has remained idle. In particular, bfqq may have 1090 * expired for one of the following two reasons: 1091 * 1092 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 1093 * and did not make it to issue a new request before its last 1094 * request was served; 1095 * 1096 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 1097 * a new request before the expiration of the idling-time. 1098 * 1099 * Even if bfqq has expired for one of the above reasons, the process 1100 * associated with the queue may be however issuing requests greedily, 1101 * and thus be sensitive to the bandwidth it receives (bfqq may have 1102 * remained idle for other reasons: CPU high load, bfqq not enjoying 1103 * idling, I/O throttling somewhere in the path from the process to 1104 * the I/O scheduler, ...). But if, after every expiration for one of 1105 * the above two reasons, bfqq has to wait for the service of at least 1106 * one full budget of another queue before being served again, then 1107 * bfqq is likely to get a much lower bandwidth or resource time than 1108 * its reserved ones. To address this issue, two countermeasures need 1109 * to be taken. 1110 * 1111 * First, the budget and the timestamps of bfqq need to be updated in 1112 * a special way on bfqq reactivation: they need to be updated as if 1113 * bfqq did not remain idle and did not expire. In fact, if they are 1114 * computed as if bfqq expired and remained idle until reactivation, 1115 * then the process associated with bfqq is treated as if, instead of 1116 * being greedy, it stopped issuing requests when bfqq remained idle, 1117 * and restarts issuing requests only on this reactivation. In other 1118 * words, the scheduler does not help the process recover the "service 1119 * hole" between bfqq expiration and reactivation. As a consequence, 1120 * the process receives a lower bandwidth than its reserved one. In 1121 * contrast, to recover this hole, the budget must be updated as if 1122 * bfqq was not expired at all before this reactivation, i.e., it must 1123 * be set to the value of the remaining budget when bfqq was 1124 * expired. Along the same line, timestamps need to be assigned the 1125 * value they had the last time bfqq was selected for service, i.e., 1126 * before last expiration. Thus timestamps need to be back-shifted 1127 * with respect to their normal computation (see [1] for more details 1128 * on this tricky aspect). 1129 * 1130 * Secondly, to allow the process to recover the hole, the in-service 1131 * queue must be expired too, to give bfqq the chance to preempt it 1132 * immediately. In fact, if bfqq has to wait for a full budget of the 1133 * in-service queue to be completed, then it may become impossible to 1134 * let the process recover the hole, even if the back-shifted 1135 * timestamps of bfqq are lower than those of the in-service queue. If 1136 * this happens for most or all of the holes, then the process may not 1137 * receive its reserved bandwidth. In this respect, it is worth noting 1138 * that, being the service of outstanding requests unpreemptible, a 1139 * little fraction of the holes may however be unrecoverable, thereby 1140 * causing a little loss of bandwidth. 1141 * 1142 * The last important point is detecting whether bfqq does need this 1143 * bandwidth recovery. In this respect, the next function deems the 1144 * process associated with bfqq greedy, and thus allows it to recover 1145 * the hole, if: 1) the process is waiting for the arrival of a new 1146 * request (which implies that bfqq expired for one of the above two 1147 * reasons), and 2) such a request has arrived soon. The first 1148 * condition is controlled through the flag non_blocking_wait_rq, 1149 * while the second through the flag arrived_in_time. If both 1150 * conditions hold, then the function computes the budget in the 1151 * above-described special way, and signals that the in-service queue 1152 * should be expired. Timestamp back-shifting is done later in 1153 * __bfq_activate_entity. 1154 * 1155 * 2. Reduce latency. Even if timestamps are not backshifted to let 1156 * the process associated with bfqq recover a service hole, bfqq may 1157 * however happen to have, after being (re)activated, a lower finish 1158 * timestamp than the in-service queue. That is, the next budget of 1159 * bfqq may have to be completed before the one of the in-service 1160 * queue. If this is the case, then preempting the in-service queue 1161 * allows this goal to be achieved, apart from the unpreemptible, 1162 * outstanding requests mentioned above. 1163 * 1164 * Unfortunately, regardless of which of the above two goals one wants 1165 * to achieve, service trees need first to be updated to know whether 1166 * the in-service queue must be preempted. To have service trees 1167 * correctly updated, the in-service queue must be expired and 1168 * rescheduled, and bfqq must be scheduled too. This is one of the 1169 * most costly operations (in future versions, the scheduling 1170 * mechanism may be re-designed in such a way to make it possible to 1171 * know whether preemption is needed without needing to update service 1172 * trees). In addition, queue preemptions almost always cause random 1173 * I/O, and thus loss of throughput. Because of these facts, the next 1174 * function adopts the following simple scheme to avoid both costly 1175 * operations and too frequent preemptions: it requests the expiration 1176 * of the in-service queue (unconditionally) only for queues that need 1177 * to recover a hole, or that either are weight-raised or deserve to 1178 * be weight-raised. 1179 */ 1180 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 1181 struct bfq_queue *bfqq, 1182 bool arrived_in_time, 1183 bool wr_or_deserves_wr) 1184 { 1185 struct bfq_entity *entity = &bfqq->entity; 1186 1187 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { 1188 /* 1189 * We do not clear the flag non_blocking_wait_rq here, as 1190 * the latter is used in bfq_activate_bfqq to signal 1191 * that timestamps need to be back-shifted (and is 1192 * cleared right after). 1193 */ 1194 1195 /* 1196 * In next assignment we rely on that either 1197 * entity->service or entity->budget are not updated 1198 * on expiration if bfqq is empty (see 1199 * __bfq_bfqq_recalc_budget). Thus both quantities 1200 * remain unchanged after such an expiration, and the 1201 * following statement therefore assigns to 1202 * entity->budget the remaining budget on such an 1203 * expiration. For clarity, entity->service is not 1204 * updated on expiration in any case, and, in normal 1205 * operation, is reset only when bfqq is selected for 1206 * service (see bfq_get_next_queue). 1207 */ 1208 entity->budget = min_t(unsigned long, 1209 bfq_bfqq_budget_left(bfqq), 1210 bfqq->max_budget); 1211 1212 return true; 1213 } 1214 1215 entity->budget = max_t(unsigned long, bfqq->max_budget, 1216 bfq_serv_to_charge(bfqq->next_rq, bfqq)); 1217 bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 1218 return wr_or_deserves_wr; 1219 } 1220 1221 /* 1222 * Return the farthest future time instant according to jiffies 1223 * macros. 1224 */ 1225 static unsigned long bfq_greatest_from_now(void) 1226 { 1227 return jiffies + MAX_JIFFY_OFFSET; 1228 } 1229 1230 /* 1231 * Return the farthest past time instant according to jiffies 1232 * macros. 1233 */ 1234 static unsigned long bfq_smallest_from_now(void) 1235 { 1236 return jiffies - MAX_JIFFY_OFFSET; 1237 } 1238 1239 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 1240 struct bfq_queue *bfqq, 1241 unsigned int old_wr_coeff, 1242 bool wr_or_deserves_wr, 1243 bool interactive, 1244 bool in_burst, 1245 bool soft_rt) 1246 { 1247 if (old_wr_coeff == 1 && wr_or_deserves_wr) { 1248 /* start a weight-raising period */ 1249 if (interactive) { 1250 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1251 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1252 } else { 1253 /* 1254 * No interactive weight raising in progress 1255 * here: assign minus infinity to 1256 * wr_start_at_switch_to_srt, to make sure 1257 * that, at the end of the soft-real-time 1258 * weight raising periods that is starting 1259 * now, no interactive weight-raising period 1260 * may be wrongly considered as still in 1261 * progress (and thus actually started by 1262 * mistake). 1263 */ 1264 bfqq->wr_start_at_switch_to_srt = 1265 bfq_smallest_from_now(); 1266 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1267 BFQ_SOFTRT_WEIGHT_FACTOR; 1268 bfqq->wr_cur_max_time = 1269 bfqd->bfq_wr_rt_max_time; 1270 } 1271 1272 /* 1273 * If needed, further reduce budget to make sure it is 1274 * close to bfqq's backlog, so as to reduce the 1275 * scheduling-error component due to a too large 1276 * budget. Do not care about throughput consequences, 1277 * but only about latency. Finally, do not assign a 1278 * too small budget either, to avoid increasing 1279 * latency by causing too frequent expirations. 1280 */ 1281 bfqq->entity.budget = min_t(unsigned long, 1282 bfqq->entity.budget, 1283 2 * bfq_min_budget(bfqd)); 1284 } else if (old_wr_coeff > 1) { 1285 if (interactive) { /* update wr coeff and duration */ 1286 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1287 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1288 } else if (in_burst) 1289 bfqq->wr_coeff = 1; 1290 else if (soft_rt) { 1291 /* 1292 * The application is now or still meeting the 1293 * requirements for being deemed soft rt. We 1294 * can then correctly and safely (re)charge 1295 * the weight-raising duration for the 1296 * application with the weight-raising 1297 * duration for soft rt applications. 1298 * 1299 * In particular, doing this recharge now, i.e., 1300 * before the weight-raising period for the 1301 * application finishes, reduces the probability 1302 * of the following negative scenario: 1303 * 1) the weight of a soft rt application is 1304 * raised at startup (as for any newly 1305 * created application), 1306 * 2) since the application is not interactive, 1307 * at a certain time weight-raising is 1308 * stopped for the application, 1309 * 3) at that time the application happens to 1310 * still have pending requests, and hence 1311 * is destined to not have a chance to be 1312 * deemed soft rt before these requests are 1313 * completed (see the comments to the 1314 * function bfq_bfqq_softrt_next_start() 1315 * for details on soft rt detection), 1316 * 4) these pending requests experience a high 1317 * latency because the application is not 1318 * weight-raised while they are pending. 1319 */ 1320 if (bfqq->wr_cur_max_time != 1321 bfqd->bfq_wr_rt_max_time) { 1322 bfqq->wr_start_at_switch_to_srt = 1323 bfqq->last_wr_start_finish; 1324 1325 bfqq->wr_cur_max_time = 1326 bfqd->bfq_wr_rt_max_time; 1327 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1328 BFQ_SOFTRT_WEIGHT_FACTOR; 1329 } 1330 bfqq->last_wr_start_finish = jiffies; 1331 } 1332 } 1333 } 1334 1335 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 1336 struct bfq_queue *bfqq) 1337 { 1338 return bfqq->dispatched == 0 && 1339 time_is_before_jiffies( 1340 bfqq->budget_timeout + 1341 bfqd->bfq_wr_min_idle_time); 1342 } 1343 1344 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 1345 struct bfq_queue *bfqq, 1346 int old_wr_coeff, 1347 struct request *rq, 1348 bool *interactive) 1349 { 1350 bool soft_rt, in_burst, wr_or_deserves_wr, 1351 bfqq_wants_to_preempt, 1352 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 1353 /* 1354 * See the comments on 1355 * bfq_bfqq_update_budg_for_activation for 1356 * details on the usage of the next variable. 1357 */ 1358 arrived_in_time = ktime_get_ns() <= 1359 bfqq->ttime.last_end_request + 1360 bfqd->bfq_slice_idle * 3; 1361 1362 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); 1363 1364 /* 1365 * bfqq deserves to be weight-raised if: 1366 * - it is sync, 1367 * - it does not belong to a large burst, 1368 * - it has been idle for enough time or is soft real-time, 1369 * - is linked to a bfq_io_cq (it is not shared in any sense). 1370 */ 1371 in_burst = bfq_bfqq_in_large_burst(bfqq); 1372 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 1373 !in_burst && 1374 time_is_before_jiffies(bfqq->soft_rt_next_start); 1375 *interactive = !in_burst && idle_for_long_time; 1376 wr_or_deserves_wr = bfqd->low_latency && 1377 (bfqq->wr_coeff > 1 || 1378 (bfq_bfqq_sync(bfqq) && 1379 bfqq->bic && (*interactive || soft_rt))); 1380 1381 /* 1382 * Using the last flag, update budget and check whether bfqq 1383 * may want to preempt the in-service queue. 1384 */ 1385 bfqq_wants_to_preempt = 1386 bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 1387 arrived_in_time, 1388 wr_or_deserves_wr); 1389 1390 /* 1391 * If bfqq happened to be activated in a burst, but has been 1392 * idle for much more than an interactive queue, then we 1393 * assume that, in the overall I/O initiated in the burst, the 1394 * I/O associated with bfqq is finished. So bfqq does not need 1395 * to be treated as a queue belonging to a burst 1396 * anymore. Accordingly, we reset bfqq's in_large_burst flag 1397 * if set, and remove bfqq from the burst list if it's 1398 * there. We do not decrement burst_size, because the fact 1399 * that bfqq does not need to belong to the burst list any 1400 * more does not invalidate the fact that bfqq was created in 1401 * a burst. 1402 */ 1403 if (likely(!bfq_bfqq_just_created(bfqq)) && 1404 idle_for_long_time && 1405 time_is_before_jiffies( 1406 bfqq->budget_timeout + 1407 msecs_to_jiffies(10000))) { 1408 hlist_del_init(&bfqq->burst_list_node); 1409 bfq_clear_bfqq_in_large_burst(bfqq); 1410 } 1411 1412 bfq_clear_bfqq_just_created(bfqq); 1413 1414 1415 if (!bfq_bfqq_IO_bound(bfqq)) { 1416 if (arrived_in_time) { 1417 bfqq->requests_within_timer++; 1418 if (bfqq->requests_within_timer >= 1419 bfqd->bfq_requests_within_timer) 1420 bfq_mark_bfqq_IO_bound(bfqq); 1421 } else 1422 bfqq->requests_within_timer = 0; 1423 } 1424 1425 if (bfqd->low_latency) { 1426 if (unlikely(time_is_after_jiffies(bfqq->split_time))) 1427 /* wraparound */ 1428 bfqq->split_time = 1429 jiffies - bfqd->bfq_wr_min_idle_time - 1; 1430 1431 if (time_is_before_jiffies(bfqq->split_time + 1432 bfqd->bfq_wr_min_idle_time)) { 1433 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 1434 old_wr_coeff, 1435 wr_or_deserves_wr, 1436 *interactive, 1437 in_burst, 1438 soft_rt); 1439 1440 if (old_wr_coeff != bfqq->wr_coeff) 1441 bfqq->entity.prio_changed = 1; 1442 } 1443 } 1444 1445 bfqq->last_idle_bklogged = jiffies; 1446 bfqq->service_from_backlogged = 0; 1447 bfq_clear_bfqq_softrt_update(bfqq); 1448 1449 bfq_add_bfqq_busy(bfqd, bfqq); 1450 1451 /* 1452 * Expire in-service queue only if preemption may be needed 1453 * for guarantees. In this respect, the function 1454 * next_queue_may_preempt just checks a simple, necessary 1455 * condition, and not a sufficient condition based on 1456 * timestamps. In fact, for the latter condition to be 1457 * evaluated, timestamps would need first to be updated, and 1458 * this operation is quite costly (see the comments on the 1459 * function bfq_bfqq_update_budg_for_activation). 1460 */ 1461 if (bfqd->in_service_queue && bfqq_wants_to_preempt && 1462 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && 1463 next_queue_may_preempt(bfqd)) 1464 bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 1465 false, BFQQE_PREEMPTED); 1466 } 1467 1468 static void bfq_add_request(struct request *rq) 1469 { 1470 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1471 struct bfq_data *bfqd = bfqq->bfqd; 1472 struct request *next_rq, *prev; 1473 unsigned int old_wr_coeff = bfqq->wr_coeff; 1474 bool interactive = false; 1475 1476 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 1477 bfqq->queued[rq_is_sync(rq)]++; 1478 bfqd->queued++; 1479 1480 elv_rb_add(&bfqq->sort_list, rq); 1481 1482 /* 1483 * Check if this request is a better next-serve candidate. 1484 */ 1485 prev = bfqq->next_rq; 1486 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 1487 bfqq->next_rq = next_rq; 1488 1489 /* 1490 * Adjust priority tree position, if next_rq changes. 1491 */ 1492 if (prev != bfqq->next_rq) 1493 bfq_pos_tree_add_move(bfqd, bfqq); 1494 1495 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 1496 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 1497 rq, &interactive); 1498 else { 1499 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 1500 time_is_before_jiffies( 1501 bfqq->last_wr_start_finish + 1502 bfqd->bfq_wr_min_inter_arr_async)) { 1503 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1504 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1505 1506 bfqd->wr_busy_queues++; 1507 bfqq->entity.prio_changed = 1; 1508 } 1509 if (prev != bfqq->next_rq) 1510 bfq_updated_next_req(bfqd, bfqq); 1511 } 1512 1513 /* 1514 * Assign jiffies to last_wr_start_finish in the following 1515 * cases: 1516 * 1517 * . if bfqq is not going to be weight-raised, because, for 1518 * non weight-raised queues, last_wr_start_finish stores the 1519 * arrival time of the last request; as of now, this piece 1520 * of information is used only for deciding whether to 1521 * weight-raise async queues 1522 * 1523 * . if bfqq is not weight-raised, because, if bfqq is now 1524 * switching to weight-raised, then last_wr_start_finish 1525 * stores the time when weight-raising starts 1526 * 1527 * . if bfqq is interactive, because, regardless of whether 1528 * bfqq is currently weight-raised, the weight-raising 1529 * period must start or restart (this case is considered 1530 * separately because it is not detected by the above 1531 * conditions, if bfqq is already weight-raised) 1532 * 1533 * last_wr_start_finish has to be updated also if bfqq is soft 1534 * real-time, because the weight-raising period is constantly 1535 * restarted on idle-to-busy transitions for these queues, but 1536 * this is already done in bfq_bfqq_handle_idle_busy_switch if 1537 * needed. 1538 */ 1539 if (bfqd->low_latency && 1540 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 1541 bfqq->last_wr_start_finish = jiffies; 1542 } 1543 1544 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 1545 struct bio *bio, 1546 struct request_queue *q) 1547 { 1548 struct bfq_queue *bfqq = bfqd->bio_bfqq; 1549 1550 1551 if (bfqq) 1552 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 1553 1554 return NULL; 1555 } 1556 1557 static sector_t get_sdist(sector_t last_pos, struct request *rq) 1558 { 1559 if (last_pos) 1560 return abs(blk_rq_pos(rq) - last_pos); 1561 1562 return 0; 1563 } 1564 1565 #if 0 /* Still not clear if we can do without next two functions */ 1566 static void bfq_activate_request(struct request_queue *q, struct request *rq) 1567 { 1568 struct bfq_data *bfqd = q->elevator->elevator_data; 1569 1570 bfqd->rq_in_driver++; 1571 } 1572 1573 static void bfq_deactivate_request(struct request_queue *q, struct request *rq) 1574 { 1575 struct bfq_data *bfqd = q->elevator->elevator_data; 1576 1577 bfqd->rq_in_driver--; 1578 } 1579 #endif 1580 1581 static void bfq_remove_request(struct request_queue *q, 1582 struct request *rq) 1583 { 1584 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1585 struct bfq_data *bfqd = bfqq->bfqd; 1586 const int sync = rq_is_sync(rq); 1587 1588 if (bfqq->next_rq == rq) { 1589 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 1590 bfq_updated_next_req(bfqd, bfqq); 1591 } 1592 1593 if (rq->queuelist.prev != &rq->queuelist) 1594 list_del_init(&rq->queuelist); 1595 bfqq->queued[sync]--; 1596 bfqd->queued--; 1597 elv_rb_del(&bfqq->sort_list, rq); 1598 1599 elv_rqhash_del(q, rq); 1600 if (q->last_merge == rq) 1601 q->last_merge = NULL; 1602 1603 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 1604 bfqq->next_rq = NULL; 1605 1606 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 1607 bfq_del_bfqq_busy(bfqd, bfqq, false); 1608 /* 1609 * bfqq emptied. In normal operation, when 1610 * bfqq is empty, bfqq->entity.service and 1611 * bfqq->entity.budget must contain, 1612 * respectively, the service received and the 1613 * budget used last time bfqq emptied. These 1614 * facts do not hold in this case, as at least 1615 * this last removal occurred while bfqq is 1616 * not in service. To avoid inconsistencies, 1617 * reset both bfqq->entity.service and 1618 * bfqq->entity.budget, if bfqq has still a 1619 * process that may issue I/O requests to it. 1620 */ 1621 bfqq->entity.budget = bfqq->entity.service = 0; 1622 } 1623 1624 /* 1625 * Remove queue from request-position tree as it is empty. 1626 */ 1627 if (bfqq->pos_root) { 1628 rb_erase(&bfqq->pos_node, bfqq->pos_root); 1629 bfqq->pos_root = NULL; 1630 } 1631 } 1632 1633 if (rq->cmd_flags & REQ_META) 1634 bfqq->meta_pending--; 1635 1636 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); 1637 } 1638 1639 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 1640 { 1641 struct request_queue *q = hctx->queue; 1642 struct bfq_data *bfqd = q->elevator->elevator_data; 1643 struct request *free = NULL; 1644 /* 1645 * bfq_bic_lookup grabs the queue_lock: invoke it now and 1646 * store its return value for later use, to avoid nesting 1647 * queue_lock inside the bfqd->lock. We assume that the bic 1648 * returned by bfq_bic_lookup does not go away before 1649 * bfqd->lock is taken. 1650 */ 1651 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); 1652 bool ret; 1653 1654 spin_lock_irq(&bfqd->lock); 1655 1656 if (bic) 1657 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); 1658 else 1659 bfqd->bio_bfqq = NULL; 1660 bfqd->bio_bic = bic; 1661 1662 ret = blk_mq_sched_try_merge(q, bio, &free); 1663 1664 if (free) 1665 blk_mq_free_request(free); 1666 spin_unlock_irq(&bfqd->lock); 1667 1668 return ret; 1669 } 1670 1671 static int bfq_request_merge(struct request_queue *q, struct request **req, 1672 struct bio *bio) 1673 { 1674 struct bfq_data *bfqd = q->elevator->elevator_data; 1675 struct request *__rq; 1676 1677 __rq = bfq_find_rq_fmerge(bfqd, bio, q); 1678 if (__rq && elv_bio_merge_ok(__rq, bio)) { 1679 *req = __rq; 1680 return ELEVATOR_FRONT_MERGE; 1681 } 1682 1683 return ELEVATOR_NO_MERGE; 1684 } 1685 1686 static void bfq_request_merged(struct request_queue *q, struct request *req, 1687 enum elv_merge type) 1688 { 1689 if (type == ELEVATOR_FRONT_MERGE && 1690 rb_prev(&req->rb_node) && 1691 blk_rq_pos(req) < 1692 blk_rq_pos(container_of(rb_prev(&req->rb_node), 1693 struct request, rb_node))) { 1694 struct bfq_queue *bfqq = RQ_BFQQ(req); 1695 struct bfq_data *bfqd = bfqq->bfqd; 1696 struct request *prev, *next_rq; 1697 1698 /* Reposition request in its sort_list */ 1699 elv_rb_del(&bfqq->sort_list, req); 1700 elv_rb_add(&bfqq->sort_list, req); 1701 1702 /* Choose next request to be served for bfqq */ 1703 prev = bfqq->next_rq; 1704 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 1705 bfqd->last_position); 1706 bfqq->next_rq = next_rq; 1707 /* 1708 * If next_rq changes, update both the queue's budget to 1709 * fit the new request and the queue's position in its 1710 * rq_pos_tree. 1711 */ 1712 if (prev != bfqq->next_rq) { 1713 bfq_updated_next_req(bfqd, bfqq); 1714 bfq_pos_tree_add_move(bfqd, bfqq); 1715 } 1716 } 1717 } 1718 1719 static void bfq_requests_merged(struct request_queue *q, struct request *rq, 1720 struct request *next) 1721 { 1722 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); 1723 1724 if (!RB_EMPTY_NODE(&rq->rb_node)) 1725 goto end; 1726 spin_lock_irq(&bfqq->bfqd->lock); 1727 1728 /* 1729 * If next and rq belong to the same bfq_queue and next is older 1730 * than rq, then reposition rq in the fifo (by substituting next 1731 * with rq). Otherwise, if next and rq belong to different 1732 * bfq_queues, never reposition rq: in fact, we would have to 1733 * reposition it with respect to next's position in its own fifo, 1734 * which would most certainly be too expensive with respect to 1735 * the benefits. 1736 */ 1737 if (bfqq == next_bfqq && 1738 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 1739 next->fifo_time < rq->fifo_time) { 1740 list_del_init(&rq->queuelist); 1741 list_replace_init(&next->queuelist, &rq->queuelist); 1742 rq->fifo_time = next->fifo_time; 1743 } 1744 1745 if (bfqq->next_rq == next) 1746 bfqq->next_rq = rq; 1747 1748 bfq_remove_request(q, next); 1749 1750 spin_unlock_irq(&bfqq->bfqd->lock); 1751 end: 1752 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 1753 } 1754 1755 /* Must be called with bfqq != NULL */ 1756 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 1757 { 1758 if (bfq_bfqq_busy(bfqq)) 1759 bfqq->bfqd->wr_busy_queues--; 1760 bfqq->wr_coeff = 1; 1761 bfqq->wr_cur_max_time = 0; 1762 bfqq->last_wr_start_finish = jiffies; 1763 /* 1764 * Trigger a weight change on the next invocation of 1765 * __bfq_entity_update_weight_prio. 1766 */ 1767 bfqq->entity.prio_changed = 1; 1768 } 1769 1770 void bfq_end_wr_async_queues(struct bfq_data *bfqd, 1771 struct bfq_group *bfqg) 1772 { 1773 int i, j; 1774 1775 for (i = 0; i < 2; i++) 1776 for (j = 0; j < IOPRIO_BE_NR; j++) 1777 if (bfqg->async_bfqq[i][j]) 1778 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); 1779 if (bfqg->async_idle_bfqq) 1780 bfq_bfqq_end_wr(bfqg->async_idle_bfqq); 1781 } 1782 1783 static void bfq_end_wr(struct bfq_data *bfqd) 1784 { 1785 struct bfq_queue *bfqq; 1786 1787 spin_lock_irq(&bfqd->lock); 1788 1789 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) 1790 bfq_bfqq_end_wr(bfqq); 1791 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 1792 bfq_bfqq_end_wr(bfqq); 1793 bfq_end_wr_async(bfqd); 1794 1795 spin_unlock_irq(&bfqd->lock); 1796 } 1797 1798 static sector_t bfq_io_struct_pos(void *io_struct, bool request) 1799 { 1800 if (request) 1801 return blk_rq_pos(io_struct); 1802 else 1803 return ((struct bio *)io_struct)->bi_iter.bi_sector; 1804 } 1805 1806 static int bfq_rq_close_to_sector(void *io_struct, bool request, 1807 sector_t sector) 1808 { 1809 return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 1810 BFQQ_CLOSE_THR; 1811 } 1812 1813 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 1814 struct bfq_queue *bfqq, 1815 sector_t sector) 1816 { 1817 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 1818 struct rb_node *parent, *node; 1819 struct bfq_queue *__bfqq; 1820 1821 if (RB_EMPTY_ROOT(root)) 1822 return NULL; 1823 1824 /* 1825 * First, if we find a request starting at the end of the last 1826 * request, choose it. 1827 */ 1828 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 1829 if (__bfqq) 1830 return __bfqq; 1831 1832 /* 1833 * If the exact sector wasn't found, the parent of the NULL leaf 1834 * will contain the closest sector (rq_pos_tree sorted by 1835 * next_request position). 1836 */ 1837 __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 1838 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1839 return __bfqq; 1840 1841 if (blk_rq_pos(__bfqq->next_rq) < sector) 1842 node = rb_next(&__bfqq->pos_node); 1843 else 1844 node = rb_prev(&__bfqq->pos_node); 1845 if (!node) 1846 return NULL; 1847 1848 __bfqq = rb_entry(node, struct bfq_queue, pos_node); 1849 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1850 return __bfqq; 1851 1852 return NULL; 1853 } 1854 1855 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 1856 struct bfq_queue *cur_bfqq, 1857 sector_t sector) 1858 { 1859 struct bfq_queue *bfqq; 1860 1861 /* 1862 * We shall notice if some of the queues are cooperating, 1863 * e.g., working closely on the same area of the device. In 1864 * that case, we can group them together and: 1) don't waste 1865 * time idling, and 2) serve the union of their requests in 1866 * the best possible order for throughput. 1867 */ 1868 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 1869 if (!bfqq || bfqq == cur_bfqq) 1870 return NULL; 1871 1872 return bfqq; 1873 } 1874 1875 static struct bfq_queue * 1876 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 1877 { 1878 int process_refs, new_process_refs; 1879 struct bfq_queue *__bfqq; 1880 1881 /* 1882 * If there are no process references on the new_bfqq, then it is 1883 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 1884 * may have dropped their last reference (not just their last process 1885 * reference). 1886 */ 1887 if (!bfqq_process_refs(new_bfqq)) 1888 return NULL; 1889 1890 /* Avoid a circular list and skip interim queue merges. */ 1891 while ((__bfqq = new_bfqq->new_bfqq)) { 1892 if (__bfqq == bfqq) 1893 return NULL; 1894 new_bfqq = __bfqq; 1895 } 1896 1897 process_refs = bfqq_process_refs(bfqq); 1898 new_process_refs = bfqq_process_refs(new_bfqq); 1899 /* 1900 * If the process for the bfqq has gone away, there is no 1901 * sense in merging the queues. 1902 */ 1903 if (process_refs == 0 || new_process_refs == 0) 1904 return NULL; 1905 1906 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 1907 new_bfqq->pid); 1908 1909 /* 1910 * Merging is just a redirection: the requests of the process 1911 * owning one of the two queues are redirected to the other queue. 1912 * The latter queue, in its turn, is set as shared if this is the 1913 * first time that the requests of some process are redirected to 1914 * it. 1915 * 1916 * We redirect bfqq to new_bfqq and not the opposite, because 1917 * we are in the context of the process owning bfqq, thus we 1918 * have the io_cq of this process. So we can immediately 1919 * configure this io_cq to redirect the requests of the 1920 * process to new_bfqq. In contrast, the io_cq of new_bfqq is 1921 * not available any more (new_bfqq->bic == NULL). 1922 * 1923 * Anyway, even in case new_bfqq coincides with the in-service 1924 * queue, redirecting requests the in-service queue is the 1925 * best option, as we feed the in-service queue with new 1926 * requests close to the last request served and, by doing so, 1927 * are likely to increase the throughput. 1928 */ 1929 bfqq->new_bfqq = new_bfqq; 1930 new_bfqq->ref += process_refs; 1931 return new_bfqq; 1932 } 1933 1934 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 1935 struct bfq_queue *new_bfqq) 1936 { 1937 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 1938 (bfqq->ioprio_class != new_bfqq->ioprio_class)) 1939 return false; 1940 1941 /* 1942 * If either of the queues has already been detected as seeky, 1943 * then merging it with the other queue is unlikely to lead to 1944 * sequential I/O. 1945 */ 1946 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 1947 return false; 1948 1949 /* 1950 * Interleaved I/O is known to be done by (some) applications 1951 * only for reads, so it does not make sense to merge async 1952 * queues. 1953 */ 1954 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 1955 return false; 1956 1957 return true; 1958 } 1959 1960 /* 1961 * If this function returns true, then bfqq cannot be merged. The idea 1962 * is that true cooperation happens very early after processes start 1963 * to do I/O. Usually, late cooperations are just accidental false 1964 * positives. In case bfqq is weight-raised, such false positives 1965 * would evidently degrade latency guarantees for bfqq. 1966 */ 1967 static bool wr_from_too_long(struct bfq_queue *bfqq) 1968 { 1969 return bfqq->wr_coeff > 1 && 1970 time_is_before_jiffies(bfqq->last_wr_start_finish + 1971 msecs_to_jiffies(100)); 1972 } 1973 1974 /* 1975 * Attempt to schedule a merge of bfqq with the currently in-service 1976 * queue or with a close queue among the scheduled queues. Return 1977 * NULL if no merge was scheduled, a pointer to the shared bfq_queue 1978 * structure otherwise. 1979 * 1980 * The OOM queue is not allowed to participate to cooperation: in fact, since 1981 * the requests temporarily redirected to the OOM queue could be redirected 1982 * again to dedicated queues at any time, the state needed to correctly 1983 * handle merging with the OOM queue would be quite complex and expensive 1984 * to maintain. Besides, in such a critical condition as an out of memory, 1985 * the benefits of queue merging may be little relevant, or even negligible. 1986 * 1987 * Weight-raised queues can be merged only if their weight-raising 1988 * period has just started. In fact cooperating processes are usually 1989 * started together. Thus, with this filter we avoid false positives 1990 * that would jeopardize low-latency guarantees. 1991 * 1992 * WARNING: queue merging may impair fairness among non-weight raised 1993 * queues, for at least two reasons: 1) the original weight of a 1994 * merged queue may change during the merged state, 2) even being the 1995 * weight the same, a merged queue may be bloated with many more 1996 * requests than the ones produced by its originally-associated 1997 * process. 1998 */ 1999 static struct bfq_queue * 2000 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2001 void *io_struct, bool request) 2002 { 2003 struct bfq_queue *in_service_bfqq, *new_bfqq; 2004 2005 if (bfqq->new_bfqq) 2006 return bfqq->new_bfqq; 2007 2008 if (!io_struct || 2009 wr_from_too_long(bfqq) || 2010 unlikely(bfqq == &bfqd->oom_bfqq)) 2011 return NULL; 2012 2013 /* If there is only one backlogged queue, don't search. */ 2014 if (bfqd->busy_queues == 1) 2015 return NULL; 2016 2017 in_service_bfqq = bfqd->in_service_queue; 2018 2019 if (!in_service_bfqq || in_service_bfqq == bfqq 2020 || wr_from_too_long(in_service_bfqq) || 2021 unlikely(in_service_bfqq == &bfqd->oom_bfqq)) 2022 goto check_scheduled; 2023 2024 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) && 2025 bfqq->entity.parent == in_service_bfqq->entity.parent && 2026 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 2027 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 2028 if (new_bfqq) 2029 return new_bfqq; 2030 } 2031 /* 2032 * Check whether there is a cooperator among currently scheduled 2033 * queues. The only thing we need is that the bio/request is not 2034 * NULL, as we need it to establish whether a cooperator exists. 2035 */ 2036 check_scheduled: 2037 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 2038 bfq_io_struct_pos(io_struct, request)); 2039 2040 if (new_bfqq && !wr_from_too_long(new_bfqq) && 2041 likely(new_bfqq != &bfqd->oom_bfqq) && 2042 bfq_may_be_close_cooperator(bfqq, new_bfqq)) 2043 return bfq_setup_merge(bfqq, new_bfqq); 2044 2045 return NULL; 2046 } 2047 2048 static void bfq_bfqq_save_state(struct bfq_queue *bfqq) 2049 { 2050 struct bfq_io_cq *bic = bfqq->bic; 2051 2052 /* 2053 * If !bfqq->bic, the queue is already shared or its requests 2054 * have already been redirected to a shared queue; both idle window 2055 * and weight raising state have already been saved. Do nothing. 2056 */ 2057 if (!bic) 2058 return; 2059 2060 bic->saved_ttime = bfqq->ttime; 2061 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq); 2062 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 2063 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 2064 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node); 2065 if (unlikely(bfq_bfqq_just_created(bfqq) && 2066 !bfq_bfqq_in_large_burst(bfqq))) { 2067 /* 2068 * bfqq being merged right after being created: bfqq 2069 * would have deserved interactive weight raising, but 2070 * did not make it to be set in a weight-raised state, 2071 * because of this early merge. Store directly the 2072 * weight-raising state that would have been assigned 2073 * to bfqq, so that to avoid that bfqq unjustly fails 2074 * to enjoy weight raising if split soon. 2075 */ 2076 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff; 2077 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd); 2078 bic->saved_last_wr_start_finish = jiffies; 2079 } else { 2080 bic->saved_wr_coeff = bfqq->wr_coeff; 2081 bic->saved_wr_start_at_switch_to_srt = 2082 bfqq->wr_start_at_switch_to_srt; 2083 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish; 2084 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 2085 } 2086 } 2087 2088 static void 2089 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 2090 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 2091 { 2092 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 2093 (unsigned long)new_bfqq->pid); 2094 /* Save weight raising and idle window of the merged queues */ 2095 bfq_bfqq_save_state(bfqq); 2096 bfq_bfqq_save_state(new_bfqq); 2097 if (bfq_bfqq_IO_bound(bfqq)) 2098 bfq_mark_bfqq_IO_bound(new_bfqq); 2099 bfq_clear_bfqq_IO_bound(bfqq); 2100 2101 /* 2102 * If bfqq is weight-raised, then let new_bfqq inherit 2103 * weight-raising. To reduce false positives, neglect the case 2104 * where bfqq has just been created, but has not yet made it 2105 * to be weight-raised (which may happen because EQM may merge 2106 * bfqq even before bfq_add_request is executed for the first 2107 * time for bfqq). Handling this case would however be very 2108 * easy, thanks to the flag just_created. 2109 */ 2110 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 2111 new_bfqq->wr_coeff = bfqq->wr_coeff; 2112 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 2113 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 2114 new_bfqq->wr_start_at_switch_to_srt = 2115 bfqq->wr_start_at_switch_to_srt; 2116 if (bfq_bfqq_busy(new_bfqq)) 2117 bfqd->wr_busy_queues++; 2118 new_bfqq->entity.prio_changed = 1; 2119 } 2120 2121 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 2122 bfqq->wr_coeff = 1; 2123 bfqq->entity.prio_changed = 1; 2124 if (bfq_bfqq_busy(bfqq)) 2125 bfqd->wr_busy_queues--; 2126 } 2127 2128 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 2129 bfqd->wr_busy_queues); 2130 2131 /* 2132 * Merge queues (that is, let bic redirect its requests to new_bfqq) 2133 */ 2134 bic_set_bfqq(bic, new_bfqq, 1); 2135 bfq_mark_bfqq_coop(new_bfqq); 2136 /* 2137 * new_bfqq now belongs to at least two bics (it is a shared queue): 2138 * set new_bfqq->bic to NULL. bfqq either: 2139 * - does not belong to any bic any more, and hence bfqq->bic must 2140 * be set to NULL, or 2141 * - is a queue whose owning bics have already been redirected to a 2142 * different queue, hence the queue is destined to not belong to 2143 * any bic soon and bfqq->bic is already NULL (therefore the next 2144 * assignment causes no harm). 2145 */ 2146 new_bfqq->bic = NULL; 2147 bfqq->bic = NULL; 2148 /* release process reference to bfqq */ 2149 bfq_put_queue(bfqq); 2150 } 2151 2152 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2153 struct bio *bio) 2154 { 2155 struct bfq_data *bfqd = q->elevator->elevator_data; 2156 bool is_sync = op_is_sync(bio->bi_opf); 2157 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 2158 2159 /* 2160 * Disallow merge of a sync bio into an async request. 2161 */ 2162 if (is_sync && !rq_is_sync(rq)) 2163 return false; 2164 2165 /* 2166 * Lookup the bfqq that this bio will be queued with. Allow 2167 * merge only if rq is queued there. 2168 */ 2169 if (!bfqq) 2170 return false; 2171 2172 /* 2173 * We take advantage of this function to perform an early merge 2174 * of the queues of possible cooperating processes. 2175 */ 2176 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false); 2177 if (new_bfqq) { 2178 /* 2179 * bic still points to bfqq, then it has not yet been 2180 * redirected to some other bfq_queue, and a queue 2181 * merge beween bfqq and new_bfqq can be safely 2182 * fulfillled, i.e., bic can be redirected to new_bfqq 2183 * and bfqq can be put. 2184 */ 2185 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 2186 new_bfqq); 2187 /* 2188 * If we get here, bio will be queued into new_queue, 2189 * so use new_bfqq to decide whether bio and rq can be 2190 * merged. 2191 */ 2192 bfqq = new_bfqq; 2193 2194 /* 2195 * Change also bqfd->bio_bfqq, as 2196 * bfqd->bio_bic now points to new_bfqq, and 2197 * this function may be invoked again (and then may 2198 * use again bqfd->bio_bfqq). 2199 */ 2200 bfqd->bio_bfqq = bfqq; 2201 } 2202 2203 return bfqq == RQ_BFQQ(rq); 2204 } 2205 2206 /* 2207 * Set the maximum time for the in-service queue to consume its 2208 * budget. This prevents seeky processes from lowering the throughput. 2209 * In practice, a time-slice service scheme is used with seeky 2210 * processes. 2211 */ 2212 static void bfq_set_budget_timeout(struct bfq_data *bfqd, 2213 struct bfq_queue *bfqq) 2214 { 2215 unsigned int timeout_coeff; 2216 2217 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 2218 timeout_coeff = 1; 2219 else 2220 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 2221 2222 bfqd->last_budget_start = ktime_get(); 2223 2224 bfqq->budget_timeout = jiffies + 2225 bfqd->bfq_timeout * timeout_coeff; 2226 } 2227 2228 static void __bfq_set_in_service_queue(struct bfq_data *bfqd, 2229 struct bfq_queue *bfqq) 2230 { 2231 if (bfqq) { 2232 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); 2233 bfq_clear_bfqq_fifo_expire(bfqq); 2234 2235 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 2236 2237 if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 2238 bfqq->wr_coeff > 1 && 2239 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 2240 time_is_before_jiffies(bfqq->budget_timeout)) { 2241 /* 2242 * For soft real-time queues, move the start 2243 * of the weight-raising period forward by the 2244 * time the queue has not received any 2245 * service. Otherwise, a relatively long 2246 * service delay is likely to cause the 2247 * weight-raising period of the queue to end, 2248 * because of the short duration of the 2249 * weight-raising period of a soft real-time 2250 * queue. It is worth noting that this move 2251 * is not so dangerous for the other queues, 2252 * because soft real-time queues are not 2253 * greedy. 2254 * 2255 * To not add a further variable, we use the 2256 * overloaded field budget_timeout to 2257 * determine for how long the queue has not 2258 * received service, i.e., how much time has 2259 * elapsed since the queue expired. However, 2260 * this is a little imprecise, because 2261 * budget_timeout is set to jiffies if bfqq 2262 * not only expires, but also remains with no 2263 * request. 2264 */ 2265 if (time_after(bfqq->budget_timeout, 2266 bfqq->last_wr_start_finish)) 2267 bfqq->last_wr_start_finish += 2268 jiffies - bfqq->budget_timeout; 2269 else 2270 bfqq->last_wr_start_finish = jiffies; 2271 } 2272 2273 bfq_set_budget_timeout(bfqd, bfqq); 2274 bfq_log_bfqq(bfqd, bfqq, 2275 "set_in_service_queue, cur-budget = %d", 2276 bfqq->entity.budget); 2277 } 2278 2279 bfqd->in_service_queue = bfqq; 2280 } 2281 2282 /* 2283 * Get and set a new queue for service. 2284 */ 2285 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 2286 { 2287 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 2288 2289 __bfq_set_in_service_queue(bfqd, bfqq); 2290 return bfqq; 2291 } 2292 2293 static void bfq_arm_slice_timer(struct bfq_data *bfqd) 2294 { 2295 struct bfq_queue *bfqq = bfqd->in_service_queue; 2296 u32 sl; 2297 2298 bfq_mark_bfqq_wait_request(bfqq); 2299 2300 /* 2301 * We don't want to idle for seeks, but we do want to allow 2302 * fair distribution of slice time for a process doing back-to-back 2303 * seeks. So allow a little bit of time for him to submit a new rq. 2304 */ 2305 sl = bfqd->bfq_slice_idle; 2306 /* 2307 * Unless the queue is being weight-raised or the scenario is 2308 * asymmetric, grant only minimum idle time if the queue 2309 * is seeky. A long idling is preserved for a weight-raised 2310 * queue, or, more in general, in an asymmetric scenario, 2311 * because a long idling is needed for guaranteeing to a queue 2312 * its reserved share of the throughput (in particular, it is 2313 * needed if the queue has a higher weight than some other 2314 * queue). 2315 */ 2316 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 2317 bfq_symmetric_scenario(bfqd)) 2318 sl = min_t(u64, sl, BFQ_MIN_TT); 2319 2320 bfqd->last_idling_start = ktime_get(); 2321 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 2322 HRTIMER_MODE_REL); 2323 bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 2324 } 2325 2326 /* 2327 * In autotuning mode, max_budget is dynamically recomputed as the 2328 * amount of sectors transferred in timeout at the estimated peak 2329 * rate. This enables BFQ to utilize a full timeslice with a full 2330 * budget, even if the in-service queue is served at peak rate. And 2331 * this maximises throughput with sequential workloads. 2332 */ 2333 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 2334 { 2335 return (u64)bfqd->peak_rate * USEC_PER_MSEC * 2336 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 2337 } 2338 2339 /* 2340 * Update parameters related to throughput and responsiveness, as a 2341 * function of the estimated peak rate. See comments on 2342 * bfq_calc_max_budget(), and on T_slow and T_fast arrays. 2343 */ 2344 static void update_thr_responsiveness_params(struct bfq_data *bfqd) 2345 { 2346 int dev_type = blk_queue_nonrot(bfqd->queue); 2347 2348 if (bfqd->bfq_user_max_budget == 0) 2349 bfqd->bfq_max_budget = 2350 bfq_calc_max_budget(bfqd); 2351 2352 if (bfqd->device_speed == BFQ_BFQD_FAST && 2353 bfqd->peak_rate < device_speed_thresh[dev_type]) { 2354 bfqd->device_speed = BFQ_BFQD_SLOW; 2355 bfqd->RT_prod = R_slow[dev_type] * 2356 T_slow[dev_type]; 2357 } else if (bfqd->device_speed == BFQ_BFQD_SLOW && 2358 bfqd->peak_rate > device_speed_thresh[dev_type]) { 2359 bfqd->device_speed = BFQ_BFQD_FAST; 2360 bfqd->RT_prod = R_fast[dev_type] * 2361 T_fast[dev_type]; 2362 } 2363 2364 bfq_log(bfqd, 2365 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", 2366 dev_type == 0 ? "ROT" : "NONROT", 2367 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", 2368 bfqd->device_speed == BFQ_BFQD_FAST ? 2369 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : 2370 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, 2371 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> 2372 BFQ_RATE_SHIFT); 2373 } 2374 2375 static void bfq_reset_rate_computation(struct bfq_data *bfqd, 2376 struct request *rq) 2377 { 2378 if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 2379 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 2380 bfqd->peak_rate_samples = 1; 2381 bfqd->sequential_samples = 0; 2382 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 2383 blk_rq_sectors(rq); 2384 } else /* no new rq dispatched, just reset the number of samples */ 2385 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 2386 2387 bfq_log(bfqd, 2388 "reset_rate_computation at end, sample %u/%u tot_sects %llu", 2389 bfqd->peak_rate_samples, bfqd->sequential_samples, 2390 bfqd->tot_sectors_dispatched); 2391 } 2392 2393 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 2394 { 2395 u32 rate, weight, divisor; 2396 2397 /* 2398 * For the convergence property to hold (see comments on 2399 * bfq_update_peak_rate()) and for the assessment to be 2400 * reliable, a minimum number of samples must be present, and 2401 * a minimum amount of time must have elapsed. If not so, do 2402 * not compute new rate. Just reset parameters, to get ready 2403 * for a new evaluation attempt. 2404 */ 2405 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 2406 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 2407 goto reset_computation; 2408 2409 /* 2410 * If a new request completion has occurred after last 2411 * dispatch, then, to approximate the rate at which requests 2412 * have been served by the device, it is more precise to 2413 * extend the observation interval to the last completion. 2414 */ 2415 bfqd->delta_from_first = 2416 max_t(u64, bfqd->delta_from_first, 2417 bfqd->last_completion - bfqd->first_dispatch); 2418 2419 /* 2420 * Rate computed in sects/usec, and not sects/nsec, for 2421 * precision issues. 2422 */ 2423 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 2424 div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 2425 2426 /* 2427 * Peak rate not updated if: 2428 * - the percentage of sequential dispatches is below 3/4 of the 2429 * total, and rate is below the current estimated peak rate 2430 * - rate is unreasonably high (> 20M sectors/sec) 2431 */ 2432 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 2433 rate <= bfqd->peak_rate) || 2434 rate > 20<<BFQ_RATE_SHIFT) 2435 goto reset_computation; 2436 2437 /* 2438 * We have to update the peak rate, at last! To this purpose, 2439 * we use a low-pass filter. We compute the smoothing constant 2440 * of the filter as a function of the 'weight' of the new 2441 * measured rate. 2442 * 2443 * As can be seen in next formulas, we define this weight as a 2444 * quantity proportional to how sequential the workload is, 2445 * and to how long the observation time interval is. 2446 * 2447 * The weight runs from 0 to 8. The maximum value of the 2448 * weight, 8, yields the minimum value for the smoothing 2449 * constant. At this minimum value for the smoothing constant, 2450 * the measured rate contributes for half of the next value of 2451 * the estimated peak rate. 2452 * 2453 * So, the first step is to compute the weight as a function 2454 * of how sequential the workload is. Note that the weight 2455 * cannot reach 9, because bfqd->sequential_samples cannot 2456 * become equal to bfqd->peak_rate_samples, which, in its 2457 * turn, holds true because bfqd->sequential_samples is not 2458 * incremented for the first sample. 2459 */ 2460 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 2461 2462 /* 2463 * Second step: further refine the weight as a function of the 2464 * duration of the observation interval. 2465 */ 2466 weight = min_t(u32, 8, 2467 div_u64(weight * bfqd->delta_from_first, 2468 BFQ_RATE_REF_INTERVAL)); 2469 2470 /* 2471 * Divisor ranging from 10, for minimum weight, to 2, for 2472 * maximum weight. 2473 */ 2474 divisor = 10 - weight; 2475 2476 /* 2477 * Finally, update peak rate: 2478 * 2479 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 2480 */ 2481 bfqd->peak_rate *= divisor-1; 2482 bfqd->peak_rate /= divisor; 2483 rate /= divisor; /* smoothing constant alpha = 1/divisor */ 2484 2485 bfqd->peak_rate += rate; 2486 update_thr_responsiveness_params(bfqd); 2487 2488 reset_computation: 2489 bfq_reset_rate_computation(bfqd, rq); 2490 } 2491 2492 /* 2493 * Update the read/write peak rate (the main quantity used for 2494 * auto-tuning, see update_thr_responsiveness_params()). 2495 * 2496 * It is not trivial to estimate the peak rate (correctly): because of 2497 * the presence of sw and hw queues between the scheduler and the 2498 * device components that finally serve I/O requests, it is hard to 2499 * say exactly when a given dispatched request is served inside the 2500 * device, and for how long. As a consequence, it is hard to know 2501 * precisely at what rate a given set of requests is actually served 2502 * by the device. 2503 * 2504 * On the opposite end, the dispatch time of any request is trivially 2505 * available, and, from this piece of information, the "dispatch rate" 2506 * of requests can be immediately computed. So, the idea in the next 2507 * function is to use what is known, namely request dispatch times 2508 * (plus, when useful, request completion times), to estimate what is 2509 * unknown, namely in-device request service rate. 2510 * 2511 * The main issue is that, because of the above facts, the rate at 2512 * which a certain set of requests is dispatched over a certain time 2513 * interval can vary greatly with respect to the rate at which the 2514 * same requests are then served. But, since the size of any 2515 * intermediate queue is limited, and the service scheme is lossless 2516 * (no request is silently dropped), the following obvious convergence 2517 * property holds: the number of requests dispatched MUST become 2518 * closer and closer to the number of requests completed as the 2519 * observation interval grows. This is the key property used in 2520 * the next function to estimate the peak service rate as a function 2521 * of the observed dispatch rate. The function assumes to be invoked 2522 * on every request dispatch. 2523 */ 2524 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 2525 { 2526 u64 now_ns = ktime_get_ns(); 2527 2528 if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 2529 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 2530 bfqd->peak_rate_samples); 2531 bfq_reset_rate_computation(bfqd, rq); 2532 goto update_last_values; /* will add one sample */ 2533 } 2534 2535 /* 2536 * Device idle for very long: the observation interval lasting 2537 * up to this dispatch cannot be a valid observation interval 2538 * for computing a new peak rate (similarly to the late- 2539 * completion event in bfq_completed_request()). Go to 2540 * update_rate_and_reset to have the following three steps 2541 * taken: 2542 * - close the observation interval at the last (previous) 2543 * request dispatch or completion 2544 * - compute rate, if possible, for that observation interval 2545 * - start a new observation interval with this dispatch 2546 */ 2547 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 2548 bfqd->rq_in_driver == 0) 2549 goto update_rate_and_reset; 2550 2551 /* Update sampling information */ 2552 bfqd->peak_rate_samples++; 2553 2554 if ((bfqd->rq_in_driver > 0 || 2555 now_ns - bfqd->last_completion < BFQ_MIN_TT) 2556 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) 2557 bfqd->sequential_samples++; 2558 2559 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 2560 2561 /* Reset max observed rq size every 32 dispatches */ 2562 if (likely(bfqd->peak_rate_samples % 32)) 2563 bfqd->last_rq_max_size = 2564 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 2565 else 2566 bfqd->last_rq_max_size = blk_rq_sectors(rq); 2567 2568 bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 2569 2570 /* Target observation interval not yet reached, go on sampling */ 2571 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 2572 goto update_last_values; 2573 2574 update_rate_and_reset: 2575 bfq_update_rate_reset(bfqd, rq); 2576 update_last_values: 2577 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2578 bfqd->last_dispatch = now_ns; 2579 } 2580 2581 /* 2582 * Remove request from internal lists. 2583 */ 2584 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 2585 { 2586 struct bfq_queue *bfqq = RQ_BFQQ(rq); 2587 2588 /* 2589 * For consistency, the next instruction should have been 2590 * executed after removing the request from the queue and 2591 * dispatching it. We execute instead this instruction before 2592 * bfq_remove_request() (and hence introduce a temporary 2593 * inconsistency), for efficiency. In fact, should this 2594 * dispatch occur for a non in-service bfqq, this anticipated 2595 * increment prevents two counters related to bfqq->dispatched 2596 * from risking to be, first, uselessly decremented, and then 2597 * incremented again when the (new) value of bfqq->dispatched 2598 * happens to be taken into account. 2599 */ 2600 bfqq->dispatched++; 2601 bfq_update_peak_rate(q->elevator->elevator_data, rq); 2602 2603 bfq_remove_request(q, rq); 2604 } 2605 2606 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) 2607 { 2608 /* 2609 * If this bfqq is shared between multiple processes, check 2610 * to make sure that those processes are still issuing I/Os 2611 * within the mean seek distance. If not, it may be time to 2612 * break the queues apart again. 2613 */ 2614 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 2615 bfq_mark_bfqq_split_coop(bfqq); 2616 2617 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 2618 if (bfqq->dispatched == 0) 2619 /* 2620 * Overloading budget_timeout field to store 2621 * the time at which the queue remains with no 2622 * backlog and no outstanding request; used by 2623 * the weight-raising mechanism. 2624 */ 2625 bfqq->budget_timeout = jiffies; 2626 2627 bfq_del_bfqq_busy(bfqd, bfqq, true); 2628 } else { 2629 bfq_requeue_bfqq(bfqd, bfqq, true); 2630 /* 2631 * Resort priority tree of potential close cooperators. 2632 */ 2633 bfq_pos_tree_add_move(bfqd, bfqq); 2634 } 2635 2636 /* 2637 * All in-service entities must have been properly deactivated 2638 * or requeued before executing the next function, which 2639 * resets all in-service entites as no more in service. 2640 */ 2641 __bfq_bfqd_reset_in_service(bfqd); 2642 } 2643 2644 /** 2645 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 2646 * @bfqd: device data. 2647 * @bfqq: queue to update. 2648 * @reason: reason for expiration. 2649 * 2650 * Handle the feedback on @bfqq budget at queue expiration. 2651 * See the body for detailed comments. 2652 */ 2653 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 2654 struct bfq_queue *bfqq, 2655 enum bfqq_expiration reason) 2656 { 2657 struct request *next_rq; 2658 int budget, min_budget; 2659 2660 min_budget = bfq_min_budget(bfqd); 2661 2662 if (bfqq->wr_coeff == 1) 2663 budget = bfqq->max_budget; 2664 else /* 2665 * Use a constant, low budget for weight-raised queues, 2666 * to help achieve a low latency. Keep it slightly higher 2667 * than the minimum possible budget, to cause a little 2668 * bit fewer expirations. 2669 */ 2670 budget = 2 * min_budget; 2671 2672 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 2673 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 2674 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 2675 budget, bfq_min_budget(bfqd)); 2676 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 2677 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 2678 2679 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 2680 switch (reason) { 2681 /* 2682 * Caveat: in all the following cases we trade latency 2683 * for throughput. 2684 */ 2685 case BFQQE_TOO_IDLE: 2686 /* 2687 * This is the only case where we may reduce 2688 * the budget: if there is no request of the 2689 * process still waiting for completion, then 2690 * we assume (tentatively) that the timer has 2691 * expired because the batch of requests of 2692 * the process could have been served with a 2693 * smaller budget. Hence, betting that 2694 * process will behave in the same way when it 2695 * becomes backlogged again, we reduce its 2696 * next budget. As long as we guess right, 2697 * this budget cut reduces the latency 2698 * experienced by the process. 2699 * 2700 * However, if there are still outstanding 2701 * requests, then the process may have not yet 2702 * issued its next request just because it is 2703 * still waiting for the completion of some of 2704 * the still outstanding ones. So in this 2705 * subcase we do not reduce its budget, on the 2706 * contrary we increase it to possibly boost 2707 * the throughput, as discussed in the 2708 * comments to the BUDGET_TIMEOUT case. 2709 */ 2710 if (bfqq->dispatched > 0) /* still outstanding reqs */ 2711 budget = min(budget * 2, bfqd->bfq_max_budget); 2712 else { 2713 if (budget > 5 * min_budget) 2714 budget -= 4 * min_budget; 2715 else 2716 budget = min_budget; 2717 } 2718 break; 2719 case BFQQE_BUDGET_TIMEOUT: 2720 /* 2721 * We double the budget here because it gives 2722 * the chance to boost the throughput if this 2723 * is not a seeky process (and has bumped into 2724 * this timeout because of, e.g., ZBR). 2725 */ 2726 budget = min(budget * 2, bfqd->bfq_max_budget); 2727 break; 2728 case BFQQE_BUDGET_EXHAUSTED: 2729 /* 2730 * The process still has backlog, and did not 2731 * let either the budget timeout or the disk 2732 * idling timeout expire. Hence it is not 2733 * seeky, has a short thinktime and may be 2734 * happy with a higher budget too. So 2735 * definitely increase the budget of this good 2736 * candidate to boost the disk throughput. 2737 */ 2738 budget = min(budget * 4, bfqd->bfq_max_budget); 2739 break; 2740 case BFQQE_NO_MORE_REQUESTS: 2741 /* 2742 * For queues that expire for this reason, it 2743 * is particularly important to keep the 2744 * budget close to the actual service they 2745 * need. Doing so reduces the timestamp 2746 * misalignment problem described in the 2747 * comments in the body of 2748 * __bfq_activate_entity. In fact, suppose 2749 * that a queue systematically expires for 2750 * BFQQE_NO_MORE_REQUESTS and presents a 2751 * new request in time to enjoy timestamp 2752 * back-shifting. The larger the budget of the 2753 * queue is with respect to the service the 2754 * queue actually requests in each service 2755 * slot, the more times the queue can be 2756 * reactivated with the same virtual finish 2757 * time. It follows that, even if this finish 2758 * time is pushed to the system virtual time 2759 * to reduce the consequent timestamp 2760 * misalignment, the queue unjustly enjoys for 2761 * many re-activations a lower finish time 2762 * than all newly activated queues. 2763 * 2764 * The service needed by bfqq is measured 2765 * quite precisely by bfqq->entity.service. 2766 * Since bfqq does not enjoy device idling, 2767 * bfqq->entity.service is equal to the number 2768 * of sectors that the process associated with 2769 * bfqq requested to read/write before waiting 2770 * for request completions, or blocking for 2771 * other reasons. 2772 */ 2773 budget = max_t(int, bfqq->entity.service, min_budget); 2774 break; 2775 default: 2776 return; 2777 } 2778 } else if (!bfq_bfqq_sync(bfqq)) { 2779 /* 2780 * Async queues get always the maximum possible 2781 * budget, as for them we do not care about latency 2782 * (in addition, their ability to dispatch is limited 2783 * by the charging factor). 2784 */ 2785 budget = bfqd->bfq_max_budget; 2786 } 2787 2788 bfqq->max_budget = budget; 2789 2790 if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 2791 !bfqd->bfq_user_max_budget) 2792 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 2793 2794 /* 2795 * If there is still backlog, then assign a new budget, making 2796 * sure that it is large enough for the next request. Since 2797 * the finish time of bfqq must be kept in sync with the 2798 * budget, be sure to call __bfq_bfqq_expire() *after* this 2799 * update. 2800 * 2801 * If there is no backlog, then no need to update the budget; 2802 * it will be updated on the arrival of a new request. 2803 */ 2804 next_rq = bfqq->next_rq; 2805 if (next_rq) 2806 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 2807 bfq_serv_to_charge(next_rq, bfqq)); 2808 2809 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 2810 next_rq ? blk_rq_sectors(next_rq) : 0, 2811 bfqq->entity.budget); 2812 } 2813 2814 /* 2815 * Return true if the process associated with bfqq is "slow". The slow 2816 * flag is used, in addition to the budget timeout, to reduce the 2817 * amount of service provided to seeky processes, and thus reduce 2818 * their chances to lower the throughput. More details in the comments 2819 * on the function bfq_bfqq_expire(). 2820 * 2821 * An important observation is in order: as discussed in the comments 2822 * on the function bfq_update_peak_rate(), with devices with internal 2823 * queues, it is hard if ever possible to know when and for how long 2824 * an I/O request is processed by the device (apart from the trivial 2825 * I/O pattern where a new request is dispatched only after the 2826 * previous one has been completed). This makes it hard to evaluate 2827 * the real rate at which the I/O requests of each bfq_queue are 2828 * served. In fact, for an I/O scheduler like BFQ, serving a 2829 * bfq_queue means just dispatching its requests during its service 2830 * slot (i.e., until the budget of the queue is exhausted, or the 2831 * queue remains idle, or, finally, a timeout fires). But, during the 2832 * service slot of a bfq_queue, around 100 ms at most, the device may 2833 * be even still processing requests of bfq_queues served in previous 2834 * service slots. On the opposite end, the requests of the in-service 2835 * bfq_queue may be completed after the service slot of the queue 2836 * finishes. 2837 * 2838 * Anyway, unless more sophisticated solutions are used 2839 * (where possible), the sum of the sizes of the requests dispatched 2840 * during the service slot of a bfq_queue is probably the only 2841 * approximation available for the service received by the bfq_queue 2842 * during its service slot. And this sum is the quantity used in this 2843 * function to evaluate the I/O speed of a process. 2844 */ 2845 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2846 bool compensate, enum bfqq_expiration reason, 2847 unsigned long *delta_ms) 2848 { 2849 ktime_t delta_ktime; 2850 u32 delta_usecs; 2851 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 2852 2853 if (!bfq_bfqq_sync(bfqq)) 2854 return false; 2855 2856 if (compensate) 2857 delta_ktime = bfqd->last_idling_start; 2858 else 2859 delta_ktime = ktime_get(); 2860 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 2861 delta_usecs = ktime_to_us(delta_ktime); 2862 2863 /* don't use too short time intervals */ 2864 if (delta_usecs < 1000) { 2865 if (blk_queue_nonrot(bfqd->queue)) 2866 /* 2867 * give same worst-case guarantees as idling 2868 * for seeky 2869 */ 2870 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 2871 else /* charge at least one seek */ 2872 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 2873 2874 return slow; 2875 } 2876 2877 *delta_ms = delta_usecs / USEC_PER_MSEC; 2878 2879 /* 2880 * Use only long (> 20ms) intervals to filter out excessive 2881 * spikes in service rate estimation. 2882 */ 2883 if (delta_usecs > 20000) { 2884 /* 2885 * Caveat for rotational devices: processes doing I/O 2886 * in the slower disk zones tend to be slow(er) even 2887 * if not seeky. In this respect, the estimated peak 2888 * rate is likely to be an average over the disk 2889 * surface. Accordingly, to not be too harsh with 2890 * unlucky processes, a process is deemed slow only if 2891 * its rate has been lower than half of the estimated 2892 * peak rate. 2893 */ 2894 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 2895 } 2896 2897 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 2898 2899 return slow; 2900 } 2901 2902 /* 2903 * To be deemed as soft real-time, an application must meet two 2904 * requirements. First, the application must not require an average 2905 * bandwidth higher than the approximate bandwidth required to playback or 2906 * record a compressed high-definition video. 2907 * The next function is invoked on the completion of the last request of a 2908 * batch, to compute the next-start time instant, soft_rt_next_start, such 2909 * that, if the next request of the application does not arrive before 2910 * soft_rt_next_start, then the above requirement on the bandwidth is met. 2911 * 2912 * The second requirement is that the request pattern of the application is 2913 * isochronous, i.e., that, after issuing a request or a batch of requests, 2914 * the application stops issuing new requests until all its pending requests 2915 * have been completed. After that, the application may issue a new batch, 2916 * and so on. 2917 * For this reason the next function is invoked to compute 2918 * soft_rt_next_start only for applications that meet this requirement, 2919 * whereas soft_rt_next_start is set to infinity for applications that do 2920 * not. 2921 * 2922 * Unfortunately, even a greedy application may happen to behave in an 2923 * isochronous way if the CPU load is high. In fact, the application may 2924 * stop issuing requests while the CPUs are busy serving other processes, 2925 * then restart, then stop again for a while, and so on. In addition, if 2926 * the disk achieves a low enough throughput with the request pattern 2927 * issued by the application (e.g., because the request pattern is random 2928 * and/or the device is slow), then the application may meet the above 2929 * bandwidth requirement too. To prevent such a greedy application to be 2930 * deemed as soft real-time, a further rule is used in the computation of 2931 * soft_rt_next_start: soft_rt_next_start must be higher than the current 2932 * time plus the maximum time for which the arrival of a request is waited 2933 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. 2934 * This filters out greedy applications, as the latter issue instead their 2935 * next request as soon as possible after the last one has been completed 2936 * (in contrast, when a batch of requests is completed, a soft real-time 2937 * application spends some time processing data). 2938 * 2939 * Unfortunately, the last filter may easily generate false positives if 2940 * only bfqd->bfq_slice_idle is used as a reference time interval and one 2941 * or both the following cases occur: 2942 * 1) HZ is so low that the duration of a jiffy is comparable to or higher 2943 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with 2944 * HZ=100. 2945 * 2) jiffies, instead of increasing at a constant rate, may stop increasing 2946 * for a while, then suddenly 'jump' by several units to recover the lost 2947 * increments. This seems to happen, e.g., inside virtual machines. 2948 * To address this issue, we do not use as a reference time interval just 2949 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In 2950 * particular we add the minimum number of jiffies for which the filter 2951 * seems to be quite precise also in embedded systems and KVM/QEMU virtual 2952 * machines. 2953 */ 2954 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 2955 struct bfq_queue *bfqq) 2956 { 2957 return max(bfqq->last_idle_bklogged + 2958 HZ * bfqq->service_from_backlogged / 2959 bfqd->bfq_wr_max_softrt_rate, 2960 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 2961 } 2962 2963 /** 2964 * bfq_bfqq_expire - expire a queue. 2965 * @bfqd: device owning the queue. 2966 * @bfqq: the queue to expire. 2967 * @compensate: if true, compensate for the time spent idling. 2968 * @reason: the reason causing the expiration. 2969 * 2970 * If the process associated with bfqq does slow I/O (e.g., because it 2971 * issues random requests), we charge bfqq with the time it has been 2972 * in service instead of the service it has received (see 2973 * bfq_bfqq_charge_time for details on how this goal is achieved). As 2974 * a consequence, bfqq will typically get higher timestamps upon 2975 * reactivation, and hence it will be rescheduled as if it had 2976 * received more service than what it has actually received. In the 2977 * end, bfqq receives less service in proportion to how slowly its 2978 * associated process consumes its budgets (and hence how seriously it 2979 * tends to lower the throughput). In addition, this time-charging 2980 * strategy guarantees time fairness among slow processes. In 2981 * contrast, if the process associated with bfqq is not slow, we 2982 * charge bfqq exactly with the service it has received. 2983 * 2984 * Charging time to the first type of queues and the exact service to 2985 * the other has the effect of using the WF2Q+ policy to schedule the 2986 * former on a timeslice basis, without violating service domain 2987 * guarantees among the latter. 2988 */ 2989 void bfq_bfqq_expire(struct bfq_data *bfqd, 2990 struct bfq_queue *bfqq, 2991 bool compensate, 2992 enum bfqq_expiration reason) 2993 { 2994 bool slow; 2995 unsigned long delta = 0; 2996 struct bfq_entity *entity = &bfqq->entity; 2997 int ref; 2998 2999 /* 3000 * Check whether the process is slow (see bfq_bfqq_is_slow). 3001 */ 3002 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); 3003 3004 /* 3005 * Increase service_from_backlogged before next statement, 3006 * because the possible next invocation of 3007 * bfq_bfqq_charge_time would likely inflate 3008 * entity->service. In contrast, service_from_backlogged must 3009 * contain real service, to enable the soft real-time 3010 * heuristic to correctly compute the bandwidth consumed by 3011 * bfqq. 3012 */ 3013 bfqq->service_from_backlogged += entity->service; 3014 3015 /* 3016 * As above explained, charge slow (typically seeky) and 3017 * timed-out queues with the time and not the service 3018 * received, to favor sequential workloads. 3019 * 3020 * Processes doing I/O in the slower disk zones will tend to 3021 * be slow(er) even if not seeky. Therefore, since the 3022 * estimated peak rate is actually an average over the disk 3023 * surface, these processes may timeout just for bad luck. To 3024 * avoid punishing them, do not charge time to processes that 3025 * succeeded in consuming at least 2/3 of their budget. This 3026 * allows BFQ to preserve enough elasticity to still perform 3027 * bandwidth, and not time, distribution with little unlucky 3028 * or quasi-sequential processes. 3029 */ 3030 if (bfqq->wr_coeff == 1 && 3031 (slow || 3032 (reason == BFQQE_BUDGET_TIMEOUT && 3033 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 3034 bfq_bfqq_charge_time(bfqd, bfqq, delta); 3035 3036 if (reason == BFQQE_TOO_IDLE && 3037 entity->service <= 2 * entity->budget / 10) 3038 bfq_clear_bfqq_IO_bound(bfqq); 3039 3040 if (bfqd->low_latency && bfqq->wr_coeff == 1) 3041 bfqq->last_wr_start_finish = jiffies; 3042 3043 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 3044 RB_EMPTY_ROOT(&bfqq->sort_list)) { 3045 /* 3046 * If we get here, and there are no outstanding 3047 * requests, then the request pattern is isochronous 3048 * (see the comments on the function 3049 * bfq_bfqq_softrt_next_start()). Thus we can compute 3050 * soft_rt_next_start. If, instead, the queue still 3051 * has outstanding requests, then we have to wait for 3052 * the completion of all the outstanding requests to 3053 * discover whether the request pattern is actually 3054 * isochronous. 3055 */ 3056 if (bfqq->dispatched == 0) 3057 bfqq->soft_rt_next_start = 3058 bfq_bfqq_softrt_next_start(bfqd, bfqq); 3059 else { 3060 /* 3061 * The application is still waiting for the 3062 * completion of one or more requests: 3063 * prevent it from possibly being incorrectly 3064 * deemed as soft real-time by setting its 3065 * soft_rt_next_start to infinity. In fact, 3066 * without this assignment, the application 3067 * would be incorrectly deemed as soft 3068 * real-time if: 3069 * 1) it issued a new request before the 3070 * completion of all its in-flight 3071 * requests, and 3072 * 2) at that time, its soft_rt_next_start 3073 * happened to be in the past. 3074 */ 3075 bfqq->soft_rt_next_start = 3076 bfq_greatest_from_now(); 3077 /* 3078 * Schedule an update of soft_rt_next_start to when 3079 * the task may be discovered to be isochronous. 3080 */ 3081 bfq_mark_bfqq_softrt_update(bfqq); 3082 } 3083 } 3084 3085 bfq_log_bfqq(bfqd, bfqq, 3086 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason, 3087 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq)); 3088 3089 /* 3090 * Increase, decrease or leave budget unchanged according to 3091 * reason. 3092 */ 3093 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 3094 ref = bfqq->ref; 3095 __bfq_bfqq_expire(bfqd, bfqq); 3096 3097 /* mark bfqq as waiting a request only if a bic still points to it */ 3098 if (ref > 1 && !bfq_bfqq_busy(bfqq) && 3099 reason != BFQQE_BUDGET_TIMEOUT && 3100 reason != BFQQE_BUDGET_EXHAUSTED) 3101 bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 3102 } 3103 3104 /* 3105 * Budget timeout is not implemented through a dedicated timer, but 3106 * just checked on request arrivals and completions, as well as on 3107 * idle timer expirations. 3108 */ 3109 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 3110 { 3111 return time_is_before_eq_jiffies(bfqq->budget_timeout); 3112 } 3113 3114 /* 3115 * If we expire a queue that is actively waiting (i.e., with the 3116 * device idled) for the arrival of a new request, then we may incur 3117 * the timestamp misalignment problem described in the body of the 3118 * function __bfq_activate_entity. Hence we return true only if this 3119 * condition does not hold, or if the queue is slow enough to deserve 3120 * only to be kicked off for preserving a high throughput. 3121 */ 3122 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 3123 { 3124 bfq_log_bfqq(bfqq->bfqd, bfqq, 3125 "may_budget_timeout: wait_request %d left %d timeout %d", 3126 bfq_bfqq_wait_request(bfqq), 3127 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 3128 bfq_bfqq_budget_timeout(bfqq)); 3129 3130 return (!bfq_bfqq_wait_request(bfqq) || 3131 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 3132 && 3133 bfq_bfqq_budget_timeout(bfqq); 3134 } 3135 3136 /* 3137 * For a queue that becomes empty, device idling is allowed only if 3138 * this function returns true for the queue. As a consequence, since 3139 * device idling plays a critical role in both throughput boosting and 3140 * service guarantees, the return value of this function plays a 3141 * critical role in both these aspects as well. 3142 * 3143 * In a nutshell, this function returns true only if idling is 3144 * beneficial for throughput or, even if detrimental for throughput, 3145 * idling is however necessary to preserve service guarantees (low 3146 * latency, desired throughput distribution, ...). In particular, on 3147 * NCQ-capable devices, this function tries to return false, so as to 3148 * help keep the drives' internal queues full, whenever this helps the 3149 * device boost the throughput without causing any service-guarantee 3150 * issue. 3151 * 3152 * In more detail, the return value of this function is obtained by, 3153 * first, computing a number of boolean variables that take into 3154 * account throughput and service-guarantee issues, and, then, 3155 * combining these variables in a logical expression. Most of the 3156 * issues taken into account are not trivial. We discuss these issues 3157 * individually while introducing the variables. 3158 */ 3159 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) 3160 { 3161 struct bfq_data *bfqd = bfqq->bfqd; 3162 bool rot_without_queueing = 3163 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag, 3164 bfqq_sequential_and_IO_bound, 3165 idling_boosts_thr, idling_boosts_thr_without_issues, 3166 idling_needed_for_service_guarantees, 3167 asymmetric_scenario; 3168 3169 if (bfqd->strict_guarantees) 3170 return true; 3171 3172 /* 3173 * Idling is performed only if slice_idle > 0. In addition, we 3174 * do not idle if 3175 * (a) bfqq is async 3176 * (b) bfqq is in the idle io prio class: in this case we do 3177 * not idle because we want to minimize the bandwidth that 3178 * queues in this class can steal to higher-priority queues 3179 */ 3180 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) || 3181 bfq_class_idle(bfqq)) 3182 return false; 3183 3184 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) && 3185 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq); 3186 3187 /* 3188 * The next variable takes into account the cases where idling 3189 * boosts the throughput. 3190 * 3191 * The value of the variable is computed considering, first, that 3192 * idling is virtually always beneficial for the throughput if: 3193 * (a) the device is not NCQ-capable and rotational, or 3194 * (b) regardless of the presence of NCQ, the device is rotational and 3195 * the request pattern for bfqq is I/O-bound and sequential, or 3196 * (c) regardless of whether it is rotational, the device is 3197 * not NCQ-capable and the request pattern for bfqq is 3198 * I/O-bound and sequential. 3199 * 3200 * Secondly, and in contrast to the above item (b), idling an 3201 * NCQ-capable flash-based device would not boost the 3202 * throughput even with sequential I/O; rather it would lower 3203 * the throughput in proportion to how fast the device 3204 * is. Accordingly, the next variable is true if any of the 3205 * above conditions (a), (b) or (c) is true, and, in 3206 * particular, happens to be false if bfqd is an NCQ-capable 3207 * flash-based device. 3208 */ 3209 idling_boosts_thr = rot_without_queueing || 3210 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) && 3211 bfqq_sequential_and_IO_bound); 3212 3213 /* 3214 * The value of the next variable, 3215 * idling_boosts_thr_without_issues, is equal to that of 3216 * idling_boosts_thr, unless a special case holds. In this 3217 * special case, described below, idling may cause problems to 3218 * weight-raised queues. 3219 * 3220 * When the request pool is saturated (e.g., in the presence 3221 * of write hogs), if the processes associated with 3222 * non-weight-raised queues ask for requests at a lower rate, 3223 * then processes associated with weight-raised queues have a 3224 * higher probability to get a request from the pool 3225 * immediately (or at least soon) when they need one. Thus 3226 * they have a higher probability to actually get a fraction 3227 * of the device throughput proportional to their high 3228 * weight. This is especially true with NCQ-capable drives, 3229 * which enqueue several requests in advance, and further 3230 * reorder internally-queued requests. 3231 * 3232 * For this reason, we force to false the value of 3233 * idling_boosts_thr_without_issues if there are weight-raised 3234 * busy queues. In this case, and if bfqq is not weight-raised, 3235 * this guarantees that the device is not idled for bfqq (if, 3236 * instead, bfqq is weight-raised, then idling will be 3237 * guaranteed by another variable, see below). Combined with 3238 * the timestamping rules of BFQ (see [1] for details), this 3239 * behavior causes bfqq, and hence any sync non-weight-raised 3240 * queue, to get a lower number of requests served, and thus 3241 * to ask for a lower number of requests from the request 3242 * pool, before the busy weight-raised queues get served 3243 * again. This often mitigates starvation problems in the 3244 * presence of heavy write workloads and NCQ, thereby 3245 * guaranteeing a higher application and system responsiveness 3246 * in these hostile scenarios. 3247 */ 3248 idling_boosts_thr_without_issues = idling_boosts_thr && 3249 bfqd->wr_busy_queues == 0; 3250 3251 /* 3252 * There is then a case where idling must be performed not 3253 * for throughput concerns, but to preserve service 3254 * guarantees. 3255 * 3256 * To introduce this case, we can note that allowing the drive 3257 * to enqueue more than one request at a time, and hence 3258 * delegating de facto final scheduling decisions to the 3259 * drive's internal scheduler, entails loss of control on the 3260 * actual request service order. In particular, the critical 3261 * situation is when requests from different processes happen 3262 * to be present, at the same time, in the internal queue(s) 3263 * of the drive. In such a situation, the drive, by deciding 3264 * the service order of the internally-queued requests, does 3265 * determine also the actual throughput distribution among 3266 * these processes. But the drive typically has no notion or 3267 * concern about per-process throughput distribution, and 3268 * makes its decisions only on a per-request basis. Therefore, 3269 * the service distribution enforced by the drive's internal 3270 * scheduler is likely to coincide with the desired 3271 * device-throughput distribution only in a completely 3272 * symmetric scenario where: 3273 * (i) each of these processes must get the same throughput as 3274 * the others; 3275 * (ii) all these processes have the same I/O pattern 3276 (either sequential or random). 3277 * In fact, in such a scenario, the drive will tend to treat 3278 * the requests of each of these processes in about the same 3279 * way as the requests of the others, and thus to provide 3280 * each of these processes with about the same throughput 3281 * (which is exactly the desired throughput distribution). In 3282 * contrast, in any asymmetric scenario, device idling is 3283 * certainly needed to guarantee that bfqq receives its 3284 * assigned fraction of the device throughput (see [1] for 3285 * details). 3286 * 3287 * We address this issue by controlling, actually, only the 3288 * symmetry sub-condition (i), i.e., provided that 3289 * sub-condition (i) holds, idling is not performed, 3290 * regardless of whether sub-condition (ii) holds. In other 3291 * words, only if sub-condition (i) holds, then idling is 3292 * allowed, and the device tends to be prevented from queueing 3293 * many requests, possibly of several processes. The reason 3294 * for not controlling also sub-condition (ii) is that we 3295 * exploit preemption to preserve guarantees in case of 3296 * symmetric scenarios, even if (ii) does not hold, as 3297 * explained in the next two paragraphs. 3298 * 3299 * Even if a queue, say Q, is expired when it remains idle, Q 3300 * can still preempt the new in-service queue if the next 3301 * request of Q arrives soon (see the comments on 3302 * bfq_bfqq_update_budg_for_activation). If all queues and 3303 * groups have the same weight, this form of preemption, 3304 * combined with the hole-recovery heuristic described in the 3305 * comments on function bfq_bfqq_update_budg_for_activation, 3306 * are enough to preserve a correct bandwidth distribution in 3307 * the mid term, even without idling. In fact, even if not 3308 * idling allows the internal queues of the device to contain 3309 * many requests, and thus to reorder requests, we can rather 3310 * safely assume that the internal scheduler still preserves a 3311 * minimum of mid-term fairness. The motivation for using 3312 * preemption instead of idling is that, by not idling, 3313 * service guarantees are preserved without minimally 3314 * sacrificing throughput. In other words, both a high 3315 * throughput and its desired distribution are obtained. 3316 * 3317 * More precisely, this preemption-based, idleless approach 3318 * provides fairness in terms of IOPS, and not sectors per 3319 * second. This can be seen with a simple example. Suppose 3320 * that there are two queues with the same weight, but that 3321 * the first queue receives requests of 8 sectors, while the 3322 * second queue receives requests of 1024 sectors. In 3323 * addition, suppose that each of the two queues contains at 3324 * most one request at a time, which implies that each queue 3325 * always remains idle after it is served. Finally, after 3326 * remaining idle, each queue receives very quickly a new 3327 * request. It follows that the two queues are served 3328 * alternatively, preempting each other if needed. This 3329 * implies that, although both queues have the same weight, 3330 * the queue with large requests receives a service that is 3331 * 1024/8 times as high as the service received by the other 3332 * queue. 3333 * 3334 * On the other hand, device idling is performed, and thus 3335 * pure sector-domain guarantees are provided, for the 3336 * following queues, which are likely to need stronger 3337 * throughput guarantees: weight-raised queues, and queues 3338 * with a higher weight than other queues. When such queues 3339 * are active, sub-condition (i) is false, which triggers 3340 * device idling. 3341 * 3342 * According to the above considerations, the next variable is 3343 * true (only) if sub-condition (i) holds. To compute the 3344 * value of this variable, we not only use the return value of 3345 * the function bfq_symmetric_scenario(), but also check 3346 * whether bfqq is being weight-raised, because 3347 * bfq_symmetric_scenario() does not take into account also 3348 * weight-raised queues (see comments on 3349 * bfq_weights_tree_add()). 3350 * 3351 * As a side note, it is worth considering that the above 3352 * device-idling countermeasures may however fail in the 3353 * following unlucky scenario: if idling is (correctly) 3354 * disabled in a time period during which all symmetry 3355 * sub-conditions hold, and hence the device is allowed to 3356 * enqueue many requests, but at some later point in time some 3357 * sub-condition stops to hold, then it may become impossible 3358 * to let requests be served in the desired order until all 3359 * the requests already queued in the device have been served. 3360 */ 3361 asymmetric_scenario = bfqq->wr_coeff > 1 || 3362 !bfq_symmetric_scenario(bfqd); 3363 3364 /* 3365 * Finally, there is a case where maximizing throughput is the 3366 * best choice even if it may cause unfairness toward 3367 * bfqq. Such a case is when bfqq became active in a burst of 3368 * queue activations. Queues that became active during a large 3369 * burst benefit only from throughput, as discussed in the 3370 * comments on bfq_handle_burst. Thus, if bfqq became active 3371 * in a burst and not idling the device maximizes throughput, 3372 * then the device must no be idled, because not idling the 3373 * device provides bfqq and all other queues in the burst with 3374 * maximum benefit. Combining this and the above case, we can 3375 * now establish when idling is actually needed to preserve 3376 * service guarantees. 3377 */ 3378 idling_needed_for_service_guarantees = 3379 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq); 3380 3381 /* 3382 * We have now all the components we need to compute the 3383 * return value of the function, which is true only if idling 3384 * either boosts the throughput (without issues), or is 3385 * necessary to preserve service guarantees. 3386 */ 3387 return idling_boosts_thr_without_issues || 3388 idling_needed_for_service_guarantees; 3389 } 3390 3391 /* 3392 * If the in-service queue is empty but the function bfq_bfqq_may_idle 3393 * returns true, then: 3394 * 1) the queue must remain in service and cannot be expired, and 3395 * 2) the device must be idled to wait for the possible arrival of a new 3396 * request for the queue. 3397 * See the comments on the function bfq_bfqq_may_idle for the reasons 3398 * why performing device idling is the best choice to boost the throughput 3399 * and preserve service guarantees when bfq_bfqq_may_idle itself 3400 * returns true. 3401 */ 3402 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 3403 { 3404 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq); 3405 } 3406 3407 /* 3408 * Select a queue for service. If we have a current queue in service, 3409 * check whether to continue servicing it, or retrieve and set a new one. 3410 */ 3411 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 3412 { 3413 struct bfq_queue *bfqq; 3414 struct request *next_rq; 3415 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 3416 3417 bfqq = bfqd->in_service_queue; 3418 if (!bfqq) 3419 goto new_queue; 3420 3421 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 3422 3423 if (bfq_may_expire_for_budg_timeout(bfqq) && 3424 !bfq_bfqq_wait_request(bfqq) && 3425 !bfq_bfqq_must_idle(bfqq)) 3426 goto expire; 3427 3428 check_queue: 3429 /* 3430 * This loop is rarely executed more than once. Even when it 3431 * happens, it is much more convenient to re-execute this loop 3432 * than to return NULL and trigger a new dispatch to get a 3433 * request served. 3434 */ 3435 next_rq = bfqq->next_rq; 3436 /* 3437 * If bfqq has requests queued and it has enough budget left to 3438 * serve them, keep the queue, otherwise expire it. 3439 */ 3440 if (next_rq) { 3441 if (bfq_serv_to_charge(next_rq, bfqq) > 3442 bfq_bfqq_budget_left(bfqq)) { 3443 /* 3444 * Expire the queue for budget exhaustion, 3445 * which makes sure that the next budget is 3446 * enough to serve the next request, even if 3447 * it comes from the fifo expired path. 3448 */ 3449 reason = BFQQE_BUDGET_EXHAUSTED; 3450 goto expire; 3451 } else { 3452 /* 3453 * The idle timer may be pending because we may 3454 * not disable disk idling even when a new request 3455 * arrives. 3456 */ 3457 if (bfq_bfqq_wait_request(bfqq)) { 3458 /* 3459 * If we get here: 1) at least a new request 3460 * has arrived but we have not disabled the 3461 * timer because the request was too small, 3462 * 2) then the block layer has unplugged 3463 * the device, causing the dispatch to be 3464 * invoked. 3465 * 3466 * Since the device is unplugged, now the 3467 * requests are probably large enough to 3468 * provide a reasonable throughput. 3469 * So we disable idling. 3470 */ 3471 bfq_clear_bfqq_wait_request(bfqq); 3472 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 3473 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 3474 } 3475 goto keep_queue; 3476 } 3477 } 3478 3479 /* 3480 * No requests pending. However, if the in-service queue is idling 3481 * for a new request, or has requests waiting for a completion and 3482 * may idle after their completion, then keep it anyway. 3483 */ 3484 if (bfq_bfqq_wait_request(bfqq) || 3485 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { 3486 bfqq = NULL; 3487 goto keep_queue; 3488 } 3489 3490 reason = BFQQE_NO_MORE_REQUESTS; 3491 expire: 3492 bfq_bfqq_expire(bfqd, bfqq, false, reason); 3493 new_queue: 3494 bfqq = bfq_set_in_service_queue(bfqd); 3495 if (bfqq) { 3496 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 3497 goto check_queue; 3498 } 3499 keep_queue: 3500 if (bfqq) 3501 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 3502 else 3503 bfq_log(bfqd, "select_queue: no queue returned"); 3504 3505 return bfqq; 3506 } 3507 3508 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3509 { 3510 struct bfq_entity *entity = &bfqq->entity; 3511 3512 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 3513 bfq_log_bfqq(bfqd, bfqq, 3514 "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 3515 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 3516 jiffies_to_msecs(bfqq->wr_cur_max_time), 3517 bfqq->wr_coeff, 3518 bfqq->entity.weight, bfqq->entity.orig_weight); 3519 3520 if (entity->prio_changed) 3521 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 3522 3523 /* 3524 * If the queue was activated in a burst, or too much 3525 * time has elapsed from the beginning of this 3526 * weight-raising period, then end weight raising. 3527 */ 3528 if (bfq_bfqq_in_large_burst(bfqq)) 3529 bfq_bfqq_end_wr(bfqq); 3530 else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 3531 bfqq->wr_cur_max_time)) { 3532 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 3533 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 3534 bfq_wr_duration(bfqd))) 3535 bfq_bfqq_end_wr(bfqq); 3536 else { 3537 switch_back_to_interactive_wr(bfqq, bfqd); 3538 bfqq->entity.prio_changed = 1; 3539 } 3540 } 3541 } 3542 /* 3543 * To improve latency (for this or other queues), immediately 3544 * update weight both if it must be raised and if it must be 3545 * lowered. Since, entity may be on some active tree here, and 3546 * might have a pending change of its ioprio class, invoke 3547 * next function with the last parameter unset (see the 3548 * comments on the function). 3549 */ 3550 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 3551 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity), 3552 entity, false); 3553 } 3554 3555 /* 3556 * Dispatch next request from bfqq. 3557 */ 3558 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 3559 struct bfq_queue *bfqq) 3560 { 3561 struct request *rq = bfqq->next_rq; 3562 unsigned long service_to_charge; 3563 3564 service_to_charge = bfq_serv_to_charge(rq, bfqq); 3565 3566 bfq_bfqq_served(bfqq, service_to_charge); 3567 3568 bfq_dispatch_remove(bfqd->queue, rq); 3569 3570 /* 3571 * If weight raising has to terminate for bfqq, then next 3572 * function causes an immediate update of bfqq's weight, 3573 * without waiting for next activation. As a consequence, on 3574 * expiration, bfqq will be timestamped as if has never been 3575 * weight-raised during this service slot, even if it has 3576 * received part or even most of the service as a 3577 * weight-raised queue. This inflates bfqq's timestamps, which 3578 * is beneficial, as bfqq is then more willing to leave the 3579 * device immediately to possible other weight-raised queues. 3580 */ 3581 bfq_update_wr_data(bfqd, bfqq); 3582 3583 /* 3584 * Expire bfqq, pretending that its budget expired, if bfqq 3585 * belongs to CLASS_IDLE and other queues are waiting for 3586 * service. 3587 */ 3588 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) 3589 goto expire; 3590 3591 return rq; 3592 3593 expire: 3594 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 3595 return rq; 3596 } 3597 3598 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 3599 { 3600 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3601 3602 /* 3603 * Avoiding lock: a race on bfqd->busy_queues should cause at 3604 * most a call to dispatch for nothing 3605 */ 3606 return !list_empty_careful(&bfqd->dispatch) || 3607 bfqd->busy_queues > 0; 3608 } 3609 3610 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3611 { 3612 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3613 struct request *rq = NULL; 3614 struct bfq_queue *bfqq = NULL; 3615 3616 if (!list_empty(&bfqd->dispatch)) { 3617 rq = list_first_entry(&bfqd->dispatch, struct request, 3618 queuelist); 3619 list_del_init(&rq->queuelist); 3620 3621 bfqq = RQ_BFQQ(rq); 3622 3623 if (bfqq) { 3624 /* 3625 * Increment counters here, because this 3626 * dispatch does not follow the standard 3627 * dispatch flow (where counters are 3628 * incremented) 3629 */ 3630 bfqq->dispatched++; 3631 3632 goto inc_in_driver_start_rq; 3633 } 3634 3635 /* 3636 * We exploit the put_rq_private hook to decrement 3637 * rq_in_driver, but put_rq_private will not be 3638 * invoked on this request. So, to avoid unbalance, 3639 * just start this request, without incrementing 3640 * rq_in_driver. As a negative consequence, 3641 * rq_in_driver is deceptively lower than it should be 3642 * while this request is in service. This may cause 3643 * bfq_schedule_dispatch to be invoked uselessly. 3644 * 3645 * As for implementing an exact solution, the 3646 * put_request hook, if defined, is probably invoked 3647 * also on this request. So, by exploiting this hook, 3648 * we could 1) increment rq_in_driver here, and 2) 3649 * decrement it in put_request. Such a solution would 3650 * let the value of the counter be always accurate, 3651 * but it would entail using an extra interface 3652 * function. This cost seems higher than the benefit, 3653 * being the frequency of non-elevator-private 3654 * requests very low. 3655 */ 3656 goto start_rq; 3657 } 3658 3659 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); 3660 3661 if (bfqd->busy_queues == 0) 3662 goto exit; 3663 3664 /* 3665 * Force device to serve one request at a time if 3666 * strict_guarantees is true. Forcing this service scheme is 3667 * currently the ONLY way to guarantee that the request 3668 * service order enforced by the scheduler is respected by a 3669 * queueing device. Otherwise the device is free even to make 3670 * some unlucky request wait for as long as the device 3671 * wishes. 3672 * 3673 * Of course, serving one request at at time may cause loss of 3674 * throughput. 3675 */ 3676 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) 3677 goto exit; 3678 3679 bfqq = bfq_select_queue(bfqd); 3680 if (!bfqq) 3681 goto exit; 3682 3683 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 3684 3685 if (rq) { 3686 inc_in_driver_start_rq: 3687 bfqd->rq_in_driver++; 3688 start_rq: 3689 rq->rq_flags |= RQF_STARTED; 3690 } 3691 exit: 3692 return rq; 3693 } 3694 3695 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3696 { 3697 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3698 struct request *rq; 3699 3700 spin_lock_irq(&bfqd->lock); 3701 3702 rq = __bfq_dispatch_request(hctx); 3703 spin_unlock_irq(&bfqd->lock); 3704 3705 return rq; 3706 } 3707 3708 /* 3709 * Task holds one reference to the queue, dropped when task exits. Each rq 3710 * in-flight on this queue also holds a reference, dropped when rq is freed. 3711 * 3712 * Scheduler lock must be held here. Recall not to use bfqq after calling 3713 * this function on it. 3714 */ 3715 void bfq_put_queue(struct bfq_queue *bfqq) 3716 { 3717 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3718 struct bfq_group *bfqg = bfqq_group(bfqq); 3719 #endif 3720 3721 if (bfqq->bfqd) 3722 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", 3723 bfqq, bfqq->ref); 3724 3725 bfqq->ref--; 3726 if (bfqq->ref) 3727 return; 3728 3729 if (!hlist_unhashed(&bfqq->burst_list_node)) { 3730 hlist_del_init(&bfqq->burst_list_node); 3731 /* 3732 * Decrement also burst size after the removal, if the 3733 * process associated with bfqq is exiting, and thus 3734 * does not contribute to the burst any longer. This 3735 * decrement helps filter out false positives of large 3736 * bursts, when some short-lived process (often due to 3737 * the execution of commands by some service) happens 3738 * to start and exit while a complex application is 3739 * starting, and thus spawning several processes that 3740 * do I/O (and that *must not* be treated as a large 3741 * burst, see comments on bfq_handle_burst). 3742 * 3743 * In particular, the decrement is performed only if: 3744 * 1) bfqq is not a merged queue, because, if it is, 3745 * then this free of bfqq is not triggered by the exit 3746 * of the process bfqq is associated with, but exactly 3747 * by the fact that bfqq has just been merged. 3748 * 2) burst_size is greater than 0, to handle 3749 * unbalanced decrements. Unbalanced decrements may 3750 * happen in te following case: bfqq is inserted into 3751 * the current burst list--without incrementing 3752 * bust_size--because of a split, but the current 3753 * burst list is not the burst list bfqq belonged to 3754 * (see comments on the case of a split in 3755 * bfq_set_request). 3756 */ 3757 if (bfqq->bic && bfqq->bfqd->burst_size > 0) 3758 bfqq->bfqd->burst_size--; 3759 } 3760 3761 kmem_cache_free(bfq_pool, bfqq); 3762 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3763 bfqg_and_blkg_put(bfqg); 3764 #endif 3765 } 3766 3767 static void bfq_put_cooperator(struct bfq_queue *bfqq) 3768 { 3769 struct bfq_queue *__bfqq, *next; 3770 3771 /* 3772 * If this queue was scheduled to merge with another queue, be 3773 * sure to drop the reference taken on that queue (and others in 3774 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 3775 */ 3776 __bfqq = bfqq->new_bfqq; 3777 while (__bfqq) { 3778 if (__bfqq == bfqq) 3779 break; 3780 next = __bfqq->new_bfqq; 3781 bfq_put_queue(__bfqq); 3782 __bfqq = next; 3783 } 3784 } 3785 3786 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3787 { 3788 if (bfqq == bfqd->in_service_queue) { 3789 __bfq_bfqq_expire(bfqd, bfqq); 3790 bfq_schedule_dispatch(bfqd); 3791 } 3792 3793 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 3794 3795 bfq_put_cooperator(bfqq); 3796 3797 bfq_put_queue(bfqq); /* release process reference */ 3798 } 3799 3800 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) 3801 { 3802 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 3803 struct bfq_data *bfqd; 3804 3805 if (bfqq) 3806 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 3807 3808 if (bfqq && bfqd) { 3809 unsigned long flags; 3810 3811 spin_lock_irqsave(&bfqd->lock, flags); 3812 bfq_exit_bfqq(bfqd, bfqq); 3813 bic_set_bfqq(bic, NULL, is_sync); 3814 spin_unlock_irqrestore(&bfqd->lock, flags); 3815 } 3816 } 3817 3818 static void bfq_exit_icq(struct io_cq *icq) 3819 { 3820 struct bfq_io_cq *bic = icq_to_bic(icq); 3821 3822 bfq_exit_icq_bfqq(bic, true); 3823 bfq_exit_icq_bfqq(bic, false); 3824 } 3825 3826 /* 3827 * Update the entity prio values; note that the new values will not 3828 * be used until the next (re)activation. 3829 */ 3830 static void 3831 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 3832 { 3833 struct task_struct *tsk = current; 3834 int ioprio_class; 3835 struct bfq_data *bfqd = bfqq->bfqd; 3836 3837 if (!bfqd) 3838 return; 3839 3840 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3841 switch (ioprio_class) { 3842 default: 3843 dev_err(bfqq->bfqd->queue->backing_dev_info->dev, 3844 "bfq: bad prio class %d\n", ioprio_class); 3845 /* fall through */ 3846 case IOPRIO_CLASS_NONE: 3847 /* 3848 * No prio set, inherit CPU scheduling settings. 3849 */ 3850 bfqq->new_ioprio = task_nice_ioprio(tsk); 3851 bfqq->new_ioprio_class = task_nice_ioclass(tsk); 3852 break; 3853 case IOPRIO_CLASS_RT: 3854 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3855 bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 3856 break; 3857 case IOPRIO_CLASS_BE: 3858 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3859 bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 3860 break; 3861 case IOPRIO_CLASS_IDLE: 3862 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 3863 bfqq->new_ioprio = 7; 3864 break; 3865 } 3866 3867 if (bfqq->new_ioprio >= IOPRIO_BE_NR) { 3868 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 3869 bfqq->new_ioprio); 3870 bfqq->new_ioprio = IOPRIO_BE_NR; 3871 } 3872 3873 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 3874 bfqq->entity.prio_changed = 1; 3875 } 3876 3877 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3878 struct bio *bio, bool is_sync, 3879 struct bfq_io_cq *bic); 3880 3881 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 3882 { 3883 struct bfq_data *bfqd = bic_to_bfqd(bic); 3884 struct bfq_queue *bfqq; 3885 int ioprio = bic->icq.ioc->ioprio; 3886 3887 /* 3888 * This condition may trigger on a newly created bic, be sure to 3889 * drop the lock before returning. 3890 */ 3891 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 3892 return; 3893 3894 bic->ioprio = ioprio; 3895 3896 bfqq = bic_to_bfqq(bic, false); 3897 if (bfqq) { 3898 /* release process reference on this queue */ 3899 bfq_put_queue(bfqq); 3900 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); 3901 bic_set_bfqq(bic, bfqq, false); 3902 } 3903 3904 bfqq = bic_to_bfqq(bic, true); 3905 if (bfqq) 3906 bfq_set_next_ioprio_data(bfqq, bic); 3907 } 3908 3909 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3910 struct bfq_io_cq *bic, pid_t pid, int is_sync) 3911 { 3912 RB_CLEAR_NODE(&bfqq->entity.rb_node); 3913 INIT_LIST_HEAD(&bfqq->fifo); 3914 INIT_HLIST_NODE(&bfqq->burst_list_node); 3915 3916 bfqq->ref = 0; 3917 bfqq->bfqd = bfqd; 3918 3919 if (bic) 3920 bfq_set_next_ioprio_data(bfqq, bic); 3921 3922 if (is_sync) { 3923 /* 3924 * No need to mark as has_short_ttime if in 3925 * idle_class, because no device idling is performed 3926 * for queues in idle class 3927 */ 3928 if (!bfq_class_idle(bfqq)) 3929 /* tentatively mark as has_short_ttime */ 3930 bfq_mark_bfqq_has_short_ttime(bfqq); 3931 bfq_mark_bfqq_sync(bfqq); 3932 bfq_mark_bfqq_just_created(bfqq); 3933 } else 3934 bfq_clear_bfqq_sync(bfqq); 3935 3936 /* set end request to minus infinity from now */ 3937 bfqq->ttime.last_end_request = ktime_get_ns() + 1; 3938 3939 bfq_mark_bfqq_IO_bound(bfqq); 3940 3941 bfqq->pid = pid; 3942 3943 /* Tentative initial value to trade off between thr and lat */ 3944 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 3945 bfqq->budget_timeout = bfq_smallest_from_now(); 3946 3947 bfqq->wr_coeff = 1; 3948 bfqq->last_wr_start_finish = jiffies; 3949 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 3950 bfqq->split_time = bfq_smallest_from_now(); 3951 3952 /* 3953 * Set to the value for which bfqq will not be deemed as 3954 * soft rt when it becomes backlogged. 3955 */ 3956 bfqq->soft_rt_next_start = bfq_greatest_from_now(); 3957 3958 /* first request is almost certainly seeky */ 3959 bfqq->seek_history = 1; 3960 } 3961 3962 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 3963 struct bfq_group *bfqg, 3964 int ioprio_class, int ioprio) 3965 { 3966 switch (ioprio_class) { 3967 case IOPRIO_CLASS_RT: 3968 return &bfqg->async_bfqq[0][ioprio]; 3969 case IOPRIO_CLASS_NONE: 3970 ioprio = IOPRIO_NORM; 3971 /* fall through */ 3972 case IOPRIO_CLASS_BE: 3973 return &bfqg->async_bfqq[1][ioprio]; 3974 case IOPRIO_CLASS_IDLE: 3975 return &bfqg->async_idle_bfqq; 3976 default: 3977 return NULL; 3978 } 3979 } 3980 3981 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3982 struct bio *bio, bool is_sync, 3983 struct bfq_io_cq *bic) 3984 { 3985 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3986 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3987 struct bfq_queue **async_bfqq = NULL; 3988 struct bfq_queue *bfqq; 3989 struct bfq_group *bfqg; 3990 3991 rcu_read_lock(); 3992 3993 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); 3994 if (!bfqg) { 3995 bfqq = &bfqd->oom_bfqq; 3996 goto out; 3997 } 3998 3999 if (!is_sync) { 4000 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 4001 ioprio); 4002 bfqq = *async_bfqq; 4003 if (bfqq) 4004 goto out; 4005 } 4006 4007 bfqq = kmem_cache_alloc_node(bfq_pool, 4008 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 4009 bfqd->queue->node); 4010 4011 if (bfqq) { 4012 bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 4013 is_sync); 4014 bfq_init_entity(&bfqq->entity, bfqg); 4015 bfq_log_bfqq(bfqd, bfqq, "allocated"); 4016 } else { 4017 bfqq = &bfqd->oom_bfqq; 4018 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 4019 goto out; 4020 } 4021 4022 /* 4023 * Pin the queue now that it's allocated, scheduler exit will 4024 * prune it. 4025 */ 4026 if (async_bfqq) { 4027 bfqq->ref++; /* 4028 * Extra group reference, w.r.t. sync 4029 * queue. This extra reference is removed 4030 * only if bfqq->bfqg disappears, to 4031 * guarantee that this queue is not freed 4032 * until its group goes away. 4033 */ 4034 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 4035 bfqq, bfqq->ref); 4036 *async_bfqq = bfqq; 4037 } 4038 4039 out: 4040 bfqq->ref++; /* get a process reference to this queue */ 4041 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); 4042 rcu_read_unlock(); 4043 return bfqq; 4044 } 4045 4046 static void bfq_update_io_thinktime(struct bfq_data *bfqd, 4047 struct bfq_queue *bfqq) 4048 { 4049 struct bfq_ttime *ttime = &bfqq->ttime; 4050 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 4051 4052 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 4053 4054 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; 4055 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 4056 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 4057 ttime->ttime_samples); 4058 } 4059 4060 static void 4061 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4062 struct request *rq) 4063 { 4064 bfqq->seek_history <<= 1; 4065 bfqq->seek_history |= 4066 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && 4067 (!blk_queue_nonrot(bfqd->queue) || 4068 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); 4069 } 4070 4071 static void bfq_update_has_short_ttime(struct bfq_data *bfqd, 4072 struct bfq_queue *bfqq, 4073 struct bfq_io_cq *bic) 4074 { 4075 bool has_short_ttime = true; 4076 4077 /* 4078 * No need to update has_short_ttime if bfqq is async or in 4079 * idle io prio class, or if bfq_slice_idle is zero, because 4080 * no device idling is performed for bfqq in this case. 4081 */ 4082 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) || 4083 bfqd->bfq_slice_idle == 0) 4084 return; 4085 4086 /* Idle window just restored, statistics are meaningless. */ 4087 if (time_is_after_eq_jiffies(bfqq->split_time + 4088 bfqd->bfq_wr_min_idle_time)) 4089 return; 4090 4091 /* Think time is infinite if no process is linked to 4092 * bfqq. Otherwise check average think time to 4093 * decide whether to mark as has_short_ttime 4094 */ 4095 if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 4096 (bfq_sample_valid(bfqq->ttime.ttime_samples) && 4097 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle)) 4098 has_short_ttime = false; 4099 4100 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d", 4101 has_short_ttime); 4102 4103 if (has_short_ttime) 4104 bfq_mark_bfqq_has_short_ttime(bfqq); 4105 else 4106 bfq_clear_bfqq_has_short_ttime(bfqq); 4107 } 4108 4109 /* 4110 * Called when a new fs request (rq) is added to bfqq. Check if there's 4111 * something we should do about it. 4112 */ 4113 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4114 struct request *rq) 4115 { 4116 struct bfq_io_cq *bic = RQ_BIC(rq); 4117 4118 if (rq->cmd_flags & REQ_META) 4119 bfqq->meta_pending++; 4120 4121 bfq_update_io_thinktime(bfqd, bfqq); 4122 bfq_update_has_short_ttime(bfqd, bfqq, bic); 4123 bfq_update_io_seektime(bfqd, bfqq, rq); 4124 4125 bfq_log_bfqq(bfqd, bfqq, 4126 "rq_enqueued: has_short_ttime=%d (seeky %d)", 4127 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq)); 4128 4129 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4130 4131 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 4132 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 4133 blk_rq_sectors(rq) < 32; 4134 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 4135 4136 /* 4137 * There is just this request queued: if the request 4138 * is small and the queue is not to be expired, then 4139 * just exit. 4140 * 4141 * In this way, if the device is being idled to wait 4142 * for a new request from the in-service queue, we 4143 * avoid unplugging the device and committing the 4144 * device to serve just a small request. On the 4145 * contrary, we wait for the block layer to decide 4146 * when to unplug the device: hopefully, new requests 4147 * will be merged to this one quickly, then the device 4148 * will be unplugged and larger requests will be 4149 * dispatched. 4150 */ 4151 if (small_req && !budget_timeout) 4152 return; 4153 4154 /* 4155 * A large enough request arrived, or the queue is to 4156 * be expired: in both cases disk idling is to be 4157 * stopped, so clear wait_request flag and reset 4158 * timer. 4159 */ 4160 bfq_clear_bfqq_wait_request(bfqq); 4161 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 4162 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 4163 4164 /* 4165 * The queue is not empty, because a new request just 4166 * arrived. Hence we can safely expire the queue, in 4167 * case of budget timeout, without risking that the 4168 * timestamps of the queue are not updated correctly. 4169 * See [1] for more details. 4170 */ 4171 if (budget_timeout) 4172 bfq_bfqq_expire(bfqd, bfqq, false, 4173 BFQQE_BUDGET_TIMEOUT); 4174 } 4175 } 4176 4177 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 4178 { 4179 struct bfq_queue *bfqq = RQ_BFQQ(rq), 4180 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true); 4181 4182 if (new_bfqq) { 4183 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq) 4184 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1); 4185 /* 4186 * Release the request's reference to the old bfqq 4187 * and make sure one is taken to the shared queue. 4188 */ 4189 new_bfqq->allocated++; 4190 bfqq->allocated--; 4191 new_bfqq->ref++; 4192 /* 4193 * If the bic associated with the process 4194 * issuing this request still points to bfqq 4195 * (and thus has not been already redirected 4196 * to new_bfqq or even some other bfq_queue), 4197 * then complete the merge and redirect it to 4198 * new_bfqq. 4199 */ 4200 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq) 4201 bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 4202 bfqq, new_bfqq); 4203 4204 bfq_clear_bfqq_just_created(bfqq); 4205 /* 4206 * rq is about to be enqueued into new_bfqq, 4207 * release rq reference on bfqq 4208 */ 4209 bfq_put_queue(bfqq); 4210 rq->elv.priv[1] = new_bfqq; 4211 bfqq = new_bfqq; 4212 } 4213 4214 bfq_add_request(rq); 4215 4216 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 4217 list_add_tail(&rq->queuelist, &bfqq->fifo); 4218 4219 bfq_rq_enqueued(bfqd, bfqq, rq); 4220 } 4221 4222 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 4223 bool at_head) 4224 { 4225 struct request_queue *q = hctx->queue; 4226 struct bfq_data *bfqd = q->elevator->elevator_data; 4227 4228 spin_lock_irq(&bfqd->lock); 4229 if (blk_mq_sched_try_insert_merge(q, rq)) { 4230 spin_unlock_irq(&bfqd->lock); 4231 return; 4232 } 4233 4234 spin_unlock_irq(&bfqd->lock); 4235 4236 blk_mq_sched_request_inserted(rq); 4237 4238 spin_lock_irq(&bfqd->lock); 4239 if (at_head || blk_rq_is_passthrough(rq)) { 4240 if (at_head) 4241 list_add(&rq->queuelist, &bfqd->dispatch); 4242 else 4243 list_add_tail(&rq->queuelist, &bfqd->dispatch); 4244 } else { 4245 __bfq_insert_request(bfqd, rq); 4246 4247 if (rq_mergeable(rq)) { 4248 elv_rqhash_add(q, rq); 4249 if (!q->last_merge) 4250 q->last_merge = rq; 4251 } 4252 } 4253 4254 spin_unlock_irq(&bfqd->lock); 4255 } 4256 4257 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 4258 struct list_head *list, bool at_head) 4259 { 4260 while (!list_empty(list)) { 4261 struct request *rq; 4262 4263 rq = list_first_entry(list, struct request, queuelist); 4264 list_del_init(&rq->queuelist); 4265 bfq_insert_request(hctx, rq, at_head); 4266 } 4267 } 4268 4269 static void bfq_update_hw_tag(struct bfq_data *bfqd) 4270 { 4271 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 4272 bfqd->rq_in_driver); 4273 4274 if (bfqd->hw_tag == 1) 4275 return; 4276 4277 /* 4278 * This sample is valid if the number of outstanding requests 4279 * is large enough to allow a queueing behavior. Note that the 4280 * sum is not exact, as it's not taking into account deactivated 4281 * requests. 4282 */ 4283 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) 4284 return; 4285 4286 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 4287 return; 4288 4289 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 4290 bfqd->max_rq_in_driver = 0; 4291 bfqd->hw_tag_samples = 0; 4292 } 4293 4294 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 4295 { 4296 u64 now_ns; 4297 u32 delta_us; 4298 4299 bfq_update_hw_tag(bfqd); 4300 4301 bfqd->rq_in_driver--; 4302 bfqq->dispatched--; 4303 4304 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 4305 /* 4306 * Set budget_timeout (which we overload to store the 4307 * time at which the queue remains with no backlog and 4308 * no outstanding request; used by the weight-raising 4309 * mechanism). 4310 */ 4311 bfqq->budget_timeout = jiffies; 4312 4313 bfq_weights_tree_remove(bfqd, &bfqq->entity, 4314 &bfqd->queue_weights_tree); 4315 } 4316 4317 now_ns = ktime_get_ns(); 4318 4319 bfqq->ttime.last_end_request = now_ns; 4320 4321 /* 4322 * Using us instead of ns, to get a reasonable precision in 4323 * computing rate in next check. 4324 */ 4325 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 4326 4327 /* 4328 * If the request took rather long to complete, and, according 4329 * to the maximum request size recorded, this completion latency 4330 * implies that the request was certainly served at a very low 4331 * rate (less than 1M sectors/sec), then the whole observation 4332 * interval that lasts up to this time instant cannot be a 4333 * valid time interval for computing a new peak rate. Invoke 4334 * bfq_update_rate_reset to have the following three steps 4335 * taken: 4336 * - close the observation interval at the last (previous) 4337 * request dispatch or completion 4338 * - compute rate, if possible, for that observation interval 4339 * - reset to zero samples, which will trigger a proper 4340 * re-initialization of the observation interval on next 4341 * dispatch 4342 */ 4343 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 4344 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 4345 1UL<<(BFQ_RATE_SHIFT - 10)) 4346 bfq_update_rate_reset(bfqd, NULL); 4347 bfqd->last_completion = now_ns; 4348 4349 /* 4350 * If we are waiting to discover whether the request pattern 4351 * of the task associated with the queue is actually 4352 * isochronous, and both requisites for this condition to hold 4353 * are now satisfied, then compute soft_rt_next_start (see the 4354 * comments on the function bfq_bfqq_softrt_next_start()). We 4355 * schedule this delayed check when bfqq expires, if it still 4356 * has in-flight requests. 4357 */ 4358 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 4359 RB_EMPTY_ROOT(&bfqq->sort_list)) 4360 bfqq->soft_rt_next_start = 4361 bfq_bfqq_softrt_next_start(bfqd, bfqq); 4362 4363 /* 4364 * If this is the in-service queue, check if it needs to be expired, 4365 * or if we want to idle in case it has no pending requests. 4366 */ 4367 if (bfqd->in_service_queue == bfqq) { 4368 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { 4369 bfq_arm_slice_timer(bfqd); 4370 return; 4371 } else if (bfq_may_expire_for_budg_timeout(bfqq)) 4372 bfq_bfqq_expire(bfqd, bfqq, false, 4373 BFQQE_BUDGET_TIMEOUT); 4374 else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 4375 (bfqq->dispatched == 0 || 4376 !bfq_bfqq_may_idle(bfqq))) 4377 bfq_bfqq_expire(bfqd, bfqq, false, 4378 BFQQE_NO_MORE_REQUESTS); 4379 } 4380 4381 if (!bfqd->rq_in_driver) 4382 bfq_schedule_dispatch(bfqd); 4383 } 4384 4385 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) 4386 { 4387 bfqq->allocated--; 4388 4389 bfq_put_queue(bfqq); 4390 } 4391 4392 static void bfq_finish_request(struct request *rq) 4393 { 4394 struct bfq_queue *bfqq; 4395 struct bfq_data *bfqd; 4396 4397 if (!rq->elv.icq) 4398 return; 4399 4400 bfqq = RQ_BFQQ(rq); 4401 bfqd = bfqq->bfqd; 4402 4403 if (rq->rq_flags & RQF_STARTED) 4404 bfqg_stats_update_completion(bfqq_group(bfqq), 4405 rq_start_time_ns(rq), 4406 rq_io_start_time_ns(rq), 4407 rq->cmd_flags); 4408 4409 if (likely(rq->rq_flags & RQF_STARTED)) { 4410 unsigned long flags; 4411 4412 spin_lock_irqsave(&bfqd->lock, flags); 4413 4414 bfq_completed_request(bfqq, bfqd); 4415 bfq_put_rq_priv_body(bfqq); 4416 4417 spin_unlock_irqrestore(&bfqd->lock, flags); 4418 } else { 4419 /* 4420 * Request rq may be still/already in the scheduler, 4421 * in which case we need to remove it. And we cannot 4422 * defer such a check and removal, to avoid 4423 * inconsistencies in the time interval from the end 4424 * of this function to the start of the deferred work. 4425 * This situation seems to occur only in process 4426 * context, as a consequence of a merge. In the 4427 * current version of the code, this implies that the 4428 * lock is held. 4429 */ 4430 4431 if (!RB_EMPTY_NODE(&rq->rb_node)) 4432 bfq_remove_request(rq->q, rq); 4433 bfq_put_rq_priv_body(bfqq); 4434 } 4435 4436 rq->elv.priv[0] = NULL; 4437 rq->elv.priv[1] = NULL; 4438 } 4439 4440 /* 4441 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 4442 * was the last process referring to that bfqq. 4443 */ 4444 static struct bfq_queue * 4445 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 4446 { 4447 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 4448 4449 if (bfqq_process_refs(bfqq) == 1) { 4450 bfqq->pid = current->pid; 4451 bfq_clear_bfqq_coop(bfqq); 4452 bfq_clear_bfqq_split_coop(bfqq); 4453 return bfqq; 4454 } 4455 4456 bic_set_bfqq(bic, NULL, 1); 4457 4458 bfq_put_cooperator(bfqq); 4459 4460 bfq_put_queue(bfqq); 4461 return NULL; 4462 } 4463 4464 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 4465 struct bfq_io_cq *bic, 4466 struct bio *bio, 4467 bool split, bool is_sync, 4468 bool *new_queue) 4469 { 4470 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 4471 4472 if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 4473 return bfqq; 4474 4475 if (new_queue) 4476 *new_queue = true; 4477 4478 if (bfqq) 4479 bfq_put_queue(bfqq); 4480 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); 4481 4482 bic_set_bfqq(bic, bfqq, is_sync); 4483 if (split && is_sync) { 4484 if ((bic->was_in_burst_list && bfqd->large_burst) || 4485 bic->saved_in_large_burst) 4486 bfq_mark_bfqq_in_large_burst(bfqq); 4487 else { 4488 bfq_clear_bfqq_in_large_burst(bfqq); 4489 if (bic->was_in_burst_list) 4490 /* 4491 * If bfqq was in the current 4492 * burst list before being 4493 * merged, then we have to add 4494 * it back. And we do not need 4495 * to increase burst_size, as 4496 * we did not decrement 4497 * burst_size when we removed 4498 * bfqq from the burst list as 4499 * a consequence of a merge 4500 * (see comments in 4501 * bfq_put_queue). In this 4502 * respect, it would be rather 4503 * costly to know whether the 4504 * current burst list is still 4505 * the same burst list from 4506 * which bfqq was removed on 4507 * the merge. To avoid this 4508 * cost, if bfqq was in a 4509 * burst list, then we add 4510 * bfqq to the current burst 4511 * list without any further 4512 * check. This can cause 4513 * inappropriate insertions, 4514 * but rarely enough to not 4515 * harm the detection of large 4516 * bursts significantly. 4517 */ 4518 hlist_add_head(&bfqq->burst_list_node, 4519 &bfqd->burst_list); 4520 } 4521 bfqq->split_time = jiffies; 4522 } 4523 4524 return bfqq; 4525 } 4526 4527 /* 4528 * Allocate bfq data structures associated with this request. 4529 */ 4530 static void bfq_prepare_request(struct request *rq, struct bio *bio) 4531 { 4532 struct request_queue *q = rq->q; 4533 struct bfq_data *bfqd = q->elevator->elevator_data; 4534 struct bfq_io_cq *bic; 4535 const int is_sync = rq_is_sync(rq); 4536 struct bfq_queue *bfqq; 4537 bool new_queue = false; 4538 bool bfqq_already_existing = false, split = false; 4539 4540 if (!rq->elv.icq) 4541 return; 4542 bic = icq_to_bic(rq->elv.icq); 4543 4544 spin_lock_irq(&bfqd->lock); 4545 4546 bfq_check_ioprio_change(bic, bio); 4547 4548 bfq_bic_update_cgroup(bic, bio); 4549 4550 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 4551 &new_queue); 4552 4553 if (likely(!new_queue)) { 4554 /* If the queue was seeky for too long, break it apart. */ 4555 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) { 4556 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq"); 4557 4558 /* Update bic before losing reference to bfqq */ 4559 if (bfq_bfqq_in_large_burst(bfqq)) 4560 bic->saved_in_large_burst = true; 4561 4562 bfqq = bfq_split_bfqq(bic, bfqq); 4563 split = true; 4564 4565 if (!bfqq) 4566 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 4567 true, is_sync, 4568 NULL); 4569 else 4570 bfqq_already_existing = true; 4571 } 4572 } 4573 4574 bfqq->allocated++; 4575 bfqq->ref++; 4576 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 4577 rq, bfqq, bfqq->ref); 4578 4579 rq->elv.priv[0] = bic; 4580 rq->elv.priv[1] = bfqq; 4581 4582 /* 4583 * If a bfq_queue has only one process reference, it is owned 4584 * by only this bic: we can then set bfqq->bic = bic. in 4585 * addition, if the queue has also just been split, we have to 4586 * resume its state. 4587 */ 4588 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 4589 bfqq->bic = bic; 4590 if (split) { 4591 /* 4592 * The queue has just been split from a shared 4593 * queue: restore the idle window and the 4594 * possible weight raising period. 4595 */ 4596 bfq_bfqq_resume_state(bfqq, bfqd, bic, 4597 bfqq_already_existing); 4598 } 4599 } 4600 4601 if (unlikely(bfq_bfqq_just_created(bfqq))) 4602 bfq_handle_burst(bfqd, bfqq); 4603 4604 spin_unlock_irq(&bfqd->lock); 4605 } 4606 4607 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) 4608 { 4609 struct bfq_data *bfqd = bfqq->bfqd; 4610 enum bfqq_expiration reason; 4611 unsigned long flags; 4612 4613 spin_lock_irqsave(&bfqd->lock, flags); 4614 bfq_clear_bfqq_wait_request(bfqq); 4615 4616 if (bfqq != bfqd->in_service_queue) { 4617 spin_unlock_irqrestore(&bfqd->lock, flags); 4618 return; 4619 } 4620 4621 if (bfq_bfqq_budget_timeout(bfqq)) 4622 /* 4623 * Also here the queue can be safely expired 4624 * for budget timeout without wasting 4625 * guarantees 4626 */ 4627 reason = BFQQE_BUDGET_TIMEOUT; 4628 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 4629 /* 4630 * The queue may not be empty upon timer expiration, 4631 * because we may not disable the timer when the 4632 * first request of the in-service queue arrives 4633 * during disk idling. 4634 */ 4635 reason = BFQQE_TOO_IDLE; 4636 else 4637 goto schedule_dispatch; 4638 4639 bfq_bfqq_expire(bfqd, bfqq, true, reason); 4640 4641 schedule_dispatch: 4642 spin_unlock_irqrestore(&bfqd->lock, flags); 4643 bfq_schedule_dispatch(bfqd); 4644 } 4645 4646 /* 4647 * Handler of the expiration of the timer running if the in-service queue 4648 * is idling inside its time slice. 4649 */ 4650 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 4651 { 4652 struct bfq_data *bfqd = container_of(timer, struct bfq_data, 4653 idle_slice_timer); 4654 struct bfq_queue *bfqq = bfqd->in_service_queue; 4655 4656 /* 4657 * Theoretical race here: the in-service queue can be NULL or 4658 * different from the queue that was idling if a new request 4659 * arrives for the current queue and there is a full dispatch 4660 * cycle that changes the in-service queue. This can hardly 4661 * happen, but in the worst case we just expire a queue too 4662 * early. 4663 */ 4664 if (bfqq) 4665 bfq_idle_slice_timer_body(bfqq); 4666 4667 return HRTIMER_NORESTART; 4668 } 4669 4670 static void __bfq_put_async_bfqq(struct bfq_data *bfqd, 4671 struct bfq_queue **bfqq_ptr) 4672 { 4673 struct bfq_queue *bfqq = *bfqq_ptr; 4674 4675 bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 4676 if (bfqq) { 4677 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 4678 4679 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 4680 bfqq, bfqq->ref); 4681 bfq_put_queue(bfqq); 4682 *bfqq_ptr = NULL; 4683 } 4684 } 4685 4686 /* 4687 * Release all the bfqg references to its async queues. If we are 4688 * deallocating the group these queues may still contain requests, so 4689 * we reparent them to the root cgroup (i.e., the only one that will 4690 * exist for sure until all the requests on a device are gone). 4691 */ 4692 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 4693 { 4694 int i, j; 4695 4696 for (i = 0; i < 2; i++) 4697 for (j = 0; j < IOPRIO_BE_NR; j++) 4698 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); 4699 4700 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); 4701 } 4702 4703 static void bfq_exit_queue(struct elevator_queue *e) 4704 { 4705 struct bfq_data *bfqd = e->elevator_data; 4706 struct bfq_queue *bfqq, *n; 4707 4708 hrtimer_cancel(&bfqd->idle_slice_timer); 4709 4710 spin_lock_irq(&bfqd->lock); 4711 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 4712 bfq_deactivate_bfqq(bfqd, bfqq, false, false); 4713 spin_unlock_irq(&bfqd->lock); 4714 4715 hrtimer_cancel(&bfqd->idle_slice_timer); 4716 4717 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4718 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); 4719 #else 4720 spin_lock_irq(&bfqd->lock); 4721 bfq_put_async_queues(bfqd, bfqd->root_group); 4722 kfree(bfqd->root_group); 4723 spin_unlock_irq(&bfqd->lock); 4724 #endif 4725 4726 kfree(bfqd); 4727 } 4728 4729 static void bfq_init_root_group(struct bfq_group *root_group, 4730 struct bfq_data *bfqd) 4731 { 4732 int i; 4733 4734 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4735 root_group->entity.parent = NULL; 4736 root_group->my_entity = NULL; 4737 root_group->bfqd = bfqd; 4738 #endif 4739 root_group->rq_pos_tree = RB_ROOT; 4740 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 4741 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 4742 root_group->sched_data.bfq_class_idle_last_service = jiffies; 4743 } 4744 4745 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 4746 { 4747 struct bfq_data *bfqd; 4748 struct elevator_queue *eq; 4749 4750 eq = elevator_alloc(q, e); 4751 if (!eq) 4752 return -ENOMEM; 4753 4754 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 4755 if (!bfqd) { 4756 kobject_put(&eq->kobj); 4757 return -ENOMEM; 4758 } 4759 eq->elevator_data = bfqd; 4760 4761 spin_lock_irq(q->queue_lock); 4762 q->elevator = eq; 4763 spin_unlock_irq(q->queue_lock); 4764 4765 /* 4766 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 4767 * Grab a permanent reference to it, so that the normal code flow 4768 * will not attempt to free it. 4769 */ 4770 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); 4771 bfqd->oom_bfqq.ref++; 4772 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 4773 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 4774 bfqd->oom_bfqq.entity.new_weight = 4775 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 4776 4777 /* oom_bfqq does not participate to bursts */ 4778 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 4779 4780 /* 4781 * Trigger weight initialization, according to ioprio, at the 4782 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 4783 * class won't be changed any more. 4784 */ 4785 bfqd->oom_bfqq.entity.prio_changed = 1; 4786 4787 bfqd->queue = q; 4788 4789 INIT_LIST_HEAD(&bfqd->dispatch); 4790 4791 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 4792 HRTIMER_MODE_REL); 4793 bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 4794 4795 bfqd->queue_weights_tree = RB_ROOT; 4796 bfqd->group_weights_tree = RB_ROOT; 4797 4798 INIT_LIST_HEAD(&bfqd->active_list); 4799 INIT_LIST_HEAD(&bfqd->idle_list); 4800 INIT_HLIST_HEAD(&bfqd->burst_list); 4801 4802 bfqd->hw_tag = -1; 4803 4804 bfqd->bfq_max_budget = bfq_default_max_budget; 4805 4806 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 4807 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 4808 bfqd->bfq_back_max = bfq_back_max; 4809 bfqd->bfq_back_penalty = bfq_back_penalty; 4810 bfqd->bfq_slice_idle = bfq_slice_idle; 4811 bfqd->bfq_timeout = bfq_timeout; 4812 4813 bfqd->bfq_requests_within_timer = 120; 4814 4815 bfqd->bfq_large_burst_thresh = 8; 4816 bfqd->bfq_burst_interval = msecs_to_jiffies(180); 4817 4818 bfqd->low_latency = true; 4819 4820 /* 4821 * Trade-off between responsiveness and fairness. 4822 */ 4823 bfqd->bfq_wr_coeff = 30; 4824 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 4825 bfqd->bfq_wr_max_time = 0; 4826 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 4827 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 4828 bfqd->bfq_wr_max_softrt_rate = 7000; /* 4829 * Approximate rate required 4830 * to playback or record a 4831 * high-definition compressed 4832 * video. 4833 */ 4834 bfqd->wr_busy_queues = 0; 4835 4836 /* 4837 * Begin by assuming, optimistically, that the device is a 4838 * high-speed one, and that its peak rate is equal to 2/3 of 4839 * the highest reference rate. 4840 */ 4841 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * 4842 T_fast[blk_queue_nonrot(bfqd->queue)]; 4843 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 4844 bfqd->device_speed = BFQ_BFQD_FAST; 4845 4846 spin_lock_init(&bfqd->lock); 4847 4848 /* 4849 * The invocation of the next bfq_create_group_hierarchy 4850 * function is the head of a chain of function calls 4851 * (bfq_create_group_hierarchy->blkcg_activate_policy-> 4852 * blk_mq_freeze_queue) that may lead to the invocation of the 4853 * has_work hook function. For this reason, 4854 * bfq_create_group_hierarchy is invoked only after all 4855 * scheduler data has been initialized, apart from the fields 4856 * that can be initialized only after invoking 4857 * bfq_create_group_hierarchy. This, in particular, enables 4858 * has_work to correctly return false. Of course, to avoid 4859 * other inconsistencies, the blk-mq stack must then refrain 4860 * from invoking further scheduler hooks before this init 4861 * function is finished. 4862 */ 4863 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 4864 if (!bfqd->root_group) 4865 goto out_free; 4866 bfq_init_root_group(bfqd->root_group, bfqd); 4867 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 4868 4869 wbt_disable_default(q); 4870 return 0; 4871 4872 out_free: 4873 kfree(bfqd); 4874 kobject_put(&eq->kobj); 4875 return -ENOMEM; 4876 } 4877 4878 static void bfq_slab_kill(void) 4879 { 4880 kmem_cache_destroy(bfq_pool); 4881 } 4882 4883 static int __init bfq_slab_setup(void) 4884 { 4885 bfq_pool = KMEM_CACHE(bfq_queue, 0); 4886 if (!bfq_pool) 4887 return -ENOMEM; 4888 return 0; 4889 } 4890 4891 static ssize_t bfq_var_show(unsigned int var, char *page) 4892 { 4893 return sprintf(page, "%u\n", var); 4894 } 4895 4896 static int bfq_var_store(unsigned long *var, const char *page) 4897 { 4898 unsigned long new_val; 4899 int ret = kstrtoul(page, 10, &new_val); 4900 4901 if (ret) 4902 return ret; 4903 *var = new_val; 4904 return 0; 4905 } 4906 4907 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4908 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4909 { \ 4910 struct bfq_data *bfqd = e->elevator_data; \ 4911 u64 __data = __VAR; \ 4912 if (__CONV == 1) \ 4913 __data = jiffies_to_msecs(__data); \ 4914 else if (__CONV == 2) \ 4915 __data = div_u64(__data, NSEC_PER_MSEC); \ 4916 return bfq_var_show(__data, (page)); \ 4917 } 4918 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 4919 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 4920 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 4921 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 4922 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 4923 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 4924 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 4925 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 4926 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 4927 #undef SHOW_FUNCTION 4928 4929 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4930 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4931 { \ 4932 struct bfq_data *bfqd = e->elevator_data; \ 4933 u64 __data = __VAR; \ 4934 __data = div_u64(__data, NSEC_PER_USEC); \ 4935 return bfq_var_show(__data, (page)); \ 4936 } 4937 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 4938 #undef USEC_SHOW_FUNCTION 4939 4940 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4941 static ssize_t \ 4942 __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4943 { \ 4944 struct bfq_data *bfqd = e->elevator_data; \ 4945 unsigned long __data, __min = (MIN), __max = (MAX); \ 4946 int ret; \ 4947 \ 4948 ret = bfq_var_store(&__data, (page)); \ 4949 if (ret) \ 4950 return ret; \ 4951 if (__data < __min) \ 4952 __data = __min; \ 4953 else if (__data > __max) \ 4954 __data = __max; \ 4955 if (__CONV == 1) \ 4956 *(__PTR) = msecs_to_jiffies(__data); \ 4957 else if (__CONV == 2) \ 4958 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4959 else \ 4960 *(__PTR) = __data; \ 4961 return count; \ 4962 } 4963 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 4964 INT_MAX, 2); 4965 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 4966 INT_MAX, 2); 4967 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 4968 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 4969 INT_MAX, 0); 4970 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 4971 #undef STORE_FUNCTION 4972 4973 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4974 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 4975 { \ 4976 struct bfq_data *bfqd = e->elevator_data; \ 4977 unsigned long __data, __min = (MIN), __max = (MAX); \ 4978 int ret; \ 4979 \ 4980 ret = bfq_var_store(&__data, (page)); \ 4981 if (ret) \ 4982 return ret; \ 4983 if (__data < __min) \ 4984 __data = __min; \ 4985 else if (__data > __max) \ 4986 __data = __max; \ 4987 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4988 return count; \ 4989 } 4990 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 4991 UINT_MAX); 4992 #undef USEC_STORE_FUNCTION 4993 4994 static ssize_t bfq_max_budget_store(struct elevator_queue *e, 4995 const char *page, size_t count) 4996 { 4997 struct bfq_data *bfqd = e->elevator_data; 4998 unsigned long __data; 4999 int ret; 5000 5001 ret = bfq_var_store(&__data, (page)); 5002 if (ret) 5003 return ret; 5004 5005 if (__data == 0) 5006 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 5007 else { 5008 if (__data > INT_MAX) 5009 __data = INT_MAX; 5010 bfqd->bfq_max_budget = __data; 5011 } 5012 5013 bfqd->bfq_user_max_budget = __data; 5014 5015 return count; 5016 } 5017 5018 /* 5019 * Leaving this name to preserve name compatibility with cfq 5020 * parameters, but this timeout is used for both sync and async. 5021 */ 5022 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 5023 const char *page, size_t count) 5024 { 5025 struct bfq_data *bfqd = e->elevator_data; 5026 unsigned long __data; 5027 int ret; 5028 5029 ret = bfq_var_store(&__data, (page)); 5030 if (ret) 5031 return ret; 5032 5033 if (__data < 1) 5034 __data = 1; 5035 else if (__data > INT_MAX) 5036 __data = INT_MAX; 5037 5038 bfqd->bfq_timeout = msecs_to_jiffies(__data); 5039 if (bfqd->bfq_user_max_budget == 0) 5040 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 5041 5042 return count; 5043 } 5044 5045 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 5046 const char *page, size_t count) 5047 { 5048 struct bfq_data *bfqd = e->elevator_data; 5049 unsigned long __data; 5050 int ret; 5051 5052 ret = bfq_var_store(&__data, (page)); 5053 if (ret) 5054 return ret; 5055 5056 if (__data > 1) 5057 __data = 1; 5058 if (!bfqd->strict_guarantees && __data == 1 5059 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 5060 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 5061 5062 bfqd->strict_guarantees = __data; 5063 5064 return count; 5065 } 5066 5067 static ssize_t bfq_low_latency_store(struct elevator_queue *e, 5068 const char *page, size_t count) 5069 { 5070 struct bfq_data *bfqd = e->elevator_data; 5071 unsigned long __data; 5072 int ret; 5073 5074 ret = bfq_var_store(&__data, (page)); 5075 if (ret) 5076 return ret; 5077 5078 if (__data > 1) 5079 __data = 1; 5080 if (__data == 0 && bfqd->low_latency != 0) 5081 bfq_end_wr(bfqd); 5082 bfqd->low_latency = __data; 5083 5084 return count; 5085 } 5086 5087 #define BFQ_ATTR(name) \ 5088 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 5089 5090 static struct elv_fs_entry bfq_attrs[] = { 5091 BFQ_ATTR(fifo_expire_sync), 5092 BFQ_ATTR(fifo_expire_async), 5093 BFQ_ATTR(back_seek_max), 5094 BFQ_ATTR(back_seek_penalty), 5095 BFQ_ATTR(slice_idle), 5096 BFQ_ATTR(slice_idle_us), 5097 BFQ_ATTR(max_budget), 5098 BFQ_ATTR(timeout_sync), 5099 BFQ_ATTR(strict_guarantees), 5100 BFQ_ATTR(low_latency), 5101 __ATTR_NULL 5102 }; 5103 5104 static struct elevator_type iosched_bfq_mq = { 5105 .ops.mq = { 5106 .prepare_request = bfq_prepare_request, 5107 .finish_request = bfq_finish_request, 5108 .exit_icq = bfq_exit_icq, 5109 .insert_requests = bfq_insert_requests, 5110 .dispatch_request = bfq_dispatch_request, 5111 .next_request = elv_rb_latter_request, 5112 .former_request = elv_rb_former_request, 5113 .allow_merge = bfq_allow_bio_merge, 5114 .bio_merge = bfq_bio_merge, 5115 .request_merge = bfq_request_merge, 5116 .requests_merged = bfq_requests_merged, 5117 .request_merged = bfq_request_merged, 5118 .has_work = bfq_has_work, 5119 .init_sched = bfq_init_queue, 5120 .exit_sched = bfq_exit_queue, 5121 }, 5122 5123 .uses_mq = true, 5124 .icq_size = sizeof(struct bfq_io_cq), 5125 .icq_align = __alignof__(struct bfq_io_cq), 5126 .elevator_attrs = bfq_attrs, 5127 .elevator_name = "bfq", 5128 .elevator_owner = THIS_MODULE, 5129 }; 5130 MODULE_ALIAS("bfq-iosched"); 5131 5132 static int __init bfq_init(void) 5133 { 5134 int ret; 5135 5136 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5137 ret = blkcg_policy_register(&blkcg_policy_bfq); 5138 if (ret) 5139 return ret; 5140 #endif 5141 5142 ret = -ENOMEM; 5143 if (bfq_slab_setup()) 5144 goto err_pol_unreg; 5145 5146 /* 5147 * Times to load large popular applications for the typical 5148 * systems installed on the reference devices (see the 5149 * comments before the definitions of the next two 5150 * arrays). Actually, we use slightly slower values, as the 5151 * estimated peak rate tends to be smaller than the actual 5152 * peak rate. The reason for this last fact is that estimates 5153 * are computed over much shorter time intervals than the long 5154 * intervals typically used for benchmarking. Why? First, to 5155 * adapt more quickly to variations. Second, because an I/O 5156 * scheduler cannot rely on a peak-rate-evaluation workload to 5157 * be run for a long time. 5158 */ 5159 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ 5160 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ 5161 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 5162 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 5163 5164 /* 5165 * Thresholds that determine the switch between speed classes 5166 * (see the comments before the definition of the array 5167 * device_speed_thresh). These thresholds are biased towards 5168 * transitions to the fast class. This is safer than the 5169 * opposite bias. In fact, a wrong transition to the slow 5170 * class results in short weight-raising periods, because the 5171 * speed of the device then tends to be higher that the 5172 * reference peak rate. On the opposite end, a wrong 5173 * transition to the fast class tends to increase 5174 * weight-raising periods, because of the opposite reason. 5175 */ 5176 device_speed_thresh[0] = (4 * R_slow[0]) / 3; 5177 device_speed_thresh[1] = (4 * R_slow[1]) / 3; 5178 5179 ret = elv_register(&iosched_bfq_mq); 5180 if (ret) 5181 goto slab_kill; 5182 5183 return 0; 5184 5185 slab_kill: 5186 bfq_slab_kill(); 5187 err_pol_unreg: 5188 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5189 blkcg_policy_unregister(&blkcg_policy_bfq); 5190 #endif 5191 return ret; 5192 } 5193 5194 static void __exit bfq_exit(void) 5195 { 5196 elv_unregister(&iosched_bfq_mq); 5197 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5198 blkcg_policy_unregister(&blkcg_policy_bfq); 5199 #endif 5200 bfq_slab_kill(); 5201 } 5202 5203 module_init(bfq_init); 5204 module_exit(bfq_exit); 5205 5206 MODULE_AUTHOR("Paolo Valente"); 5207 MODULE_LICENSE("GPL"); 5208 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 5209