xref: /linux/block/bfq-iosched.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. This feature enables
53  * BFQ to provide applications in these classes with a very low
54  * latency. Finally, BFQ also features additional heuristics for
55  * preserving both a low latency and a high throughput on NCQ-capable,
56  * rotational or flash-based devices, and to get the job done quickly
57  * for applications consisting in many I/O-bound processes.
58  *
59  * NOTE: if the main or only goal, with a given device, is to achieve
60  * the maximum-possible throughput at all times, then do switch off
61  * all low-latency heuristics for that device, by setting low_latency
62  * to 0.
63  *
64  * BFQ is described in [1], where also a reference to the initial, more
65  * theoretical paper on BFQ can be found. The interested reader can find
66  * in the latter paper full details on the main algorithm, as well as
67  * formulas of the guarantees and formal proofs of all the properties.
68  * With respect to the version of BFQ presented in these papers, this
69  * implementation adds a few more heuristics, such as the one that
70  * guarantees a low latency to soft real-time applications, and a
71  * hierarchical extension based on H-WF2Q+.
72  *
73  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75  * with O(log N) complexity derives from the one introduced with EEVDF
76  * in [3].
77  *
78  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79  *     Scheduler", Proceedings of the First Workshop on Mobile System
80  *     Technologies (MST-2015), May 2015.
81  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82  *
83  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85  *     Oct 1997.
86  *
87  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88  *
89  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90  *     First: A Flexible and Accurate Mechanism for Proportional Share
91  *     Resource Allocation", technical report.
92  *
93  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94  */
95 #include <linux/module.h>
96 #include <linux/slab.h>
97 #include <linux/blkdev.h>
98 #include <linux/cgroup.h>
99 #include <linux/elevator.h>
100 #include <linux/ktime.h>
101 #include <linux/rbtree.h>
102 #include <linux/ioprio.h>
103 #include <linux/sbitmap.h>
104 #include <linux/delay.h>
105 
106 #include "blk.h"
107 #include "blk-mq.h"
108 #include "blk-mq-tag.h"
109 #include "blk-mq-sched.h"
110 #include "bfq-iosched.h"
111 #include "blk-wbt.h"
112 
113 #define BFQ_BFQQ_FNS(name)						\
114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
115 {									\
116 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
117 }									\
118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
119 {									\
120 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
121 }									\
122 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
123 {									\
124 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
125 }
126 
127 BFQ_BFQQ_FNS(just_created);
128 BFQ_BFQQ_FNS(busy);
129 BFQ_BFQQ_FNS(wait_request);
130 BFQ_BFQQ_FNS(non_blocking_wait_rq);
131 BFQ_BFQQ_FNS(fifo_expire);
132 BFQ_BFQQ_FNS(has_short_ttime);
133 BFQ_BFQQ_FNS(sync);
134 BFQ_BFQQ_FNS(IO_bound);
135 BFQ_BFQQ_FNS(in_large_burst);
136 BFQ_BFQQ_FNS(coop);
137 BFQ_BFQQ_FNS(split_coop);
138 BFQ_BFQQ_FNS(softrt_update);
139 #undef BFQ_BFQQ_FNS						\
140 
141 /* Expiration time of sync (0) and async (1) requests, in ns. */
142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
143 
144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145 static const int bfq_back_max = 16 * 1024;
146 
147 /* Penalty of a backwards seek, in number of sectors. */
148 static const int bfq_back_penalty = 2;
149 
150 /* Idling period duration, in ns. */
151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
152 
153 /* Minimum number of assigned budgets for which stats are safe to compute. */
154 static const int bfq_stats_min_budgets = 194;
155 
156 /* Default maximum budget values, in sectors and number of requests. */
157 static const int bfq_default_max_budget = 16 * 1024;
158 
159 /*
160  * Async to sync throughput distribution is controlled as follows:
161  * when an async request is served, the entity is charged the number
162  * of sectors of the request, multiplied by the factor below
163  */
164 static const int bfq_async_charge_factor = 10;
165 
166 /* Default timeout values, in jiffies, approximating CFQ defaults. */
167 const int bfq_timeout = HZ / 8;
168 
169 static struct kmem_cache *bfq_pool;
170 
171 /* Below this threshold (in ns), we consider thinktime immediate. */
172 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
173 
174 /* hw_tag detection: parallel requests threshold and min samples needed. */
175 #define BFQ_HW_QUEUE_THRESHOLD	4
176 #define BFQ_HW_QUEUE_SAMPLES	32
177 
178 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
179 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
180 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
181 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 32/8)
182 
183 /* Min number of samples required to perform peak-rate update */
184 #define BFQ_RATE_MIN_SAMPLES	32
185 /* Min observation time interval required to perform a peak-rate update (ns) */
186 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
187 /* Target observation time interval for a peak-rate update (ns) */
188 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
189 
190 /* Shift used for peak rate fixed precision calculations. */
191 #define BFQ_RATE_SHIFT		16
192 
193 /*
194  * By default, BFQ computes the duration of the weight raising for
195  * interactive applications automatically, using the following formula:
196  * duration = (R / r) * T, where r is the peak rate of the device, and
197  * R and T are two reference parameters.
198  * In particular, R is the peak rate of the reference device (see below),
199  * and T is a reference time: given the systems that are likely to be
200  * installed on the reference device according to its speed class, T is
201  * about the maximum time needed, under BFQ and while reading two files in
202  * parallel, to load typical large applications on these systems.
203  * In practice, the slower/faster the device at hand is, the more/less it
204  * takes to load applications with respect to the reference device.
205  * Accordingly, the longer/shorter BFQ grants weight raising to interactive
206  * applications.
207  *
208  * BFQ uses four different reference pairs (R, T), depending on:
209  * . whether the device is rotational or non-rotational;
210  * . whether the device is slow, such as old or portable HDDs, as well as
211  *   SD cards, or fast, such as newer HDDs and SSDs.
212  *
213  * The device's speed class is dynamically (re)detected in
214  * bfq_update_peak_rate() every time the estimated peak rate is updated.
215  *
216  * In the following definitions, R_slow[0]/R_fast[0] and
217  * T_slow[0]/T_fast[0] are the reference values for a slow/fast
218  * rotational device, whereas R_slow[1]/R_fast[1] and
219  * T_slow[1]/T_fast[1] are the reference values for a slow/fast
220  * non-rotational device. Finally, device_speed_thresh are the
221  * thresholds used to switch between speed classes. The reference
222  * rates are not the actual peak rates of the devices used as a
223  * reference, but slightly lower values. The reason for using these
224  * slightly lower values is that the peak-rate estimator tends to
225  * yield slightly lower values than the actual peak rate (it can yield
226  * the actual peak rate only if there is only one process doing I/O,
227  * and the process does sequential I/O).
228  *
229  * Both the reference peak rates and the thresholds are measured in
230  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
231  */
232 static int R_slow[2] = {1000, 10700};
233 static int R_fast[2] = {14000, 33000};
234 /*
235  * To improve readability, a conversion function is used to initialize the
236  * following arrays, which entails that they can be initialized only in a
237  * function.
238  */
239 static int T_slow[2];
240 static int T_fast[2];
241 static int device_speed_thresh[2];
242 
243 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
244 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
245 
246 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
247 {
248 	return bic->bfqq[is_sync];
249 }
250 
251 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
252 {
253 	bic->bfqq[is_sync] = bfqq;
254 }
255 
256 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
257 {
258 	return bic->icq.q->elevator->elevator_data;
259 }
260 
261 /**
262  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
263  * @icq: the iocontext queue.
264  */
265 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
266 {
267 	/* bic->icq is the first member, %NULL will convert to %NULL */
268 	return container_of(icq, struct bfq_io_cq, icq);
269 }
270 
271 /**
272  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
273  * @bfqd: the lookup key.
274  * @ioc: the io_context of the process doing I/O.
275  * @q: the request queue.
276  */
277 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
278 					struct io_context *ioc,
279 					struct request_queue *q)
280 {
281 	if (ioc) {
282 		unsigned long flags;
283 		struct bfq_io_cq *icq;
284 
285 		spin_lock_irqsave(q->queue_lock, flags);
286 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
287 		spin_unlock_irqrestore(q->queue_lock, flags);
288 
289 		return icq;
290 	}
291 
292 	return NULL;
293 }
294 
295 /*
296  * Scheduler run of queue, if there are requests pending and no one in the
297  * driver that will restart queueing.
298  */
299 void bfq_schedule_dispatch(struct bfq_data *bfqd)
300 {
301 	if (bfqd->queued != 0) {
302 		bfq_log(bfqd, "schedule dispatch");
303 		blk_mq_run_hw_queues(bfqd->queue, true);
304 	}
305 }
306 
307 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
308 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
309 
310 #define bfq_sample_valid(samples)	((samples) > 80)
311 
312 /*
313  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
314  * We choose the request that is closesr to the head right now.  Distance
315  * behind the head is penalized and only allowed to a certain extent.
316  */
317 static struct request *bfq_choose_req(struct bfq_data *bfqd,
318 				      struct request *rq1,
319 				      struct request *rq2,
320 				      sector_t last)
321 {
322 	sector_t s1, s2, d1 = 0, d2 = 0;
323 	unsigned long back_max;
324 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
325 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
326 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
327 
328 	if (!rq1 || rq1 == rq2)
329 		return rq2;
330 	if (!rq2)
331 		return rq1;
332 
333 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
334 		return rq1;
335 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
336 		return rq2;
337 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
338 		return rq1;
339 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
340 		return rq2;
341 
342 	s1 = blk_rq_pos(rq1);
343 	s2 = blk_rq_pos(rq2);
344 
345 	/*
346 	 * By definition, 1KiB is 2 sectors.
347 	 */
348 	back_max = bfqd->bfq_back_max * 2;
349 
350 	/*
351 	 * Strict one way elevator _except_ in the case where we allow
352 	 * short backward seeks which are biased as twice the cost of a
353 	 * similar forward seek.
354 	 */
355 	if (s1 >= last)
356 		d1 = s1 - last;
357 	else if (s1 + back_max >= last)
358 		d1 = (last - s1) * bfqd->bfq_back_penalty;
359 	else
360 		wrap |= BFQ_RQ1_WRAP;
361 
362 	if (s2 >= last)
363 		d2 = s2 - last;
364 	else if (s2 + back_max >= last)
365 		d2 = (last - s2) * bfqd->bfq_back_penalty;
366 	else
367 		wrap |= BFQ_RQ2_WRAP;
368 
369 	/* Found required data */
370 
371 	/*
372 	 * By doing switch() on the bit mask "wrap" we avoid having to
373 	 * check two variables for all permutations: --> faster!
374 	 */
375 	switch (wrap) {
376 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
377 		if (d1 < d2)
378 			return rq1;
379 		else if (d2 < d1)
380 			return rq2;
381 
382 		if (s1 >= s2)
383 			return rq1;
384 		else
385 			return rq2;
386 
387 	case BFQ_RQ2_WRAP:
388 		return rq1;
389 	case BFQ_RQ1_WRAP:
390 		return rq2;
391 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
392 	default:
393 		/*
394 		 * Since both rqs are wrapped,
395 		 * start with the one that's further behind head
396 		 * (--> only *one* back seek required),
397 		 * since back seek takes more time than forward.
398 		 */
399 		if (s1 <= s2)
400 			return rq1;
401 		else
402 			return rq2;
403 	}
404 }
405 
406 static struct bfq_queue *
407 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
408 		     sector_t sector, struct rb_node **ret_parent,
409 		     struct rb_node ***rb_link)
410 {
411 	struct rb_node **p, *parent;
412 	struct bfq_queue *bfqq = NULL;
413 
414 	parent = NULL;
415 	p = &root->rb_node;
416 	while (*p) {
417 		struct rb_node **n;
418 
419 		parent = *p;
420 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
421 
422 		/*
423 		 * Sort strictly based on sector. Smallest to the left,
424 		 * largest to the right.
425 		 */
426 		if (sector > blk_rq_pos(bfqq->next_rq))
427 			n = &(*p)->rb_right;
428 		else if (sector < blk_rq_pos(bfqq->next_rq))
429 			n = &(*p)->rb_left;
430 		else
431 			break;
432 		p = n;
433 		bfqq = NULL;
434 	}
435 
436 	*ret_parent = parent;
437 	if (rb_link)
438 		*rb_link = p;
439 
440 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
441 		(unsigned long long)sector,
442 		bfqq ? bfqq->pid : 0);
443 
444 	return bfqq;
445 }
446 
447 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
448 {
449 	struct rb_node **p, *parent;
450 	struct bfq_queue *__bfqq;
451 
452 	if (bfqq->pos_root) {
453 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
454 		bfqq->pos_root = NULL;
455 	}
456 
457 	if (bfq_class_idle(bfqq))
458 		return;
459 	if (!bfqq->next_rq)
460 		return;
461 
462 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
463 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
464 			blk_rq_pos(bfqq->next_rq), &parent, &p);
465 	if (!__bfqq) {
466 		rb_link_node(&bfqq->pos_node, parent, p);
467 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
468 	} else
469 		bfqq->pos_root = NULL;
470 }
471 
472 /*
473  * Tell whether there are active queues or groups with differentiated weights.
474  */
475 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
476 {
477 	/*
478 	 * For weights to differ, at least one of the trees must contain
479 	 * at least two nodes.
480 	 */
481 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
482 		(bfqd->queue_weights_tree.rb_node->rb_left ||
483 		 bfqd->queue_weights_tree.rb_node->rb_right)
484 #ifdef CONFIG_BFQ_GROUP_IOSCHED
485 	       ) ||
486 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
487 		(bfqd->group_weights_tree.rb_node->rb_left ||
488 		 bfqd->group_weights_tree.rb_node->rb_right)
489 #endif
490 	       );
491 }
492 
493 /*
494  * The following function returns true if every queue must receive the
495  * same share of the throughput (this condition is used when deciding
496  * whether idling may be disabled, see the comments in the function
497  * bfq_bfqq_may_idle()).
498  *
499  * Such a scenario occurs when:
500  * 1) all active queues have the same weight,
501  * 2) all active groups at the same level in the groups tree have the same
502  *    weight,
503  * 3) all active groups at the same level in the groups tree have the same
504  *    number of children.
505  *
506  * Unfortunately, keeping the necessary state for evaluating exactly the
507  * above symmetry conditions would be quite complex and time-consuming.
508  * Therefore this function evaluates, instead, the following stronger
509  * sub-conditions, for which it is much easier to maintain the needed
510  * state:
511  * 1) all active queues have the same weight,
512  * 2) all active groups have the same weight,
513  * 3) all active groups have at most one active child each.
514  * In particular, the last two conditions are always true if hierarchical
515  * support and the cgroups interface are not enabled, thus no state needs
516  * to be maintained in this case.
517  */
518 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
519 {
520 	return !bfq_differentiated_weights(bfqd);
521 }
522 
523 /*
524  * If the weight-counter tree passed as input contains no counter for
525  * the weight of the input entity, then add that counter; otherwise just
526  * increment the existing counter.
527  *
528  * Note that weight-counter trees contain few nodes in mostly symmetric
529  * scenarios. For example, if all queues have the same weight, then the
530  * weight-counter tree for the queues may contain at most one node.
531  * This holds even if low_latency is on, because weight-raised queues
532  * are not inserted in the tree.
533  * In most scenarios, the rate at which nodes are created/destroyed
534  * should be low too.
535  */
536 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
537 			  struct rb_root *root)
538 {
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	/*
542 	 * Do not insert if the entity is already associated with a
543 	 * counter, which happens if:
544 	 *   1) the entity is associated with a queue,
545 	 *   2) a request arrival has caused the queue to become both
546 	 *      non-weight-raised, and hence change its weight, and
547 	 *      backlogged; in this respect, each of the two events
548 	 *      causes an invocation of this function,
549 	 *   3) this is the invocation of this function caused by the
550 	 *      second event. This second invocation is actually useless,
551 	 *      and we handle this fact by exiting immediately. More
552 	 *      efficient or clearer solutions might possibly be adopted.
553 	 */
554 	if (entity->weight_counter)
555 		return;
556 
557 	while (*new) {
558 		struct bfq_weight_counter *__counter = container_of(*new,
559 						struct bfq_weight_counter,
560 						weights_node);
561 		parent = *new;
562 
563 		if (entity->weight == __counter->weight) {
564 			entity->weight_counter = __counter;
565 			goto inc_counter;
566 		}
567 		if (entity->weight < __counter->weight)
568 			new = &((*new)->rb_left);
569 		else
570 			new = &((*new)->rb_right);
571 	}
572 
573 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
574 					 GFP_ATOMIC);
575 
576 	/*
577 	 * In the unlucky event of an allocation failure, we just
578 	 * exit. This will cause the weight of entity to not be
579 	 * considered in bfq_differentiated_weights, which, in its
580 	 * turn, causes the scenario to be deemed wrongly symmetric in
581 	 * case entity's weight would have been the only weight making
582 	 * the scenario asymmetric. On the bright side, no unbalance
583 	 * will however occur when entity becomes inactive again (the
584 	 * invocation of this function is triggered by an activation
585 	 * of entity). In fact, bfq_weights_tree_remove does nothing
586 	 * if !entity->weight_counter.
587 	 */
588 	if (unlikely(!entity->weight_counter))
589 		return;
590 
591 	entity->weight_counter->weight = entity->weight;
592 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
593 	rb_insert_color(&entity->weight_counter->weights_node, root);
594 
595 inc_counter:
596 	entity->weight_counter->num_active++;
597 }
598 
599 /*
600  * Decrement the weight counter associated with the entity, and, if the
601  * counter reaches 0, remove the counter from the tree.
602  * See the comments to the function bfq_weights_tree_add() for considerations
603  * about overhead.
604  */
605 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
606 			     struct rb_root *root)
607 {
608 	if (!entity->weight_counter)
609 		return;
610 
611 	entity->weight_counter->num_active--;
612 	if (entity->weight_counter->num_active > 0)
613 		goto reset_entity_pointer;
614 
615 	rb_erase(&entity->weight_counter->weights_node, root);
616 	kfree(entity->weight_counter);
617 
618 reset_entity_pointer:
619 	entity->weight_counter = NULL;
620 }
621 
622 /*
623  * Return expired entry, or NULL to just start from scratch in rbtree.
624  */
625 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
626 				      struct request *last)
627 {
628 	struct request *rq;
629 
630 	if (bfq_bfqq_fifo_expire(bfqq))
631 		return NULL;
632 
633 	bfq_mark_bfqq_fifo_expire(bfqq);
634 
635 	rq = rq_entry_fifo(bfqq->fifo.next);
636 
637 	if (rq == last || ktime_get_ns() < rq->fifo_time)
638 		return NULL;
639 
640 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
641 	return rq;
642 }
643 
644 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
645 					struct bfq_queue *bfqq,
646 					struct request *last)
647 {
648 	struct rb_node *rbnext = rb_next(&last->rb_node);
649 	struct rb_node *rbprev = rb_prev(&last->rb_node);
650 	struct request *next, *prev = NULL;
651 
652 	/* Follow expired path, else get first next available. */
653 	next = bfq_check_fifo(bfqq, last);
654 	if (next)
655 		return next;
656 
657 	if (rbprev)
658 		prev = rb_entry_rq(rbprev);
659 
660 	if (rbnext)
661 		next = rb_entry_rq(rbnext);
662 	else {
663 		rbnext = rb_first(&bfqq->sort_list);
664 		if (rbnext && rbnext != &last->rb_node)
665 			next = rb_entry_rq(rbnext);
666 	}
667 
668 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
669 }
670 
671 /* see the definition of bfq_async_charge_factor for details */
672 static unsigned long bfq_serv_to_charge(struct request *rq,
673 					struct bfq_queue *bfqq)
674 {
675 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
676 		return blk_rq_sectors(rq);
677 
678 	/*
679 	 * If there are no weight-raised queues, then amplify service
680 	 * by just the async charge factor; otherwise amplify service
681 	 * by twice the async charge factor, to further reduce latency
682 	 * for weight-raised queues.
683 	 */
684 	if (bfqq->bfqd->wr_busy_queues == 0)
685 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
686 
687 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
688 }
689 
690 /**
691  * bfq_updated_next_req - update the queue after a new next_rq selection.
692  * @bfqd: the device data the queue belongs to.
693  * @bfqq: the queue to update.
694  *
695  * If the first request of a queue changes we make sure that the queue
696  * has enough budget to serve at least its first request (if the
697  * request has grown).  We do this because if the queue has not enough
698  * budget for its first request, it has to go through two dispatch
699  * rounds to actually get it dispatched.
700  */
701 static void bfq_updated_next_req(struct bfq_data *bfqd,
702 				 struct bfq_queue *bfqq)
703 {
704 	struct bfq_entity *entity = &bfqq->entity;
705 	struct request *next_rq = bfqq->next_rq;
706 	unsigned long new_budget;
707 
708 	if (!next_rq)
709 		return;
710 
711 	if (bfqq == bfqd->in_service_queue)
712 		/*
713 		 * In order not to break guarantees, budgets cannot be
714 		 * changed after an entity has been selected.
715 		 */
716 		return;
717 
718 	new_budget = max_t(unsigned long, bfqq->max_budget,
719 			   bfq_serv_to_charge(next_rq, bfqq));
720 	if (entity->budget != new_budget) {
721 		entity->budget = new_budget;
722 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
723 					 new_budget);
724 		bfq_requeue_bfqq(bfqd, bfqq, false);
725 	}
726 }
727 
728 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
729 {
730 	u64 dur;
731 
732 	if (bfqd->bfq_wr_max_time > 0)
733 		return bfqd->bfq_wr_max_time;
734 
735 	dur = bfqd->RT_prod;
736 	do_div(dur, bfqd->peak_rate);
737 
738 	/*
739 	 * Limit duration between 3 and 13 seconds. Tests show that
740 	 * higher values than 13 seconds often yield the opposite of
741 	 * the desired result, i.e., worsen responsiveness by letting
742 	 * non-interactive and non-soft-real-time applications
743 	 * preserve weight raising for a too long time interval.
744 	 *
745 	 * On the other end, lower values than 3 seconds make it
746 	 * difficult for most interactive tasks to complete their jobs
747 	 * before weight-raising finishes.
748 	 */
749 	if (dur > msecs_to_jiffies(13000))
750 		dur = msecs_to_jiffies(13000);
751 	else if (dur < msecs_to_jiffies(3000))
752 		dur = msecs_to_jiffies(3000);
753 
754 	return dur;
755 }
756 
757 /* switch back from soft real-time to interactive weight raising */
758 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
759 					  struct bfq_data *bfqd)
760 {
761 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
762 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
763 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
764 }
765 
766 static void
767 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
768 		      struct bfq_io_cq *bic, bool bfq_already_existing)
769 {
770 	unsigned int old_wr_coeff = bfqq->wr_coeff;
771 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
772 
773 	if (bic->saved_has_short_ttime)
774 		bfq_mark_bfqq_has_short_ttime(bfqq);
775 	else
776 		bfq_clear_bfqq_has_short_ttime(bfqq);
777 
778 	if (bic->saved_IO_bound)
779 		bfq_mark_bfqq_IO_bound(bfqq);
780 	else
781 		bfq_clear_bfqq_IO_bound(bfqq);
782 
783 	bfqq->ttime = bic->saved_ttime;
784 	bfqq->wr_coeff = bic->saved_wr_coeff;
785 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
786 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
787 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
788 
789 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
790 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
791 				   bfqq->wr_cur_max_time))) {
792 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
793 		    !bfq_bfqq_in_large_burst(bfqq) &&
794 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
795 					     bfq_wr_duration(bfqd))) {
796 			switch_back_to_interactive_wr(bfqq, bfqd);
797 		} else {
798 			bfqq->wr_coeff = 1;
799 			bfq_log_bfqq(bfqq->bfqd, bfqq,
800 				     "resume state: switching off wr");
801 		}
802 	}
803 
804 	/* make sure weight will be updated, however we got here */
805 	bfqq->entity.prio_changed = 1;
806 
807 	if (likely(!busy))
808 		return;
809 
810 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
811 		bfqd->wr_busy_queues++;
812 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
813 		bfqd->wr_busy_queues--;
814 }
815 
816 static int bfqq_process_refs(struct bfq_queue *bfqq)
817 {
818 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
819 }
820 
821 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
822 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
823 {
824 	struct bfq_queue *item;
825 	struct hlist_node *n;
826 
827 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
828 		hlist_del_init(&item->burst_list_node);
829 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
830 	bfqd->burst_size = 1;
831 	bfqd->burst_parent_entity = bfqq->entity.parent;
832 }
833 
834 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
835 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
836 {
837 	/* Increment burst size to take into account also bfqq */
838 	bfqd->burst_size++;
839 
840 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
841 		struct bfq_queue *pos, *bfqq_item;
842 		struct hlist_node *n;
843 
844 		/*
845 		 * Enough queues have been activated shortly after each
846 		 * other to consider this burst as large.
847 		 */
848 		bfqd->large_burst = true;
849 
850 		/*
851 		 * We can now mark all queues in the burst list as
852 		 * belonging to a large burst.
853 		 */
854 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
855 				     burst_list_node)
856 			bfq_mark_bfqq_in_large_burst(bfqq_item);
857 		bfq_mark_bfqq_in_large_burst(bfqq);
858 
859 		/*
860 		 * From now on, and until the current burst finishes, any
861 		 * new queue being activated shortly after the last queue
862 		 * was inserted in the burst can be immediately marked as
863 		 * belonging to a large burst. So the burst list is not
864 		 * needed any more. Remove it.
865 		 */
866 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
867 					  burst_list_node)
868 			hlist_del_init(&pos->burst_list_node);
869 	} else /*
870 		* Burst not yet large: add bfqq to the burst list. Do
871 		* not increment the ref counter for bfqq, because bfqq
872 		* is removed from the burst list before freeing bfqq
873 		* in put_queue.
874 		*/
875 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
876 }
877 
878 /*
879  * If many queues belonging to the same group happen to be created
880  * shortly after each other, then the processes associated with these
881  * queues have typically a common goal. In particular, bursts of queue
882  * creations are usually caused by services or applications that spawn
883  * many parallel threads/processes. Examples are systemd during boot,
884  * or git grep. To help these processes get their job done as soon as
885  * possible, it is usually better to not grant either weight-raising
886  * or device idling to their queues.
887  *
888  * In this comment we describe, firstly, the reasons why this fact
889  * holds, and, secondly, the next function, which implements the main
890  * steps needed to properly mark these queues so that they can then be
891  * treated in a different way.
892  *
893  * The above services or applications benefit mostly from a high
894  * throughput: the quicker the requests of the activated queues are
895  * cumulatively served, the sooner the target job of these queues gets
896  * completed. As a consequence, weight-raising any of these queues,
897  * which also implies idling the device for it, is almost always
898  * counterproductive. In most cases it just lowers throughput.
899  *
900  * On the other hand, a burst of queue creations may be caused also by
901  * the start of an application that does not consist of a lot of
902  * parallel I/O-bound threads. In fact, with a complex application,
903  * several short processes may need to be executed to start-up the
904  * application. In this respect, to start an application as quickly as
905  * possible, the best thing to do is in any case to privilege the I/O
906  * related to the application with respect to all other
907  * I/O. Therefore, the best strategy to start as quickly as possible
908  * an application that causes a burst of queue creations is to
909  * weight-raise all the queues created during the burst. This is the
910  * exact opposite of the best strategy for the other type of bursts.
911  *
912  * In the end, to take the best action for each of the two cases, the
913  * two types of bursts need to be distinguished. Fortunately, this
914  * seems relatively easy, by looking at the sizes of the bursts. In
915  * particular, we found a threshold such that only bursts with a
916  * larger size than that threshold are apparently caused by
917  * services or commands such as systemd or git grep. For brevity,
918  * hereafter we call just 'large' these bursts. BFQ *does not*
919  * weight-raise queues whose creation occurs in a large burst. In
920  * addition, for each of these queues BFQ performs or does not perform
921  * idling depending on which choice boosts the throughput more. The
922  * exact choice depends on the device and request pattern at
923  * hand.
924  *
925  * Unfortunately, false positives may occur while an interactive task
926  * is starting (e.g., an application is being started). The
927  * consequence is that the queues associated with the task do not
928  * enjoy weight raising as expected. Fortunately these false positives
929  * are very rare. They typically occur if some service happens to
930  * start doing I/O exactly when the interactive task starts.
931  *
932  * Turning back to the next function, it implements all the steps
933  * needed to detect the occurrence of a large burst and to properly
934  * mark all the queues belonging to it (so that they can then be
935  * treated in a different way). This goal is achieved by maintaining a
936  * "burst list" that holds, temporarily, the queues that belong to the
937  * burst in progress. The list is then used to mark these queues as
938  * belonging to a large burst if the burst does become large. The main
939  * steps are the following.
940  *
941  * . when the very first queue is created, the queue is inserted into the
942  *   list (as it could be the first queue in a possible burst)
943  *
944  * . if the current burst has not yet become large, and a queue Q that does
945  *   not yet belong to the burst is activated shortly after the last time
946  *   at which a new queue entered the burst list, then the function appends
947  *   Q to the burst list
948  *
949  * . if, as a consequence of the previous step, the burst size reaches
950  *   the large-burst threshold, then
951  *
952  *     . all the queues in the burst list are marked as belonging to a
953  *       large burst
954  *
955  *     . the burst list is deleted; in fact, the burst list already served
956  *       its purpose (keeping temporarily track of the queues in a burst,
957  *       so as to be able to mark them as belonging to a large burst in the
958  *       previous sub-step), and now is not needed any more
959  *
960  *     . the device enters a large-burst mode
961  *
962  * . if a queue Q that does not belong to the burst is created while
963  *   the device is in large-burst mode and shortly after the last time
964  *   at which a queue either entered the burst list or was marked as
965  *   belonging to the current large burst, then Q is immediately marked
966  *   as belonging to a large burst.
967  *
968  * . if a queue Q that does not belong to the burst is created a while
969  *   later, i.e., not shortly after, than the last time at which a queue
970  *   either entered the burst list or was marked as belonging to the
971  *   current large burst, then the current burst is deemed as finished and:
972  *
973  *        . the large-burst mode is reset if set
974  *
975  *        . the burst list is emptied
976  *
977  *        . Q is inserted in the burst list, as Q may be the first queue
978  *          in a possible new burst (then the burst list contains just Q
979  *          after this step).
980  */
981 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
982 {
983 	/*
984 	 * If bfqq is already in the burst list or is part of a large
985 	 * burst, or finally has just been split, then there is
986 	 * nothing else to do.
987 	 */
988 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
989 	    bfq_bfqq_in_large_burst(bfqq) ||
990 	    time_is_after_eq_jiffies(bfqq->split_time +
991 				     msecs_to_jiffies(10)))
992 		return;
993 
994 	/*
995 	 * If bfqq's creation happens late enough, or bfqq belongs to
996 	 * a different group than the burst group, then the current
997 	 * burst is finished, and related data structures must be
998 	 * reset.
999 	 *
1000 	 * In this respect, consider the special case where bfqq is
1001 	 * the very first queue created after BFQ is selected for this
1002 	 * device. In this case, last_ins_in_burst and
1003 	 * burst_parent_entity are not yet significant when we get
1004 	 * here. But it is easy to verify that, whether or not the
1005 	 * following condition is true, bfqq will end up being
1006 	 * inserted into the burst list. In particular the list will
1007 	 * happen to contain only bfqq. And this is exactly what has
1008 	 * to happen, as bfqq may be the first queue of the first
1009 	 * burst.
1010 	 */
1011 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1012 	    bfqd->bfq_burst_interval) ||
1013 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1014 		bfqd->large_burst = false;
1015 		bfq_reset_burst_list(bfqd, bfqq);
1016 		goto end;
1017 	}
1018 
1019 	/*
1020 	 * If we get here, then bfqq is being activated shortly after the
1021 	 * last queue. So, if the current burst is also large, we can mark
1022 	 * bfqq as belonging to this large burst immediately.
1023 	 */
1024 	if (bfqd->large_burst) {
1025 		bfq_mark_bfqq_in_large_burst(bfqq);
1026 		goto end;
1027 	}
1028 
1029 	/*
1030 	 * If we get here, then a large-burst state has not yet been
1031 	 * reached, but bfqq is being activated shortly after the last
1032 	 * queue. Then we add bfqq to the burst.
1033 	 */
1034 	bfq_add_to_burst(bfqd, bfqq);
1035 end:
1036 	/*
1037 	 * At this point, bfqq either has been added to the current
1038 	 * burst or has caused the current burst to terminate and a
1039 	 * possible new burst to start. In particular, in the second
1040 	 * case, bfqq has become the first queue in the possible new
1041 	 * burst.  In both cases last_ins_in_burst needs to be moved
1042 	 * forward.
1043 	 */
1044 	bfqd->last_ins_in_burst = jiffies;
1045 }
1046 
1047 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1048 {
1049 	struct bfq_entity *entity = &bfqq->entity;
1050 
1051 	return entity->budget - entity->service;
1052 }
1053 
1054 /*
1055  * If enough samples have been computed, return the current max budget
1056  * stored in bfqd, which is dynamically updated according to the
1057  * estimated disk peak rate; otherwise return the default max budget
1058  */
1059 static int bfq_max_budget(struct bfq_data *bfqd)
1060 {
1061 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1062 		return bfq_default_max_budget;
1063 	else
1064 		return bfqd->bfq_max_budget;
1065 }
1066 
1067 /*
1068  * Return min budget, which is a fraction of the current or default
1069  * max budget (trying with 1/32)
1070  */
1071 static int bfq_min_budget(struct bfq_data *bfqd)
1072 {
1073 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1074 		return bfq_default_max_budget / 32;
1075 	else
1076 		return bfqd->bfq_max_budget / 32;
1077 }
1078 
1079 /*
1080  * The next function, invoked after the input queue bfqq switches from
1081  * idle to busy, updates the budget of bfqq. The function also tells
1082  * whether the in-service queue should be expired, by returning
1083  * true. The purpose of expiring the in-service queue is to give bfqq
1084  * the chance to possibly preempt the in-service queue, and the reason
1085  * for preempting the in-service queue is to achieve one of the two
1086  * goals below.
1087  *
1088  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1089  * expired because it has remained idle. In particular, bfqq may have
1090  * expired for one of the following two reasons:
1091  *
1092  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1093  *   and did not make it to issue a new request before its last
1094  *   request was served;
1095  *
1096  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1097  *   a new request before the expiration of the idling-time.
1098  *
1099  * Even if bfqq has expired for one of the above reasons, the process
1100  * associated with the queue may be however issuing requests greedily,
1101  * and thus be sensitive to the bandwidth it receives (bfqq may have
1102  * remained idle for other reasons: CPU high load, bfqq not enjoying
1103  * idling, I/O throttling somewhere in the path from the process to
1104  * the I/O scheduler, ...). But if, after every expiration for one of
1105  * the above two reasons, bfqq has to wait for the service of at least
1106  * one full budget of another queue before being served again, then
1107  * bfqq is likely to get a much lower bandwidth or resource time than
1108  * its reserved ones. To address this issue, two countermeasures need
1109  * to be taken.
1110  *
1111  * First, the budget and the timestamps of bfqq need to be updated in
1112  * a special way on bfqq reactivation: they need to be updated as if
1113  * bfqq did not remain idle and did not expire. In fact, if they are
1114  * computed as if bfqq expired and remained idle until reactivation,
1115  * then the process associated with bfqq is treated as if, instead of
1116  * being greedy, it stopped issuing requests when bfqq remained idle,
1117  * and restarts issuing requests only on this reactivation. In other
1118  * words, the scheduler does not help the process recover the "service
1119  * hole" between bfqq expiration and reactivation. As a consequence,
1120  * the process receives a lower bandwidth than its reserved one. In
1121  * contrast, to recover this hole, the budget must be updated as if
1122  * bfqq was not expired at all before this reactivation, i.e., it must
1123  * be set to the value of the remaining budget when bfqq was
1124  * expired. Along the same line, timestamps need to be assigned the
1125  * value they had the last time bfqq was selected for service, i.e.,
1126  * before last expiration. Thus timestamps need to be back-shifted
1127  * with respect to their normal computation (see [1] for more details
1128  * on this tricky aspect).
1129  *
1130  * Secondly, to allow the process to recover the hole, the in-service
1131  * queue must be expired too, to give bfqq the chance to preempt it
1132  * immediately. In fact, if bfqq has to wait for a full budget of the
1133  * in-service queue to be completed, then it may become impossible to
1134  * let the process recover the hole, even if the back-shifted
1135  * timestamps of bfqq are lower than those of the in-service queue. If
1136  * this happens for most or all of the holes, then the process may not
1137  * receive its reserved bandwidth. In this respect, it is worth noting
1138  * that, being the service of outstanding requests unpreemptible, a
1139  * little fraction of the holes may however be unrecoverable, thereby
1140  * causing a little loss of bandwidth.
1141  *
1142  * The last important point is detecting whether bfqq does need this
1143  * bandwidth recovery. In this respect, the next function deems the
1144  * process associated with bfqq greedy, and thus allows it to recover
1145  * the hole, if: 1) the process is waiting for the arrival of a new
1146  * request (which implies that bfqq expired for one of the above two
1147  * reasons), and 2) such a request has arrived soon. The first
1148  * condition is controlled through the flag non_blocking_wait_rq,
1149  * while the second through the flag arrived_in_time. If both
1150  * conditions hold, then the function computes the budget in the
1151  * above-described special way, and signals that the in-service queue
1152  * should be expired. Timestamp back-shifting is done later in
1153  * __bfq_activate_entity.
1154  *
1155  * 2. Reduce latency. Even if timestamps are not backshifted to let
1156  * the process associated with bfqq recover a service hole, bfqq may
1157  * however happen to have, after being (re)activated, a lower finish
1158  * timestamp than the in-service queue.	 That is, the next budget of
1159  * bfqq may have to be completed before the one of the in-service
1160  * queue. If this is the case, then preempting the in-service queue
1161  * allows this goal to be achieved, apart from the unpreemptible,
1162  * outstanding requests mentioned above.
1163  *
1164  * Unfortunately, regardless of which of the above two goals one wants
1165  * to achieve, service trees need first to be updated to know whether
1166  * the in-service queue must be preempted. To have service trees
1167  * correctly updated, the in-service queue must be expired and
1168  * rescheduled, and bfqq must be scheduled too. This is one of the
1169  * most costly operations (in future versions, the scheduling
1170  * mechanism may be re-designed in such a way to make it possible to
1171  * know whether preemption is needed without needing to update service
1172  * trees). In addition, queue preemptions almost always cause random
1173  * I/O, and thus loss of throughput. Because of these facts, the next
1174  * function adopts the following simple scheme to avoid both costly
1175  * operations and too frequent preemptions: it requests the expiration
1176  * of the in-service queue (unconditionally) only for queues that need
1177  * to recover a hole, or that either are weight-raised or deserve to
1178  * be weight-raised.
1179  */
1180 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1181 						struct bfq_queue *bfqq,
1182 						bool arrived_in_time,
1183 						bool wr_or_deserves_wr)
1184 {
1185 	struct bfq_entity *entity = &bfqq->entity;
1186 
1187 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1188 		/*
1189 		 * We do not clear the flag non_blocking_wait_rq here, as
1190 		 * the latter is used in bfq_activate_bfqq to signal
1191 		 * that timestamps need to be back-shifted (and is
1192 		 * cleared right after).
1193 		 */
1194 
1195 		/*
1196 		 * In next assignment we rely on that either
1197 		 * entity->service or entity->budget are not updated
1198 		 * on expiration if bfqq is empty (see
1199 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1200 		 * remain unchanged after such an expiration, and the
1201 		 * following statement therefore assigns to
1202 		 * entity->budget the remaining budget on such an
1203 		 * expiration. For clarity, entity->service is not
1204 		 * updated on expiration in any case, and, in normal
1205 		 * operation, is reset only when bfqq is selected for
1206 		 * service (see bfq_get_next_queue).
1207 		 */
1208 		entity->budget = min_t(unsigned long,
1209 				       bfq_bfqq_budget_left(bfqq),
1210 				       bfqq->max_budget);
1211 
1212 		return true;
1213 	}
1214 
1215 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1216 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1217 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1218 	return wr_or_deserves_wr;
1219 }
1220 
1221 /*
1222  * Return the farthest future time instant according to jiffies
1223  * macros.
1224  */
1225 static unsigned long bfq_greatest_from_now(void)
1226 {
1227 	return jiffies + MAX_JIFFY_OFFSET;
1228 }
1229 
1230 /*
1231  * Return the farthest past time instant according to jiffies
1232  * macros.
1233  */
1234 static unsigned long bfq_smallest_from_now(void)
1235 {
1236 	return jiffies - MAX_JIFFY_OFFSET;
1237 }
1238 
1239 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1240 					     struct bfq_queue *bfqq,
1241 					     unsigned int old_wr_coeff,
1242 					     bool wr_or_deserves_wr,
1243 					     bool interactive,
1244 					     bool in_burst,
1245 					     bool soft_rt)
1246 {
1247 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1248 		/* start a weight-raising period */
1249 		if (interactive) {
1250 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1251 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1252 		} else {
1253 			/*
1254 			 * No interactive weight raising in progress
1255 			 * here: assign minus infinity to
1256 			 * wr_start_at_switch_to_srt, to make sure
1257 			 * that, at the end of the soft-real-time
1258 			 * weight raising periods that is starting
1259 			 * now, no interactive weight-raising period
1260 			 * may be wrongly considered as still in
1261 			 * progress (and thus actually started by
1262 			 * mistake).
1263 			 */
1264 			bfqq->wr_start_at_switch_to_srt =
1265 				bfq_smallest_from_now();
1266 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1267 				BFQ_SOFTRT_WEIGHT_FACTOR;
1268 			bfqq->wr_cur_max_time =
1269 				bfqd->bfq_wr_rt_max_time;
1270 		}
1271 
1272 		/*
1273 		 * If needed, further reduce budget to make sure it is
1274 		 * close to bfqq's backlog, so as to reduce the
1275 		 * scheduling-error component due to a too large
1276 		 * budget. Do not care about throughput consequences,
1277 		 * but only about latency. Finally, do not assign a
1278 		 * too small budget either, to avoid increasing
1279 		 * latency by causing too frequent expirations.
1280 		 */
1281 		bfqq->entity.budget = min_t(unsigned long,
1282 					    bfqq->entity.budget,
1283 					    2 * bfq_min_budget(bfqd));
1284 	} else if (old_wr_coeff > 1) {
1285 		if (interactive) { /* update wr coeff and duration */
1286 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1287 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1288 		} else if (in_burst)
1289 			bfqq->wr_coeff = 1;
1290 		else if (soft_rt) {
1291 			/*
1292 			 * The application is now or still meeting the
1293 			 * requirements for being deemed soft rt.  We
1294 			 * can then correctly and safely (re)charge
1295 			 * the weight-raising duration for the
1296 			 * application with the weight-raising
1297 			 * duration for soft rt applications.
1298 			 *
1299 			 * In particular, doing this recharge now, i.e.,
1300 			 * before the weight-raising period for the
1301 			 * application finishes, reduces the probability
1302 			 * of the following negative scenario:
1303 			 * 1) the weight of a soft rt application is
1304 			 *    raised at startup (as for any newly
1305 			 *    created application),
1306 			 * 2) since the application is not interactive,
1307 			 *    at a certain time weight-raising is
1308 			 *    stopped for the application,
1309 			 * 3) at that time the application happens to
1310 			 *    still have pending requests, and hence
1311 			 *    is destined to not have a chance to be
1312 			 *    deemed soft rt before these requests are
1313 			 *    completed (see the comments to the
1314 			 *    function bfq_bfqq_softrt_next_start()
1315 			 *    for details on soft rt detection),
1316 			 * 4) these pending requests experience a high
1317 			 *    latency because the application is not
1318 			 *    weight-raised while they are pending.
1319 			 */
1320 			if (bfqq->wr_cur_max_time !=
1321 				bfqd->bfq_wr_rt_max_time) {
1322 				bfqq->wr_start_at_switch_to_srt =
1323 					bfqq->last_wr_start_finish;
1324 
1325 				bfqq->wr_cur_max_time =
1326 					bfqd->bfq_wr_rt_max_time;
1327 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1328 					BFQ_SOFTRT_WEIGHT_FACTOR;
1329 			}
1330 			bfqq->last_wr_start_finish = jiffies;
1331 		}
1332 	}
1333 }
1334 
1335 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1336 					struct bfq_queue *bfqq)
1337 {
1338 	return bfqq->dispatched == 0 &&
1339 		time_is_before_jiffies(
1340 			bfqq->budget_timeout +
1341 			bfqd->bfq_wr_min_idle_time);
1342 }
1343 
1344 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1345 					     struct bfq_queue *bfqq,
1346 					     int old_wr_coeff,
1347 					     struct request *rq,
1348 					     bool *interactive)
1349 {
1350 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1351 		bfqq_wants_to_preempt,
1352 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1353 		/*
1354 		 * See the comments on
1355 		 * bfq_bfqq_update_budg_for_activation for
1356 		 * details on the usage of the next variable.
1357 		 */
1358 		arrived_in_time =  ktime_get_ns() <=
1359 			bfqq->ttime.last_end_request +
1360 			bfqd->bfq_slice_idle * 3;
1361 
1362 	bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1363 
1364 	/*
1365 	 * bfqq deserves to be weight-raised if:
1366 	 * - it is sync,
1367 	 * - it does not belong to a large burst,
1368 	 * - it has been idle for enough time or is soft real-time,
1369 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1370 	 */
1371 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1372 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1373 		!in_burst &&
1374 		time_is_before_jiffies(bfqq->soft_rt_next_start);
1375 	*interactive = !in_burst && idle_for_long_time;
1376 	wr_or_deserves_wr = bfqd->low_latency &&
1377 		(bfqq->wr_coeff > 1 ||
1378 		 (bfq_bfqq_sync(bfqq) &&
1379 		  bfqq->bic && (*interactive || soft_rt)));
1380 
1381 	/*
1382 	 * Using the last flag, update budget and check whether bfqq
1383 	 * may want to preempt the in-service queue.
1384 	 */
1385 	bfqq_wants_to_preempt =
1386 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1387 						    arrived_in_time,
1388 						    wr_or_deserves_wr);
1389 
1390 	/*
1391 	 * If bfqq happened to be activated in a burst, but has been
1392 	 * idle for much more than an interactive queue, then we
1393 	 * assume that, in the overall I/O initiated in the burst, the
1394 	 * I/O associated with bfqq is finished. So bfqq does not need
1395 	 * to be treated as a queue belonging to a burst
1396 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1397 	 * if set, and remove bfqq from the burst list if it's
1398 	 * there. We do not decrement burst_size, because the fact
1399 	 * that bfqq does not need to belong to the burst list any
1400 	 * more does not invalidate the fact that bfqq was created in
1401 	 * a burst.
1402 	 */
1403 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1404 	    idle_for_long_time &&
1405 	    time_is_before_jiffies(
1406 		    bfqq->budget_timeout +
1407 		    msecs_to_jiffies(10000))) {
1408 		hlist_del_init(&bfqq->burst_list_node);
1409 		bfq_clear_bfqq_in_large_burst(bfqq);
1410 	}
1411 
1412 	bfq_clear_bfqq_just_created(bfqq);
1413 
1414 
1415 	if (!bfq_bfqq_IO_bound(bfqq)) {
1416 		if (arrived_in_time) {
1417 			bfqq->requests_within_timer++;
1418 			if (bfqq->requests_within_timer >=
1419 			    bfqd->bfq_requests_within_timer)
1420 				bfq_mark_bfqq_IO_bound(bfqq);
1421 		} else
1422 			bfqq->requests_within_timer = 0;
1423 	}
1424 
1425 	if (bfqd->low_latency) {
1426 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1427 			/* wraparound */
1428 			bfqq->split_time =
1429 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1430 
1431 		if (time_is_before_jiffies(bfqq->split_time +
1432 					   bfqd->bfq_wr_min_idle_time)) {
1433 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1434 							 old_wr_coeff,
1435 							 wr_or_deserves_wr,
1436 							 *interactive,
1437 							 in_burst,
1438 							 soft_rt);
1439 
1440 			if (old_wr_coeff != bfqq->wr_coeff)
1441 				bfqq->entity.prio_changed = 1;
1442 		}
1443 	}
1444 
1445 	bfqq->last_idle_bklogged = jiffies;
1446 	bfqq->service_from_backlogged = 0;
1447 	bfq_clear_bfqq_softrt_update(bfqq);
1448 
1449 	bfq_add_bfqq_busy(bfqd, bfqq);
1450 
1451 	/*
1452 	 * Expire in-service queue only if preemption may be needed
1453 	 * for guarantees. In this respect, the function
1454 	 * next_queue_may_preempt just checks a simple, necessary
1455 	 * condition, and not a sufficient condition based on
1456 	 * timestamps. In fact, for the latter condition to be
1457 	 * evaluated, timestamps would need first to be updated, and
1458 	 * this operation is quite costly (see the comments on the
1459 	 * function bfq_bfqq_update_budg_for_activation).
1460 	 */
1461 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1462 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1463 	    next_queue_may_preempt(bfqd))
1464 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1465 				false, BFQQE_PREEMPTED);
1466 }
1467 
1468 static void bfq_add_request(struct request *rq)
1469 {
1470 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1471 	struct bfq_data *bfqd = bfqq->bfqd;
1472 	struct request *next_rq, *prev;
1473 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1474 	bool interactive = false;
1475 
1476 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1477 	bfqq->queued[rq_is_sync(rq)]++;
1478 	bfqd->queued++;
1479 
1480 	elv_rb_add(&bfqq->sort_list, rq);
1481 
1482 	/*
1483 	 * Check if this request is a better next-serve candidate.
1484 	 */
1485 	prev = bfqq->next_rq;
1486 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1487 	bfqq->next_rq = next_rq;
1488 
1489 	/*
1490 	 * Adjust priority tree position, if next_rq changes.
1491 	 */
1492 	if (prev != bfqq->next_rq)
1493 		bfq_pos_tree_add_move(bfqd, bfqq);
1494 
1495 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1496 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1497 						 rq, &interactive);
1498 	else {
1499 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1500 		    time_is_before_jiffies(
1501 				bfqq->last_wr_start_finish +
1502 				bfqd->bfq_wr_min_inter_arr_async)) {
1503 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1504 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1505 
1506 			bfqd->wr_busy_queues++;
1507 			bfqq->entity.prio_changed = 1;
1508 		}
1509 		if (prev != bfqq->next_rq)
1510 			bfq_updated_next_req(bfqd, bfqq);
1511 	}
1512 
1513 	/*
1514 	 * Assign jiffies to last_wr_start_finish in the following
1515 	 * cases:
1516 	 *
1517 	 * . if bfqq is not going to be weight-raised, because, for
1518 	 *   non weight-raised queues, last_wr_start_finish stores the
1519 	 *   arrival time of the last request; as of now, this piece
1520 	 *   of information is used only for deciding whether to
1521 	 *   weight-raise async queues
1522 	 *
1523 	 * . if bfqq is not weight-raised, because, if bfqq is now
1524 	 *   switching to weight-raised, then last_wr_start_finish
1525 	 *   stores the time when weight-raising starts
1526 	 *
1527 	 * . if bfqq is interactive, because, regardless of whether
1528 	 *   bfqq is currently weight-raised, the weight-raising
1529 	 *   period must start or restart (this case is considered
1530 	 *   separately because it is not detected by the above
1531 	 *   conditions, if bfqq is already weight-raised)
1532 	 *
1533 	 * last_wr_start_finish has to be updated also if bfqq is soft
1534 	 * real-time, because the weight-raising period is constantly
1535 	 * restarted on idle-to-busy transitions for these queues, but
1536 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1537 	 * needed.
1538 	 */
1539 	if (bfqd->low_latency &&
1540 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1541 		bfqq->last_wr_start_finish = jiffies;
1542 }
1543 
1544 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1545 					  struct bio *bio,
1546 					  struct request_queue *q)
1547 {
1548 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1549 
1550 
1551 	if (bfqq)
1552 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1553 
1554 	return NULL;
1555 }
1556 
1557 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1558 {
1559 	if (last_pos)
1560 		return abs(blk_rq_pos(rq) - last_pos);
1561 
1562 	return 0;
1563 }
1564 
1565 #if 0 /* Still not clear if we can do without next two functions */
1566 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1567 {
1568 	struct bfq_data *bfqd = q->elevator->elevator_data;
1569 
1570 	bfqd->rq_in_driver++;
1571 }
1572 
1573 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1574 {
1575 	struct bfq_data *bfqd = q->elevator->elevator_data;
1576 
1577 	bfqd->rq_in_driver--;
1578 }
1579 #endif
1580 
1581 static void bfq_remove_request(struct request_queue *q,
1582 			       struct request *rq)
1583 {
1584 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1585 	struct bfq_data *bfqd = bfqq->bfqd;
1586 	const int sync = rq_is_sync(rq);
1587 
1588 	if (bfqq->next_rq == rq) {
1589 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1590 		bfq_updated_next_req(bfqd, bfqq);
1591 	}
1592 
1593 	if (rq->queuelist.prev != &rq->queuelist)
1594 		list_del_init(&rq->queuelist);
1595 	bfqq->queued[sync]--;
1596 	bfqd->queued--;
1597 	elv_rb_del(&bfqq->sort_list, rq);
1598 
1599 	elv_rqhash_del(q, rq);
1600 	if (q->last_merge == rq)
1601 		q->last_merge = NULL;
1602 
1603 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1604 		bfqq->next_rq = NULL;
1605 
1606 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1607 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1608 			/*
1609 			 * bfqq emptied. In normal operation, when
1610 			 * bfqq is empty, bfqq->entity.service and
1611 			 * bfqq->entity.budget must contain,
1612 			 * respectively, the service received and the
1613 			 * budget used last time bfqq emptied. These
1614 			 * facts do not hold in this case, as at least
1615 			 * this last removal occurred while bfqq is
1616 			 * not in service. To avoid inconsistencies,
1617 			 * reset both bfqq->entity.service and
1618 			 * bfqq->entity.budget, if bfqq has still a
1619 			 * process that may issue I/O requests to it.
1620 			 */
1621 			bfqq->entity.budget = bfqq->entity.service = 0;
1622 		}
1623 
1624 		/*
1625 		 * Remove queue from request-position tree as it is empty.
1626 		 */
1627 		if (bfqq->pos_root) {
1628 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1629 			bfqq->pos_root = NULL;
1630 		}
1631 	}
1632 
1633 	if (rq->cmd_flags & REQ_META)
1634 		bfqq->meta_pending--;
1635 
1636 	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
1637 }
1638 
1639 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1640 {
1641 	struct request_queue *q = hctx->queue;
1642 	struct bfq_data *bfqd = q->elevator->elevator_data;
1643 	struct request *free = NULL;
1644 	/*
1645 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1646 	 * store its return value for later use, to avoid nesting
1647 	 * queue_lock inside the bfqd->lock. We assume that the bic
1648 	 * returned by bfq_bic_lookup does not go away before
1649 	 * bfqd->lock is taken.
1650 	 */
1651 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1652 	bool ret;
1653 
1654 	spin_lock_irq(&bfqd->lock);
1655 
1656 	if (bic)
1657 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1658 	else
1659 		bfqd->bio_bfqq = NULL;
1660 	bfqd->bio_bic = bic;
1661 
1662 	ret = blk_mq_sched_try_merge(q, bio, &free);
1663 
1664 	if (free)
1665 		blk_mq_free_request(free);
1666 	spin_unlock_irq(&bfqd->lock);
1667 
1668 	return ret;
1669 }
1670 
1671 static int bfq_request_merge(struct request_queue *q, struct request **req,
1672 			     struct bio *bio)
1673 {
1674 	struct bfq_data *bfqd = q->elevator->elevator_data;
1675 	struct request *__rq;
1676 
1677 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1678 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1679 		*req = __rq;
1680 		return ELEVATOR_FRONT_MERGE;
1681 	}
1682 
1683 	return ELEVATOR_NO_MERGE;
1684 }
1685 
1686 static void bfq_request_merged(struct request_queue *q, struct request *req,
1687 			       enum elv_merge type)
1688 {
1689 	if (type == ELEVATOR_FRONT_MERGE &&
1690 	    rb_prev(&req->rb_node) &&
1691 	    blk_rq_pos(req) <
1692 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1693 				    struct request, rb_node))) {
1694 		struct bfq_queue *bfqq = RQ_BFQQ(req);
1695 		struct bfq_data *bfqd = bfqq->bfqd;
1696 		struct request *prev, *next_rq;
1697 
1698 		/* Reposition request in its sort_list */
1699 		elv_rb_del(&bfqq->sort_list, req);
1700 		elv_rb_add(&bfqq->sort_list, req);
1701 
1702 		/* Choose next request to be served for bfqq */
1703 		prev = bfqq->next_rq;
1704 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1705 					 bfqd->last_position);
1706 		bfqq->next_rq = next_rq;
1707 		/*
1708 		 * If next_rq changes, update both the queue's budget to
1709 		 * fit the new request and the queue's position in its
1710 		 * rq_pos_tree.
1711 		 */
1712 		if (prev != bfqq->next_rq) {
1713 			bfq_updated_next_req(bfqd, bfqq);
1714 			bfq_pos_tree_add_move(bfqd, bfqq);
1715 		}
1716 	}
1717 }
1718 
1719 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1720 				struct request *next)
1721 {
1722 	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1723 
1724 	if (!RB_EMPTY_NODE(&rq->rb_node))
1725 		goto end;
1726 	spin_lock_irq(&bfqq->bfqd->lock);
1727 
1728 	/*
1729 	 * If next and rq belong to the same bfq_queue and next is older
1730 	 * than rq, then reposition rq in the fifo (by substituting next
1731 	 * with rq). Otherwise, if next and rq belong to different
1732 	 * bfq_queues, never reposition rq: in fact, we would have to
1733 	 * reposition it with respect to next's position in its own fifo,
1734 	 * which would most certainly be too expensive with respect to
1735 	 * the benefits.
1736 	 */
1737 	if (bfqq == next_bfqq &&
1738 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1739 	    next->fifo_time < rq->fifo_time) {
1740 		list_del_init(&rq->queuelist);
1741 		list_replace_init(&next->queuelist, &rq->queuelist);
1742 		rq->fifo_time = next->fifo_time;
1743 	}
1744 
1745 	if (bfqq->next_rq == next)
1746 		bfqq->next_rq = rq;
1747 
1748 	bfq_remove_request(q, next);
1749 
1750 	spin_unlock_irq(&bfqq->bfqd->lock);
1751 end:
1752 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1753 }
1754 
1755 /* Must be called with bfqq != NULL */
1756 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1757 {
1758 	if (bfq_bfqq_busy(bfqq))
1759 		bfqq->bfqd->wr_busy_queues--;
1760 	bfqq->wr_coeff = 1;
1761 	bfqq->wr_cur_max_time = 0;
1762 	bfqq->last_wr_start_finish = jiffies;
1763 	/*
1764 	 * Trigger a weight change on the next invocation of
1765 	 * __bfq_entity_update_weight_prio.
1766 	 */
1767 	bfqq->entity.prio_changed = 1;
1768 }
1769 
1770 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1771 			     struct bfq_group *bfqg)
1772 {
1773 	int i, j;
1774 
1775 	for (i = 0; i < 2; i++)
1776 		for (j = 0; j < IOPRIO_BE_NR; j++)
1777 			if (bfqg->async_bfqq[i][j])
1778 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1779 	if (bfqg->async_idle_bfqq)
1780 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1781 }
1782 
1783 static void bfq_end_wr(struct bfq_data *bfqd)
1784 {
1785 	struct bfq_queue *bfqq;
1786 
1787 	spin_lock_irq(&bfqd->lock);
1788 
1789 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1790 		bfq_bfqq_end_wr(bfqq);
1791 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1792 		bfq_bfqq_end_wr(bfqq);
1793 	bfq_end_wr_async(bfqd);
1794 
1795 	spin_unlock_irq(&bfqd->lock);
1796 }
1797 
1798 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1799 {
1800 	if (request)
1801 		return blk_rq_pos(io_struct);
1802 	else
1803 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1804 }
1805 
1806 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1807 				  sector_t sector)
1808 {
1809 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1810 	       BFQQ_CLOSE_THR;
1811 }
1812 
1813 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1814 					 struct bfq_queue *bfqq,
1815 					 sector_t sector)
1816 {
1817 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1818 	struct rb_node *parent, *node;
1819 	struct bfq_queue *__bfqq;
1820 
1821 	if (RB_EMPTY_ROOT(root))
1822 		return NULL;
1823 
1824 	/*
1825 	 * First, if we find a request starting at the end of the last
1826 	 * request, choose it.
1827 	 */
1828 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1829 	if (__bfqq)
1830 		return __bfqq;
1831 
1832 	/*
1833 	 * If the exact sector wasn't found, the parent of the NULL leaf
1834 	 * will contain the closest sector (rq_pos_tree sorted by
1835 	 * next_request position).
1836 	 */
1837 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1838 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1839 		return __bfqq;
1840 
1841 	if (blk_rq_pos(__bfqq->next_rq) < sector)
1842 		node = rb_next(&__bfqq->pos_node);
1843 	else
1844 		node = rb_prev(&__bfqq->pos_node);
1845 	if (!node)
1846 		return NULL;
1847 
1848 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
1849 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1850 		return __bfqq;
1851 
1852 	return NULL;
1853 }
1854 
1855 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1856 						   struct bfq_queue *cur_bfqq,
1857 						   sector_t sector)
1858 {
1859 	struct bfq_queue *bfqq;
1860 
1861 	/*
1862 	 * We shall notice if some of the queues are cooperating,
1863 	 * e.g., working closely on the same area of the device. In
1864 	 * that case, we can group them together and: 1) don't waste
1865 	 * time idling, and 2) serve the union of their requests in
1866 	 * the best possible order for throughput.
1867 	 */
1868 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1869 	if (!bfqq || bfqq == cur_bfqq)
1870 		return NULL;
1871 
1872 	return bfqq;
1873 }
1874 
1875 static struct bfq_queue *
1876 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1877 {
1878 	int process_refs, new_process_refs;
1879 	struct bfq_queue *__bfqq;
1880 
1881 	/*
1882 	 * If there are no process references on the new_bfqq, then it is
1883 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1884 	 * may have dropped their last reference (not just their last process
1885 	 * reference).
1886 	 */
1887 	if (!bfqq_process_refs(new_bfqq))
1888 		return NULL;
1889 
1890 	/* Avoid a circular list and skip interim queue merges. */
1891 	while ((__bfqq = new_bfqq->new_bfqq)) {
1892 		if (__bfqq == bfqq)
1893 			return NULL;
1894 		new_bfqq = __bfqq;
1895 	}
1896 
1897 	process_refs = bfqq_process_refs(bfqq);
1898 	new_process_refs = bfqq_process_refs(new_bfqq);
1899 	/*
1900 	 * If the process for the bfqq has gone away, there is no
1901 	 * sense in merging the queues.
1902 	 */
1903 	if (process_refs == 0 || new_process_refs == 0)
1904 		return NULL;
1905 
1906 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1907 		new_bfqq->pid);
1908 
1909 	/*
1910 	 * Merging is just a redirection: the requests of the process
1911 	 * owning one of the two queues are redirected to the other queue.
1912 	 * The latter queue, in its turn, is set as shared if this is the
1913 	 * first time that the requests of some process are redirected to
1914 	 * it.
1915 	 *
1916 	 * We redirect bfqq to new_bfqq and not the opposite, because
1917 	 * we are in the context of the process owning bfqq, thus we
1918 	 * have the io_cq of this process. So we can immediately
1919 	 * configure this io_cq to redirect the requests of the
1920 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1921 	 * not available any more (new_bfqq->bic == NULL).
1922 	 *
1923 	 * Anyway, even in case new_bfqq coincides with the in-service
1924 	 * queue, redirecting requests the in-service queue is the
1925 	 * best option, as we feed the in-service queue with new
1926 	 * requests close to the last request served and, by doing so,
1927 	 * are likely to increase the throughput.
1928 	 */
1929 	bfqq->new_bfqq = new_bfqq;
1930 	new_bfqq->ref += process_refs;
1931 	return new_bfqq;
1932 }
1933 
1934 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1935 					struct bfq_queue *new_bfqq)
1936 {
1937 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1938 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
1939 		return false;
1940 
1941 	/*
1942 	 * If either of the queues has already been detected as seeky,
1943 	 * then merging it with the other queue is unlikely to lead to
1944 	 * sequential I/O.
1945 	 */
1946 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1947 		return false;
1948 
1949 	/*
1950 	 * Interleaved I/O is known to be done by (some) applications
1951 	 * only for reads, so it does not make sense to merge async
1952 	 * queues.
1953 	 */
1954 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1955 		return false;
1956 
1957 	return true;
1958 }
1959 
1960 /*
1961  * If this function returns true, then bfqq cannot be merged. The idea
1962  * is that true cooperation happens very early after processes start
1963  * to do I/O. Usually, late cooperations are just accidental false
1964  * positives. In case bfqq is weight-raised, such false positives
1965  * would evidently degrade latency guarantees for bfqq.
1966  */
1967 static bool wr_from_too_long(struct bfq_queue *bfqq)
1968 {
1969 	return bfqq->wr_coeff > 1 &&
1970 		time_is_before_jiffies(bfqq->last_wr_start_finish +
1971 				       msecs_to_jiffies(100));
1972 }
1973 
1974 /*
1975  * Attempt to schedule a merge of bfqq with the currently in-service
1976  * queue or with a close queue among the scheduled queues.  Return
1977  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1978  * structure otherwise.
1979  *
1980  * The OOM queue is not allowed to participate to cooperation: in fact, since
1981  * the requests temporarily redirected to the OOM queue could be redirected
1982  * again to dedicated queues at any time, the state needed to correctly
1983  * handle merging with the OOM queue would be quite complex and expensive
1984  * to maintain. Besides, in such a critical condition as an out of memory,
1985  * the benefits of queue merging may be little relevant, or even negligible.
1986  *
1987  * Weight-raised queues can be merged only if their weight-raising
1988  * period has just started. In fact cooperating processes are usually
1989  * started together. Thus, with this filter we avoid false positives
1990  * that would jeopardize low-latency guarantees.
1991  *
1992  * WARNING: queue merging may impair fairness among non-weight raised
1993  * queues, for at least two reasons: 1) the original weight of a
1994  * merged queue may change during the merged state, 2) even being the
1995  * weight the same, a merged queue may be bloated with many more
1996  * requests than the ones produced by its originally-associated
1997  * process.
1998  */
1999 static struct bfq_queue *
2000 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2001 		     void *io_struct, bool request)
2002 {
2003 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2004 
2005 	if (bfqq->new_bfqq)
2006 		return bfqq->new_bfqq;
2007 
2008 	if (!io_struct ||
2009 	    wr_from_too_long(bfqq) ||
2010 	    unlikely(bfqq == &bfqd->oom_bfqq))
2011 		return NULL;
2012 
2013 	/* If there is only one backlogged queue, don't search. */
2014 	if (bfqd->busy_queues == 1)
2015 		return NULL;
2016 
2017 	in_service_bfqq = bfqd->in_service_queue;
2018 
2019 	if (!in_service_bfqq || in_service_bfqq == bfqq
2020 	    || wr_from_too_long(in_service_bfqq) ||
2021 	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
2022 		goto check_scheduled;
2023 
2024 	if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2025 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2026 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2027 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2028 		if (new_bfqq)
2029 			return new_bfqq;
2030 	}
2031 	/*
2032 	 * Check whether there is a cooperator among currently scheduled
2033 	 * queues. The only thing we need is that the bio/request is not
2034 	 * NULL, as we need it to establish whether a cooperator exists.
2035 	 */
2036 check_scheduled:
2037 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2038 			bfq_io_struct_pos(io_struct, request));
2039 
2040 	if (new_bfqq && !wr_from_too_long(new_bfqq) &&
2041 	    likely(new_bfqq != &bfqd->oom_bfqq) &&
2042 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2043 		return bfq_setup_merge(bfqq, new_bfqq);
2044 
2045 	return NULL;
2046 }
2047 
2048 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2049 {
2050 	struct bfq_io_cq *bic = bfqq->bic;
2051 
2052 	/*
2053 	 * If !bfqq->bic, the queue is already shared or its requests
2054 	 * have already been redirected to a shared queue; both idle window
2055 	 * and weight raising state have already been saved. Do nothing.
2056 	 */
2057 	if (!bic)
2058 		return;
2059 
2060 	bic->saved_ttime = bfqq->ttime;
2061 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2062 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2063 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2064 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2065 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2066 		     !bfq_bfqq_in_large_burst(bfqq))) {
2067 		/*
2068 		 * bfqq being merged right after being created: bfqq
2069 		 * would have deserved interactive weight raising, but
2070 		 * did not make it to be set in a weight-raised state,
2071 		 * because of this early merge.	Store directly the
2072 		 * weight-raising state that would have been assigned
2073 		 * to bfqq, so that to avoid that bfqq unjustly fails
2074 		 * to enjoy weight raising if split soon.
2075 		 */
2076 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2077 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2078 		bic->saved_last_wr_start_finish = jiffies;
2079 	} else {
2080 		bic->saved_wr_coeff = bfqq->wr_coeff;
2081 		bic->saved_wr_start_at_switch_to_srt =
2082 			bfqq->wr_start_at_switch_to_srt;
2083 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2084 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2085 	}
2086 }
2087 
2088 static void
2089 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2090 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2091 {
2092 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2093 		(unsigned long)new_bfqq->pid);
2094 	/* Save weight raising and idle window of the merged queues */
2095 	bfq_bfqq_save_state(bfqq);
2096 	bfq_bfqq_save_state(new_bfqq);
2097 	if (bfq_bfqq_IO_bound(bfqq))
2098 		bfq_mark_bfqq_IO_bound(new_bfqq);
2099 	bfq_clear_bfqq_IO_bound(bfqq);
2100 
2101 	/*
2102 	 * If bfqq is weight-raised, then let new_bfqq inherit
2103 	 * weight-raising. To reduce false positives, neglect the case
2104 	 * where bfqq has just been created, but has not yet made it
2105 	 * to be weight-raised (which may happen because EQM may merge
2106 	 * bfqq even before bfq_add_request is executed for the first
2107 	 * time for bfqq). Handling this case would however be very
2108 	 * easy, thanks to the flag just_created.
2109 	 */
2110 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2111 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2112 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2113 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2114 		new_bfqq->wr_start_at_switch_to_srt =
2115 			bfqq->wr_start_at_switch_to_srt;
2116 		if (bfq_bfqq_busy(new_bfqq))
2117 			bfqd->wr_busy_queues++;
2118 		new_bfqq->entity.prio_changed = 1;
2119 	}
2120 
2121 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2122 		bfqq->wr_coeff = 1;
2123 		bfqq->entity.prio_changed = 1;
2124 		if (bfq_bfqq_busy(bfqq))
2125 			bfqd->wr_busy_queues--;
2126 	}
2127 
2128 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2129 		     bfqd->wr_busy_queues);
2130 
2131 	/*
2132 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2133 	 */
2134 	bic_set_bfqq(bic, new_bfqq, 1);
2135 	bfq_mark_bfqq_coop(new_bfqq);
2136 	/*
2137 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2138 	 * set new_bfqq->bic to NULL. bfqq either:
2139 	 * - does not belong to any bic any more, and hence bfqq->bic must
2140 	 *   be set to NULL, or
2141 	 * - is a queue whose owning bics have already been redirected to a
2142 	 *   different queue, hence the queue is destined to not belong to
2143 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2144 	 *   assignment causes no harm).
2145 	 */
2146 	new_bfqq->bic = NULL;
2147 	bfqq->bic = NULL;
2148 	/* release process reference to bfqq */
2149 	bfq_put_queue(bfqq);
2150 }
2151 
2152 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2153 				struct bio *bio)
2154 {
2155 	struct bfq_data *bfqd = q->elevator->elevator_data;
2156 	bool is_sync = op_is_sync(bio->bi_opf);
2157 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2158 
2159 	/*
2160 	 * Disallow merge of a sync bio into an async request.
2161 	 */
2162 	if (is_sync && !rq_is_sync(rq))
2163 		return false;
2164 
2165 	/*
2166 	 * Lookup the bfqq that this bio will be queued with. Allow
2167 	 * merge only if rq is queued there.
2168 	 */
2169 	if (!bfqq)
2170 		return false;
2171 
2172 	/*
2173 	 * We take advantage of this function to perform an early merge
2174 	 * of the queues of possible cooperating processes.
2175 	 */
2176 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2177 	if (new_bfqq) {
2178 		/*
2179 		 * bic still points to bfqq, then it has not yet been
2180 		 * redirected to some other bfq_queue, and a queue
2181 		 * merge beween bfqq and new_bfqq can be safely
2182 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2183 		 * and bfqq can be put.
2184 		 */
2185 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2186 				new_bfqq);
2187 		/*
2188 		 * If we get here, bio will be queued into new_queue,
2189 		 * so use new_bfqq to decide whether bio and rq can be
2190 		 * merged.
2191 		 */
2192 		bfqq = new_bfqq;
2193 
2194 		/*
2195 		 * Change also bqfd->bio_bfqq, as
2196 		 * bfqd->bio_bic now points to new_bfqq, and
2197 		 * this function may be invoked again (and then may
2198 		 * use again bqfd->bio_bfqq).
2199 		 */
2200 		bfqd->bio_bfqq = bfqq;
2201 	}
2202 
2203 	return bfqq == RQ_BFQQ(rq);
2204 }
2205 
2206 /*
2207  * Set the maximum time for the in-service queue to consume its
2208  * budget. This prevents seeky processes from lowering the throughput.
2209  * In practice, a time-slice service scheme is used with seeky
2210  * processes.
2211  */
2212 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2213 				   struct bfq_queue *bfqq)
2214 {
2215 	unsigned int timeout_coeff;
2216 
2217 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2218 		timeout_coeff = 1;
2219 	else
2220 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2221 
2222 	bfqd->last_budget_start = ktime_get();
2223 
2224 	bfqq->budget_timeout = jiffies +
2225 		bfqd->bfq_timeout * timeout_coeff;
2226 }
2227 
2228 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2229 				       struct bfq_queue *bfqq)
2230 {
2231 	if (bfqq) {
2232 		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
2233 		bfq_clear_bfqq_fifo_expire(bfqq);
2234 
2235 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2236 
2237 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2238 		    bfqq->wr_coeff > 1 &&
2239 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2240 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2241 			/*
2242 			 * For soft real-time queues, move the start
2243 			 * of the weight-raising period forward by the
2244 			 * time the queue has not received any
2245 			 * service. Otherwise, a relatively long
2246 			 * service delay is likely to cause the
2247 			 * weight-raising period of the queue to end,
2248 			 * because of the short duration of the
2249 			 * weight-raising period of a soft real-time
2250 			 * queue.  It is worth noting that this move
2251 			 * is not so dangerous for the other queues,
2252 			 * because soft real-time queues are not
2253 			 * greedy.
2254 			 *
2255 			 * To not add a further variable, we use the
2256 			 * overloaded field budget_timeout to
2257 			 * determine for how long the queue has not
2258 			 * received service, i.e., how much time has
2259 			 * elapsed since the queue expired. However,
2260 			 * this is a little imprecise, because
2261 			 * budget_timeout is set to jiffies if bfqq
2262 			 * not only expires, but also remains with no
2263 			 * request.
2264 			 */
2265 			if (time_after(bfqq->budget_timeout,
2266 				       bfqq->last_wr_start_finish))
2267 				bfqq->last_wr_start_finish +=
2268 					jiffies - bfqq->budget_timeout;
2269 			else
2270 				bfqq->last_wr_start_finish = jiffies;
2271 		}
2272 
2273 		bfq_set_budget_timeout(bfqd, bfqq);
2274 		bfq_log_bfqq(bfqd, bfqq,
2275 			     "set_in_service_queue, cur-budget = %d",
2276 			     bfqq->entity.budget);
2277 	}
2278 
2279 	bfqd->in_service_queue = bfqq;
2280 }
2281 
2282 /*
2283  * Get and set a new queue for service.
2284  */
2285 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2286 {
2287 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2288 
2289 	__bfq_set_in_service_queue(bfqd, bfqq);
2290 	return bfqq;
2291 }
2292 
2293 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2294 {
2295 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2296 	u32 sl;
2297 
2298 	bfq_mark_bfqq_wait_request(bfqq);
2299 
2300 	/*
2301 	 * We don't want to idle for seeks, but we do want to allow
2302 	 * fair distribution of slice time for a process doing back-to-back
2303 	 * seeks. So allow a little bit of time for him to submit a new rq.
2304 	 */
2305 	sl = bfqd->bfq_slice_idle;
2306 	/*
2307 	 * Unless the queue is being weight-raised or the scenario is
2308 	 * asymmetric, grant only minimum idle time if the queue
2309 	 * is seeky. A long idling is preserved for a weight-raised
2310 	 * queue, or, more in general, in an asymmetric scenario,
2311 	 * because a long idling is needed for guaranteeing to a queue
2312 	 * its reserved share of the throughput (in particular, it is
2313 	 * needed if the queue has a higher weight than some other
2314 	 * queue).
2315 	 */
2316 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2317 	    bfq_symmetric_scenario(bfqd))
2318 		sl = min_t(u64, sl, BFQ_MIN_TT);
2319 
2320 	bfqd->last_idling_start = ktime_get();
2321 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2322 		      HRTIMER_MODE_REL);
2323 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2324 }
2325 
2326 /*
2327  * In autotuning mode, max_budget is dynamically recomputed as the
2328  * amount of sectors transferred in timeout at the estimated peak
2329  * rate. This enables BFQ to utilize a full timeslice with a full
2330  * budget, even if the in-service queue is served at peak rate. And
2331  * this maximises throughput with sequential workloads.
2332  */
2333 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2334 {
2335 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2336 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2337 }
2338 
2339 /*
2340  * Update parameters related to throughput and responsiveness, as a
2341  * function of the estimated peak rate. See comments on
2342  * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2343  */
2344 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2345 {
2346 	int dev_type = blk_queue_nonrot(bfqd->queue);
2347 
2348 	if (bfqd->bfq_user_max_budget == 0)
2349 		bfqd->bfq_max_budget =
2350 			bfq_calc_max_budget(bfqd);
2351 
2352 	if (bfqd->device_speed == BFQ_BFQD_FAST &&
2353 	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
2354 		bfqd->device_speed = BFQ_BFQD_SLOW;
2355 		bfqd->RT_prod = R_slow[dev_type] *
2356 			T_slow[dev_type];
2357 	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2358 		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
2359 		bfqd->device_speed = BFQ_BFQD_FAST;
2360 		bfqd->RT_prod = R_fast[dev_type] *
2361 			T_fast[dev_type];
2362 	}
2363 
2364 	bfq_log(bfqd,
2365 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2366 		dev_type == 0 ? "ROT" : "NONROT",
2367 		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2368 		bfqd->device_speed == BFQ_BFQD_FAST ?
2369 		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2370 		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2371 		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2372 		BFQ_RATE_SHIFT);
2373 }
2374 
2375 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2376 				       struct request *rq)
2377 {
2378 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2379 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2380 		bfqd->peak_rate_samples = 1;
2381 		bfqd->sequential_samples = 0;
2382 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2383 			blk_rq_sectors(rq);
2384 	} else /* no new rq dispatched, just reset the number of samples */
2385 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2386 
2387 	bfq_log(bfqd,
2388 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2389 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2390 		bfqd->tot_sectors_dispatched);
2391 }
2392 
2393 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2394 {
2395 	u32 rate, weight, divisor;
2396 
2397 	/*
2398 	 * For the convergence property to hold (see comments on
2399 	 * bfq_update_peak_rate()) and for the assessment to be
2400 	 * reliable, a minimum number of samples must be present, and
2401 	 * a minimum amount of time must have elapsed. If not so, do
2402 	 * not compute new rate. Just reset parameters, to get ready
2403 	 * for a new evaluation attempt.
2404 	 */
2405 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2406 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2407 		goto reset_computation;
2408 
2409 	/*
2410 	 * If a new request completion has occurred after last
2411 	 * dispatch, then, to approximate the rate at which requests
2412 	 * have been served by the device, it is more precise to
2413 	 * extend the observation interval to the last completion.
2414 	 */
2415 	bfqd->delta_from_first =
2416 		max_t(u64, bfqd->delta_from_first,
2417 		      bfqd->last_completion - bfqd->first_dispatch);
2418 
2419 	/*
2420 	 * Rate computed in sects/usec, and not sects/nsec, for
2421 	 * precision issues.
2422 	 */
2423 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2424 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2425 
2426 	/*
2427 	 * Peak rate not updated if:
2428 	 * - the percentage of sequential dispatches is below 3/4 of the
2429 	 *   total, and rate is below the current estimated peak rate
2430 	 * - rate is unreasonably high (> 20M sectors/sec)
2431 	 */
2432 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2433 	     rate <= bfqd->peak_rate) ||
2434 		rate > 20<<BFQ_RATE_SHIFT)
2435 		goto reset_computation;
2436 
2437 	/*
2438 	 * We have to update the peak rate, at last! To this purpose,
2439 	 * we use a low-pass filter. We compute the smoothing constant
2440 	 * of the filter as a function of the 'weight' of the new
2441 	 * measured rate.
2442 	 *
2443 	 * As can be seen in next formulas, we define this weight as a
2444 	 * quantity proportional to how sequential the workload is,
2445 	 * and to how long the observation time interval is.
2446 	 *
2447 	 * The weight runs from 0 to 8. The maximum value of the
2448 	 * weight, 8, yields the minimum value for the smoothing
2449 	 * constant. At this minimum value for the smoothing constant,
2450 	 * the measured rate contributes for half of the next value of
2451 	 * the estimated peak rate.
2452 	 *
2453 	 * So, the first step is to compute the weight as a function
2454 	 * of how sequential the workload is. Note that the weight
2455 	 * cannot reach 9, because bfqd->sequential_samples cannot
2456 	 * become equal to bfqd->peak_rate_samples, which, in its
2457 	 * turn, holds true because bfqd->sequential_samples is not
2458 	 * incremented for the first sample.
2459 	 */
2460 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2461 
2462 	/*
2463 	 * Second step: further refine the weight as a function of the
2464 	 * duration of the observation interval.
2465 	 */
2466 	weight = min_t(u32, 8,
2467 		       div_u64(weight * bfqd->delta_from_first,
2468 			       BFQ_RATE_REF_INTERVAL));
2469 
2470 	/*
2471 	 * Divisor ranging from 10, for minimum weight, to 2, for
2472 	 * maximum weight.
2473 	 */
2474 	divisor = 10 - weight;
2475 
2476 	/*
2477 	 * Finally, update peak rate:
2478 	 *
2479 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2480 	 */
2481 	bfqd->peak_rate *= divisor-1;
2482 	bfqd->peak_rate /= divisor;
2483 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2484 
2485 	bfqd->peak_rate += rate;
2486 	update_thr_responsiveness_params(bfqd);
2487 
2488 reset_computation:
2489 	bfq_reset_rate_computation(bfqd, rq);
2490 }
2491 
2492 /*
2493  * Update the read/write peak rate (the main quantity used for
2494  * auto-tuning, see update_thr_responsiveness_params()).
2495  *
2496  * It is not trivial to estimate the peak rate (correctly): because of
2497  * the presence of sw and hw queues between the scheduler and the
2498  * device components that finally serve I/O requests, it is hard to
2499  * say exactly when a given dispatched request is served inside the
2500  * device, and for how long. As a consequence, it is hard to know
2501  * precisely at what rate a given set of requests is actually served
2502  * by the device.
2503  *
2504  * On the opposite end, the dispatch time of any request is trivially
2505  * available, and, from this piece of information, the "dispatch rate"
2506  * of requests can be immediately computed. So, the idea in the next
2507  * function is to use what is known, namely request dispatch times
2508  * (plus, when useful, request completion times), to estimate what is
2509  * unknown, namely in-device request service rate.
2510  *
2511  * The main issue is that, because of the above facts, the rate at
2512  * which a certain set of requests is dispatched over a certain time
2513  * interval can vary greatly with respect to the rate at which the
2514  * same requests are then served. But, since the size of any
2515  * intermediate queue is limited, and the service scheme is lossless
2516  * (no request is silently dropped), the following obvious convergence
2517  * property holds: the number of requests dispatched MUST become
2518  * closer and closer to the number of requests completed as the
2519  * observation interval grows. This is the key property used in
2520  * the next function to estimate the peak service rate as a function
2521  * of the observed dispatch rate. The function assumes to be invoked
2522  * on every request dispatch.
2523  */
2524 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2525 {
2526 	u64 now_ns = ktime_get_ns();
2527 
2528 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2529 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2530 			bfqd->peak_rate_samples);
2531 		bfq_reset_rate_computation(bfqd, rq);
2532 		goto update_last_values; /* will add one sample */
2533 	}
2534 
2535 	/*
2536 	 * Device idle for very long: the observation interval lasting
2537 	 * up to this dispatch cannot be a valid observation interval
2538 	 * for computing a new peak rate (similarly to the late-
2539 	 * completion event in bfq_completed_request()). Go to
2540 	 * update_rate_and_reset to have the following three steps
2541 	 * taken:
2542 	 * - close the observation interval at the last (previous)
2543 	 *   request dispatch or completion
2544 	 * - compute rate, if possible, for that observation interval
2545 	 * - start a new observation interval with this dispatch
2546 	 */
2547 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2548 	    bfqd->rq_in_driver == 0)
2549 		goto update_rate_and_reset;
2550 
2551 	/* Update sampling information */
2552 	bfqd->peak_rate_samples++;
2553 
2554 	if ((bfqd->rq_in_driver > 0 ||
2555 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2556 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2557 		bfqd->sequential_samples++;
2558 
2559 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2560 
2561 	/* Reset max observed rq size every 32 dispatches */
2562 	if (likely(bfqd->peak_rate_samples % 32))
2563 		bfqd->last_rq_max_size =
2564 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2565 	else
2566 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2567 
2568 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2569 
2570 	/* Target observation interval not yet reached, go on sampling */
2571 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2572 		goto update_last_values;
2573 
2574 update_rate_and_reset:
2575 	bfq_update_rate_reset(bfqd, rq);
2576 update_last_values:
2577 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2578 	bfqd->last_dispatch = now_ns;
2579 }
2580 
2581 /*
2582  * Remove request from internal lists.
2583  */
2584 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2585 {
2586 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2587 
2588 	/*
2589 	 * For consistency, the next instruction should have been
2590 	 * executed after removing the request from the queue and
2591 	 * dispatching it.  We execute instead this instruction before
2592 	 * bfq_remove_request() (and hence introduce a temporary
2593 	 * inconsistency), for efficiency.  In fact, should this
2594 	 * dispatch occur for a non in-service bfqq, this anticipated
2595 	 * increment prevents two counters related to bfqq->dispatched
2596 	 * from risking to be, first, uselessly decremented, and then
2597 	 * incremented again when the (new) value of bfqq->dispatched
2598 	 * happens to be taken into account.
2599 	 */
2600 	bfqq->dispatched++;
2601 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2602 
2603 	bfq_remove_request(q, rq);
2604 }
2605 
2606 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2607 {
2608 	/*
2609 	 * If this bfqq is shared between multiple processes, check
2610 	 * to make sure that those processes are still issuing I/Os
2611 	 * within the mean seek distance. If not, it may be time to
2612 	 * break the queues apart again.
2613 	 */
2614 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2615 		bfq_mark_bfqq_split_coop(bfqq);
2616 
2617 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2618 		if (bfqq->dispatched == 0)
2619 			/*
2620 			 * Overloading budget_timeout field to store
2621 			 * the time at which the queue remains with no
2622 			 * backlog and no outstanding request; used by
2623 			 * the weight-raising mechanism.
2624 			 */
2625 			bfqq->budget_timeout = jiffies;
2626 
2627 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2628 	} else {
2629 		bfq_requeue_bfqq(bfqd, bfqq, true);
2630 		/*
2631 		 * Resort priority tree of potential close cooperators.
2632 		 */
2633 		bfq_pos_tree_add_move(bfqd, bfqq);
2634 	}
2635 
2636 	/*
2637 	 * All in-service entities must have been properly deactivated
2638 	 * or requeued before executing the next function, which
2639 	 * resets all in-service entites as no more in service.
2640 	 */
2641 	__bfq_bfqd_reset_in_service(bfqd);
2642 }
2643 
2644 /**
2645  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2646  * @bfqd: device data.
2647  * @bfqq: queue to update.
2648  * @reason: reason for expiration.
2649  *
2650  * Handle the feedback on @bfqq budget at queue expiration.
2651  * See the body for detailed comments.
2652  */
2653 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2654 				     struct bfq_queue *bfqq,
2655 				     enum bfqq_expiration reason)
2656 {
2657 	struct request *next_rq;
2658 	int budget, min_budget;
2659 
2660 	min_budget = bfq_min_budget(bfqd);
2661 
2662 	if (bfqq->wr_coeff == 1)
2663 		budget = bfqq->max_budget;
2664 	else /*
2665 	      * Use a constant, low budget for weight-raised queues,
2666 	      * to help achieve a low latency. Keep it slightly higher
2667 	      * than the minimum possible budget, to cause a little
2668 	      * bit fewer expirations.
2669 	      */
2670 		budget = 2 * min_budget;
2671 
2672 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2673 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2674 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2675 		budget, bfq_min_budget(bfqd));
2676 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2677 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2678 
2679 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2680 		switch (reason) {
2681 		/*
2682 		 * Caveat: in all the following cases we trade latency
2683 		 * for throughput.
2684 		 */
2685 		case BFQQE_TOO_IDLE:
2686 			/*
2687 			 * This is the only case where we may reduce
2688 			 * the budget: if there is no request of the
2689 			 * process still waiting for completion, then
2690 			 * we assume (tentatively) that the timer has
2691 			 * expired because the batch of requests of
2692 			 * the process could have been served with a
2693 			 * smaller budget.  Hence, betting that
2694 			 * process will behave in the same way when it
2695 			 * becomes backlogged again, we reduce its
2696 			 * next budget.  As long as we guess right,
2697 			 * this budget cut reduces the latency
2698 			 * experienced by the process.
2699 			 *
2700 			 * However, if there are still outstanding
2701 			 * requests, then the process may have not yet
2702 			 * issued its next request just because it is
2703 			 * still waiting for the completion of some of
2704 			 * the still outstanding ones.  So in this
2705 			 * subcase we do not reduce its budget, on the
2706 			 * contrary we increase it to possibly boost
2707 			 * the throughput, as discussed in the
2708 			 * comments to the BUDGET_TIMEOUT case.
2709 			 */
2710 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2711 				budget = min(budget * 2, bfqd->bfq_max_budget);
2712 			else {
2713 				if (budget > 5 * min_budget)
2714 					budget -= 4 * min_budget;
2715 				else
2716 					budget = min_budget;
2717 			}
2718 			break;
2719 		case BFQQE_BUDGET_TIMEOUT:
2720 			/*
2721 			 * We double the budget here because it gives
2722 			 * the chance to boost the throughput if this
2723 			 * is not a seeky process (and has bumped into
2724 			 * this timeout because of, e.g., ZBR).
2725 			 */
2726 			budget = min(budget * 2, bfqd->bfq_max_budget);
2727 			break;
2728 		case BFQQE_BUDGET_EXHAUSTED:
2729 			/*
2730 			 * The process still has backlog, and did not
2731 			 * let either the budget timeout or the disk
2732 			 * idling timeout expire. Hence it is not
2733 			 * seeky, has a short thinktime and may be
2734 			 * happy with a higher budget too. So
2735 			 * definitely increase the budget of this good
2736 			 * candidate to boost the disk throughput.
2737 			 */
2738 			budget = min(budget * 4, bfqd->bfq_max_budget);
2739 			break;
2740 		case BFQQE_NO_MORE_REQUESTS:
2741 			/*
2742 			 * For queues that expire for this reason, it
2743 			 * is particularly important to keep the
2744 			 * budget close to the actual service they
2745 			 * need. Doing so reduces the timestamp
2746 			 * misalignment problem described in the
2747 			 * comments in the body of
2748 			 * __bfq_activate_entity. In fact, suppose
2749 			 * that a queue systematically expires for
2750 			 * BFQQE_NO_MORE_REQUESTS and presents a
2751 			 * new request in time to enjoy timestamp
2752 			 * back-shifting. The larger the budget of the
2753 			 * queue is with respect to the service the
2754 			 * queue actually requests in each service
2755 			 * slot, the more times the queue can be
2756 			 * reactivated with the same virtual finish
2757 			 * time. It follows that, even if this finish
2758 			 * time is pushed to the system virtual time
2759 			 * to reduce the consequent timestamp
2760 			 * misalignment, the queue unjustly enjoys for
2761 			 * many re-activations a lower finish time
2762 			 * than all newly activated queues.
2763 			 *
2764 			 * The service needed by bfqq is measured
2765 			 * quite precisely by bfqq->entity.service.
2766 			 * Since bfqq does not enjoy device idling,
2767 			 * bfqq->entity.service is equal to the number
2768 			 * of sectors that the process associated with
2769 			 * bfqq requested to read/write before waiting
2770 			 * for request completions, or blocking for
2771 			 * other reasons.
2772 			 */
2773 			budget = max_t(int, bfqq->entity.service, min_budget);
2774 			break;
2775 		default:
2776 			return;
2777 		}
2778 	} else if (!bfq_bfqq_sync(bfqq)) {
2779 		/*
2780 		 * Async queues get always the maximum possible
2781 		 * budget, as for them we do not care about latency
2782 		 * (in addition, their ability to dispatch is limited
2783 		 * by the charging factor).
2784 		 */
2785 		budget = bfqd->bfq_max_budget;
2786 	}
2787 
2788 	bfqq->max_budget = budget;
2789 
2790 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2791 	    !bfqd->bfq_user_max_budget)
2792 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2793 
2794 	/*
2795 	 * If there is still backlog, then assign a new budget, making
2796 	 * sure that it is large enough for the next request.  Since
2797 	 * the finish time of bfqq must be kept in sync with the
2798 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2799 	 * update.
2800 	 *
2801 	 * If there is no backlog, then no need to update the budget;
2802 	 * it will be updated on the arrival of a new request.
2803 	 */
2804 	next_rq = bfqq->next_rq;
2805 	if (next_rq)
2806 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2807 					    bfq_serv_to_charge(next_rq, bfqq));
2808 
2809 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2810 			next_rq ? blk_rq_sectors(next_rq) : 0,
2811 			bfqq->entity.budget);
2812 }
2813 
2814 /*
2815  * Return true if the process associated with bfqq is "slow". The slow
2816  * flag is used, in addition to the budget timeout, to reduce the
2817  * amount of service provided to seeky processes, and thus reduce
2818  * their chances to lower the throughput. More details in the comments
2819  * on the function bfq_bfqq_expire().
2820  *
2821  * An important observation is in order: as discussed in the comments
2822  * on the function bfq_update_peak_rate(), with devices with internal
2823  * queues, it is hard if ever possible to know when and for how long
2824  * an I/O request is processed by the device (apart from the trivial
2825  * I/O pattern where a new request is dispatched only after the
2826  * previous one has been completed). This makes it hard to evaluate
2827  * the real rate at which the I/O requests of each bfq_queue are
2828  * served.  In fact, for an I/O scheduler like BFQ, serving a
2829  * bfq_queue means just dispatching its requests during its service
2830  * slot (i.e., until the budget of the queue is exhausted, or the
2831  * queue remains idle, or, finally, a timeout fires). But, during the
2832  * service slot of a bfq_queue, around 100 ms at most, the device may
2833  * be even still processing requests of bfq_queues served in previous
2834  * service slots. On the opposite end, the requests of the in-service
2835  * bfq_queue may be completed after the service slot of the queue
2836  * finishes.
2837  *
2838  * Anyway, unless more sophisticated solutions are used
2839  * (where possible), the sum of the sizes of the requests dispatched
2840  * during the service slot of a bfq_queue is probably the only
2841  * approximation available for the service received by the bfq_queue
2842  * during its service slot. And this sum is the quantity used in this
2843  * function to evaluate the I/O speed of a process.
2844  */
2845 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2846 				 bool compensate, enum bfqq_expiration reason,
2847 				 unsigned long *delta_ms)
2848 {
2849 	ktime_t delta_ktime;
2850 	u32 delta_usecs;
2851 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
2852 
2853 	if (!bfq_bfqq_sync(bfqq))
2854 		return false;
2855 
2856 	if (compensate)
2857 		delta_ktime = bfqd->last_idling_start;
2858 	else
2859 		delta_ktime = ktime_get();
2860 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2861 	delta_usecs = ktime_to_us(delta_ktime);
2862 
2863 	/* don't use too short time intervals */
2864 	if (delta_usecs < 1000) {
2865 		if (blk_queue_nonrot(bfqd->queue))
2866 			 /*
2867 			  * give same worst-case guarantees as idling
2868 			  * for seeky
2869 			  */
2870 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2871 		else /* charge at least one seek */
2872 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2873 
2874 		return slow;
2875 	}
2876 
2877 	*delta_ms = delta_usecs / USEC_PER_MSEC;
2878 
2879 	/*
2880 	 * Use only long (> 20ms) intervals to filter out excessive
2881 	 * spikes in service rate estimation.
2882 	 */
2883 	if (delta_usecs > 20000) {
2884 		/*
2885 		 * Caveat for rotational devices: processes doing I/O
2886 		 * in the slower disk zones tend to be slow(er) even
2887 		 * if not seeky. In this respect, the estimated peak
2888 		 * rate is likely to be an average over the disk
2889 		 * surface. Accordingly, to not be too harsh with
2890 		 * unlucky processes, a process is deemed slow only if
2891 		 * its rate has been lower than half of the estimated
2892 		 * peak rate.
2893 		 */
2894 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
2895 	}
2896 
2897 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
2898 
2899 	return slow;
2900 }
2901 
2902 /*
2903  * To be deemed as soft real-time, an application must meet two
2904  * requirements. First, the application must not require an average
2905  * bandwidth higher than the approximate bandwidth required to playback or
2906  * record a compressed high-definition video.
2907  * The next function is invoked on the completion of the last request of a
2908  * batch, to compute the next-start time instant, soft_rt_next_start, such
2909  * that, if the next request of the application does not arrive before
2910  * soft_rt_next_start, then the above requirement on the bandwidth is met.
2911  *
2912  * The second requirement is that the request pattern of the application is
2913  * isochronous, i.e., that, after issuing a request or a batch of requests,
2914  * the application stops issuing new requests until all its pending requests
2915  * have been completed. After that, the application may issue a new batch,
2916  * and so on.
2917  * For this reason the next function is invoked to compute
2918  * soft_rt_next_start only for applications that meet this requirement,
2919  * whereas soft_rt_next_start is set to infinity for applications that do
2920  * not.
2921  *
2922  * Unfortunately, even a greedy application may happen to behave in an
2923  * isochronous way if the CPU load is high. In fact, the application may
2924  * stop issuing requests while the CPUs are busy serving other processes,
2925  * then restart, then stop again for a while, and so on. In addition, if
2926  * the disk achieves a low enough throughput with the request pattern
2927  * issued by the application (e.g., because the request pattern is random
2928  * and/or the device is slow), then the application may meet the above
2929  * bandwidth requirement too. To prevent such a greedy application to be
2930  * deemed as soft real-time, a further rule is used in the computation of
2931  * soft_rt_next_start: soft_rt_next_start must be higher than the current
2932  * time plus the maximum time for which the arrival of a request is waited
2933  * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2934  * This filters out greedy applications, as the latter issue instead their
2935  * next request as soon as possible after the last one has been completed
2936  * (in contrast, when a batch of requests is completed, a soft real-time
2937  * application spends some time processing data).
2938  *
2939  * Unfortunately, the last filter may easily generate false positives if
2940  * only bfqd->bfq_slice_idle is used as a reference time interval and one
2941  * or both the following cases occur:
2942  * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2943  *    than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2944  *    HZ=100.
2945  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2946  *    for a while, then suddenly 'jump' by several units to recover the lost
2947  *    increments. This seems to happen, e.g., inside virtual machines.
2948  * To address this issue, we do not use as a reference time interval just
2949  * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2950  * particular we add the minimum number of jiffies for which the filter
2951  * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2952  * machines.
2953  */
2954 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2955 						struct bfq_queue *bfqq)
2956 {
2957 	return max(bfqq->last_idle_bklogged +
2958 		   HZ * bfqq->service_from_backlogged /
2959 		   bfqd->bfq_wr_max_softrt_rate,
2960 		   jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2961 }
2962 
2963 /**
2964  * bfq_bfqq_expire - expire a queue.
2965  * @bfqd: device owning the queue.
2966  * @bfqq: the queue to expire.
2967  * @compensate: if true, compensate for the time spent idling.
2968  * @reason: the reason causing the expiration.
2969  *
2970  * If the process associated with bfqq does slow I/O (e.g., because it
2971  * issues random requests), we charge bfqq with the time it has been
2972  * in service instead of the service it has received (see
2973  * bfq_bfqq_charge_time for details on how this goal is achieved). As
2974  * a consequence, bfqq will typically get higher timestamps upon
2975  * reactivation, and hence it will be rescheduled as if it had
2976  * received more service than what it has actually received. In the
2977  * end, bfqq receives less service in proportion to how slowly its
2978  * associated process consumes its budgets (and hence how seriously it
2979  * tends to lower the throughput). In addition, this time-charging
2980  * strategy guarantees time fairness among slow processes. In
2981  * contrast, if the process associated with bfqq is not slow, we
2982  * charge bfqq exactly with the service it has received.
2983  *
2984  * Charging time to the first type of queues and the exact service to
2985  * the other has the effect of using the WF2Q+ policy to schedule the
2986  * former on a timeslice basis, without violating service domain
2987  * guarantees among the latter.
2988  */
2989 void bfq_bfqq_expire(struct bfq_data *bfqd,
2990 		     struct bfq_queue *bfqq,
2991 		     bool compensate,
2992 		     enum bfqq_expiration reason)
2993 {
2994 	bool slow;
2995 	unsigned long delta = 0;
2996 	struct bfq_entity *entity = &bfqq->entity;
2997 	int ref;
2998 
2999 	/*
3000 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3001 	 */
3002 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3003 
3004 	/*
3005 	 * Increase service_from_backlogged before next statement,
3006 	 * because the possible next invocation of
3007 	 * bfq_bfqq_charge_time would likely inflate
3008 	 * entity->service. In contrast, service_from_backlogged must
3009 	 * contain real service, to enable the soft real-time
3010 	 * heuristic to correctly compute the bandwidth consumed by
3011 	 * bfqq.
3012 	 */
3013 	bfqq->service_from_backlogged += entity->service;
3014 
3015 	/*
3016 	 * As above explained, charge slow (typically seeky) and
3017 	 * timed-out queues with the time and not the service
3018 	 * received, to favor sequential workloads.
3019 	 *
3020 	 * Processes doing I/O in the slower disk zones will tend to
3021 	 * be slow(er) even if not seeky. Therefore, since the
3022 	 * estimated peak rate is actually an average over the disk
3023 	 * surface, these processes may timeout just for bad luck. To
3024 	 * avoid punishing them, do not charge time to processes that
3025 	 * succeeded in consuming at least 2/3 of their budget. This
3026 	 * allows BFQ to preserve enough elasticity to still perform
3027 	 * bandwidth, and not time, distribution with little unlucky
3028 	 * or quasi-sequential processes.
3029 	 */
3030 	if (bfqq->wr_coeff == 1 &&
3031 	    (slow ||
3032 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3033 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3034 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3035 
3036 	if (reason == BFQQE_TOO_IDLE &&
3037 	    entity->service <= 2 * entity->budget / 10)
3038 		bfq_clear_bfqq_IO_bound(bfqq);
3039 
3040 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3041 		bfqq->last_wr_start_finish = jiffies;
3042 
3043 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3044 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3045 		/*
3046 		 * If we get here, and there are no outstanding
3047 		 * requests, then the request pattern is isochronous
3048 		 * (see the comments on the function
3049 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3050 		 * soft_rt_next_start. If, instead, the queue still
3051 		 * has outstanding requests, then we have to wait for
3052 		 * the completion of all the outstanding requests to
3053 		 * discover whether the request pattern is actually
3054 		 * isochronous.
3055 		 */
3056 		if (bfqq->dispatched == 0)
3057 			bfqq->soft_rt_next_start =
3058 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3059 		else {
3060 			/*
3061 			 * The application is still waiting for the
3062 			 * completion of one or more requests:
3063 			 * prevent it from possibly being incorrectly
3064 			 * deemed as soft real-time by setting its
3065 			 * soft_rt_next_start to infinity. In fact,
3066 			 * without this assignment, the application
3067 			 * would be incorrectly deemed as soft
3068 			 * real-time if:
3069 			 * 1) it issued a new request before the
3070 			 *    completion of all its in-flight
3071 			 *    requests, and
3072 			 * 2) at that time, its soft_rt_next_start
3073 			 *    happened to be in the past.
3074 			 */
3075 			bfqq->soft_rt_next_start =
3076 				bfq_greatest_from_now();
3077 			/*
3078 			 * Schedule an update of soft_rt_next_start to when
3079 			 * the task may be discovered to be isochronous.
3080 			 */
3081 			bfq_mark_bfqq_softrt_update(bfqq);
3082 		}
3083 	}
3084 
3085 	bfq_log_bfqq(bfqd, bfqq,
3086 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3087 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3088 
3089 	/*
3090 	 * Increase, decrease or leave budget unchanged according to
3091 	 * reason.
3092 	 */
3093 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3094 	ref = bfqq->ref;
3095 	__bfq_bfqq_expire(bfqd, bfqq);
3096 
3097 	/* mark bfqq as waiting a request only if a bic still points to it */
3098 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3099 	    reason != BFQQE_BUDGET_TIMEOUT &&
3100 	    reason != BFQQE_BUDGET_EXHAUSTED)
3101 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3102 }
3103 
3104 /*
3105  * Budget timeout is not implemented through a dedicated timer, but
3106  * just checked on request arrivals and completions, as well as on
3107  * idle timer expirations.
3108  */
3109 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3110 {
3111 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3112 }
3113 
3114 /*
3115  * If we expire a queue that is actively waiting (i.e., with the
3116  * device idled) for the arrival of a new request, then we may incur
3117  * the timestamp misalignment problem described in the body of the
3118  * function __bfq_activate_entity. Hence we return true only if this
3119  * condition does not hold, or if the queue is slow enough to deserve
3120  * only to be kicked off for preserving a high throughput.
3121  */
3122 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3123 {
3124 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3125 		"may_budget_timeout: wait_request %d left %d timeout %d",
3126 		bfq_bfqq_wait_request(bfqq),
3127 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3128 		bfq_bfqq_budget_timeout(bfqq));
3129 
3130 	return (!bfq_bfqq_wait_request(bfqq) ||
3131 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3132 		&&
3133 		bfq_bfqq_budget_timeout(bfqq);
3134 }
3135 
3136 /*
3137  * For a queue that becomes empty, device idling is allowed only if
3138  * this function returns true for the queue. As a consequence, since
3139  * device idling plays a critical role in both throughput boosting and
3140  * service guarantees, the return value of this function plays a
3141  * critical role in both these aspects as well.
3142  *
3143  * In a nutshell, this function returns true only if idling is
3144  * beneficial for throughput or, even if detrimental for throughput,
3145  * idling is however necessary to preserve service guarantees (low
3146  * latency, desired throughput distribution, ...). In particular, on
3147  * NCQ-capable devices, this function tries to return false, so as to
3148  * help keep the drives' internal queues full, whenever this helps the
3149  * device boost the throughput without causing any service-guarantee
3150  * issue.
3151  *
3152  * In more detail, the return value of this function is obtained by,
3153  * first, computing a number of boolean variables that take into
3154  * account throughput and service-guarantee issues, and, then,
3155  * combining these variables in a logical expression. Most of the
3156  * issues taken into account are not trivial. We discuss these issues
3157  * individually while introducing the variables.
3158  */
3159 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3160 {
3161 	struct bfq_data *bfqd = bfqq->bfqd;
3162 	bool rot_without_queueing =
3163 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3164 		bfqq_sequential_and_IO_bound,
3165 		idling_boosts_thr, idling_boosts_thr_without_issues,
3166 		idling_needed_for_service_guarantees,
3167 		asymmetric_scenario;
3168 
3169 	if (bfqd->strict_guarantees)
3170 		return true;
3171 
3172 	/*
3173 	 * Idling is performed only if slice_idle > 0. In addition, we
3174 	 * do not idle if
3175 	 * (a) bfqq is async
3176 	 * (b) bfqq is in the idle io prio class: in this case we do
3177 	 * not idle because we want to minimize the bandwidth that
3178 	 * queues in this class can steal to higher-priority queues
3179 	 */
3180 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3181 	    bfq_class_idle(bfqq))
3182 		return false;
3183 
3184 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3185 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3186 
3187 	/*
3188 	 * The next variable takes into account the cases where idling
3189 	 * boosts the throughput.
3190 	 *
3191 	 * The value of the variable is computed considering, first, that
3192 	 * idling is virtually always beneficial for the throughput if:
3193 	 * (a) the device is not NCQ-capable and rotational, or
3194 	 * (b) regardless of the presence of NCQ, the device is rotational and
3195 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3196 	 * (c) regardless of whether it is rotational, the device is
3197 	 *     not NCQ-capable and the request pattern for bfqq is
3198 	 *     I/O-bound and sequential.
3199 	 *
3200 	 * Secondly, and in contrast to the above item (b), idling an
3201 	 * NCQ-capable flash-based device would not boost the
3202 	 * throughput even with sequential I/O; rather it would lower
3203 	 * the throughput in proportion to how fast the device
3204 	 * is. Accordingly, the next variable is true if any of the
3205 	 * above conditions (a), (b) or (c) is true, and, in
3206 	 * particular, happens to be false if bfqd is an NCQ-capable
3207 	 * flash-based device.
3208 	 */
3209 	idling_boosts_thr = rot_without_queueing ||
3210 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3211 		 bfqq_sequential_and_IO_bound);
3212 
3213 	/*
3214 	 * The value of the next variable,
3215 	 * idling_boosts_thr_without_issues, is equal to that of
3216 	 * idling_boosts_thr, unless a special case holds. In this
3217 	 * special case, described below, idling may cause problems to
3218 	 * weight-raised queues.
3219 	 *
3220 	 * When the request pool is saturated (e.g., in the presence
3221 	 * of write hogs), if the processes associated with
3222 	 * non-weight-raised queues ask for requests at a lower rate,
3223 	 * then processes associated with weight-raised queues have a
3224 	 * higher probability to get a request from the pool
3225 	 * immediately (or at least soon) when they need one. Thus
3226 	 * they have a higher probability to actually get a fraction
3227 	 * of the device throughput proportional to their high
3228 	 * weight. This is especially true with NCQ-capable drives,
3229 	 * which enqueue several requests in advance, and further
3230 	 * reorder internally-queued requests.
3231 	 *
3232 	 * For this reason, we force to false the value of
3233 	 * idling_boosts_thr_without_issues if there are weight-raised
3234 	 * busy queues. In this case, and if bfqq is not weight-raised,
3235 	 * this guarantees that the device is not idled for bfqq (if,
3236 	 * instead, bfqq is weight-raised, then idling will be
3237 	 * guaranteed by another variable, see below). Combined with
3238 	 * the timestamping rules of BFQ (see [1] for details), this
3239 	 * behavior causes bfqq, and hence any sync non-weight-raised
3240 	 * queue, to get a lower number of requests served, and thus
3241 	 * to ask for a lower number of requests from the request
3242 	 * pool, before the busy weight-raised queues get served
3243 	 * again. This often mitigates starvation problems in the
3244 	 * presence of heavy write workloads and NCQ, thereby
3245 	 * guaranteeing a higher application and system responsiveness
3246 	 * in these hostile scenarios.
3247 	 */
3248 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3249 		bfqd->wr_busy_queues == 0;
3250 
3251 	/*
3252 	 * There is then a case where idling must be performed not
3253 	 * for throughput concerns, but to preserve service
3254 	 * guarantees.
3255 	 *
3256 	 * To introduce this case, we can note that allowing the drive
3257 	 * to enqueue more than one request at a time, and hence
3258 	 * delegating de facto final scheduling decisions to the
3259 	 * drive's internal scheduler, entails loss of control on the
3260 	 * actual request service order. In particular, the critical
3261 	 * situation is when requests from different processes happen
3262 	 * to be present, at the same time, in the internal queue(s)
3263 	 * of the drive. In such a situation, the drive, by deciding
3264 	 * the service order of the internally-queued requests, does
3265 	 * determine also the actual throughput distribution among
3266 	 * these processes. But the drive typically has no notion or
3267 	 * concern about per-process throughput distribution, and
3268 	 * makes its decisions only on a per-request basis. Therefore,
3269 	 * the service distribution enforced by the drive's internal
3270 	 * scheduler is likely to coincide with the desired
3271 	 * device-throughput distribution only in a completely
3272 	 * symmetric scenario where:
3273 	 * (i)  each of these processes must get the same throughput as
3274 	 *      the others;
3275 	 * (ii) all these processes have the same I/O pattern
3276 		(either sequential or random).
3277 	 * In fact, in such a scenario, the drive will tend to treat
3278 	 * the requests of each of these processes in about the same
3279 	 * way as the requests of the others, and thus to provide
3280 	 * each of these processes with about the same throughput
3281 	 * (which is exactly the desired throughput distribution). In
3282 	 * contrast, in any asymmetric scenario, device idling is
3283 	 * certainly needed to guarantee that bfqq receives its
3284 	 * assigned fraction of the device throughput (see [1] for
3285 	 * details).
3286 	 *
3287 	 * We address this issue by controlling, actually, only the
3288 	 * symmetry sub-condition (i), i.e., provided that
3289 	 * sub-condition (i) holds, idling is not performed,
3290 	 * regardless of whether sub-condition (ii) holds. In other
3291 	 * words, only if sub-condition (i) holds, then idling is
3292 	 * allowed, and the device tends to be prevented from queueing
3293 	 * many requests, possibly of several processes. The reason
3294 	 * for not controlling also sub-condition (ii) is that we
3295 	 * exploit preemption to preserve guarantees in case of
3296 	 * symmetric scenarios, even if (ii) does not hold, as
3297 	 * explained in the next two paragraphs.
3298 	 *
3299 	 * Even if a queue, say Q, is expired when it remains idle, Q
3300 	 * can still preempt the new in-service queue if the next
3301 	 * request of Q arrives soon (see the comments on
3302 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3303 	 * groups have the same weight, this form of preemption,
3304 	 * combined with the hole-recovery heuristic described in the
3305 	 * comments on function bfq_bfqq_update_budg_for_activation,
3306 	 * are enough to preserve a correct bandwidth distribution in
3307 	 * the mid term, even without idling. In fact, even if not
3308 	 * idling allows the internal queues of the device to contain
3309 	 * many requests, and thus to reorder requests, we can rather
3310 	 * safely assume that the internal scheduler still preserves a
3311 	 * minimum of mid-term fairness. The motivation for using
3312 	 * preemption instead of idling is that, by not idling,
3313 	 * service guarantees are preserved without minimally
3314 	 * sacrificing throughput. In other words, both a high
3315 	 * throughput and its desired distribution are obtained.
3316 	 *
3317 	 * More precisely, this preemption-based, idleless approach
3318 	 * provides fairness in terms of IOPS, and not sectors per
3319 	 * second. This can be seen with a simple example. Suppose
3320 	 * that there are two queues with the same weight, but that
3321 	 * the first queue receives requests of 8 sectors, while the
3322 	 * second queue receives requests of 1024 sectors. In
3323 	 * addition, suppose that each of the two queues contains at
3324 	 * most one request at a time, which implies that each queue
3325 	 * always remains idle after it is served. Finally, after
3326 	 * remaining idle, each queue receives very quickly a new
3327 	 * request. It follows that the two queues are served
3328 	 * alternatively, preempting each other if needed. This
3329 	 * implies that, although both queues have the same weight,
3330 	 * the queue with large requests receives a service that is
3331 	 * 1024/8 times as high as the service received by the other
3332 	 * queue.
3333 	 *
3334 	 * On the other hand, device idling is performed, and thus
3335 	 * pure sector-domain guarantees are provided, for the
3336 	 * following queues, which are likely to need stronger
3337 	 * throughput guarantees: weight-raised queues, and queues
3338 	 * with a higher weight than other queues. When such queues
3339 	 * are active, sub-condition (i) is false, which triggers
3340 	 * device idling.
3341 	 *
3342 	 * According to the above considerations, the next variable is
3343 	 * true (only) if sub-condition (i) holds. To compute the
3344 	 * value of this variable, we not only use the return value of
3345 	 * the function bfq_symmetric_scenario(), but also check
3346 	 * whether bfqq is being weight-raised, because
3347 	 * bfq_symmetric_scenario() does not take into account also
3348 	 * weight-raised queues (see comments on
3349 	 * bfq_weights_tree_add()).
3350 	 *
3351 	 * As a side note, it is worth considering that the above
3352 	 * device-idling countermeasures may however fail in the
3353 	 * following unlucky scenario: if idling is (correctly)
3354 	 * disabled in a time period during which all symmetry
3355 	 * sub-conditions hold, and hence the device is allowed to
3356 	 * enqueue many requests, but at some later point in time some
3357 	 * sub-condition stops to hold, then it may become impossible
3358 	 * to let requests be served in the desired order until all
3359 	 * the requests already queued in the device have been served.
3360 	 */
3361 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3362 		!bfq_symmetric_scenario(bfqd);
3363 
3364 	/*
3365 	 * Finally, there is a case where maximizing throughput is the
3366 	 * best choice even if it may cause unfairness toward
3367 	 * bfqq. Such a case is when bfqq became active in a burst of
3368 	 * queue activations. Queues that became active during a large
3369 	 * burst benefit only from throughput, as discussed in the
3370 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3371 	 * in a burst and not idling the device maximizes throughput,
3372 	 * then the device must no be idled, because not idling the
3373 	 * device provides bfqq and all other queues in the burst with
3374 	 * maximum benefit. Combining this and the above case, we can
3375 	 * now establish when idling is actually needed to preserve
3376 	 * service guarantees.
3377 	 */
3378 	idling_needed_for_service_guarantees =
3379 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3380 
3381 	/*
3382 	 * We have now all the components we need to compute the
3383 	 * return value of the function, which is true only if idling
3384 	 * either boosts the throughput (without issues), or is
3385 	 * necessary to preserve service guarantees.
3386 	 */
3387 	return idling_boosts_thr_without_issues ||
3388 		idling_needed_for_service_guarantees;
3389 }
3390 
3391 /*
3392  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3393  * returns true, then:
3394  * 1) the queue must remain in service and cannot be expired, and
3395  * 2) the device must be idled to wait for the possible arrival of a new
3396  *    request for the queue.
3397  * See the comments on the function bfq_bfqq_may_idle for the reasons
3398  * why performing device idling is the best choice to boost the throughput
3399  * and preserve service guarantees when bfq_bfqq_may_idle itself
3400  * returns true.
3401  */
3402 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3403 {
3404 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
3405 }
3406 
3407 /*
3408  * Select a queue for service.  If we have a current queue in service,
3409  * check whether to continue servicing it, or retrieve and set a new one.
3410  */
3411 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3412 {
3413 	struct bfq_queue *bfqq;
3414 	struct request *next_rq;
3415 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3416 
3417 	bfqq = bfqd->in_service_queue;
3418 	if (!bfqq)
3419 		goto new_queue;
3420 
3421 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3422 
3423 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3424 	    !bfq_bfqq_wait_request(bfqq) &&
3425 	    !bfq_bfqq_must_idle(bfqq))
3426 		goto expire;
3427 
3428 check_queue:
3429 	/*
3430 	 * This loop is rarely executed more than once. Even when it
3431 	 * happens, it is much more convenient to re-execute this loop
3432 	 * than to return NULL and trigger a new dispatch to get a
3433 	 * request served.
3434 	 */
3435 	next_rq = bfqq->next_rq;
3436 	/*
3437 	 * If bfqq has requests queued and it has enough budget left to
3438 	 * serve them, keep the queue, otherwise expire it.
3439 	 */
3440 	if (next_rq) {
3441 		if (bfq_serv_to_charge(next_rq, bfqq) >
3442 			bfq_bfqq_budget_left(bfqq)) {
3443 			/*
3444 			 * Expire the queue for budget exhaustion,
3445 			 * which makes sure that the next budget is
3446 			 * enough to serve the next request, even if
3447 			 * it comes from the fifo expired path.
3448 			 */
3449 			reason = BFQQE_BUDGET_EXHAUSTED;
3450 			goto expire;
3451 		} else {
3452 			/*
3453 			 * The idle timer may be pending because we may
3454 			 * not disable disk idling even when a new request
3455 			 * arrives.
3456 			 */
3457 			if (bfq_bfqq_wait_request(bfqq)) {
3458 				/*
3459 				 * If we get here: 1) at least a new request
3460 				 * has arrived but we have not disabled the
3461 				 * timer because the request was too small,
3462 				 * 2) then the block layer has unplugged
3463 				 * the device, causing the dispatch to be
3464 				 * invoked.
3465 				 *
3466 				 * Since the device is unplugged, now the
3467 				 * requests are probably large enough to
3468 				 * provide a reasonable throughput.
3469 				 * So we disable idling.
3470 				 */
3471 				bfq_clear_bfqq_wait_request(bfqq);
3472 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3473 				bfqg_stats_update_idle_time(bfqq_group(bfqq));
3474 			}
3475 			goto keep_queue;
3476 		}
3477 	}
3478 
3479 	/*
3480 	 * No requests pending. However, if the in-service queue is idling
3481 	 * for a new request, or has requests waiting for a completion and
3482 	 * may idle after their completion, then keep it anyway.
3483 	 */
3484 	if (bfq_bfqq_wait_request(bfqq) ||
3485 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3486 		bfqq = NULL;
3487 		goto keep_queue;
3488 	}
3489 
3490 	reason = BFQQE_NO_MORE_REQUESTS;
3491 expire:
3492 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3493 new_queue:
3494 	bfqq = bfq_set_in_service_queue(bfqd);
3495 	if (bfqq) {
3496 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3497 		goto check_queue;
3498 	}
3499 keep_queue:
3500 	if (bfqq)
3501 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3502 	else
3503 		bfq_log(bfqd, "select_queue: no queue returned");
3504 
3505 	return bfqq;
3506 }
3507 
3508 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3509 {
3510 	struct bfq_entity *entity = &bfqq->entity;
3511 
3512 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3513 		bfq_log_bfqq(bfqd, bfqq,
3514 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3515 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3516 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3517 			bfqq->wr_coeff,
3518 			bfqq->entity.weight, bfqq->entity.orig_weight);
3519 
3520 		if (entity->prio_changed)
3521 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3522 
3523 		/*
3524 		 * If the queue was activated in a burst, or too much
3525 		 * time has elapsed from the beginning of this
3526 		 * weight-raising period, then end weight raising.
3527 		 */
3528 		if (bfq_bfqq_in_large_burst(bfqq))
3529 			bfq_bfqq_end_wr(bfqq);
3530 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3531 						bfqq->wr_cur_max_time)) {
3532 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3533 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3534 					       bfq_wr_duration(bfqd)))
3535 				bfq_bfqq_end_wr(bfqq);
3536 			else {
3537 				switch_back_to_interactive_wr(bfqq, bfqd);
3538 				bfqq->entity.prio_changed = 1;
3539 			}
3540 		}
3541 	}
3542 	/*
3543 	 * To improve latency (for this or other queues), immediately
3544 	 * update weight both if it must be raised and if it must be
3545 	 * lowered. Since, entity may be on some active tree here, and
3546 	 * might have a pending change of its ioprio class, invoke
3547 	 * next function with the last parameter unset (see the
3548 	 * comments on the function).
3549 	 */
3550 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3551 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3552 						entity, false);
3553 }
3554 
3555 /*
3556  * Dispatch next request from bfqq.
3557  */
3558 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3559 						 struct bfq_queue *bfqq)
3560 {
3561 	struct request *rq = bfqq->next_rq;
3562 	unsigned long service_to_charge;
3563 
3564 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3565 
3566 	bfq_bfqq_served(bfqq, service_to_charge);
3567 
3568 	bfq_dispatch_remove(bfqd->queue, rq);
3569 
3570 	/*
3571 	 * If weight raising has to terminate for bfqq, then next
3572 	 * function causes an immediate update of bfqq's weight,
3573 	 * without waiting for next activation. As a consequence, on
3574 	 * expiration, bfqq will be timestamped as if has never been
3575 	 * weight-raised during this service slot, even if it has
3576 	 * received part or even most of the service as a
3577 	 * weight-raised queue. This inflates bfqq's timestamps, which
3578 	 * is beneficial, as bfqq is then more willing to leave the
3579 	 * device immediately to possible other weight-raised queues.
3580 	 */
3581 	bfq_update_wr_data(bfqd, bfqq);
3582 
3583 	/*
3584 	 * Expire bfqq, pretending that its budget expired, if bfqq
3585 	 * belongs to CLASS_IDLE and other queues are waiting for
3586 	 * service.
3587 	 */
3588 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3589 		goto expire;
3590 
3591 	return rq;
3592 
3593 expire:
3594 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3595 	return rq;
3596 }
3597 
3598 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3599 {
3600 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3601 
3602 	/*
3603 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3604 	 * most a call to dispatch for nothing
3605 	 */
3606 	return !list_empty_careful(&bfqd->dispatch) ||
3607 		bfqd->busy_queues > 0;
3608 }
3609 
3610 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3611 {
3612 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3613 	struct request *rq = NULL;
3614 	struct bfq_queue *bfqq = NULL;
3615 
3616 	if (!list_empty(&bfqd->dispatch)) {
3617 		rq = list_first_entry(&bfqd->dispatch, struct request,
3618 				      queuelist);
3619 		list_del_init(&rq->queuelist);
3620 
3621 		bfqq = RQ_BFQQ(rq);
3622 
3623 		if (bfqq) {
3624 			/*
3625 			 * Increment counters here, because this
3626 			 * dispatch does not follow the standard
3627 			 * dispatch flow (where counters are
3628 			 * incremented)
3629 			 */
3630 			bfqq->dispatched++;
3631 
3632 			goto inc_in_driver_start_rq;
3633 		}
3634 
3635 		/*
3636 		 * We exploit the put_rq_private hook to decrement
3637 		 * rq_in_driver, but put_rq_private will not be
3638 		 * invoked on this request. So, to avoid unbalance,
3639 		 * just start this request, without incrementing
3640 		 * rq_in_driver. As a negative consequence,
3641 		 * rq_in_driver is deceptively lower than it should be
3642 		 * while this request is in service. This may cause
3643 		 * bfq_schedule_dispatch to be invoked uselessly.
3644 		 *
3645 		 * As for implementing an exact solution, the
3646 		 * put_request hook, if defined, is probably invoked
3647 		 * also on this request. So, by exploiting this hook,
3648 		 * we could 1) increment rq_in_driver here, and 2)
3649 		 * decrement it in put_request. Such a solution would
3650 		 * let the value of the counter be always accurate,
3651 		 * but it would entail using an extra interface
3652 		 * function. This cost seems higher than the benefit,
3653 		 * being the frequency of non-elevator-private
3654 		 * requests very low.
3655 		 */
3656 		goto start_rq;
3657 	}
3658 
3659 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3660 
3661 	if (bfqd->busy_queues == 0)
3662 		goto exit;
3663 
3664 	/*
3665 	 * Force device to serve one request at a time if
3666 	 * strict_guarantees is true. Forcing this service scheme is
3667 	 * currently the ONLY way to guarantee that the request
3668 	 * service order enforced by the scheduler is respected by a
3669 	 * queueing device. Otherwise the device is free even to make
3670 	 * some unlucky request wait for as long as the device
3671 	 * wishes.
3672 	 *
3673 	 * Of course, serving one request at at time may cause loss of
3674 	 * throughput.
3675 	 */
3676 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3677 		goto exit;
3678 
3679 	bfqq = bfq_select_queue(bfqd);
3680 	if (!bfqq)
3681 		goto exit;
3682 
3683 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3684 
3685 	if (rq) {
3686 inc_in_driver_start_rq:
3687 		bfqd->rq_in_driver++;
3688 start_rq:
3689 		rq->rq_flags |= RQF_STARTED;
3690 	}
3691 exit:
3692 	return rq;
3693 }
3694 
3695 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3696 {
3697 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3698 	struct request *rq;
3699 
3700 	spin_lock_irq(&bfqd->lock);
3701 
3702 	rq = __bfq_dispatch_request(hctx);
3703 	spin_unlock_irq(&bfqd->lock);
3704 
3705 	return rq;
3706 }
3707 
3708 /*
3709  * Task holds one reference to the queue, dropped when task exits.  Each rq
3710  * in-flight on this queue also holds a reference, dropped when rq is freed.
3711  *
3712  * Scheduler lock must be held here. Recall not to use bfqq after calling
3713  * this function on it.
3714  */
3715 void bfq_put_queue(struct bfq_queue *bfqq)
3716 {
3717 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3718 	struct bfq_group *bfqg = bfqq_group(bfqq);
3719 #endif
3720 
3721 	if (bfqq->bfqd)
3722 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3723 			     bfqq, bfqq->ref);
3724 
3725 	bfqq->ref--;
3726 	if (bfqq->ref)
3727 		return;
3728 
3729 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
3730 		hlist_del_init(&bfqq->burst_list_node);
3731 		/*
3732 		 * Decrement also burst size after the removal, if the
3733 		 * process associated with bfqq is exiting, and thus
3734 		 * does not contribute to the burst any longer. This
3735 		 * decrement helps filter out false positives of large
3736 		 * bursts, when some short-lived process (often due to
3737 		 * the execution of commands by some service) happens
3738 		 * to start and exit while a complex application is
3739 		 * starting, and thus spawning several processes that
3740 		 * do I/O (and that *must not* be treated as a large
3741 		 * burst, see comments on bfq_handle_burst).
3742 		 *
3743 		 * In particular, the decrement is performed only if:
3744 		 * 1) bfqq is not a merged queue, because, if it is,
3745 		 * then this free of bfqq is not triggered by the exit
3746 		 * of the process bfqq is associated with, but exactly
3747 		 * by the fact that bfqq has just been merged.
3748 		 * 2) burst_size is greater than 0, to handle
3749 		 * unbalanced decrements. Unbalanced decrements may
3750 		 * happen in te following case: bfqq is inserted into
3751 		 * the current burst list--without incrementing
3752 		 * bust_size--because of a split, but the current
3753 		 * burst list is not the burst list bfqq belonged to
3754 		 * (see comments on the case of a split in
3755 		 * bfq_set_request).
3756 		 */
3757 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3758 			bfqq->bfqd->burst_size--;
3759 	}
3760 
3761 	kmem_cache_free(bfq_pool, bfqq);
3762 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3763 	bfqg_and_blkg_put(bfqg);
3764 #endif
3765 }
3766 
3767 static void bfq_put_cooperator(struct bfq_queue *bfqq)
3768 {
3769 	struct bfq_queue *__bfqq, *next;
3770 
3771 	/*
3772 	 * If this queue was scheduled to merge with another queue, be
3773 	 * sure to drop the reference taken on that queue (and others in
3774 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3775 	 */
3776 	__bfqq = bfqq->new_bfqq;
3777 	while (__bfqq) {
3778 		if (__bfqq == bfqq)
3779 			break;
3780 		next = __bfqq->new_bfqq;
3781 		bfq_put_queue(__bfqq);
3782 		__bfqq = next;
3783 	}
3784 }
3785 
3786 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3787 {
3788 	if (bfqq == bfqd->in_service_queue) {
3789 		__bfq_bfqq_expire(bfqd, bfqq);
3790 		bfq_schedule_dispatch(bfqd);
3791 	}
3792 
3793 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3794 
3795 	bfq_put_cooperator(bfqq);
3796 
3797 	bfq_put_queue(bfqq); /* release process reference */
3798 }
3799 
3800 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3801 {
3802 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3803 	struct bfq_data *bfqd;
3804 
3805 	if (bfqq)
3806 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3807 
3808 	if (bfqq && bfqd) {
3809 		unsigned long flags;
3810 
3811 		spin_lock_irqsave(&bfqd->lock, flags);
3812 		bfq_exit_bfqq(bfqd, bfqq);
3813 		bic_set_bfqq(bic, NULL, is_sync);
3814 		spin_unlock_irqrestore(&bfqd->lock, flags);
3815 	}
3816 }
3817 
3818 static void bfq_exit_icq(struct io_cq *icq)
3819 {
3820 	struct bfq_io_cq *bic = icq_to_bic(icq);
3821 
3822 	bfq_exit_icq_bfqq(bic, true);
3823 	bfq_exit_icq_bfqq(bic, false);
3824 }
3825 
3826 /*
3827  * Update the entity prio values; note that the new values will not
3828  * be used until the next (re)activation.
3829  */
3830 static void
3831 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3832 {
3833 	struct task_struct *tsk = current;
3834 	int ioprio_class;
3835 	struct bfq_data *bfqd = bfqq->bfqd;
3836 
3837 	if (!bfqd)
3838 		return;
3839 
3840 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3841 	switch (ioprio_class) {
3842 	default:
3843 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3844 			"bfq: bad prio class %d\n", ioprio_class);
3845 		/* fall through */
3846 	case IOPRIO_CLASS_NONE:
3847 		/*
3848 		 * No prio set, inherit CPU scheduling settings.
3849 		 */
3850 		bfqq->new_ioprio = task_nice_ioprio(tsk);
3851 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3852 		break;
3853 	case IOPRIO_CLASS_RT:
3854 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3855 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3856 		break;
3857 	case IOPRIO_CLASS_BE:
3858 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3859 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3860 		break;
3861 	case IOPRIO_CLASS_IDLE:
3862 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3863 		bfqq->new_ioprio = 7;
3864 		break;
3865 	}
3866 
3867 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3868 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3869 			bfqq->new_ioprio);
3870 		bfqq->new_ioprio = IOPRIO_BE_NR;
3871 	}
3872 
3873 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3874 	bfqq->entity.prio_changed = 1;
3875 }
3876 
3877 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3878 				       struct bio *bio, bool is_sync,
3879 				       struct bfq_io_cq *bic);
3880 
3881 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3882 {
3883 	struct bfq_data *bfqd = bic_to_bfqd(bic);
3884 	struct bfq_queue *bfqq;
3885 	int ioprio = bic->icq.ioc->ioprio;
3886 
3887 	/*
3888 	 * This condition may trigger on a newly created bic, be sure to
3889 	 * drop the lock before returning.
3890 	 */
3891 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3892 		return;
3893 
3894 	bic->ioprio = ioprio;
3895 
3896 	bfqq = bic_to_bfqq(bic, false);
3897 	if (bfqq) {
3898 		/* release process reference on this queue */
3899 		bfq_put_queue(bfqq);
3900 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3901 		bic_set_bfqq(bic, bfqq, false);
3902 	}
3903 
3904 	bfqq = bic_to_bfqq(bic, true);
3905 	if (bfqq)
3906 		bfq_set_next_ioprio_data(bfqq, bic);
3907 }
3908 
3909 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3910 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
3911 {
3912 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
3913 	INIT_LIST_HEAD(&bfqq->fifo);
3914 	INIT_HLIST_NODE(&bfqq->burst_list_node);
3915 
3916 	bfqq->ref = 0;
3917 	bfqq->bfqd = bfqd;
3918 
3919 	if (bic)
3920 		bfq_set_next_ioprio_data(bfqq, bic);
3921 
3922 	if (is_sync) {
3923 		/*
3924 		 * No need to mark as has_short_ttime if in
3925 		 * idle_class, because no device idling is performed
3926 		 * for queues in idle class
3927 		 */
3928 		if (!bfq_class_idle(bfqq))
3929 			/* tentatively mark as has_short_ttime */
3930 			bfq_mark_bfqq_has_short_ttime(bfqq);
3931 		bfq_mark_bfqq_sync(bfqq);
3932 		bfq_mark_bfqq_just_created(bfqq);
3933 	} else
3934 		bfq_clear_bfqq_sync(bfqq);
3935 
3936 	/* set end request to minus infinity from now */
3937 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3938 
3939 	bfq_mark_bfqq_IO_bound(bfqq);
3940 
3941 	bfqq->pid = pid;
3942 
3943 	/* Tentative initial value to trade off between thr and lat */
3944 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
3945 	bfqq->budget_timeout = bfq_smallest_from_now();
3946 
3947 	bfqq->wr_coeff = 1;
3948 	bfqq->last_wr_start_finish = jiffies;
3949 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
3950 	bfqq->split_time = bfq_smallest_from_now();
3951 
3952 	/*
3953 	 * Set to the value for which bfqq will not be deemed as
3954 	 * soft rt when it becomes backlogged.
3955 	 */
3956 	bfqq->soft_rt_next_start = bfq_greatest_from_now();
3957 
3958 	/* first request is almost certainly seeky */
3959 	bfqq->seek_history = 1;
3960 }
3961 
3962 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
3963 					       struct bfq_group *bfqg,
3964 					       int ioprio_class, int ioprio)
3965 {
3966 	switch (ioprio_class) {
3967 	case IOPRIO_CLASS_RT:
3968 		return &bfqg->async_bfqq[0][ioprio];
3969 	case IOPRIO_CLASS_NONE:
3970 		ioprio = IOPRIO_NORM;
3971 		/* fall through */
3972 	case IOPRIO_CLASS_BE:
3973 		return &bfqg->async_bfqq[1][ioprio];
3974 	case IOPRIO_CLASS_IDLE:
3975 		return &bfqg->async_idle_bfqq;
3976 	default:
3977 		return NULL;
3978 	}
3979 }
3980 
3981 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3982 				       struct bio *bio, bool is_sync,
3983 				       struct bfq_io_cq *bic)
3984 {
3985 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3986 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3987 	struct bfq_queue **async_bfqq = NULL;
3988 	struct bfq_queue *bfqq;
3989 	struct bfq_group *bfqg;
3990 
3991 	rcu_read_lock();
3992 
3993 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3994 	if (!bfqg) {
3995 		bfqq = &bfqd->oom_bfqq;
3996 		goto out;
3997 	}
3998 
3999 	if (!is_sync) {
4000 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4001 						  ioprio);
4002 		bfqq = *async_bfqq;
4003 		if (bfqq)
4004 			goto out;
4005 	}
4006 
4007 	bfqq = kmem_cache_alloc_node(bfq_pool,
4008 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4009 				     bfqd->queue->node);
4010 
4011 	if (bfqq) {
4012 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4013 			      is_sync);
4014 		bfq_init_entity(&bfqq->entity, bfqg);
4015 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4016 	} else {
4017 		bfqq = &bfqd->oom_bfqq;
4018 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4019 		goto out;
4020 	}
4021 
4022 	/*
4023 	 * Pin the queue now that it's allocated, scheduler exit will
4024 	 * prune it.
4025 	 */
4026 	if (async_bfqq) {
4027 		bfqq->ref++; /*
4028 			      * Extra group reference, w.r.t. sync
4029 			      * queue. This extra reference is removed
4030 			      * only if bfqq->bfqg disappears, to
4031 			      * guarantee that this queue is not freed
4032 			      * until its group goes away.
4033 			      */
4034 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4035 			     bfqq, bfqq->ref);
4036 		*async_bfqq = bfqq;
4037 	}
4038 
4039 out:
4040 	bfqq->ref++; /* get a process reference to this queue */
4041 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4042 	rcu_read_unlock();
4043 	return bfqq;
4044 }
4045 
4046 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4047 				    struct bfq_queue *bfqq)
4048 {
4049 	struct bfq_ttime *ttime = &bfqq->ttime;
4050 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4051 
4052 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4053 
4054 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4055 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4056 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4057 				     ttime->ttime_samples);
4058 }
4059 
4060 static void
4061 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4062 		       struct request *rq)
4063 {
4064 	bfqq->seek_history <<= 1;
4065 	bfqq->seek_history |=
4066 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4067 		(!blk_queue_nonrot(bfqd->queue) ||
4068 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4069 }
4070 
4071 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4072 				       struct bfq_queue *bfqq,
4073 				       struct bfq_io_cq *bic)
4074 {
4075 	bool has_short_ttime = true;
4076 
4077 	/*
4078 	 * No need to update has_short_ttime if bfqq is async or in
4079 	 * idle io prio class, or if bfq_slice_idle is zero, because
4080 	 * no device idling is performed for bfqq in this case.
4081 	 */
4082 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4083 	    bfqd->bfq_slice_idle == 0)
4084 		return;
4085 
4086 	/* Idle window just restored, statistics are meaningless. */
4087 	if (time_is_after_eq_jiffies(bfqq->split_time +
4088 				     bfqd->bfq_wr_min_idle_time))
4089 		return;
4090 
4091 	/* Think time is infinite if no process is linked to
4092 	 * bfqq. Otherwise check average think time to
4093 	 * decide whether to mark as has_short_ttime
4094 	 */
4095 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4096 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4097 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4098 		has_short_ttime = false;
4099 
4100 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4101 		     has_short_ttime);
4102 
4103 	if (has_short_ttime)
4104 		bfq_mark_bfqq_has_short_ttime(bfqq);
4105 	else
4106 		bfq_clear_bfqq_has_short_ttime(bfqq);
4107 }
4108 
4109 /*
4110  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4111  * something we should do about it.
4112  */
4113 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4114 			    struct request *rq)
4115 {
4116 	struct bfq_io_cq *bic = RQ_BIC(rq);
4117 
4118 	if (rq->cmd_flags & REQ_META)
4119 		bfqq->meta_pending++;
4120 
4121 	bfq_update_io_thinktime(bfqd, bfqq);
4122 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4123 	bfq_update_io_seektime(bfqd, bfqq, rq);
4124 
4125 	bfq_log_bfqq(bfqd, bfqq,
4126 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4127 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4128 
4129 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4130 
4131 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4132 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4133 				 blk_rq_sectors(rq) < 32;
4134 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4135 
4136 		/*
4137 		 * There is just this request queued: if the request
4138 		 * is small and the queue is not to be expired, then
4139 		 * just exit.
4140 		 *
4141 		 * In this way, if the device is being idled to wait
4142 		 * for a new request from the in-service queue, we
4143 		 * avoid unplugging the device and committing the
4144 		 * device to serve just a small request. On the
4145 		 * contrary, we wait for the block layer to decide
4146 		 * when to unplug the device: hopefully, new requests
4147 		 * will be merged to this one quickly, then the device
4148 		 * will be unplugged and larger requests will be
4149 		 * dispatched.
4150 		 */
4151 		if (small_req && !budget_timeout)
4152 			return;
4153 
4154 		/*
4155 		 * A large enough request arrived, or the queue is to
4156 		 * be expired: in both cases disk idling is to be
4157 		 * stopped, so clear wait_request flag and reset
4158 		 * timer.
4159 		 */
4160 		bfq_clear_bfqq_wait_request(bfqq);
4161 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4162 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4163 
4164 		/*
4165 		 * The queue is not empty, because a new request just
4166 		 * arrived. Hence we can safely expire the queue, in
4167 		 * case of budget timeout, without risking that the
4168 		 * timestamps of the queue are not updated correctly.
4169 		 * See [1] for more details.
4170 		 */
4171 		if (budget_timeout)
4172 			bfq_bfqq_expire(bfqd, bfqq, false,
4173 					BFQQE_BUDGET_TIMEOUT);
4174 	}
4175 }
4176 
4177 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4178 {
4179 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4180 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4181 
4182 	if (new_bfqq) {
4183 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4184 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4185 		/*
4186 		 * Release the request's reference to the old bfqq
4187 		 * and make sure one is taken to the shared queue.
4188 		 */
4189 		new_bfqq->allocated++;
4190 		bfqq->allocated--;
4191 		new_bfqq->ref++;
4192 		/*
4193 		 * If the bic associated with the process
4194 		 * issuing this request still points to bfqq
4195 		 * (and thus has not been already redirected
4196 		 * to new_bfqq or even some other bfq_queue),
4197 		 * then complete the merge and redirect it to
4198 		 * new_bfqq.
4199 		 */
4200 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4201 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4202 					bfqq, new_bfqq);
4203 
4204 		bfq_clear_bfqq_just_created(bfqq);
4205 		/*
4206 		 * rq is about to be enqueued into new_bfqq,
4207 		 * release rq reference on bfqq
4208 		 */
4209 		bfq_put_queue(bfqq);
4210 		rq->elv.priv[1] = new_bfqq;
4211 		bfqq = new_bfqq;
4212 	}
4213 
4214 	bfq_add_request(rq);
4215 
4216 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4217 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4218 
4219 	bfq_rq_enqueued(bfqd, bfqq, rq);
4220 }
4221 
4222 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4223 			       bool at_head)
4224 {
4225 	struct request_queue *q = hctx->queue;
4226 	struct bfq_data *bfqd = q->elevator->elevator_data;
4227 
4228 	spin_lock_irq(&bfqd->lock);
4229 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4230 		spin_unlock_irq(&bfqd->lock);
4231 		return;
4232 	}
4233 
4234 	spin_unlock_irq(&bfqd->lock);
4235 
4236 	blk_mq_sched_request_inserted(rq);
4237 
4238 	spin_lock_irq(&bfqd->lock);
4239 	if (at_head || blk_rq_is_passthrough(rq)) {
4240 		if (at_head)
4241 			list_add(&rq->queuelist, &bfqd->dispatch);
4242 		else
4243 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4244 	} else {
4245 		__bfq_insert_request(bfqd, rq);
4246 
4247 		if (rq_mergeable(rq)) {
4248 			elv_rqhash_add(q, rq);
4249 			if (!q->last_merge)
4250 				q->last_merge = rq;
4251 		}
4252 	}
4253 
4254 	spin_unlock_irq(&bfqd->lock);
4255 }
4256 
4257 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4258 				struct list_head *list, bool at_head)
4259 {
4260 	while (!list_empty(list)) {
4261 		struct request *rq;
4262 
4263 		rq = list_first_entry(list, struct request, queuelist);
4264 		list_del_init(&rq->queuelist);
4265 		bfq_insert_request(hctx, rq, at_head);
4266 	}
4267 }
4268 
4269 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4270 {
4271 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4272 				       bfqd->rq_in_driver);
4273 
4274 	if (bfqd->hw_tag == 1)
4275 		return;
4276 
4277 	/*
4278 	 * This sample is valid if the number of outstanding requests
4279 	 * is large enough to allow a queueing behavior.  Note that the
4280 	 * sum is not exact, as it's not taking into account deactivated
4281 	 * requests.
4282 	 */
4283 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4284 		return;
4285 
4286 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4287 		return;
4288 
4289 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4290 	bfqd->max_rq_in_driver = 0;
4291 	bfqd->hw_tag_samples = 0;
4292 }
4293 
4294 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4295 {
4296 	u64 now_ns;
4297 	u32 delta_us;
4298 
4299 	bfq_update_hw_tag(bfqd);
4300 
4301 	bfqd->rq_in_driver--;
4302 	bfqq->dispatched--;
4303 
4304 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4305 		/*
4306 		 * Set budget_timeout (which we overload to store the
4307 		 * time at which the queue remains with no backlog and
4308 		 * no outstanding request; used by the weight-raising
4309 		 * mechanism).
4310 		 */
4311 		bfqq->budget_timeout = jiffies;
4312 
4313 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4314 					&bfqd->queue_weights_tree);
4315 	}
4316 
4317 	now_ns = ktime_get_ns();
4318 
4319 	bfqq->ttime.last_end_request = now_ns;
4320 
4321 	/*
4322 	 * Using us instead of ns, to get a reasonable precision in
4323 	 * computing rate in next check.
4324 	 */
4325 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4326 
4327 	/*
4328 	 * If the request took rather long to complete, and, according
4329 	 * to the maximum request size recorded, this completion latency
4330 	 * implies that the request was certainly served at a very low
4331 	 * rate (less than 1M sectors/sec), then the whole observation
4332 	 * interval that lasts up to this time instant cannot be a
4333 	 * valid time interval for computing a new peak rate.  Invoke
4334 	 * bfq_update_rate_reset to have the following three steps
4335 	 * taken:
4336 	 * - close the observation interval at the last (previous)
4337 	 *   request dispatch or completion
4338 	 * - compute rate, if possible, for that observation interval
4339 	 * - reset to zero samples, which will trigger a proper
4340 	 *   re-initialization of the observation interval on next
4341 	 *   dispatch
4342 	 */
4343 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4344 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4345 			1UL<<(BFQ_RATE_SHIFT - 10))
4346 		bfq_update_rate_reset(bfqd, NULL);
4347 	bfqd->last_completion = now_ns;
4348 
4349 	/*
4350 	 * If we are waiting to discover whether the request pattern
4351 	 * of the task associated with the queue is actually
4352 	 * isochronous, and both requisites for this condition to hold
4353 	 * are now satisfied, then compute soft_rt_next_start (see the
4354 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4355 	 * schedule this delayed check when bfqq expires, if it still
4356 	 * has in-flight requests.
4357 	 */
4358 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4359 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4360 		bfqq->soft_rt_next_start =
4361 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4362 
4363 	/*
4364 	 * If this is the in-service queue, check if it needs to be expired,
4365 	 * or if we want to idle in case it has no pending requests.
4366 	 */
4367 	if (bfqd->in_service_queue == bfqq) {
4368 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4369 			bfq_arm_slice_timer(bfqd);
4370 			return;
4371 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4372 			bfq_bfqq_expire(bfqd, bfqq, false,
4373 					BFQQE_BUDGET_TIMEOUT);
4374 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4375 			 (bfqq->dispatched == 0 ||
4376 			  !bfq_bfqq_may_idle(bfqq)))
4377 			bfq_bfqq_expire(bfqd, bfqq, false,
4378 					BFQQE_NO_MORE_REQUESTS);
4379 	}
4380 
4381 	if (!bfqd->rq_in_driver)
4382 		bfq_schedule_dispatch(bfqd);
4383 }
4384 
4385 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4386 {
4387 	bfqq->allocated--;
4388 
4389 	bfq_put_queue(bfqq);
4390 }
4391 
4392 static void bfq_finish_request(struct request *rq)
4393 {
4394 	struct bfq_queue *bfqq;
4395 	struct bfq_data *bfqd;
4396 
4397 	if (!rq->elv.icq)
4398 		return;
4399 
4400 	bfqq = RQ_BFQQ(rq);
4401 	bfqd = bfqq->bfqd;
4402 
4403 	if (rq->rq_flags & RQF_STARTED)
4404 		bfqg_stats_update_completion(bfqq_group(bfqq),
4405 					     rq_start_time_ns(rq),
4406 					     rq_io_start_time_ns(rq),
4407 					     rq->cmd_flags);
4408 
4409 	if (likely(rq->rq_flags & RQF_STARTED)) {
4410 		unsigned long flags;
4411 
4412 		spin_lock_irqsave(&bfqd->lock, flags);
4413 
4414 		bfq_completed_request(bfqq, bfqd);
4415 		bfq_put_rq_priv_body(bfqq);
4416 
4417 		spin_unlock_irqrestore(&bfqd->lock, flags);
4418 	} else {
4419 		/*
4420 		 * Request rq may be still/already in the scheduler,
4421 		 * in which case we need to remove it. And we cannot
4422 		 * defer such a check and removal, to avoid
4423 		 * inconsistencies in the time interval from the end
4424 		 * of this function to the start of the deferred work.
4425 		 * This situation seems to occur only in process
4426 		 * context, as a consequence of a merge. In the
4427 		 * current version of the code, this implies that the
4428 		 * lock is held.
4429 		 */
4430 
4431 		if (!RB_EMPTY_NODE(&rq->rb_node))
4432 			bfq_remove_request(rq->q, rq);
4433 		bfq_put_rq_priv_body(bfqq);
4434 	}
4435 
4436 	rq->elv.priv[0] = NULL;
4437 	rq->elv.priv[1] = NULL;
4438 }
4439 
4440 /*
4441  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4442  * was the last process referring to that bfqq.
4443  */
4444 static struct bfq_queue *
4445 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4446 {
4447 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4448 
4449 	if (bfqq_process_refs(bfqq) == 1) {
4450 		bfqq->pid = current->pid;
4451 		bfq_clear_bfqq_coop(bfqq);
4452 		bfq_clear_bfqq_split_coop(bfqq);
4453 		return bfqq;
4454 	}
4455 
4456 	bic_set_bfqq(bic, NULL, 1);
4457 
4458 	bfq_put_cooperator(bfqq);
4459 
4460 	bfq_put_queue(bfqq);
4461 	return NULL;
4462 }
4463 
4464 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4465 						   struct bfq_io_cq *bic,
4466 						   struct bio *bio,
4467 						   bool split, bool is_sync,
4468 						   bool *new_queue)
4469 {
4470 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4471 
4472 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4473 		return bfqq;
4474 
4475 	if (new_queue)
4476 		*new_queue = true;
4477 
4478 	if (bfqq)
4479 		bfq_put_queue(bfqq);
4480 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4481 
4482 	bic_set_bfqq(bic, bfqq, is_sync);
4483 	if (split && is_sync) {
4484 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4485 		    bic->saved_in_large_burst)
4486 			bfq_mark_bfqq_in_large_burst(bfqq);
4487 		else {
4488 			bfq_clear_bfqq_in_large_burst(bfqq);
4489 			if (bic->was_in_burst_list)
4490 				/*
4491 				 * If bfqq was in the current
4492 				 * burst list before being
4493 				 * merged, then we have to add
4494 				 * it back. And we do not need
4495 				 * to increase burst_size, as
4496 				 * we did not decrement
4497 				 * burst_size when we removed
4498 				 * bfqq from the burst list as
4499 				 * a consequence of a merge
4500 				 * (see comments in
4501 				 * bfq_put_queue). In this
4502 				 * respect, it would be rather
4503 				 * costly to know whether the
4504 				 * current burst list is still
4505 				 * the same burst list from
4506 				 * which bfqq was removed on
4507 				 * the merge. To avoid this
4508 				 * cost, if bfqq was in a
4509 				 * burst list, then we add
4510 				 * bfqq to the current burst
4511 				 * list without any further
4512 				 * check. This can cause
4513 				 * inappropriate insertions,
4514 				 * but rarely enough to not
4515 				 * harm the detection of large
4516 				 * bursts significantly.
4517 				 */
4518 				hlist_add_head(&bfqq->burst_list_node,
4519 					       &bfqd->burst_list);
4520 		}
4521 		bfqq->split_time = jiffies;
4522 	}
4523 
4524 	return bfqq;
4525 }
4526 
4527 /*
4528  * Allocate bfq data structures associated with this request.
4529  */
4530 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4531 {
4532 	struct request_queue *q = rq->q;
4533 	struct bfq_data *bfqd = q->elevator->elevator_data;
4534 	struct bfq_io_cq *bic;
4535 	const int is_sync = rq_is_sync(rq);
4536 	struct bfq_queue *bfqq;
4537 	bool new_queue = false;
4538 	bool bfqq_already_existing = false, split = false;
4539 
4540 	if (!rq->elv.icq)
4541 		return;
4542 	bic = icq_to_bic(rq->elv.icq);
4543 
4544 	spin_lock_irq(&bfqd->lock);
4545 
4546 	bfq_check_ioprio_change(bic, bio);
4547 
4548 	bfq_bic_update_cgroup(bic, bio);
4549 
4550 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4551 					 &new_queue);
4552 
4553 	if (likely(!new_queue)) {
4554 		/* If the queue was seeky for too long, break it apart. */
4555 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4556 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4557 
4558 			/* Update bic before losing reference to bfqq */
4559 			if (bfq_bfqq_in_large_burst(bfqq))
4560 				bic->saved_in_large_burst = true;
4561 
4562 			bfqq = bfq_split_bfqq(bic, bfqq);
4563 			split = true;
4564 
4565 			if (!bfqq)
4566 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4567 								 true, is_sync,
4568 								 NULL);
4569 			else
4570 				bfqq_already_existing = true;
4571 		}
4572 	}
4573 
4574 	bfqq->allocated++;
4575 	bfqq->ref++;
4576 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4577 		     rq, bfqq, bfqq->ref);
4578 
4579 	rq->elv.priv[0] = bic;
4580 	rq->elv.priv[1] = bfqq;
4581 
4582 	/*
4583 	 * If a bfq_queue has only one process reference, it is owned
4584 	 * by only this bic: we can then set bfqq->bic = bic. in
4585 	 * addition, if the queue has also just been split, we have to
4586 	 * resume its state.
4587 	 */
4588 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4589 		bfqq->bic = bic;
4590 		if (split) {
4591 			/*
4592 			 * The queue has just been split from a shared
4593 			 * queue: restore the idle window and the
4594 			 * possible weight raising period.
4595 			 */
4596 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
4597 					      bfqq_already_existing);
4598 		}
4599 	}
4600 
4601 	if (unlikely(bfq_bfqq_just_created(bfqq)))
4602 		bfq_handle_burst(bfqd, bfqq);
4603 
4604 	spin_unlock_irq(&bfqd->lock);
4605 }
4606 
4607 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4608 {
4609 	struct bfq_data *bfqd = bfqq->bfqd;
4610 	enum bfqq_expiration reason;
4611 	unsigned long flags;
4612 
4613 	spin_lock_irqsave(&bfqd->lock, flags);
4614 	bfq_clear_bfqq_wait_request(bfqq);
4615 
4616 	if (bfqq != bfqd->in_service_queue) {
4617 		spin_unlock_irqrestore(&bfqd->lock, flags);
4618 		return;
4619 	}
4620 
4621 	if (bfq_bfqq_budget_timeout(bfqq))
4622 		/*
4623 		 * Also here the queue can be safely expired
4624 		 * for budget timeout without wasting
4625 		 * guarantees
4626 		 */
4627 		reason = BFQQE_BUDGET_TIMEOUT;
4628 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4629 		/*
4630 		 * The queue may not be empty upon timer expiration,
4631 		 * because we may not disable the timer when the
4632 		 * first request of the in-service queue arrives
4633 		 * during disk idling.
4634 		 */
4635 		reason = BFQQE_TOO_IDLE;
4636 	else
4637 		goto schedule_dispatch;
4638 
4639 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
4640 
4641 schedule_dispatch:
4642 	spin_unlock_irqrestore(&bfqd->lock, flags);
4643 	bfq_schedule_dispatch(bfqd);
4644 }
4645 
4646 /*
4647  * Handler of the expiration of the timer running if the in-service queue
4648  * is idling inside its time slice.
4649  */
4650 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4651 {
4652 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4653 					     idle_slice_timer);
4654 	struct bfq_queue *bfqq = bfqd->in_service_queue;
4655 
4656 	/*
4657 	 * Theoretical race here: the in-service queue can be NULL or
4658 	 * different from the queue that was idling if a new request
4659 	 * arrives for the current queue and there is a full dispatch
4660 	 * cycle that changes the in-service queue.  This can hardly
4661 	 * happen, but in the worst case we just expire a queue too
4662 	 * early.
4663 	 */
4664 	if (bfqq)
4665 		bfq_idle_slice_timer_body(bfqq);
4666 
4667 	return HRTIMER_NORESTART;
4668 }
4669 
4670 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4671 				 struct bfq_queue **bfqq_ptr)
4672 {
4673 	struct bfq_queue *bfqq = *bfqq_ptr;
4674 
4675 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4676 	if (bfqq) {
4677 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4678 
4679 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4680 			     bfqq, bfqq->ref);
4681 		bfq_put_queue(bfqq);
4682 		*bfqq_ptr = NULL;
4683 	}
4684 }
4685 
4686 /*
4687  * Release all the bfqg references to its async queues.  If we are
4688  * deallocating the group these queues may still contain requests, so
4689  * we reparent them to the root cgroup (i.e., the only one that will
4690  * exist for sure until all the requests on a device are gone).
4691  */
4692 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
4693 {
4694 	int i, j;
4695 
4696 	for (i = 0; i < 2; i++)
4697 		for (j = 0; j < IOPRIO_BE_NR; j++)
4698 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
4699 
4700 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
4701 }
4702 
4703 static void bfq_exit_queue(struct elevator_queue *e)
4704 {
4705 	struct bfq_data *bfqd = e->elevator_data;
4706 	struct bfq_queue *bfqq, *n;
4707 
4708 	hrtimer_cancel(&bfqd->idle_slice_timer);
4709 
4710 	spin_lock_irq(&bfqd->lock);
4711 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
4712 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
4713 	spin_unlock_irq(&bfqd->lock);
4714 
4715 	hrtimer_cancel(&bfqd->idle_slice_timer);
4716 
4717 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4718 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4719 #else
4720 	spin_lock_irq(&bfqd->lock);
4721 	bfq_put_async_queues(bfqd, bfqd->root_group);
4722 	kfree(bfqd->root_group);
4723 	spin_unlock_irq(&bfqd->lock);
4724 #endif
4725 
4726 	kfree(bfqd);
4727 }
4728 
4729 static void bfq_init_root_group(struct bfq_group *root_group,
4730 				struct bfq_data *bfqd)
4731 {
4732 	int i;
4733 
4734 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4735 	root_group->entity.parent = NULL;
4736 	root_group->my_entity = NULL;
4737 	root_group->bfqd = bfqd;
4738 #endif
4739 	root_group->rq_pos_tree = RB_ROOT;
4740 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4741 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4742 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
4743 }
4744 
4745 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4746 {
4747 	struct bfq_data *bfqd;
4748 	struct elevator_queue *eq;
4749 
4750 	eq = elevator_alloc(q, e);
4751 	if (!eq)
4752 		return -ENOMEM;
4753 
4754 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4755 	if (!bfqd) {
4756 		kobject_put(&eq->kobj);
4757 		return -ENOMEM;
4758 	}
4759 	eq->elevator_data = bfqd;
4760 
4761 	spin_lock_irq(q->queue_lock);
4762 	q->elevator = eq;
4763 	spin_unlock_irq(q->queue_lock);
4764 
4765 	/*
4766 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4767 	 * Grab a permanent reference to it, so that the normal code flow
4768 	 * will not attempt to free it.
4769 	 */
4770 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4771 	bfqd->oom_bfqq.ref++;
4772 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4773 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4774 	bfqd->oom_bfqq.entity.new_weight =
4775 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
4776 
4777 	/* oom_bfqq does not participate to bursts */
4778 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4779 
4780 	/*
4781 	 * Trigger weight initialization, according to ioprio, at the
4782 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4783 	 * class won't be changed any more.
4784 	 */
4785 	bfqd->oom_bfqq.entity.prio_changed = 1;
4786 
4787 	bfqd->queue = q;
4788 
4789 	INIT_LIST_HEAD(&bfqd->dispatch);
4790 
4791 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4792 		     HRTIMER_MODE_REL);
4793 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4794 
4795 	bfqd->queue_weights_tree = RB_ROOT;
4796 	bfqd->group_weights_tree = RB_ROOT;
4797 
4798 	INIT_LIST_HEAD(&bfqd->active_list);
4799 	INIT_LIST_HEAD(&bfqd->idle_list);
4800 	INIT_HLIST_HEAD(&bfqd->burst_list);
4801 
4802 	bfqd->hw_tag = -1;
4803 
4804 	bfqd->bfq_max_budget = bfq_default_max_budget;
4805 
4806 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4807 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4808 	bfqd->bfq_back_max = bfq_back_max;
4809 	bfqd->bfq_back_penalty = bfq_back_penalty;
4810 	bfqd->bfq_slice_idle = bfq_slice_idle;
4811 	bfqd->bfq_timeout = bfq_timeout;
4812 
4813 	bfqd->bfq_requests_within_timer = 120;
4814 
4815 	bfqd->bfq_large_burst_thresh = 8;
4816 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4817 
4818 	bfqd->low_latency = true;
4819 
4820 	/*
4821 	 * Trade-off between responsiveness and fairness.
4822 	 */
4823 	bfqd->bfq_wr_coeff = 30;
4824 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
4825 	bfqd->bfq_wr_max_time = 0;
4826 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4827 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
4828 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
4829 					      * Approximate rate required
4830 					      * to playback or record a
4831 					      * high-definition compressed
4832 					      * video.
4833 					      */
4834 	bfqd->wr_busy_queues = 0;
4835 
4836 	/*
4837 	 * Begin by assuming, optimistically, that the device is a
4838 	 * high-speed one, and that its peak rate is equal to 2/3 of
4839 	 * the highest reference rate.
4840 	 */
4841 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4842 			T_fast[blk_queue_nonrot(bfqd->queue)];
4843 	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4844 	bfqd->device_speed = BFQ_BFQD_FAST;
4845 
4846 	spin_lock_init(&bfqd->lock);
4847 
4848 	/*
4849 	 * The invocation of the next bfq_create_group_hierarchy
4850 	 * function is the head of a chain of function calls
4851 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4852 	 * blk_mq_freeze_queue) that may lead to the invocation of the
4853 	 * has_work hook function. For this reason,
4854 	 * bfq_create_group_hierarchy is invoked only after all
4855 	 * scheduler data has been initialized, apart from the fields
4856 	 * that can be initialized only after invoking
4857 	 * bfq_create_group_hierarchy. This, in particular, enables
4858 	 * has_work to correctly return false. Of course, to avoid
4859 	 * other inconsistencies, the blk-mq stack must then refrain
4860 	 * from invoking further scheduler hooks before this init
4861 	 * function is finished.
4862 	 */
4863 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4864 	if (!bfqd->root_group)
4865 		goto out_free;
4866 	bfq_init_root_group(bfqd->root_group, bfqd);
4867 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4868 
4869 	wbt_disable_default(q);
4870 	return 0;
4871 
4872 out_free:
4873 	kfree(bfqd);
4874 	kobject_put(&eq->kobj);
4875 	return -ENOMEM;
4876 }
4877 
4878 static void bfq_slab_kill(void)
4879 {
4880 	kmem_cache_destroy(bfq_pool);
4881 }
4882 
4883 static int __init bfq_slab_setup(void)
4884 {
4885 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
4886 	if (!bfq_pool)
4887 		return -ENOMEM;
4888 	return 0;
4889 }
4890 
4891 static ssize_t bfq_var_show(unsigned int var, char *page)
4892 {
4893 	return sprintf(page, "%u\n", var);
4894 }
4895 
4896 static int bfq_var_store(unsigned long *var, const char *page)
4897 {
4898 	unsigned long new_val;
4899 	int ret = kstrtoul(page, 10, &new_val);
4900 
4901 	if (ret)
4902 		return ret;
4903 	*var = new_val;
4904 	return 0;
4905 }
4906 
4907 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4908 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4909 {									\
4910 	struct bfq_data *bfqd = e->elevator_data;			\
4911 	u64 __data = __VAR;						\
4912 	if (__CONV == 1)						\
4913 		__data = jiffies_to_msecs(__data);			\
4914 	else if (__CONV == 2)						\
4915 		__data = div_u64(__data, NSEC_PER_MSEC);		\
4916 	return bfq_var_show(__data, (page));				\
4917 }
4918 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4919 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4920 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4921 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4922 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4923 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4924 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4925 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
4926 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
4927 #undef SHOW_FUNCTION
4928 
4929 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4930 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4931 {									\
4932 	struct bfq_data *bfqd = e->elevator_data;			\
4933 	u64 __data = __VAR;						\
4934 	__data = div_u64(__data, NSEC_PER_USEC);			\
4935 	return bfq_var_show(__data, (page));				\
4936 }
4937 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4938 #undef USEC_SHOW_FUNCTION
4939 
4940 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4941 static ssize_t								\
4942 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4943 {									\
4944 	struct bfq_data *bfqd = e->elevator_data;			\
4945 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4946 	int ret;							\
4947 									\
4948 	ret = bfq_var_store(&__data, (page));				\
4949 	if (ret)							\
4950 		return ret;						\
4951 	if (__data < __min)						\
4952 		__data = __min;						\
4953 	else if (__data > __max)					\
4954 		__data = __max;						\
4955 	if (__CONV == 1)						\
4956 		*(__PTR) = msecs_to_jiffies(__data);			\
4957 	else if (__CONV == 2)						\
4958 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4959 	else								\
4960 		*(__PTR) = __data;					\
4961 	return count;							\
4962 }
4963 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4964 		INT_MAX, 2);
4965 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4966 		INT_MAX, 2);
4967 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4968 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4969 		INT_MAX, 0);
4970 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4971 #undef STORE_FUNCTION
4972 
4973 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4974 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4975 {									\
4976 	struct bfq_data *bfqd = e->elevator_data;			\
4977 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4978 	int ret;							\
4979 									\
4980 	ret = bfq_var_store(&__data, (page));				\
4981 	if (ret)							\
4982 		return ret;						\
4983 	if (__data < __min)						\
4984 		__data = __min;						\
4985 	else if (__data > __max)					\
4986 		__data = __max;						\
4987 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4988 	return count;							\
4989 }
4990 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4991 		    UINT_MAX);
4992 #undef USEC_STORE_FUNCTION
4993 
4994 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4995 				    const char *page, size_t count)
4996 {
4997 	struct bfq_data *bfqd = e->elevator_data;
4998 	unsigned long __data;
4999 	int ret;
5000 
5001 	ret = bfq_var_store(&__data, (page));
5002 	if (ret)
5003 		return ret;
5004 
5005 	if (__data == 0)
5006 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5007 	else {
5008 		if (__data > INT_MAX)
5009 			__data = INT_MAX;
5010 		bfqd->bfq_max_budget = __data;
5011 	}
5012 
5013 	bfqd->bfq_user_max_budget = __data;
5014 
5015 	return count;
5016 }
5017 
5018 /*
5019  * Leaving this name to preserve name compatibility with cfq
5020  * parameters, but this timeout is used for both sync and async.
5021  */
5022 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5023 				      const char *page, size_t count)
5024 {
5025 	struct bfq_data *bfqd = e->elevator_data;
5026 	unsigned long __data;
5027 	int ret;
5028 
5029 	ret = bfq_var_store(&__data, (page));
5030 	if (ret)
5031 		return ret;
5032 
5033 	if (__data < 1)
5034 		__data = 1;
5035 	else if (__data > INT_MAX)
5036 		__data = INT_MAX;
5037 
5038 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5039 	if (bfqd->bfq_user_max_budget == 0)
5040 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5041 
5042 	return count;
5043 }
5044 
5045 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5046 				     const char *page, size_t count)
5047 {
5048 	struct bfq_data *bfqd = e->elevator_data;
5049 	unsigned long __data;
5050 	int ret;
5051 
5052 	ret = bfq_var_store(&__data, (page));
5053 	if (ret)
5054 		return ret;
5055 
5056 	if (__data > 1)
5057 		__data = 1;
5058 	if (!bfqd->strict_guarantees && __data == 1
5059 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5060 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5061 
5062 	bfqd->strict_guarantees = __data;
5063 
5064 	return count;
5065 }
5066 
5067 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5068 				     const char *page, size_t count)
5069 {
5070 	struct bfq_data *bfqd = e->elevator_data;
5071 	unsigned long __data;
5072 	int ret;
5073 
5074 	ret = bfq_var_store(&__data, (page));
5075 	if (ret)
5076 		return ret;
5077 
5078 	if (__data > 1)
5079 		__data = 1;
5080 	if (__data == 0 && bfqd->low_latency != 0)
5081 		bfq_end_wr(bfqd);
5082 	bfqd->low_latency = __data;
5083 
5084 	return count;
5085 }
5086 
5087 #define BFQ_ATTR(name) \
5088 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5089 
5090 static struct elv_fs_entry bfq_attrs[] = {
5091 	BFQ_ATTR(fifo_expire_sync),
5092 	BFQ_ATTR(fifo_expire_async),
5093 	BFQ_ATTR(back_seek_max),
5094 	BFQ_ATTR(back_seek_penalty),
5095 	BFQ_ATTR(slice_idle),
5096 	BFQ_ATTR(slice_idle_us),
5097 	BFQ_ATTR(max_budget),
5098 	BFQ_ATTR(timeout_sync),
5099 	BFQ_ATTR(strict_guarantees),
5100 	BFQ_ATTR(low_latency),
5101 	__ATTR_NULL
5102 };
5103 
5104 static struct elevator_type iosched_bfq_mq = {
5105 	.ops.mq = {
5106 		.prepare_request	= bfq_prepare_request,
5107 		.finish_request		= bfq_finish_request,
5108 		.exit_icq		= bfq_exit_icq,
5109 		.insert_requests	= bfq_insert_requests,
5110 		.dispatch_request	= bfq_dispatch_request,
5111 		.next_request		= elv_rb_latter_request,
5112 		.former_request		= elv_rb_former_request,
5113 		.allow_merge		= bfq_allow_bio_merge,
5114 		.bio_merge		= bfq_bio_merge,
5115 		.request_merge		= bfq_request_merge,
5116 		.requests_merged	= bfq_requests_merged,
5117 		.request_merged		= bfq_request_merged,
5118 		.has_work		= bfq_has_work,
5119 		.init_sched		= bfq_init_queue,
5120 		.exit_sched		= bfq_exit_queue,
5121 	},
5122 
5123 	.uses_mq =		true,
5124 	.icq_size =		sizeof(struct bfq_io_cq),
5125 	.icq_align =		__alignof__(struct bfq_io_cq),
5126 	.elevator_attrs =	bfq_attrs,
5127 	.elevator_name =	"bfq",
5128 	.elevator_owner =	THIS_MODULE,
5129 };
5130 MODULE_ALIAS("bfq-iosched");
5131 
5132 static int __init bfq_init(void)
5133 {
5134 	int ret;
5135 
5136 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5137 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5138 	if (ret)
5139 		return ret;
5140 #endif
5141 
5142 	ret = -ENOMEM;
5143 	if (bfq_slab_setup())
5144 		goto err_pol_unreg;
5145 
5146 	/*
5147 	 * Times to load large popular applications for the typical
5148 	 * systems installed on the reference devices (see the
5149 	 * comments before the definitions of the next two
5150 	 * arrays). Actually, we use slightly slower values, as the
5151 	 * estimated peak rate tends to be smaller than the actual
5152 	 * peak rate.  The reason for this last fact is that estimates
5153 	 * are computed over much shorter time intervals than the long
5154 	 * intervals typically used for benchmarking. Why? First, to
5155 	 * adapt more quickly to variations. Second, because an I/O
5156 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5157 	 * be run for a long time.
5158 	 */
5159 	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5160 	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5161 	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5162 	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5163 
5164 	/*
5165 	 * Thresholds that determine the switch between speed classes
5166 	 * (see the comments before the definition of the array
5167 	 * device_speed_thresh). These thresholds are biased towards
5168 	 * transitions to the fast class. This is safer than the
5169 	 * opposite bias. In fact, a wrong transition to the slow
5170 	 * class results in short weight-raising periods, because the
5171 	 * speed of the device then tends to be higher that the
5172 	 * reference peak rate. On the opposite end, a wrong
5173 	 * transition to the fast class tends to increase
5174 	 * weight-raising periods, because of the opposite reason.
5175 	 */
5176 	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5177 	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5178 
5179 	ret = elv_register(&iosched_bfq_mq);
5180 	if (ret)
5181 		goto slab_kill;
5182 
5183 	return 0;
5184 
5185 slab_kill:
5186 	bfq_slab_kill();
5187 err_pol_unreg:
5188 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5189 	blkcg_policy_unregister(&blkcg_policy_bfq);
5190 #endif
5191 	return ret;
5192 }
5193 
5194 static void __exit bfq_exit(void)
5195 {
5196 	elv_unregister(&iosched_bfq_mq);
5197 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5198 	blkcg_policy_unregister(&blkcg_policy_bfq);
5199 #endif
5200 	bfq_slab_kill();
5201 }
5202 
5203 module_init(bfq_init);
5204 module_exit(bfq_exit);
5205 
5206 MODULE_AUTHOR("Paolo Valente");
5207 MODULE_LICENSE("GPL");
5208 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5209