1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 #include <linux/crash_dump.h> 51 52 #include <trace/events/xen.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/tlbflush.h> 56 #include <asm/fixmap.h> 57 #include <asm/mmu_context.h> 58 #include <asm/setup.h> 59 #include <asm/paravirt.h> 60 #include <asm/e820.h> 61 #include <asm/linkage.h> 62 #include <asm/page.h> 63 #include <asm/init.h> 64 #include <asm/pat.h> 65 #include <asm/smp.h> 66 67 #include <asm/xen/hypercall.h> 68 #include <asm/xen/hypervisor.h> 69 70 #include <xen/xen.h> 71 #include <xen/page.h> 72 #include <xen/interface/xen.h> 73 #include <xen/interface/hvm/hvm_op.h> 74 #include <xen/interface/version.h> 75 #include <xen/interface/memory.h> 76 #include <xen/hvc-console.h> 77 78 #include "multicalls.h" 79 #include "mmu.h" 80 #include "debugfs.h" 81 82 /* 83 * Protects atomic reservation decrease/increase against concurrent increases. 84 * Also protects non-atomic updates of current_pages and balloon lists. 85 */ 86 DEFINE_SPINLOCK(xen_reservation_lock); 87 88 #ifdef CONFIG_X86_32 89 /* 90 * Identity map, in addition to plain kernel map. This needs to be 91 * large enough to allocate page table pages to allocate the rest. 92 * Each page can map 2MB. 93 */ 94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 96 #endif 97 #ifdef CONFIG_X86_64 98 /* l3 pud for userspace vsyscall mapping */ 99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 100 #endif /* CONFIG_X86_64 */ 101 102 /* 103 * Note about cr3 (pagetable base) values: 104 * 105 * xen_cr3 contains the current logical cr3 value; it contains the 106 * last set cr3. This may not be the current effective cr3, because 107 * its update may be being lazily deferred. However, a vcpu looking 108 * at its own cr3 can use this value knowing that it everything will 109 * be self-consistent. 110 * 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 112 * hypercall to set the vcpu cr3 is complete (so it may be a little 113 * out of date, but it will never be set early). If one vcpu is 114 * looking at another vcpu's cr3 value, it should use this variable. 115 */ 116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 118 119 120 /* 121 * Just beyond the highest usermode address. STACK_TOP_MAX has a 122 * redzone above it, so round it up to a PGD boundary. 123 */ 124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 125 126 unsigned long arbitrary_virt_to_mfn(void *vaddr) 127 { 128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 129 130 return PFN_DOWN(maddr.maddr); 131 } 132 133 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 134 { 135 unsigned long address = (unsigned long)vaddr; 136 unsigned int level; 137 pte_t *pte; 138 unsigned offset; 139 140 /* 141 * if the PFN is in the linear mapped vaddr range, we can just use 142 * the (quick) virt_to_machine() p2m lookup 143 */ 144 if (virt_addr_valid(vaddr)) 145 return virt_to_machine(vaddr); 146 147 /* otherwise we have to do a (slower) full page-table walk */ 148 149 pte = lookup_address(address, &level); 150 BUG_ON(pte == NULL); 151 offset = address & ~PAGE_MASK; 152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 153 } 154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 155 156 void make_lowmem_page_readonly(void *vaddr) 157 { 158 pte_t *pte, ptev; 159 unsigned long address = (unsigned long)vaddr; 160 unsigned int level; 161 162 pte = lookup_address(address, &level); 163 if (pte == NULL) 164 return; /* vaddr missing */ 165 166 ptev = pte_wrprotect(*pte); 167 168 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 169 BUG(); 170 } 171 172 void make_lowmem_page_readwrite(void *vaddr) 173 { 174 pte_t *pte, ptev; 175 unsigned long address = (unsigned long)vaddr; 176 unsigned int level; 177 178 pte = lookup_address(address, &level); 179 if (pte == NULL) 180 return; /* vaddr missing */ 181 182 ptev = pte_mkwrite(*pte); 183 184 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 185 BUG(); 186 } 187 188 189 static bool xen_page_pinned(void *ptr) 190 { 191 struct page *page = virt_to_page(ptr); 192 193 return PagePinned(page); 194 } 195 196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 197 { 198 struct multicall_space mcs; 199 struct mmu_update *u; 200 201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 202 203 mcs = xen_mc_entry(sizeof(*u)); 204 u = mcs.args; 205 206 /* ptep might be kmapped when using 32-bit HIGHPTE */ 207 u->ptr = virt_to_machine(ptep).maddr; 208 u->val = pte_val_ma(pteval); 209 210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 211 212 xen_mc_issue(PARAVIRT_LAZY_MMU); 213 } 214 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 215 216 static void xen_extend_mmu_update(const struct mmu_update *update) 217 { 218 struct multicall_space mcs; 219 struct mmu_update *u; 220 221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 222 223 if (mcs.mc != NULL) { 224 mcs.mc->args[1]++; 225 } else { 226 mcs = __xen_mc_entry(sizeof(*u)); 227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 228 } 229 230 u = mcs.args; 231 *u = *update; 232 } 233 234 static void xen_extend_mmuext_op(const struct mmuext_op *op) 235 { 236 struct multicall_space mcs; 237 struct mmuext_op *u; 238 239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 240 241 if (mcs.mc != NULL) { 242 mcs.mc->args[1]++; 243 } else { 244 mcs = __xen_mc_entry(sizeof(*u)); 245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 246 } 247 248 u = mcs.args; 249 *u = *op; 250 } 251 252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 253 { 254 struct mmu_update u; 255 256 preempt_disable(); 257 258 xen_mc_batch(); 259 260 /* ptr may be ioremapped for 64-bit pagetable setup */ 261 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 262 u.val = pmd_val_ma(val); 263 xen_extend_mmu_update(&u); 264 265 xen_mc_issue(PARAVIRT_LAZY_MMU); 266 267 preempt_enable(); 268 } 269 270 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 271 { 272 trace_xen_mmu_set_pmd(ptr, val); 273 274 /* If page is not pinned, we can just update the entry 275 directly */ 276 if (!xen_page_pinned(ptr)) { 277 *ptr = val; 278 return; 279 } 280 281 xen_set_pmd_hyper(ptr, val); 282 } 283 284 /* 285 * Associate a virtual page frame with a given physical page frame 286 * and protection flags for that frame. 287 */ 288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 289 { 290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 291 } 292 293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 294 { 295 struct mmu_update u; 296 297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 298 return false; 299 300 xen_mc_batch(); 301 302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 303 u.val = pte_val_ma(pteval); 304 xen_extend_mmu_update(&u); 305 306 xen_mc_issue(PARAVIRT_LAZY_MMU); 307 308 return true; 309 } 310 311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 312 { 313 if (!xen_batched_set_pte(ptep, pteval)) { 314 /* 315 * Could call native_set_pte() here and trap and 316 * emulate the PTE write but with 32-bit guests this 317 * needs two traps (one for each of the two 32-bit 318 * words in the PTE) so do one hypercall directly 319 * instead. 320 */ 321 struct mmu_update u; 322 323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 324 u.val = pte_val_ma(pteval); 325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 326 } 327 } 328 329 static void xen_set_pte(pte_t *ptep, pte_t pteval) 330 { 331 trace_xen_mmu_set_pte(ptep, pteval); 332 __xen_set_pte(ptep, pteval); 333 } 334 335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 336 pte_t *ptep, pte_t pteval) 337 { 338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 339 __xen_set_pte(ptep, pteval); 340 } 341 342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 343 unsigned long addr, pte_t *ptep) 344 { 345 /* Just return the pte as-is. We preserve the bits on commit */ 346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 347 return *ptep; 348 } 349 350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 351 pte_t *ptep, pte_t pte) 352 { 353 struct mmu_update u; 354 355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 356 xen_mc_batch(); 357 358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 359 u.val = pte_val_ma(pte); 360 xen_extend_mmu_update(&u); 361 362 xen_mc_issue(PARAVIRT_LAZY_MMU); 363 } 364 365 /* Assume pteval_t is equivalent to all the other *val_t types. */ 366 static pteval_t pte_mfn_to_pfn(pteval_t val) 367 { 368 if (val & _PAGE_PRESENT) { 369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 370 unsigned long pfn = mfn_to_pfn(mfn); 371 372 pteval_t flags = val & PTE_FLAGS_MASK; 373 if (unlikely(pfn == ~0)) 374 val = flags & ~_PAGE_PRESENT; 375 else 376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 377 } 378 379 return val; 380 } 381 382 static pteval_t pte_pfn_to_mfn(pteval_t val) 383 { 384 if (val & _PAGE_PRESENT) { 385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 386 pteval_t flags = val & PTE_FLAGS_MASK; 387 unsigned long mfn; 388 389 if (!xen_feature(XENFEAT_auto_translated_physmap)) 390 mfn = get_phys_to_machine(pfn); 391 else 392 mfn = pfn; 393 /* 394 * If there's no mfn for the pfn, then just create an 395 * empty non-present pte. Unfortunately this loses 396 * information about the original pfn, so 397 * pte_mfn_to_pfn is asymmetric. 398 */ 399 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 400 mfn = 0; 401 flags = 0; 402 } else 403 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 404 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 405 } 406 407 return val; 408 } 409 410 __visible pteval_t xen_pte_val(pte_t pte) 411 { 412 pteval_t pteval = pte.pte; 413 414 return pte_mfn_to_pfn(pteval); 415 } 416 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 417 418 __visible pgdval_t xen_pgd_val(pgd_t pgd) 419 { 420 return pte_mfn_to_pfn(pgd.pgd); 421 } 422 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 423 424 __visible pte_t xen_make_pte(pteval_t pte) 425 { 426 pte = pte_pfn_to_mfn(pte); 427 428 return native_make_pte(pte); 429 } 430 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 431 432 __visible pgd_t xen_make_pgd(pgdval_t pgd) 433 { 434 pgd = pte_pfn_to_mfn(pgd); 435 return native_make_pgd(pgd); 436 } 437 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 438 439 __visible pmdval_t xen_pmd_val(pmd_t pmd) 440 { 441 return pte_mfn_to_pfn(pmd.pmd); 442 } 443 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 444 445 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 446 { 447 struct mmu_update u; 448 449 preempt_disable(); 450 451 xen_mc_batch(); 452 453 /* ptr may be ioremapped for 64-bit pagetable setup */ 454 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 455 u.val = pud_val_ma(val); 456 xen_extend_mmu_update(&u); 457 458 xen_mc_issue(PARAVIRT_LAZY_MMU); 459 460 preempt_enable(); 461 } 462 463 static void xen_set_pud(pud_t *ptr, pud_t val) 464 { 465 trace_xen_mmu_set_pud(ptr, val); 466 467 /* If page is not pinned, we can just update the entry 468 directly */ 469 if (!xen_page_pinned(ptr)) { 470 *ptr = val; 471 return; 472 } 473 474 xen_set_pud_hyper(ptr, val); 475 } 476 477 #ifdef CONFIG_X86_PAE 478 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 479 { 480 trace_xen_mmu_set_pte_atomic(ptep, pte); 481 set_64bit((u64 *)ptep, native_pte_val(pte)); 482 } 483 484 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 485 { 486 trace_xen_mmu_pte_clear(mm, addr, ptep); 487 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 488 native_pte_clear(mm, addr, ptep); 489 } 490 491 static void xen_pmd_clear(pmd_t *pmdp) 492 { 493 trace_xen_mmu_pmd_clear(pmdp); 494 set_pmd(pmdp, __pmd(0)); 495 } 496 #endif /* CONFIG_X86_PAE */ 497 498 __visible pmd_t xen_make_pmd(pmdval_t pmd) 499 { 500 pmd = pte_pfn_to_mfn(pmd); 501 return native_make_pmd(pmd); 502 } 503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 504 505 #if PAGETABLE_LEVELS == 4 506 __visible pudval_t xen_pud_val(pud_t pud) 507 { 508 return pte_mfn_to_pfn(pud.pud); 509 } 510 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 511 512 __visible pud_t xen_make_pud(pudval_t pud) 513 { 514 pud = pte_pfn_to_mfn(pud); 515 516 return native_make_pud(pud); 517 } 518 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 519 520 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 521 { 522 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 523 unsigned offset = pgd - pgd_page; 524 pgd_t *user_ptr = NULL; 525 526 if (offset < pgd_index(USER_LIMIT)) { 527 struct page *page = virt_to_page(pgd_page); 528 user_ptr = (pgd_t *)page->private; 529 if (user_ptr) 530 user_ptr += offset; 531 } 532 533 return user_ptr; 534 } 535 536 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 537 { 538 struct mmu_update u; 539 540 u.ptr = virt_to_machine(ptr).maddr; 541 u.val = pgd_val_ma(val); 542 xen_extend_mmu_update(&u); 543 } 544 545 /* 546 * Raw hypercall-based set_pgd, intended for in early boot before 547 * there's a page structure. This implies: 548 * 1. The only existing pagetable is the kernel's 549 * 2. It is always pinned 550 * 3. It has no user pagetable attached to it 551 */ 552 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 553 { 554 preempt_disable(); 555 556 xen_mc_batch(); 557 558 __xen_set_pgd_hyper(ptr, val); 559 560 xen_mc_issue(PARAVIRT_LAZY_MMU); 561 562 preempt_enable(); 563 } 564 565 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 566 { 567 pgd_t *user_ptr = xen_get_user_pgd(ptr); 568 569 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 570 571 /* If page is not pinned, we can just update the entry 572 directly */ 573 if (!xen_page_pinned(ptr)) { 574 *ptr = val; 575 if (user_ptr) { 576 WARN_ON(xen_page_pinned(user_ptr)); 577 *user_ptr = val; 578 } 579 return; 580 } 581 582 /* If it's pinned, then we can at least batch the kernel and 583 user updates together. */ 584 xen_mc_batch(); 585 586 __xen_set_pgd_hyper(ptr, val); 587 if (user_ptr) 588 __xen_set_pgd_hyper(user_ptr, val); 589 590 xen_mc_issue(PARAVIRT_LAZY_MMU); 591 } 592 #endif /* PAGETABLE_LEVELS == 4 */ 593 594 /* 595 * (Yet another) pagetable walker. This one is intended for pinning a 596 * pagetable. This means that it walks a pagetable and calls the 597 * callback function on each page it finds making up the page table, 598 * at every level. It walks the entire pagetable, but it only bothers 599 * pinning pte pages which are below limit. In the normal case this 600 * will be STACK_TOP_MAX, but at boot we need to pin up to 601 * FIXADDR_TOP. 602 * 603 * For 32-bit the important bit is that we don't pin beyond there, 604 * because then we start getting into Xen's ptes. 605 * 606 * For 64-bit, we must skip the Xen hole in the middle of the address 607 * space, just after the big x86-64 virtual hole. 608 */ 609 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 610 int (*func)(struct mm_struct *mm, struct page *, 611 enum pt_level), 612 unsigned long limit) 613 { 614 int flush = 0; 615 unsigned hole_low, hole_high; 616 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 617 unsigned pgdidx, pudidx, pmdidx; 618 619 /* The limit is the last byte to be touched */ 620 limit--; 621 BUG_ON(limit >= FIXADDR_TOP); 622 623 if (xen_feature(XENFEAT_auto_translated_physmap)) 624 return 0; 625 626 /* 627 * 64-bit has a great big hole in the middle of the address 628 * space, which contains the Xen mappings. On 32-bit these 629 * will end up making a zero-sized hole and so is a no-op. 630 */ 631 hole_low = pgd_index(USER_LIMIT); 632 hole_high = pgd_index(PAGE_OFFSET); 633 634 pgdidx_limit = pgd_index(limit); 635 #if PTRS_PER_PUD > 1 636 pudidx_limit = pud_index(limit); 637 #else 638 pudidx_limit = 0; 639 #endif 640 #if PTRS_PER_PMD > 1 641 pmdidx_limit = pmd_index(limit); 642 #else 643 pmdidx_limit = 0; 644 #endif 645 646 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 647 pud_t *pud; 648 649 if (pgdidx >= hole_low && pgdidx < hole_high) 650 continue; 651 652 if (!pgd_val(pgd[pgdidx])) 653 continue; 654 655 pud = pud_offset(&pgd[pgdidx], 0); 656 657 if (PTRS_PER_PUD > 1) /* not folded */ 658 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 659 660 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 661 pmd_t *pmd; 662 663 if (pgdidx == pgdidx_limit && 664 pudidx > pudidx_limit) 665 goto out; 666 667 if (pud_none(pud[pudidx])) 668 continue; 669 670 pmd = pmd_offset(&pud[pudidx], 0); 671 672 if (PTRS_PER_PMD > 1) /* not folded */ 673 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 674 675 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 676 struct page *pte; 677 678 if (pgdidx == pgdidx_limit && 679 pudidx == pudidx_limit && 680 pmdidx > pmdidx_limit) 681 goto out; 682 683 if (pmd_none(pmd[pmdidx])) 684 continue; 685 686 pte = pmd_page(pmd[pmdidx]); 687 flush |= (*func)(mm, pte, PT_PTE); 688 } 689 } 690 } 691 692 out: 693 /* Do the top level last, so that the callbacks can use it as 694 a cue to do final things like tlb flushes. */ 695 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 696 697 return flush; 698 } 699 700 static int xen_pgd_walk(struct mm_struct *mm, 701 int (*func)(struct mm_struct *mm, struct page *, 702 enum pt_level), 703 unsigned long limit) 704 { 705 return __xen_pgd_walk(mm, mm->pgd, func, limit); 706 } 707 708 /* If we're using split pte locks, then take the page's lock and 709 return a pointer to it. Otherwise return NULL. */ 710 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 711 { 712 spinlock_t *ptl = NULL; 713 714 #if USE_SPLIT_PTE_PTLOCKS 715 ptl = ptlock_ptr(page); 716 spin_lock_nest_lock(ptl, &mm->page_table_lock); 717 #endif 718 719 return ptl; 720 } 721 722 static void xen_pte_unlock(void *v) 723 { 724 spinlock_t *ptl = v; 725 spin_unlock(ptl); 726 } 727 728 static void xen_do_pin(unsigned level, unsigned long pfn) 729 { 730 struct mmuext_op op; 731 732 op.cmd = level; 733 op.arg1.mfn = pfn_to_mfn(pfn); 734 735 xen_extend_mmuext_op(&op); 736 } 737 738 static int xen_pin_page(struct mm_struct *mm, struct page *page, 739 enum pt_level level) 740 { 741 unsigned pgfl = TestSetPagePinned(page); 742 int flush; 743 744 if (pgfl) 745 flush = 0; /* already pinned */ 746 else if (PageHighMem(page)) 747 /* kmaps need flushing if we found an unpinned 748 highpage */ 749 flush = 1; 750 else { 751 void *pt = lowmem_page_address(page); 752 unsigned long pfn = page_to_pfn(page); 753 struct multicall_space mcs = __xen_mc_entry(0); 754 spinlock_t *ptl; 755 756 flush = 0; 757 758 /* 759 * We need to hold the pagetable lock between the time 760 * we make the pagetable RO and when we actually pin 761 * it. If we don't, then other users may come in and 762 * attempt to update the pagetable by writing it, 763 * which will fail because the memory is RO but not 764 * pinned, so Xen won't do the trap'n'emulate. 765 * 766 * If we're using split pte locks, we can't hold the 767 * entire pagetable's worth of locks during the 768 * traverse, because we may wrap the preempt count (8 769 * bits). The solution is to mark RO and pin each PTE 770 * page while holding the lock. This means the number 771 * of locks we end up holding is never more than a 772 * batch size (~32 entries, at present). 773 * 774 * If we're not using split pte locks, we needn't pin 775 * the PTE pages independently, because we're 776 * protected by the overall pagetable lock. 777 */ 778 ptl = NULL; 779 if (level == PT_PTE) 780 ptl = xen_pte_lock(page, mm); 781 782 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 783 pfn_pte(pfn, PAGE_KERNEL_RO), 784 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 785 786 if (ptl) { 787 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 788 789 /* Queue a deferred unlock for when this batch 790 is completed. */ 791 xen_mc_callback(xen_pte_unlock, ptl); 792 } 793 } 794 795 return flush; 796 } 797 798 /* This is called just after a mm has been created, but it has not 799 been used yet. We need to make sure that its pagetable is all 800 read-only, and can be pinned. */ 801 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 802 { 803 trace_xen_mmu_pgd_pin(mm, pgd); 804 805 xen_mc_batch(); 806 807 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 808 /* re-enable interrupts for flushing */ 809 xen_mc_issue(0); 810 811 kmap_flush_unused(); 812 813 xen_mc_batch(); 814 } 815 816 #ifdef CONFIG_X86_64 817 { 818 pgd_t *user_pgd = xen_get_user_pgd(pgd); 819 820 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 821 822 if (user_pgd) { 823 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 824 xen_do_pin(MMUEXT_PIN_L4_TABLE, 825 PFN_DOWN(__pa(user_pgd))); 826 } 827 } 828 #else /* CONFIG_X86_32 */ 829 #ifdef CONFIG_X86_PAE 830 /* Need to make sure unshared kernel PMD is pinnable */ 831 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 832 PT_PMD); 833 #endif 834 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 835 #endif /* CONFIG_X86_64 */ 836 xen_mc_issue(0); 837 } 838 839 static void xen_pgd_pin(struct mm_struct *mm) 840 { 841 __xen_pgd_pin(mm, mm->pgd); 842 } 843 844 /* 845 * On save, we need to pin all pagetables to make sure they get their 846 * mfns turned into pfns. Search the list for any unpinned pgds and pin 847 * them (unpinned pgds are not currently in use, probably because the 848 * process is under construction or destruction). 849 * 850 * Expected to be called in stop_machine() ("equivalent to taking 851 * every spinlock in the system"), so the locking doesn't really 852 * matter all that much. 853 */ 854 void xen_mm_pin_all(void) 855 { 856 struct page *page; 857 858 spin_lock(&pgd_lock); 859 860 list_for_each_entry(page, &pgd_list, lru) { 861 if (!PagePinned(page)) { 862 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 863 SetPageSavePinned(page); 864 } 865 } 866 867 spin_unlock(&pgd_lock); 868 } 869 870 /* 871 * The init_mm pagetable is really pinned as soon as its created, but 872 * that's before we have page structures to store the bits. So do all 873 * the book-keeping now. 874 */ 875 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 876 enum pt_level level) 877 { 878 SetPagePinned(page); 879 return 0; 880 } 881 882 static void __init xen_mark_init_mm_pinned(void) 883 { 884 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 885 } 886 887 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 888 enum pt_level level) 889 { 890 unsigned pgfl = TestClearPagePinned(page); 891 892 if (pgfl && !PageHighMem(page)) { 893 void *pt = lowmem_page_address(page); 894 unsigned long pfn = page_to_pfn(page); 895 spinlock_t *ptl = NULL; 896 struct multicall_space mcs; 897 898 /* 899 * Do the converse to pin_page. If we're using split 900 * pte locks, we must be holding the lock for while 901 * the pte page is unpinned but still RO to prevent 902 * concurrent updates from seeing it in this 903 * partially-pinned state. 904 */ 905 if (level == PT_PTE) { 906 ptl = xen_pte_lock(page, mm); 907 908 if (ptl) 909 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 910 } 911 912 mcs = __xen_mc_entry(0); 913 914 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 915 pfn_pte(pfn, PAGE_KERNEL), 916 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 917 918 if (ptl) { 919 /* unlock when batch completed */ 920 xen_mc_callback(xen_pte_unlock, ptl); 921 } 922 } 923 924 return 0; /* never need to flush on unpin */ 925 } 926 927 /* Release a pagetables pages back as normal RW */ 928 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 929 { 930 trace_xen_mmu_pgd_unpin(mm, pgd); 931 932 xen_mc_batch(); 933 934 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 935 936 #ifdef CONFIG_X86_64 937 { 938 pgd_t *user_pgd = xen_get_user_pgd(pgd); 939 940 if (user_pgd) { 941 xen_do_pin(MMUEXT_UNPIN_TABLE, 942 PFN_DOWN(__pa(user_pgd))); 943 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 944 } 945 } 946 #endif 947 948 #ifdef CONFIG_X86_PAE 949 /* Need to make sure unshared kernel PMD is unpinned */ 950 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 951 PT_PMD); 952 #endif 953 954 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 955 956 xen_mc_issue(0); 957 } 958 959 static void xen_pgd_unpin(struct mm_struct *mm) 960 { 961 __xen_pgd_unpin(mm, mm->pgd); 962 } 963 964 /* 965 * On resume, undo any pinning done at save, so that the rest of the 966 * kernel doesn't see any unexpected pinned pagetables. 967 */ 968 void xen_mm_unpin_all(void) 969 { 970 struct page *page; 971 972 spin_lock(&pgd_lock); 973 974 list_for_each_entry(page, &pgd_list, lru) { 975 if (PageSavePinned(page)) { 976 BUG_ON(!PagePinned(page)); 977 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 978 ClearPageSavePinned(page); 979 } 980 } 981 982 spin_unlock(&pgd_lock); 983 } 984 985 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 986 { 987 spin_lock(&next->page_table_lock); 988 xen_pgd_pin(next); 989 spin_unlock(&next->page_table_lock); 990 } 991 992 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 993 { 994 spin_lock(&mm->page_table_lock); 995 xen_pgd_pin(mm); 996 spin_unlock(&mm->page_table_lock); 997 } 998 999 1000 #ifdef CONFIG_SMP 1001 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1002 we need to repoint it somewhere else before we can unpin it. */ 1003 static void drop_other_mm_ref(void *info) 1004 { 1005 struct mm_struct *mm = info; 1006 struct mm_struct *active_mm; 1007 1008 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 1009 1010 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1011 leave_mm(smp_processor_id()); 1012 1013 /* If this cpu still has a stale cr3 reference, then make sure 1014 it has been flushed. */ 1015 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1016 load_cr3(swapper_pg_dir); 1017 } 1018 1019 static void xen_drop_mm_ref(struct mm_struct *mm) 1020 { 1021 cpumask_var_t mask; 1022 unsigned cpu; 1023 1024 if (current->active_mm == mm) { 1025 if (current->mm == mm) 1026 load_cr3(swapper_pg_dir); 1027 else 1028 leave_mm(smp_processor_id()); 1029 } 1030 1031 /* Get the "official" set of cpus referring to our pagetable. */ 1032 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1033 for_each_online_cpu(cpu) { 1034 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1035 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1036 continue; 1037 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1038 } 1039 return; 1040 } 1041 cpumask_copy(mask, mm_cpumask(mm)); 1042 1043 /* It's possible that a vcpu may have a stale reference to our 1044 cr3, because its in lazy mode, and it hasn't yet flushed 1045 its set of pending hypercalls yet. In this case, we can 1046 look at its actual current cr3 value, and force it to flush 1047 if needed. */ 1048 for_each_online_cpu(cpu) { 1049 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1050 cpumask_set_cpu(cpu, mask); 1051 } 1052 1053 if (!cpumask_empty(mask)) 1054 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1055 free_cpumask_var(mask); 1056 } 1057 #else 1058 static void xen_drop_mm_ref(struct mm_struct *mm) 1059 { 1060 if (current->active_mm == mm) 1061 load_cr3(swapper_pg_dir); 1062 } 1063 #endif 1064 1065 /* 1066 * While a process runs, Xen pins its pagetables, which means that the 1067 * hypervisor forces it to be read-only, and it controls all updates 1068 * to it. This means that all pagetable updates have to go via the 1069 * hypervisor, which is moderately expensive. 1070 * 1071 * Since we're pulling the pagetable down, we switch to use init_mm, 1072 * unpin old process pagetable and mark it all read-write, which 1073 * allows further operations on it to be simple memory accesses. 1074 * 1075 * The only subtle point is that another CPU may be still using the 1076 * pagetable because of lazy tlb flushing. This means we need need to 1077 * switch all CPUs off this pagetable before we can unpin it. 1078 */ 1079 static void xen_exit_mmap(struct mm_struct *mm) 1080 { 1081 get_cpu(); /* make sure we don't move around */ 1082 xen_drop_mm_ref(mm); 1083 put_cpu(); 1084 1085 spin_lock(&mm->page_table_lock); 1086 1087 /* pgd may not be pinned in the error exit path of execve */ 1088 if (xen_page_pinned(mm->pgd)) 1089 xen_pgd_unpin(mm); 1090 1091 spin_unlock(&mm->page_table_lock); 1092 } 1093 1094 static void xen_post_allocator_init(void); 1095 1096 #ifdef CONFIG_X86_64 1097 static void __init xen_cleanhighmap(unsigned long vaddr, 1098 unsigned long vaddr_end) 1099 { 1100 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1101 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1102 1103 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1104 * We include the PMD passed in on _both_ boundaries. */ 1105 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE)); 1106 pmd++, vaddr += PMD_SIZE) { 1107 if (pmd_none(*pmd)) 1108 continue; 1109 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1110 set_pmd(pmd, __pmd(0)); 1111 } 1112 /* In case we did something silly, we should crash in this function 1113 * instead of somewhere later and be confusing. */ 1114 xen_mc_flush(); 1115 } 1116 static void __init xen_pagetable_p2m_copy(void) 1117 { 1118 unsigned long size; 1119 unsigned long addr; 1120 unsigned long new_mfn_list; 1121 1122 if (xen_feature(XENFEAT_auto_translated_physmap)) 1123 return; 1124 1125 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1126 1127 new_mfn_list = xen_revector_p2m_tree(); 1128 /* No memory or already called. */ 1129 if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list) 1130 return; 1131 1132 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1133 memset((void *)xen_start_info->mfn_list, 0xff, size); 1134 1135 /* We should be in __ka space. */ 1136 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map); 1137 addr = xen_start_info->mfn_list; 1138 /* We roundup to the PMD, which means that if anybody at this stage is 1139 * using the __ka address of xen_start_info or xen_start_info->shared_info 1140 * they are in going to crash. Fortunatly we have already revectored 1141 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */ 1142 size = roundup(size, PMD_SIZE); 1143 xen_cleanhighmap(addr, addr + size); 1144 1145 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1146 memblock_free(__pa(xen_start_info->mfn_list), size); 1147 /* And revector! Bye bye old array */ 1148 xen_start_info->mfn_list = new_mfn_list; 1149 1150 /* At this stage, cleanup_highmap has already cleaned __ka space 1151 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1152 * the ramdisk). We continue on, erasing PMD entries that point to page 1153 * tables - do note that they are accessible at this stage via __va. 1154 * For good measure we also round up to the PMD - which means that if 1155 * anybody is using __ka address to the initial boot-stack - and try 1156 * to use it - they are going to crash. The xen_start_info has been 1157 * taken care of already in xen_setup_kernel_pagetable. */ 1158 addr = xen_start_info->pt_base; 1159 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); 1160 1161 xen_cleanhighmap(addr, addr + size); 1162 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1163 #ifdef DEBUG 1164 /* This is superflous and is not neccessary, but you know what 1165 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of 1166 * anything at this stage. */ 1167 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); 1168 #endif 1169 } 1170 #endif 1171 1172 static void __init xen_pagetable_init(void) 1173 { 1174 paging_init(); 1175 #ifdef CONFIG_X86_64 1176 xen_pagetable_p2m_copy(); 1177 #endif 1178 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1179 xen_build_mfn_list_list(); 1180 1181 xen_setup_shared_info(); 1182 xen_post_allocator_init(); 1183 } 1184 static void xen_write_cr2(unsigned long cr2) 1185 { 1186 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1187 } 1188 1189 static unsigned long xen_read_cr2(void) 1190 { 1191 return this_cpu_read(xen_vcpu)->arch.cr2; 1192 } 1193 1194 unsigned long xen_read_cr2_direct(void) 1195 { 1196 return this_cpu_read(xen_vcpu_info.arch.cr2); 1197 } 1198 1199 void xen_flush_tlb_all(void) 1200 { 1201 struct mmuext_op *op; 1202 struct multicall_space mcs; 1203 1204 trace_xen_mmu_flush_tlb_all(0); 1205 1206 preempt_disable(); 1207 1208 mcs = xen_mc_entry(sizeof(*op)); 1209 1210 op = mcs.args; 1211 op->cmd = MMUEXT_TLB_FLUSH_ALL; 1212 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1213 1214 xen_mc_issue(PARAVIRT_LAZY_MMU); 1215 1216 preempt_enable(); 1217 } 1218 static void xen_flush_tlb(void) 1219 { 1220 struct mmuext_op *op; 1221 struct multicall_space mcs; 1222 1223 trace_xen_mmu_flush_tlb(0); 1224 1225 preempt_disable(); 1226 1227 mcs = xen_mc_entry(sizeof(*op)); 1228 1229 op = mcs.args; 1230 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1231 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1232 1233 xen_mc_issue(PARAVIRT_LAZY_MMU); 1234 1235 preempt_enable(); 1236 } 1237 1238 static void xen_flush_tlb_single(unsigned long addr) 1239 { 1240 struct mmuext_op *op; 1241 struct multicall_space mcs; 1242 1243 trace_xen_mmu_flush_tlb_single(addr); 1244 1245 preempt_disable(); 1246 1247 mcs = xen_mc_entry(sizeof(*op)); 1248 op = mcs.args; 1249 op->cmd = MMUEXT_INVLPG_LOCAL; 1250 op->arg1.linear_addr = addr & PAGE_MASK; 1251 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1252 1253 xen_mc_issue(PARAVIRT_LAZY_MMU); 1254 1255 preempt_enable(); 1256 } 1257 1258 static void xen_flush_tlb_others(const struct cpumask *cpus, 1259 struct mm_struct *mm, unsigned long start, 1260 unsigned long end) 1261 { 1262 struct { 1263 struct mmuext_op op; 1264 #ifdef CONFIG_SMP 1265 DECLARE_BITMAP(mask, num_processors); 1266 #else 1267 DECLARE_BITMAP(mask, NR_CPUS); 1268 #endif 1269 } *args; 1270 struct multicall_space mcs; 1271 1272 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); 1273 1274 if (cpumask_empty(cpus)) 1275 return; /* nothing to do */ 1276 1277 mcs = xen_mc_entry(sizeof(*args)); 1278 args = mcs.args; 1279 args->op.arg2.vcpumask = to_cpumask(args->mask); 1280 1281 /* Remove us, and any offline CPUS. */ 1282 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1283 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1284 1285 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1286 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { 1287 args->op.cmd = MMUEXT_INVLPG_MULTI; 1288 args->op.arg1.linear_addr = start; 1289 } 1290 1291 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1292 1293 xen_mc_issue(PARAVIRT_LAZY_MMU); 1294 } 1295 1296 static unsigned long xen_read_cr3(void) 1297 { 1298 return this_cpu_read(xen_cr3); 1299 } 1300 1301 static void set_current_cr3(void *v) 1302 { 1303 this_cpu_write(xen_current_cr3, (unsigned long)v); 1304 } 1305 1306 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1307 { 1308 struct mmuext_op op; 1309 unsigned long mfn; 1310 1311 trace_xen_mmu_write_cr3(kernel, cr3); 1312 1313 if (cr3) 1314 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1315 else 1316 mfn = 0; 1317 1318 WARN_ON(mfn == 0 && kernel); 1319 1320 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1321 op.arg1.mfn = mfn; 1322 1323 xen_extend_mmuext_op(&op); 1324 1325 if (kernel) { 1326 this_cpu_write(xen_cr3, cr3); 1327 1328 /* Update xen_current_cr3 once the batch has actually 1329 been submitted. */ 1330 xen_mc_callback(set_current_cr3, (void *)cr3); 1331 } 1332 } 1333 static void xen_write_cr3(unsigned long cr3) 1334 { 1335 BUG_ON(preemptible()); 1336 1337 xen_mc_batch(); /* disables interrupts */ 1338 1339 /* Update while interrupts are disabled, so its atomic with 1340 respect to ipis */ 1341 this_cpu_write(xen_cr3, cr3); 1342 1343 __xen_write_cr3(true, cr3); 1344 1345 #ifdef CONFIG_X86_64 1346 { 1347 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1348 if (user_pgd) 1349 __xen_write_cr3(false, __pa(user_pgd)); 1350 else 1351 __xen_write_cr3(false, 0); 1352 } 1353 #endif 1354 1355 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1356 } 1357 1358 #ifdef CONFIG_X86_64 1359 /* 1360 * At the start of the day - when Xen launches a guest, it has already 1361 * built pagetables for the guest. We diligently look over them 1362 * in xen_setup_kernel_pagetable and graft as appropiate them in the 1363 * init_level4_pgt and its friends. Then when we are happy we load 1364 * the new init_level4_pgt - and continue on. 1365 * 1366 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1367 * up the rest of the pagetables. When it has completed it loads the cr3. 1368 * N.B. that baremetal would start at 'start_kernel' (and the early 1369 * #PF handler would create bootstrap pagetables) - so we are running 1370 * with the same assumptions as what to do when write_cr3 is executed 1371 * at this point. 1372 * 1373 * Since there are no user-page tables at all, we have two variants 1374 * of xen_write_cr3 - the early bootup (this one), and the late one 1375 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1376 * the Linux kernel and user-space are both in ring 3 while the 1377 * hypervisor is in ring 0. 1378 */ 1379 static void __init xen_write_cr3_init(unsigned long cr3) 1380 { 1381 BUG_ON(preemptible()); 1382 1383 xen_mc_batch(); /* disables interrupts */ 1384 1385 /* Update while interrupts are disabled, so its atomic with 1386 respect to ipis */ 1387 this_cpu_write(xen_cr3, cr3); 1388 1389 __xen_write_cr3(true, cr3); 1390 1391 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1392 } 1393 #endif 1394 1395 static int xen_pgd_alloc(struct mm_struct *mm) 1396 { 1397 pgd_t *pgd = mm->pgd; 1398 int ret = 0; 1399 1400 BUG_ON(PagePinned(virt_to_page(pgd))); 1401 1402 #ifdef CONFIG_X86_64 1403 { 1404 struct page *page = virt_to_page(pgd); 1405 pgd_t *user_pgd; 1406 1407 BUG_ON(page->private != 0); 1408 1409 ret = -ENOMEM; 1410 1411 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1412 page->private = (unsigned long)user_pgd; 1413 1414 if (user_pgd != NULL) { 1415 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1416 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1417 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1418 #endif 1419 ret = 0; 1420 } 1421 1422 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1423 } 1424 #endif 1425 1426 return ret; 1427 } 1428 1429 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1430 { 1431 #ifdef CONFIG_X86_64 1432 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1433 1434 if (user_pgd) 1435 free_page((unsigned long)user_pgd); 1436 #endif 1437 } 1438 1439 #ifdef CONFIG_X86_32 1440 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1441 { 1442 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1443 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1444 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1445 pte_val_ma(pte)); 1446 1447 return pte; 1448 } 1449 #else /* CONFIG_X86_64 */ 1450 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1451 { 1452 return pte; 1453 } 1454 #endif /* CONFIG_X86_64 */ 1455 1456 /* 1457 * Init-time set_pte while constructing initial pagetables, which 1458 * doesn't allow RO page table pages to be remapped RW. 1459 * 1460 * If there is no MFN for this PFN then this page is initially 1461 * ballooned out so clear the PTE (as in decrease_reservation() in 1462 * drivers/xen/balloon.c). 1463 * 1464 * Many of these PTE updates are done on unpinned and writable pages 1465 * and doing a hypercall for these is unnecessary and expensive. At 1466 * this point it is not possible to tell if a page is pinned or not, 1467 * so always write the PTE directly and rely on Xen trapping and 1468 * emulating any updates as necessary. 1469 */ 1470 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1471 { 1472 if (pte_mfn(pte) != INVALID_P2M_ENTRY) 1473 pte = mask_rw_pte(ptep, pte); 1474 else 1475 pte = __pte_ma(0); 1476 1477 native_set_pte(ptep, pte); 1478 } 1479 1480 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1481 { 1482 struct mmuext_op op; 1483 op.cmd = cmd; 1484 op.arg1.mfn = pfn_to_mfn(pfn); 1485 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1486 BUG(); 1487 } 1488 1489 /* Early in boot, while setting up the initial pagetable, assume 1490 everything is pinned. */ 1491 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1492 { 1493 #ifdef CONFIG_FLATMEM 1494 BUG_ON(mem_map); /* should only be used early */ 1495 #endif 1496 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1497 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1498 } 1499 1500 /* Used for pmd and pud */ 1501 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1502 { 1503 #ifdef CONFIG_FLATMEM 1504 BUG_ON(mem_map); /* should only be used early */ 1505 #endif 1506 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1507 } 1508 1509 /* Early release_pte assumes that all pts are pinned, since there's 1510 only init_mm and anything attached to that is pinned. */ 1511 static void __init xen_release_pte_init(unsigned long pfn) 1512 { 1513 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1514 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1515 } 1516 1517 static void __init xen_release_pmd_init(unsigned long pfn) 1518 { 1519 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1520 } 1521 1522 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1523 { 1524 struct multicall_space mcs; 1525 struct mmuext_op *op; 1526 1527 mcs = __xen_mc_entry(sizeof(*op)); 1528 op = mcs.args; 1529 op->cmd = cmd; 1530 op->arg1.mfn = pfn_to_mfn(pfn); 1531 1532 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1533 } 1534 1535 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1536 { 1537 struct multicall_space mcs; 1538 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1539 1540 mcs = __xen_mc_entry(0); 1541 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1542 pfn_pte(pfn, prot), 0); 1543 } 1544 1545 /* This needs to make sure the new pte page is pinned iff its being 1546 attached to a pinned pagetable. */ 1547 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1548 unsigned level) 1549 { 1550 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1551 1552 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1553 1554 if (pinned) { 1555 struct page *page = pfn_to_page(pfn); 1556 1557 SetPagePinned(page); 1558 1559 if (!PageHighMem(page)) { 1560 xen_mc_batch(); 1561 1562 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1563 1564 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1565 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1566 1567 xen_mc_issue(PARAVIRT_LAZY_MMU); 1568 } else { 1569 /* make sure there are no stray mappings of 1570 this page */ 1571 kmap_flush_unused(); 1572 } 1573 } 1574 } 1575 1576 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1577 { 1578 xen_alloc_ptpage(mm, pfn, PT_PTE); 1579 } 1580 1581 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1582 { 1583 xen_alloc_ptpage(mm, pfn, PT_PMD); 1584 } 1585 1586 /* This should never happen until we're OK to use struct page */ 1587 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1588 { 1589 struct page *page = pfn_to_page(pfn); 1590 bool pinned = PagePinned(page); 1591 1592 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1593 1594 if (pinned) { 1595 if (!PageHighMem(page)) { 1596 xen_mc_batch(); 1597 1598 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1599 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1600 1601 __set_pfn_prot(pfn, PAGE_KERNEL); 1602 1603 xen_mc_issue(PARAVIRT_LAZY_MMU); 1604 } 1605 ClearPagePinned(page); 1606 } 1607 } 1608 1609 static void xen_release_pte(unsigned long pfn) 1610 { 1611 xen_release_ptpage(pfn, PT_PTE); 1612 } 1613 1614 static void xen_release_pmd(unsigned long pfn) 1615 { 1616 xen_release_ptpage(pfn, PT_PMD); 1617 } 1618 1619 #if PAGETABLE_LEVELS == 4 1620 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1621 { 1622 xen_alloc_ptpage(mm, pfn, PT_PUD); 1623 } 1624 1625 static void xen_release_pud(unsigned long pfn) 1626 { 1627 xen_release_ptpage(pfn, PT_PUD); 1628 } 1629 #endif 1630 1631 void __init xen_reserve_top(void) 1632 { 1633 #ifdef CONFIG_X86_32 1634 unsigned long top = HYPERVISOR_VIRT_START; 1635 struct xen_platform_parameters pp; 1636 1637 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1638 top = pp.virt_start; 1639 1640 reserve_top_address(-top); 1641 #endif /* CONFIG_X86_32 */ 1642 } 1643 1644 /* 1645 * Like __va(), but returns address in the kernel mapping (which is 1646 * all we have until the physical memory mapping has been set up. 1647 */ 1648 static void *__ka(phys_addr_t paddr) 1649 { 1650 #ifdef CONFIG_X86_64 1651 return (void *)(paddr + __START_KERNEL_map); 1652 #else 1653 return __va(paddr); 1654 #endif 1655 } 1656 1657 /* Convert a machine address to physical address */ 1658 static unsigned long m2p(phys_addr_t maddr) 1659 { 1660 phys_addr_t paddr; 1661 1662 maddr &= PTE_PFN_MASK; 1663 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1664 1665 return paddr; 1666 } 1667 1668 /* Convert a machine address to kernel virtual */ 1669 static void *m2v(phys_addr_t maddr) 1670 { 1671 return __ka(m2p(maddr)); 1672 } 1673 1674 /* Set the page permissions on an identity-mapped pages */ 1675 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags) 1676 { 1677 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1678 pte_t pte = pfn_pte(pfn, prot); 1679 1680 /* For PVH no need to set R/O or R/W to pin them or unpin them. */ 1681 if (xen_feature(XENFEAT_auto_translated_physmap)) 1682 return; 1683 1684 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1685 BUG(); 1686 } 1687 static void set_page_prot(void *addr, pgprot_t prot) 1688 { 1689 return set_page_prot_flags(addr, prot, UVMF_NONE); 1690 } 1691 #ifdef CONFIG_X86_32 1692 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1693 { 1694 unsigned pmdidx, pteidx; 1695 unsigned ident_pte; 1696 unsigned long pfn; 1697 1698 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1699 PAGE_SIZE); 1700 1701 ident_pte = 0; 1702 pfn = 0; 1703 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1704 pte_t *pte_page; 1705 1706 /* Reuse or allocate a page of ptes */ 1707 if (pmd_present(pmd[pmdidx])) 1708 pte_page = m2v(pmd[pmdidx].pmd); 1709 else { 1710 /* Check for free pte pages */ 1711 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1712 break; 1713 1714 pte_page = &level1_ident_pgt[ident_pte]; 1715 ident_pte += PTRS_PER_PTE; 1716 1717 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1718 } 1719 1720 /* Install mappings */ 1721 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1722 pte_t pte; 1723 1724 #ifdef CONFIG_X86_32 1725 if (pfn > max_pfn_mapped) 1726 max_pfn_mapped = pfn; 1727 #endif 1728 1729 if (!pte_none(pte_page[pteidx])) 1730 continue; 1731 1732 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1733 pte_page[pteidx] = pte; 1734 } 1735 } 1736 1737 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1738 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1739 1740 set_page_prot(pmd, PAGE_KERNEL_RO); 1741 } 1742 #endif 1743 void __init xen_setup_machphys_mapping(void) 1744 { 1745 struct xen_machphys_mapping mapping; 1746 1747 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1748 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1749 machine_to_phys_nr = mapping.max_mfn + 1; 1750 } else { 1751 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1752 } 1753 #ifdef CONFIG_X86_32 1754 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1755 < machine_to_phys_mapping); 1756 #endif 1757 } 1758 1759 #ifdef CONFIG_X86_64 1760 static void convert_pfn_mfn(void *v) 1761 { 1762 pte_t *pte = v; 1763 int i; 1764 1765 /* All levels are converted the same way, so just treat them 1766 as ptes. */ 1767 for (i = 0; i < PTRS_PER_PTE; i++) 1768 pte[i] = xen_make_pte(pte[i].pte); 1769 } 1770 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1771 unsigned long addr) 1772 { 1773 if (*pt_base == PFN_DOWN(__pa(addr))) { 1774 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1775 clear_page((void *)addr); 1776 (*pt_base)++; 1777 } 1778 if (*pt_end == PFN_DOWN(__pa(addr))) { 1779 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1780 clear_page((void *)addr); 1781 (*pt_end)--; 1782 } 1783 } 1784 /* 1785 * Set up the initial kernel pagetable. 1786 * 1787 * We can construct this by grafting the Xen provided pagetable into 1788 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1789 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1790 * kernel has a physical mapping to start with - but that's enough to 1791 * get __va working. We need to fill in the rest of the physical 1792 * mapping once some sort of allocator has been set up. NOTE: for 1793 * PVH, the page tables are native. 1794 */ 1795 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1796 { 1797 pud_t *l3; 1798 pmd_t *l2; 1799 unsigned long addr[3]; 1800 unsigned long pt_base, pt_end; 1801 unsigned i; 1802 1803 /* max_pfn_mapped is the last pfn mapped in the initial memory 1804 * mappings. Considering that on Xen after the kernel mappings we 1805 * have the mappings of some pages that don't exist in pfn space, we 1806 * set max_pfn_mapped to the last real pfn mapped. */ 1807 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1808 1809 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1810 pt_end = pt_base + xen_start_info->nr_pt_frames; 1811 1812 /* Zap identity mapping */ 1813 init_level4_pgt[0] = __pgd(0); 1814 1815 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1816 /* Pre-constructed entries are in pfn, so convert to mfn */ 1817 /* L4[272] -> level3_ident_pgt 1818 * L4[511] -> level3_kernel_pgt */ 1819 convert_pfn_mfn(init_level4_pgt); 1820 1821 /* L3_i[0] -> level2_ident_pgt */ 1822 convert_pfn_mfn(level3_ident_pgt); 1823 /* L3_k[510] -> level2_kernel_pgt 1824 * L3_k[511] -> level2_fixmap_pgt */ 1825 convert_pfn_mfn(level3_kernel_pgt); 1826 1827 /* L3_k[511][506] -> level1_fixmap_pgt */ 1828 convert_pfn_mfn(level2_fixmap_pgt); 1829 } 1830 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1831 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1832 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1833 1834 addr[0] = (unsigned long)pgd; 1835 addr[1] = (unsigned long)l3; 1836 addr[2] = (unsigned long)l2; 1837 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 1838 * Both L4[272][0] and L4[511][510] have entries that point to the same 1839 * L2 (PMD) tables. Meaning that if you modify it in __va space 1840 * it will be also modified in the __ka space! (But if you just 1841 * modify the PMD table to point to other PTE's or none, then you 1842 * are OK - which is what cleanup_highmap does) */ 1843 copy_page(level2_ident_pgt, l2); 1844 /* Graft it onto L4[511][510] */ 1845 copy_page(level2_kernel_pgt, l2); 1846 1847 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1848 /* Make pagetable pieces RO */ 1849 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1850 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1851 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1852 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1853 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1854 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1855 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1856 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); 1857 1858 /* Pin down new L4 */ 1859 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1860 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1861 1862 /* Unpin Xen-provided one */ 1863 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1864 1865 /* 1866 * At this stage there can be no user pgd, and no page 1867 * structure to attach it to, so make sure we just set kernel 1868 * pgd. 1869 */ 1870 xen_mc_batch(); 1871 __xen_write_cr3(true, __pa(init_level4_pgt)); 1872 xen_mc_issue(PARAVIRT_LAZY_CPU); 1873 } else 1874 native_write_cr3(__pa(init_level4_pgt)); 1875 1876 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1877 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1878 * the initial domain. For guests using the toolstack, they are in: 1879 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1880 * rip out the [L4] (pgd), but for guests we shave off three pages. 1881 */ 1882 for (i = 0; i < ARRAY_SIZE(addr); i++) 1883 check_pt_base(&pt_base, &pt_end, addr[i]); 1884 1885 /* Our (by three pages) smaller Xen pagetable that we are using */ 1886 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE); 1887 /* Revector the xen_start_info */ 1888 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1889 } 1890 #else /* !CONFIG_X86_64 */ 1891 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 1892 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 1893 1894 static void __init xen_write_cr3_init(unsigned long cr3) 1895 { 1896 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 1897 1898 BUG_ON(read_cr3() != __pa(initial_page_table)); 1899 BUG_ON(cr3 != __pa(swapper_pg_dir)); 1900 1901 /* 1902 * We are switching to swapper_pg_dir for the first time (from 1903 * initial_page_table) and therefore need to mark that page 1904 * read-only and then pin it. 1905 * 1906 * Xen disallows sharing of kernel PMDs for PAE 1907 * guests. Therefore we must copy the kernel PMD from 1908 * initial_page_table into a new kernel PMD to be used in 1909 * swapper_pg_dir. 1910 */ 1911 swapper_kernel_pmd = 1912 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1913 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 1914 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 1915 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 1916 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 1917 1918 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 1919 xen_write_cr3(cr3); 1920 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 1921 1922 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 1923 PFN_DOWN(__pa(initial_page_table))); 1924 set_page_prot(initial_page_table, PAGE_KERNEL); 1925 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 1926 1927 pv_mmu_ops.write_cr3 = &xen_write_cr3; 1928 } 1929 1930 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1931 { 1932 pmd_t *kernel_pmd; 1933 1934 initial_kernel_pmd = 1935 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1936 1937 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 1938 xen_start_info->nr_pt_frames * PAGE_SIZE + 1939 512*1024); 1940 1941 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 1942 copy_page(initial_kernel_pmd, kernel_pmd); 1943 1944 xen_map_identity_early(initial_kernel_pmd, max_pfn); 1945 1946 copy_page(initial_page_table, pgd); 1947 initial_page_table[KERNEL_PGD_BOUNDARY] = 1948 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 1949 1950 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 1951 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 1952 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 1953 1954 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1955 1956 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1957 PFN_DOWN(__pa(initial_page_table))); 1958 xen_write_cr3(__pa(initial_page_table)); 1959 1960 memblock_reserve(__pa(xen_start_info->pt_base), 1961 xen_start_info->nr_pt_frames * PAGE_SIZE); 1962 } 1963 #endif /* CONFIG_X86_64 */ 1964 1965 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 1966 1967 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 1968 { 1969 pte_t pte; 1970 1971 phys >>= PAGE_SHIFT; 1972 1973 switch (idx) { 1974 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 1975 case FIX_RO_IDT: 1976 #ifdef CONFIG_X86_32 1977 case FIX_WP_TEST: 1978 # ifdef CONFIG_HIGHMEM 1979 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 1980 # endif 1981 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 1982 case VSYSCALL_PAGE: 1983 #endif 1984 case FIX_TEXT_POKE0: 1985 case FIX_TEXT_POKE1: 1986 /* All local page mappings */ 1987 pte = pfn_pte(phys, prot); 1988 break; 1989 1990 #ifdef CONFIG_X86_LOCAL_APIC 1991 case FIX_APIC_BASE: /* maps dummy local APIC */ 1992 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1993 break; 1994 #endif 1995 1996 #ifdef CONFIG_X86_IO_APIC 1997 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 1998 /* 1999 * We just don't map the IO APIC - all access is via 2000 * hypercalls. Keep the address in the pte for reference. 2001 */ 2002 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2003 break; 2004 #endif 2005 2006 case FIX_PARAVIRT_BOOTMAP: 2007 /* This is an MFN, but it isn't an IO mapping from the 2008 IO domain */ 2009 pte = mfn_pte(phys, prot); 2010 break; 2011 2012 default: 2013 /* By default, set_fixmap is used for hardware mappings */ 2014 pte = mfn_pte(phys, prot); 2015 break; 2016 } 2017 2018 __native_set_fixmap(idx, pte); 2019 2020 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2021 /* Replicate changes to map the vsyscall page into the user 2022 pagetable vsyscall mapping. */ 2023 if (idx == VSYSCALL_PAGE) { 2024 unsigned long vaddr = __fix_to_virt(idx); 2025 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2026 } 2027 #endif 2028 } 2029 2030 static void __init xen_post_allocator_init(void) 2031 { 2032 if (xen_feature(XENFEAT_auto_translated_physmap)) 2033 return; 2034 2035 pv_mmu_ops.set_pte = xen_set_pte; 2036 pv_mmu_ops.set_pmd = xen_set_pmd; 2037 pv_mmu_ops.set_pud = xen_set_pud; 2038 #if PAGETABLE_LEVELS == 4 2039 pv_mmu_ops.set_pgd = xen_set_pgd; 2040 #endif 2041 2042 /* This will work as long as patching hasn't happened yet 2043 (which it hasn't) */ 2044 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2045 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2046 pv_mmu_ops.release_pte = xen_release_pte; 2047 pv_mmu_ops.release_pmd = xen_release_pmd; 2048 #if PAGETABLE_LEVELS == 4 2049 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2050 pv_mmu_ops.release_pud = xen_release_pud; 2051 #endif 2052 2053 #ifdef CONFIG_X86_64 2054 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2055 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2056 #endif 2057 xen_mark_init_mm_pinned(); 2058 } 2059 2060 static void xen_leave_lazy_mmu(void) 2061 { 2062 preempt_disable(); 2063 xen_mc_flush(); 2064 paravirt_leave_lazy_mmu(); 2065 preempt_enable(); 2066 } 2067 2068 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2069 .read_cr2 = xen_read_cr2, 2070 .write_cr2 = xen_write_cr2, 2071 2072 .read_cr3 = xen_read_cr3, 2073 .write_cr3 = xen_write_cr3_init, 2074 2075 .flush_tlb_user = xen_flush_tlb, 2076 .flush_tlb_kernel = xen_flush_tlb, 2077 .flush_tlb_single = xen_flush_tlb_single, 2078 .flush_tlb_others = xen_flush_tlb_others, 2079 2080 .pte_update = paravirt_nop, 2081 .pte_update_defer = paravirt_nop, 2082 2083 .pgd_alloc = xen_pgd_alloc, 2084 .pgd_free = xen_pgd_free, 2085 2086 .alloc_pte = xen_alloc_pte_init, 2087 .release_pte = xen_release_pte_init, 2088 .alloc_pmd = xen_alloc_pmd_init, 2089 .release_pmd = xen_release_pmd_init, 2090 2091 .set_pte = xen_set_pte_init, 2092 .set_pte_at = xen_set_pte_at, 2093 .set_pmd = xen_set_pmd_hyper, 2094 2095 .ptep_modify_prot_start = __ptep_modify_prot_start, 2096 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2097 2098 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2099 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2100 2101 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2102 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2103 2104 #ifdef CONFIG_X86_PAE 2105 .set_pte_atomic = xen_set_pte_atomic, 2106 .pte_clear = xen_pte_clear, 2107 .pmd_clear = xen_pmd_clear, 2108 #endif /* CONFIG_X86_PAE */ 2109 .set_pud = xen_set_pud_hyper, 2110 2111 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2112 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2113 2114 #if PAGETABLE_LEVELS == 4 2115 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2116 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2117 .set_pgd = xen_set_pgd_hyper, 2118 2119 .alloc_pud = xen_alloc_pmd_init, 2120 .release_pud = xen_release_pmd_init, 2121 #endif /* PAGETABLE_LEVELS == 4 */ 2122 2123 .activate_mm = xen_activate_mm, 2124 .dup_mmap = xen_dup_mmap, 2125 .exit_mmap = xen_exit_mmap, 2126 2127 .lazy_mode = { 2128 .enter = paravirt_enter_lazy_mmu, 2129 .leave = xen_leave_lazy_mmu, 2130 .flush = paravirt_flush_lazy_mmu, 2131 }, 2132 2133 .set_fixmap = xen_set_fixmap, 2134 }; 2135 2136 void __init xen_init_mmu_ops(void) 2137 { 2138 x86_init.paging.pagetable_init = xen_pagetable_init; 2139 2140 /* Optimization - we can use the HVM one but it has no idea which 2141 * VCPUs are descheduled - which means that it will needlessly IPI 2142 * them. Xen knows so let it do the job. 2143 */ 2144 if (xen_feature(XENFEAT_auto_translated_physmap)) { 2145 pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others; 2146 return; 2147 } 2148 pv_mmu_ops = xen_mmu_ops; 2149 2150 memset(dummy_mapping, 0xff, PAGE_SIZE); 2151 } 2152 2153 /* Protected by xen_reservation_lock. */ 2154 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2155 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2156 2157 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2158 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2159 unsigned long *in_frames, 2160 unsigned long *out_frames) 2161 { 2162 int i; 2163 struct multicall_space mcs; 2164 2165 xen_mc_batch(); 2166 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2167 mcs = __xen_mc_entry(0); 2168 2169 if (in_frames) 2170 in_frames[i] = virt_to_mfn(vaddr); 2171 2172 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2173 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2174 2175 if (out_frames) 2176 out_frames[i] = virt_to_pfn(vaddr); 2177 } 2178 xen_mc_issue(0); 2179 } 2180 2181 /* 2182 * Update the pfn-to-mfn mappings for a virtual address range, either to 2183 * point to an array of mfns, or contiguously from a single starting 2184 * mfn. 2185 */ 2186 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2187 unsigned long *mfns, 2188 unsigned long first_mfn) 2189 { 2190 unsigned i, limit; 2191 unsigned long mfn; 2192 2193 xen_mc_batch(); 2194 2195 limit = 1u << order; 2196 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2197 struct multicall_space mcs; 2198 unsigned flags; 2199 2200 mcs = __xen_mc_entry(0); 2201 if (mfns) 2202 mfn = mfns[i]; 2203 else 2204 mfn = first_mfn + i; 2205 2206 if (i < (limit - 1)) 2207 flags = 0; 2208 else { 2209 if (order == 0) 2210 flags = UVMF_INVLPG | UVMF_ALL; 2211 else 2212 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2213 } 2214 2215 MULTI_update_va_mapping(mcs.mc, vaddr, 2216 mfn_pte(mfn, PAGE_KERNEL), flags); 2217 2218 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2219 } 2220 2221 xen_mc_issue(0); 2222 } 2223 2224 /* 2225 * Perform the hypercall to exchange a region of our pfns to point to 2226 * memory with the required contiguous alignment. Takes the pfns as 2227 * input, and populates mfns as output. 2228 * 2229 * Returns a success code indicating whether the hypervisor was able to 2230 * satisfy the request or not. 2231 */ 2232 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2233 unsigned long *pfns_in, 2234 unsigned long extents_out, 2235 unsigned int order_out, 2236 unsigned long *mfns_out, 2237 unsigned int address_bits) 2238 { 2239 long rc; 2240 int success; 2241 2242 struct xen_memory_exchange exchange = { 2243 .in = { 2244 .nr_extents = extents_in, 2245 .extent_order = order_in, 2246 .extent_start = pfns_in, 2247 .domid = DOMID_SELF 2248 }, 2249 .out = { 2250 .nr_extents = extents_out, 2251 .extent_order = order_out, 2252 .extent_start = mfns_out, 2253 .address_bits = address_bits, 2254 .domid = DOMID_SELF 2255 } 2256 }; 2257 2258 BUG_ON(extents_in << order_in != extents_out << order_out); 2259 2260 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2261 success = (exchange.nr_exchanged == extents_in); 2262 2263 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2264 BUG_ON(success && (rc != 0)); 2265 2266 return success; 2267 } 2268 2269 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2270 unsigned int address_bits, 2271 dma_addr_t *dma_handle) 2272 { 2273 unsigned long *in_frames = discontig_frames, out_frame; 2274 unsigned long flags; 2275 int success; 2276 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2277 2278 /* 2279 * Currently an auto-translated guest will not perform I/O, nor will 2280 * it require PAE page directories below 4GB. Therefore any calls to 2281 * this function are redundant and can be ignored. 2282 */ 2283 2284 if (xen_feature(XENFEAT_auto_translated_physmap)) 2285 return 0; 2286 2287 if (unlikely(order > MAX_CONTIG_ORDER)) 2288 return -ENOMEM; 2289 2290 memset((void *) vstart, 0, PAGE_SIZE << order); 2291 2292 spin_lock_irqsave(&xen_reservation_lock, flags); 2293 2294 /* 1. Zap current PTEs, remembering MFNs. */ 2295 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2296 2297 /* 2. Get a new contiguous memory extent. */ 2298 out_frame = virt_to_pfn(vstart); 2299 success = xen_exchange_memory(1UL << order, 0, in_frames, 2300 1, order, &out_frame, 2301 address_bits); 2302 2303 /* 3. Map the new extent in place of old pages. */ 2304 if (success) 2305 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2306 else 2307 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2308 2309 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2310 2311 *dma_handle = virt_to_machine(vstart).maddr; 2312 return success ? 0 : -ENOMEM; 2313 } 2314 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2315 2316 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2317 { 2318 unsigned long *out_frames = discontig_frames, in_frame; 2319 unsigned long flags; 2320 int success; 2321 unsigned long vstart; 2322 2323 if (xen_feature(XENFEAT_auto_translated_physmap)) 2324 return; 2325 2326 if (unlikely(order > MAX_CONTIG_ORDER)) 2327 return; 2328 2329 vstart = (unsigned long)phys_to_virt(pstart); 2330 memset((void *) vstart, 0, PAGE_SIZE << order); 2331 2332 spin_lock_irqsave(&xen_reservation_lock, flags); 2333 2334 /* 1. Find start MFN of contiguous extent. */ 2335 in_frame = virt_to_mfn(vstart); 2336 2337 /* 2. Zap current PTEs. */ 2338 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2339 2340 /* 3. Do the exchange for non-contiguous MFNs. */ 2341 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2342 0, out_frames, 0); 2343 2344 /* 4. Map new pages in place of old pages. */ 2345 if (success) 2346 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2347 else 2348 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2349 2350 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2351 } 2352 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2353 2354 #ifdef CONFIG_XEN_PVHVM 2355 #ifdef CONFIG_PROC_VMCORE 2356 /* 2357 * This function is used in two contexts: 2358 * - the kdump kernel has to check whether a pfn of the crashed kernel 2359 * was a ballooned page. vmcore is using this function to decide 2360 * whether to access a pfn of the crashed kernel. 2361 * - the kexec kernel has to check whether a pfn was ballooned by the 2362 * previous kernel. If the pfn is ballooned, handle it properly. 2363 * Returns 0 if the pfn is not backed by a RAM page, the caller may 2364 * handle the pfn special in this case. 2365 */ 2366 static int xen_oldmem_pfn_is_ram(unsigned long pfn) 2367 { 2368 struct xen_hvm_get_mem_type a = { 2369 .domid = DOMID_SELF, 2370 .pfn = pfn, 2371 }; 2372 int ram; 2373 2374 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a)) 2375 return -ENXIO; 2376 2377 switch (a.mem_type) { 2378 case HVMMEM_mmio_dm: 2379 ram = 0; 2380 break; 2381 case HVMMEM_ram_rw: 2382 case HVMMEM_ram_ro: 2383 default: 2384 ram = 1; 2385 break; 2386 } 2387 2388 return ram; 2389 } 2390 #endif 2391 2392 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2393 { 2394 struct xen_hvm_pagetable_dying a; 2395 int rc; 2396 2397 a.domid = DOMID_SELF; 2398 a.gpa = __pa(mm->pgd); 2399 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2400 WARN_ON_ONCE(rc < 0); 2401 } 2402 2403 static int is_pagetable_dying_supported(void) 2404 { 2405 struct xen_hvm_pagetable_dying a; 2406 int rc = 0; 2407 2408 a.domid = DOMID_SELF; 2409 a.gpa = 0x00; 2410 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2411 if (rc < 0) { 2412 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2413 return 0; 2414 } 2415 return 1; 2416 } 2417 2418 void __init xen_hvm_init_mmu_ops(void) 2419 { 2420 if (is_pagetable_dying_supported()) 2421 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2422 #ifdef CONFIG_PROC_VMCORE 2423 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram); 2424 #endif 2425 } 2426 #endif 2427 2428 #ifdef CONFIG_XEN_PVH 2429 /* 2430 * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user 2431 * space creating new guest on pvh dom0 and needing to map domU pages. 2432 */ 2433 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn, 2434 unsigned int domid) 2435 { 2436 int rc, err = 0; 2437 xen_pfn_t gpfn = lpfn; 2438 xen_ulong_t idx = fgfn; 2439 2440 struct xen_add_to_physmap_range xatp = { 2441 .domid = DOMID_SELF, 2442 .foreign_domid = domid, 2443 .size = 1, 2444 .space = XENMAPSPACE_gmfn_foreign, 2445 }; 2446 set_xen_guest_handle(xatp.idxs, &idx); 2447 set_xen_guest_handle(xatp.gpfns, &gpfn); 2448 set_xen_guest_handle(xatp.errs, &err); 2449 2450 rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp); 2451 if (rc < 0) 2452 return rc; 2453 return err; 2454 } 2455 2456 static int xlate_remove_from_p2m(unsigned long spfn, int count) 2457 { 2458 struct xen_remove_from_physmap xrp; 2459 int i, rc; 2460 2461 for (i = 0; i < count; i++) { 2462 xrp.domid = DOMID_SELF; 2463 xrp.gpfn = spfn+i; 2464 rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp); 2465 if (rc) 2466 break; 2467 } 2468 return rc; 2469 } 2470 2471 struct xlate_remap_data { 2472 unsigned long fgfn; /* foreign domain's gfn */ 2473 pgprot_t prot; 2474 domid_t domid; 2475 int index; 2476 struct page **pages; 2477 }; 2478 2479 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr, 2480 void *data) 2481 { 2482 int rc; 2483 struct xlate_remap_data *remap = data; 2484 unsigned long pfn = page_to_pfn(remap->pages[remap->index++]); 2485 pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot)); 2486 2487 rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid); 2488 if (rc) 2489 return rc; 2490 native_set_pte(ptep, pteval); 2491 2492 return 0; 2493 } 2494 2495 static int xlate_remap_gfn_range(struct vm_area_struct *vma, 2496 unsigned long addr, unsigned long mfn, 2497 int nr, pgprot_t prot, unsigned domid, 2498 struct page **pages) 2499 { 2500 int err; 2501 struct xlate_remap_data pvhdata; 2502 2503 BUG_ON(!pages); 2504 2505 pvhdata.fgfn = mfn; 2506 pvhdata.prot = prot; 2507 pvhdata.domid = domid; 2508 pvhdata.index = 0; 2509 pvhdata.pages = pages; 2510 err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT, 2511 xlate_map_pte_fn, &pvhdata); 2512 flush_tlb_all(); 2513 return err; 2514 } 2515 #endif 2516 2517 #define REMAP_BATCH_SIZE 16 2518 2519 struct remap_data { 2520 unsigned long mfn; 2521 pgprot_t prot; 2522 struct mmu_update *mmu_update; 2523 }; 2524 2525 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2526 unsigned long addr, void *data) 2527 { 2528 struct remap_data *rmd = data; 2529 pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot)); 2530 2531 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2532 rmd->mmu_update->val = pte_val_ma(pte); 2533 rmd->mmu_update++; 2534 2535 return 0; 2536 } 2537 2538 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2539 unsigned long addr, 2540 xen_pfn_t mfn, int nr, 2541 pgprot_t prot, unsigned domid, 2542 struct page **pages) 2543 2544 { 2545 struct remap_data rmd; 2546 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2547 int batch; 2548 unsigned long range; 2549 int err = 0; 2550 2551 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2552 2553 if (xen_feature(XENFEAT_auto_translated_physmap)) { 2554 #ifdef CONFIG_XEN_PVH 2555 /* We need to update the local page tables and the xen HAP */ 2556 return xlate_remap_gfn_range(vma, addr, mfn, nr, prot, 2557 domid, pages); 2558 #else 2559 return -EINVAL; 2560 #endif 2561 } 2562 2563 rmd.mfn = mfn; 2564 rmd.prot = prot; 2565 2566 while (nr) { 2567 batch = min(REMAP_BATCH_SIZE, nr); 2568 range = (unsigned long)batch << PAGE_SHIFT; 2569 2570 rmd.mmu_update = mmu_update; 2571 err = apply_to_page_range(vma->vm_mm, addr, range, 2572 remap_area_mfn_pte_fn, &rmd); 2573 if (err) 2574 goto out; 2575 2576 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid); 2577 if (err < 0) 2578 goto out; 2579 2580 nr -= batch; 2581 addr += range; 2582 } 2583 2584 err = 0; 2585 out: 2586 2587 xen_flush_tlb_all(); 2588 2589 return err; 2590 } 2591 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2592 2593 /* Returns: 0 success */ 2594 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma, 2595 int numpgs, struct page **pages) 2596 { 2597 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap)) 2598 return 0; 2599 2600 #ifdef CONFIG_XEN_PVH 2601 while (numpgs--) { 2602 /* 2603 * The mmu has already cleaned up the process mmu 2604 * resources at this point (lookup_address will return 2605 * NULL). 2606 */ 2607 unsigned long pfn = page_to_pfn(pages[numpgs]); 2608 2609 xlate_remove_from_p2m(pfn, 1); 2610 } 2611 /* 2612 * We don't need to flush tlbs because as part of 2613 * xlate_remove_from_p2m, the hypervisor will do tlb flushes 2614 * after removing the p2m entries from the EPT/NPT 2615 */ 2616 return 0; 2617 #else 2618 return -EINVAL; 2619 #endif 2620 } 2621 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range); 2622