xref: /linux/arch/x86/xen/mmu.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = get_phys_to_machine(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else
403 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405 	}
406 
407 	return val;
408 }
409 
410 __visible pteval_t xen_pte_val(pte_t pte)
411 {
412 	pteval_t pteval = pte.pte;
413 
414 	return pte_mfn_to_pfn(pteval);
415 }
416 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
417 
418 __visible pgdval_t xen_pgd_val(pgd_t pgd)
419 {
420 	return pte_mfn_to_pfn(pgd.pgd);
421 }
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
423 
424 __visible pte_t xen_make_pte(pteval_t pte)
425 {
426 	pte = pte_pfn_to_mfn(pte);
427 
428 	return native_make_pte(pte);
429 }
430 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
431 
432 __visible pgd_t xen_make_pgd(pgdval_t pgd)
433 {
434 	pgd = pte_pfn_to_mfn(pgd);
435 	return native_make_pgd(pgd);
436 }
437 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
438 
439 __visible pmdval_t xen_pmd_val(pmd_t pmd)
440 {
441 	return pte_mfn_to_pfn(pmd.pmd);
442 }
443 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
444 
445 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
446 {
447 	struct mmu_update u;
448 
449 	preempt_disable();
450 
451 	xen_mc_batch();
452 
453 	/* ptr may be ioremapped for 64-bit pagetable setup */
454 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
455 	u.val = pud_val_ma(val);
456 	xen_extend_mmu_update(&u);
457 
458 	xen_mc_issue(PARAVIRT_LAZY_MMU);
459 
460 	preempt_enable();
461 }
462 
463 static void xen_set_pud(pud_t *ptr, pud_t val)
464 {
465 	trace_xen_mmu_set_pud(ptr, val);
466 
467 	/* If page is not pinned, we can just update the entry
468 	   directly */
469 	if (!xen_page_pinned(ptr)) {
470 		*ptr = val;
471 		return;
472 	}
473 
474 	xen_set_pud_hyper(ptr, val);
475 }
476 
477 #ifdef CONFIG_X86_PAE
478 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
479 {
480 	trace_xen_mmu_set_pte_atomic(ptep, pte);
481 	set_64bit((u64 *)ptep, native_pte_val(pte));
482 }
483 
484 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
485 {
486 	trace_xen_mmu_pte_clear(mm, addr, ptep);
487 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
488 		native_pte_clear(mm, addr, ptep);
489 }
490 
491 static void xen_pmd_clear(pmd_t *pmdp)
492 {
493 	trace_xen_mmu_pmd_clear(pmdp);
494 	set_pmd(pmdp, __pmd(0));
495 }
496 #endif	/* CONFIG_X86_PAE */
497 
498 __visible pmd_t xen_make_pmd(pmdval_t pmd)
499 {
500 	pmd = pte_pfn_to_mfn(pmd);
501 	return native_make_pmd(pmd);
502 }
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
504 
505 #if PAGETABLE_LEVELS == 4
506 __visible pudval_t xen_pud_val(pud_t pud)
507 {
508 	return pte_mfn_to_pfn(pud.pud);
509 }
510 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
511 
512 __visible pud_t xen_make_pud(pudval_t pud)
513 {
514 	pud = pte_pfn_to_mfn(pud);
515 
516 	return native_make_pud(pud);
517 }
518 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
519 
520 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
521 {
522 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
523 	unsigned offset = pgd - pgd_page;
524 	pgd_t *user_ptr = NULL;
525 
526 	if (offset < pgd_index(USER_LIMIT)) {
527 		struct page *page = virt_to_page(pgd_page);
528 		user_ptr = (pgd_t *)page->private;
529 		if (user_ptr)
530 			user_ptr += offset;
531 	}
532 
533 	return user_ptr;
534 }
535 
536 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
537 {
538 	struct mmu_update u;
539 
540 	u.ptr = virt_to_machine(ptr).maddr;
541 	u.val = pgd_val_ma(val);
542 	xen_extend_mmu_update(&u);
543 }
544 
545 /*
546  * Raw hypercall-based set_pgd, intended for in early boot before
547  * there's a page structure.  This implies:
548  *  1. The only existing pagetable is the kernel's
549  *  2. It is always pinned
550  *  3. It has no user pagetable attached to it
551  */
552 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
553 {
554 	preempt_disable();
555 
556 	xen_mc_batch();
557 
558 	__xen_set_pgd_hyper(ptr, val);
559 
560 	xen_mc_issue(PARAVIRT_LAZY_MMU);
561 
562 	preempt_enable();
563 }
564 
565 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
566 {
567 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
568 
569 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
570 
571 	/* If page is not pinned, we can just update the entry
572 	   directly */
573 	if (!xen_page_pinned(ptr)) {
574 		*ptr = val;
575 		if (user_ptr) {
576 			WARN_ON(xen_page_pinned(user_ptr));
577 			*user_ptr = val;
578 		}
579 		return;
580 	}
581 
582 	/* If it's pinned, then we can at least batch the kernel and
583 	   user updates together. */
584 	xen_mc_batch();
585 
586 	__xen_set_pgd_hyper(ptr, val);
587 	if (user_ptr)
588 		__xen_set_pgd_hyper(user_ptr, val);
589 
590 	xen_mc_issue(PARAVIRT_LAZY_MMU);
591 }
592 #endif	/* PAGETABLE_LEVELS == 4 */
593 
594 /*
595  * (Yet another) pagetable walker.  This one is intended for pinning a
596  * pagetable.  This means that it walks a pagetable and calls the
597  * callback function on each page it finds making up the page table,
598  * at every level.  It walks the entire pagetable, but it only bothers
599  * pinning pte pages which are below limit.  In the normal case this
600  * will be STACK_TOP_MAX, but at boot we need to pin up to
601  * FIXADDR_TOP.
602  *
603  * For 32-bit the important bit is that we don't pin beyond there,
604  * because then we start getting into Xen's ptes.
605  *
606  * For 64-bit, we must skip the Xen hole in the middle of the address
607  * space, just after the big x86-64 virtual hole.
608  */
609 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
610 			  int (*func)(struct mm_struct *mm, struct page *,
611 				      enum pt_level),
612 			  unsigned long limit)
613 {
614 	int flush = 0;
615 	unsigned hole_low, hole_high;
616 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
617 	unsigned pgdidx, pudidx, pmdidx;
618 
619 	/* The limit is the last byte to be touched */
620 	limit--;
621 	BUG_ON(limit >= FIXADDR_TOP);
622 
623 	if (xen_feature(XENFEAT_auto_translated_physmap))
624 		return 0;
625 
626 	/*
627 	 * 64-bit has a great big hole in the middle of the address
628 	 * space, which contains the Xen mappings.  On 32-bit these
629 	 * will end up making a zero-sized hole and so is a no-op.
630 	 */
631 	hole_low = pgd_index(USER_LIMIT);
632 	hole_high = pgd_index(PAGE_OFFSET);
633 
634 	pgdidx_limit = pgd_index(limit);
635 #if PTRS_PER_PUD > 1
636 	pudidx_limit = pud_index(limit);
637 #else
638 	pudidx_limit = 0;
639 #endif
640 #if PTRS_PER_PMD > 1
641 	pmdidx_limit = pmd_index(limit);
642 #else
643 	pmdidx_limit = 0;
644 #endif
645 
646 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
647 		pud_t *pud;
648 
649 		if (pgdidx >= hole_low && pgdidx < hole_high)
650 			continue;
651 
652 		if (!pgd_val(pgd[pgdidx]))
653 			continue;
654 
655 		pud = pud_offset(&pgd[pgdidx], 0);
656 
657 		if (PTRS_PER_PUD > 1) /* not folded */
658 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
659 
660 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
661 			pmd_t *pmd;
662 
663 			if (pgdidx == pgdidx_limit &&
664 			    pudidx > pudidx_limit)
665 				goto out;
666 
667 			if (pud_none(pud[pudidx]))
668 				continue;
669 
670 			pmd = pmd_offset(&pud[pudidx], 0);
671 
672 			if (PTRS_PER_PMD > 1) /* not folded */
673 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
674 
675 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
676 				struct page *pte;
677 
678 				if (pgdidx == pgdidx_limit &&
679 				    pudidx == pudidx_limit &&
680 				    pmdidx > pmdidx_limit)
681 					goto out;
682 
683 				if (pmd_none(pmd[pmdidx]))
684 					continue;
685 
686 				pte = pmd_page(pmd[pmdidx]);
687 				flush |= (*func)(mm, pte, PT_PTE);
688 			}
689 		}
690 	}
691 
692 out:
693 	/* Do the top level last, so that the callbacks can use it as
694 	   a cue to do final things like tlb flushes. */
695 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
696 
697 	return flush;
698 }
699 
700 static int xen_pgd_walk(struct mm_struct *mm,
701 			int (*func)(struct mm_struct *mm, struct page *,
702 				    enum pt_level),
703 			unsigned long limit)
704 {
705 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
706 }
707 
708 /* If we're using split pte locks, then take the page's lock and
709    return a pointer to it.  Otherwise return NULL. */
710 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
711 {
712 	spinlock_t *ptl = NULL;
713 
714 #if USE_SPLIT_PTE_PTLOCKS
715 	ptl = ptlock_ptr(page);
716 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
717 #endif
718 
719 	return ptl;
720 }
721 
722 static void xen_pte_unlock(void *v)
723 {
724 	spinlock_t *ptl = v;
725 	spin_unlock(ptl);
726 }
727 
728 static void xen_do_pin(unsigned level, unsigned long pfn)
729 {
730 	struct mmuext_op op;
731 
732 	op.cmd = level;
733 	op.arg1.mfn = pfn_to_mfn(pfn);
734 
735 	xen_extend_mmuext_op(&op);
736 }
737 
738 static int xen_pin_page(struct mm_struct *mm, struct page *page,
739 			enum pt_level level)
740 {
741 	unsigned pgfl = TestSetPagePinned(page);
742 	int flush;
743 
744 	if (pgfl)
745 		flush = 0;		/* already pinned */
746 	else if (PageHighMem(page))
747 		/* kmaps need flushing if we found an unpinned
748 		   highpage */
749 		flush = 1;
750 	else {
751 		void *pt = lowmem_page_address(page);
752 		unsigned long pfn = page_to_pfn(page);
753 		struct multicall_space mcs = __xen_mc_entry(0);
754 		spinlock_t *ptl;
755 
756 		flush = 0;
757 
758 		/*
759 		 * We need to hold the pagetable lock between the time
760 		 * we make the pagetable RO and when we actually pin
761 		 * it.  If we don't, then other users may come in and
762 		 * attempt to update the pagetable by writing it,
763 		 * which will fail because the memory is RO but not
764 		 * pinned, so Xen won't do the trap'n'emulate.
765 		 *
766 		 * If we're using split pte locks, we can't hold the
767 		 * entire pagetable's worth of locks during the
768 		 * traverse, because we may wrap the preempt count (8
769 		 * bits).  The solution is to mark RO and pin each PTE
770 		 * page while holding the lock.  This means the number
771 		 * of locks we end up holding is never more than a
772 		 * batch size (~32 entries, at present).
773 		 *
774 		 * If we're not using split pte locks, we needn't pin
775 		 * the PTE pages independently, because we're
776 		 * protected by the overall pagetable lock.
777 		 */
778 		ptl = NULL;
779 		if (level == PT_PTE)
780 			ptl = xen_pte_lock(page, mm);
781 
782 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
783 					pfn_pte(pfn, PAGE_KERNEL_RO),
784 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
785 
786 		if (ptl) {
787 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
788 
789 			/* Queue a deferred unlock for when this batch
790 			   is completed. */
791 			xen_mc_callback(xen_pte_unlock, ptl);
792 		}
793 	}
794 
795 	return flush;
796 }
797 
798 /* This is called just after a mm has been created, but it has not
799    been used yet.  We need to make sure that its pagetable is all
800    read-only, and can be pinned. */
801 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
802 {
803 	trace_xen_mmu_pgd_pin(mm, pgd);
804 
805 	xen_mc_batch();
806 
807 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
808 		/* re-enable interrupts for flushing */
809 		xen_mc_issue(0);
810 
811 		kmap_flush_unused();
812 
813 		xen_mc_batch();
814 	}
815 
816 #ifdef CONFIG_X86_64
817 	{
818 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
819 
820 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
821 
822 		if (user_pgd) {
823 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
824 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
825 				   PFN_DOWN(__pa(user_pgd)));
826 		}
827 	}
828 #else /* CONFIG_X86_32 */
829 #ifdef CONFIG_X86_PAE
830 	/* Need to make sure unshared kernel PMD is pinnable */
831 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
832 		     PT_PMD);
833 #endif
834 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
835 #endif /* CONFIG_X86_64 */
836 	xen_mc_issue(0);
837 }
838 
839 static void xen_pgd_pin(struct mm_struct *mm)
840 {
841 	__xen_pgd_pin(mm, mm->pgd);
842 }
843 
844 /*
845  * On save, we need to pin all pagetables to make sure they get their
846  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
847  * them (unpinned pgds are not currently in use, probably because the
848  * process is under construction or destruction).
849  *
850  * Expected to be called in stop_machine() ("equivalent to taking
851  * every spinlock in the system"), so the locking doesn't really
852  * matter all that much.
853  */
854 void xen_mm_pin_all(void)
855 {
856 	struct page *page;
857 
858 	spin_lock(&pgd_lock);
859 
860 	list_for_each_entry(page, &pgd_list, lru) {
861 		if (!PagePinned(page)) {
862 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
863 			SetPageSavePinned(page);
864 		}
865 	}
866 
867 	spin_unlock(&pgd_lock);
868 }
869 
870 /*
871  * The init_mm pagetable is really pinned as soon as its created, but
872  * that's before we have page structures to store the bits.  So do all
873  * the book-keeping now.
874  */
875 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
876 				  enum pt_level level)
877 {
878 	SetPagePinned(page);
879 	return 0;
880 }
881 
882 static void __init xen_mark_init_mm_pinned(void)
883 {
884 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
885 }
886 
887 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
888 			  enum pt_level level)
889 {
890 	unsigned pgfl = TestClearPagePinned(page);
891 
892 	if (pgfl && !PageHighMem(page)) {
893 		void *pt = lowmem_page_address(page);
894 		unsigned long pfn = page_to_pfn(page);
895 		spinlock_t *ptl = NULL;
896 		struct multicall_space mcs;
897 
898 		/*
899 		 * Do the converse to pin_page.  If we're using split
900 		 * pte locks, we must be holding the lock for while
901 		 * the pte page is unpinned but still RO to prevent
902 		 * concurrent updates from seeing it in this
903 		 * partially-pinned state.
904 		 */
905 		if (level == PT_PTE) {
906 			ptl = xen_pte_lock(page, mm);
907 
908 			if (ptl)
909 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
910 		}
911 
912 		mcs = __xen_mc_entry(0);
913 
914 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
915 					pfn_pte(pfn, PAGE_KERNEL),
916 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
917 
918 		if (ptl) {
919 			/* unlock when batch completed */
920 			xen_mc_callback(xen_pte_unlock, ptl);
921 		}
922 	}
923 
924 	return 0;		/* never need to flush on unpin */
925 }
926 
927 /* Release a pagetables pages back as normal RW */
928 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
929 {
930 	trace_xen_mmu_pgd_unpin(mm, pgd);
931 
932 	xen_mc_batch();
933 
934 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
935 
936 #ifdef CONFIG_X86_64
937 	{
938 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
939 
940 		if (user_pgd) {
941 			xen_do_pin(MMUEXT_UNPIN_TABLE,
942 				   PFN_DOWN(__pa(user_pgd)));
943 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
944 		}
945 	}
946 #endif
947 
948 #ifdef CONFIG_X86_PAE
949 	/* Need to make sure unshared kernel PMD is unpinned */
950 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
951 		       PT_PMD);
952 #endif
953 
954 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
955 
956 	xen_mc_issue(0);
957 }
958 
959 static void xen_pgd_unpin(struct mm_struct *mm)
960 {
961 	__xen_pgd_unpin(mm, mm->pgd);
962 }
963 
964 /*
965  * On resume, undo any pinning done at save, so that the rest of the
966  * kernel doesn't see any unexpected pinned pagetables.
967  */
968 void xen_mm_unpin_all(void)
969 {
970 	struct page *page;
971 
972 	spin_lock(&pgd_lock);
973 
974 	list_for_each_entry(page, &pgd_list, lru) {
975 		if (PageSavePinned(page)) {
976 			BUG_ON(!PagePinned(page));
977 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
978 			ClearPageSavePinned(page);
979 		}
980 	}
981 
982 	spin_unlock(&pgd_lock);
983 }
984 
985 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
986 {
987 	spin_lock(&next->page_table_lock);
988 	xen_pgd_pin(next);
989 	spin_unlock(&next->page_table_lock);
990 }
991 
992 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
993 {
994 	spin_lock(&mm->page_table_lock);
995 	xen_pgd_pin(mm);
996 	spin_unlock(&mm->page_table_lock);
997 }
998 
999 
1000 #ifdef CONFIG_SMP
1001 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1002    we need to repoint it somewhere else before we can unpin it. */
1003 static void drop_other_mm_ref(void *info)
1004 {
1005 	struct mm_struct *mm = info;
1006 	struct mm_struct *active_mm;
1007 
1008 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1009 
1010 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1011 		leave_mm(smp_processor_id());
1012 
1013 	/* If this cpu still has a stale cr3 reference, then make sure
1014 	   it has been flushed. */
1015 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1016 		load_cr3(swapper_pg_dir);
1017 }
1018 
1019 static void xen_drop_mm_ref(struct mm_struct *mm)
1020 {
1021 	cpumask_var_t mask;
1022 	unsigned cpu;
1023 
1024 	if (current->active_mm == mm) {
1025 		if (current->mm == mm)
1026 			load_cr3(swapper_pg_dir);
1027 		else
1028 			leave_mm(smp_processor_id());
1029 	}
1030 
1031 	/* Get the "official" set of cpus referring to our pagetable. */
1032 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1033 		for_each_online_cpu(cpu) {
1034 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1035 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1036 				continue;
1037 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1038 		}
1039 		return;
1040 	}
1041 	cpumask_copy(mask, mm_cpumask(mm));
1042 
1043 	/* It's possible that a vcpu may have a stale reference to our
1044 	   cr3, because its in lazy mode, and it hasn't yet flushed
1045 	   its set of pending hypercalls yet.  In this case, we can
1046 	   look at its actual current cr3 value, and force it to flush
1047 	   if needed. */
1048 	for_each_online_cpu(cpu) {
1049 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1050 			cpumask_set_cpu(cpu, mask);
1051 	}
1052 
1053 	if (!cpumask_empty(mask))
1054 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1055 	free_cpumask_var(mask);
1056 }
1057 #else
1058 static void xen_drop_mm_ref(struct mm_struct *mm)
1059 {
1060 	if (current->active_mm == mm)
1061 		load_cr3(swapper_pg_dir);
1062 }
1063 #endif
1064 
1065 /*
1066  * While a process runs, Xen pins its pagetables, which means that the
1067  * hypervisor forces it to be read-only, and it controls all updates
1068  * to it.  This means that all pagetable updates have to go via the
1069  * hypervisor, which is moderately expensive.
1070  *
1071  * Since we're pulling the pagetable down, we switch to use init_mm,
1072  * unpin old process pagetable and mark it all read-write, which
1073  * allows further operations on it to be simple memory accesses.
1074  *
1075  * The only subtle point is that another CPU may be still using the
1076  * pagetable because of lazy tlb flushing.  This means we need need to
1077  * switch all CPUs off this pagetable before we can unpin it.
1078  */
1079 static void xen_exit_mmap(struct mm_struct *mm)
1080 {
1081 	get_cpu();		/* make sure we don't move around */
1082 	xen_drop_mm_ref(mm);
1083 	put_cpu();
1084 
1085 	spin_lock(&mm->page_table_lock);
1086 
1087 	/* pgd may not be pinned in the error exit path of execve */
1088 	if (xen_page_pinned(mm->pgd))
1089 		xen_pgd_unpin(mm);
1090 
1091 	spin_unlock(&mm->page_table_lock);
1092 }
1093 
1094 static void xen_post_allocator_init(void);
1095 
1096 #ifdef CONFIG_X86_64
1097 static void __init xen_cleanhighmap(unsigned long vaddr,
1098 				    unsigned long vaddr_end)
1099 {
1100 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1101 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1102 
1103 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1104 	 * We include the PMD passed in on _both_ boundaries. */
1105 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1106 			pmd++, vaddr += PMD_SIZE) {
1107 		if (pmd_none(*pmd))
1108 			continue;
1109 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1110 			set_pmd(pmd, __pmd(0));
1111 	}
1112 	/* In case we did something silly, we should crash in this function
1113 	 * instead of somewhere later and be confusing. */
1114 	xen_mc_flush();
1115 }
1116 static void __init xen_pagetable_p2m_copy(void)
1117 {
1118 	unsigned long size;
1119 	unsigned long addr;
1120 	unsigned long new_mfn_list;
1121 
1122 	if (xen_feature(XENFEAT_auto_translated_physmap))
1123 		return;
1124 
1125 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1126 
1127 	new_mfn_list = xen_revector_p2m_tree();
1128 	/* No memory or already called. */
1129 	if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1130 		return;
1131 
1132 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1133 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1134 
1135 	/* We should be in __ka space. */
1136 	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1137 	addr = xen_start_info->mfn_list;
1138 	/* We roundup to the PMD, which means that if anybody at this stage is
1139 	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1140 	 * they are in going to crash. Fortunatly we have already revectored
1141 	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1142 	size = roundup(size, PMD_SIZE);
1143 	xen_cleanhighmap(addr, addr + size);
1144 
1145 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1146 	memblock_free(__pa(xen_start_info->mfn_list), size);
1147 	/* And revector! Bye bye old array */
1148 	xen_start_info->mfn_list = new_mfn_list;
1149 
1150 	/* At this stage, cleanup_highmap has already cleaned __ka space
1151 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1152 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1153 	 * tables - do note that they are accessible at this stage via __va.
1154 	 * For good measure we also round up to the PMD - which means that if
1155 	 * anybody is using __ka address to the initial boot-stack - and try
1156 	 * to use it - they are going to crash. The xen_start_info has been
1157 	 * taken care of already in xen_setup_kernel_pagetable. */
1158 	addr = xen_start_info->pt_base;
1159 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1160 
1161 	xen_cleanhighmap(addr, addr + size);
1162 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1163 #ifdef DEBUG
1164 	/* This is superflous and is not neccessary, but you know what
1165 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1166 	 * anything at this stage. */
1167 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1168 #endif
1169 }
1170 #endif
1171 
1172 static void __init xen_pagetable_init(void)
1173 {
1174 	paging_init();
1175 #ifdef CONFIG_X86_64
1176 	xen_pagetable_p2m_copy();
1177 #endif
1178 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1179 	xen_build_mfn_list_list();
1180 
1181 	xen_setup_shared_info();
1182 	xen_post_allocator_init();
1183 }
1184 static void xen_write_cr2(unsigned long cr2)
1185 {
1186 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1187 }
1188 
1189 static unsigned long xen_read_cr2(void)
1190 {
1191 	return this_cpu_read(xen_vcpu)->arch.cr2;
1192 }
1193 
1194 unsigned long xen_read_cr2_direct(void)
1195 {
1196 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1197 }
1198 
1199 void xen_flush_tlb_all(void)
1200 {
1201 	struct mmuext_op *op;
1202 	struct multicall_space mcs;
1203 
1204 	trace_xen_mmu_flush_tlb_all(0);
1205 
1206 	preempt_disable();
1207 
1208 	mcs = xen_mc_entry(sizeof(*op));
1209 
1210 	op = mcs.args;
1211 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1212 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1213 
1214 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1215 
1216 	preempt_enable();
1217 }
1218 static void xen_flush_tlb(void)
1219 {
1220 	struct mmuext_op *op;
1221 	struct multicall_space mcs;
1222 
1223 	trace_xen_mmu_flush_tlb(0);
1224 
1225 	preempt_disable();
1226 
1227 	mcs = xen_mc_entry(sizeof(*op));
1228 
1229 	op = mcs.args;
1230 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1231 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1232 
1233 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1234 
1235 	preempt_enable();
1236 }
1237 
1238 static void xen_flush_tlb_single(unsigned long addr)
1239 {
1240 	struct mmuext_op *op;
1241 	struct multicall_space mcs;
1242 
1243 	trace_xen_mmu_flush_tlb_single(addr);
1244 
1245 	preempt_disable();
1246 
1247 	mcs = xen_mc_entry(sizeof(*op));
1248 	op = mcs.args;
1249 	op->cmd = MMUEXT_INVLPG_LOCAL;
1250 	op->arg1.linear_addr = addr & PAGE_MASK;
1251 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1252 
1253 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1254 
1255 	preempt_enable();
1256 }
1257 
1258 static void xen_flush_tlb_others(const struct cpumask *cpus,
1259 				 struct mm_struct *mm, unsigned long start,
1260 				 unsigned long end)
1261 {
1262 	struct {
1263 		struct mmuext_op op;
1264 #ifdef CONFIG_SMP
1265 		DECLARE_BITMAP(mask, num_processors);
1266 #else
1267 		DECLARE_BITMAP(mask, NR_CPUS);
1268 #endif
1269 	} *args;
1270 	struct multicall_space mcs;
1271 
1272 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1273 
1274 	if (cpumask_empty(cpus))
1275 		return;		/* nothing to do */
1276 
1277 	mcs = xen_mc_entry(sizeof(*args));
1278 	args = mcs.args;
1279 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1280 
1281 	/* Remove us, and any offline CPUS. */
1282 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1283 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1284 
1285 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1286 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1287 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1288 		args->op.arg1.linear_addr = start;
1289 	}
1290 
1291 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1292 
1293 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1294 }
1295 
1296 static unsigned long xen_read_cr3(void)
1297 {
1298 	return this_cpu_read(xen_cr3);
1299 }
1300 
1301 static void set_current_cr3(void *v)
1302 {
1303 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1304 }
1305 
1306 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1307 {
1308 	struct mmuext_op op;
1309 	unsigned long mfn;
1310 
1311 	trace_xen_mmu_write_cr3(kernel, cr3);
1312 
1313 	if (cr3)
1314 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1315 	else
1316 		mfn = 0;
1317 
1318 	WARN_ON(mfn == 0 && kernel);
1319 
1320 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1321 	op.arg1.mfn = mfn;
1322 
1323 	xen_extend_mmuext_op(&op);
1324 
1325 	if (kernel) {
1326 		this_cpu_write(xen_cr3, cr3);
1327 
1328 		/* Update xen_current_cr3 once the batch has actually
1329 		   been submitted. */
1330 		xen_mc_callback(set_current_cr3, (void *)cr3);
1331 	}
1332 }
1333 static void xen_write_cr3(unsigned long cr3)
1334 {
1335 	BUG_ON(preemptible());
1336 
1337 	xen_mc_batch();  /* disables interrupts */
1338 
1339 	/* Update while interrupts are disabled, so its atomic with
1340 	   respect to ipis */
1341 	this_cpu_write(xen_cr3, cr3);
1342 
1343 	__xen_write_cr3(true, cr3);
1344 
1345 #ifdef CONFIG_X86_64
1346 	{
1347 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1348 		if (user_pgd)
1349 			__xen_write_cr3(false, __pa(user_pgd));
1350 		else
1351 			__xen_write_cr3(false, 0);
1352 	}
1353 #endif
1354 
1355 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1356 }
1357 
1358 #ifdef CONFIG_X86_64
1359 /*
1360  * At the start of the day - when Xen launches a guest, it has already
1361  * built pagetables for the guest. We diligently look over them
1362  * in xen_setup_kernel_pagetable and graft as appropiate them in the
1363  * init_level4_pgt and its friends. Then when we are happy we load
1364  * the new init_level4_pgt - and continue on.
1365  *
1366  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1367  * up the rest of the pagetables. When it has completed it loads the cr3.
1368  * N.B. that baremetal would start at 'start_kernel' (and the early
1369  * #PF handler would create bootstrap pagetables) - so we are running
1370  * with the same assumptions as what to do when write_cr3 is executed
1371  * at this point.
1372  *
1373  * Since there are no user-page tables at all, we have two variants
1374  * of xen_write_cr3 - the early bootup (this one), and the late one
1375  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1376  * the Linux kernel and user-space are both in ring 3 while the
1377  * hypervisor is in ring 0.
1378  */
1379 static void __init xen_write_cr3_init(unsigned long cr3)
1380 {
1381 	BUG_ON(preemptible());
1382 
1383 	xen_mc_batch();  /* disables interrupts */
1384 
1385 	/* Update while interrupts are disabled, so its atomic with
1386 	   respect to ipis */
1387 	this_cpu_write(xen_cr3, cr3);
1388 
1389 	__xen_write_cr3(true, cr3);
1390 
1391 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1392 }
1393 #endif
1394 
1395 static int xen_pgd_alloc(struct mm_struct *mm)
1396 {
1397 	pgd_t *pgd = mm->pgd;
1398 	int ret = 0;
1399 
1400 	BUG_ON(PagePinned(virt_to_page(pgd)));
1401 
1402 #ifdef CONFIG_X86_64
1403 	{
1404 		struct page *page = virt_to_page(pgd);
1405 		pgd_t *user_pgd;
1406 
1407 		BUG_ON(page->private != 0);
1408 
1409 		ret = -ENOMEM;
1410 
1411 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1412 		page->private = (unsigned long)user_pgd;
1413 
1414 		if (user_pgd != NULL) {
1415 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1416 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1417 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1418 #endif
1419 			ret = 0;
1420 		}
1421 
1422 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1423 	}
1424 #endif
1425 
1426 	return ret;
1427 }
1428 
1429 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1430 {
1431 #ifdef CONFIG_X86_64
1432 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1433 
1434 	if (user_pgd)
1435 		free_page((unsigned long)user_pgd);
1436 #endif
1437 }
1438 
1439 #ifdef CONFIG_X86_32
1440 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1441 {
1442 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1443 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1444 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1445 			       pte_val_ma(pte));
1446 
1447 	return pte;
1448 }
1449 #else /* CONFIG_X86_64 */
1450 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1451 {
1452 	return pte;
1453 }
1454 #endif /* CONFIG_X86_64 */
1455 
1456 /*
1457  * Init-time set_pte while constructing initial pagetables, which
1458  * doesn't allow RO page table pages to be remapped RW.
1459  *
1460  * If there is no MFN for this PFN then this page is initially
1461  * ballooned out so clear the PTE (as in decrease_reservation() in
1462  * drivers/xen/balloon.c).
1463  *
1464  * Many of these PTE updates are done on unpinned and writable pages
1465  * and doing a hypercall for these is unnecessary and expensive.  At
1466  * this point it is not possible to tell if a page is pinned or not,
1467  * so always write the PTE directly and rely on Xen trapping and
1468  * emulating any updates as necessary.
1469  */
1470 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1471 {
1472 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1473 		pte = mask_rw_pte(ptep, pte);
1474 	else
1475 		pte = __pte_ma(0);
1476 
1477 	native_set_pte(ptep, pte);
1478 }
1479 
1480 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1481 {
1482 	struct mmuext_op op;
1483 	op.cmd = cmd;
1484 	op.arg1.mfn = pfn_to_mfn(pfn);
1485 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1486 		BUG();
1487 }
1488 
1489 /* Early in boot, while setting up the initial pagetable, assume
1490    everything is pinned. */
1491 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1492 {
1493 #ifdef CONFIG_FLATMEM
1494 	BUG_ON(mem_map);	/* should only be used early */
1495 #endif
1496 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1497 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1498 }
1499 
1500 /* Used for pmd and pud */
1501 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1502 {
1503 #ifdef CONFIG_FLATMEM
1504 	BUG_ON(mem_map);	/* should only be used early */
1505 #endif
1506 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1507 }
1508 
1509 /* Early release_pte assumes that all pts are pinned, since there's
1510    only init_mm and anything attached to that is pinned. */
1511 static void __init xen_release_pte_init(unsigned long pfn)
1512 {
1513 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1514 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1515 }
1516 
1517 static void __init xen_release_pmd_init(unsigned long pfn)
1518 {
1519 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1520 }
1521 
1522 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1523 {
1524 	struct multicall_space mcs;
1525 	struct mmuext_op *op;
1526 
1527 	mcs = __xen_mc_entry(sizeof(*op));
1528 	op = mcs.args;
1529 	op->cmd = cmd;
1530 	op->arg1.mfn = pfn_to_mfn(pfn);
1531 
1532 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1533 }
1534 
1535 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1536 {
1537 	struct multicall_space mcs;
1538 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1539 
1540 	mcs = __xen_mc_entry(0);
1541 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1542 				pfn_pte(pfn, prot), 0);
1543 }
1544 
1545 /* This needs to make sure the new pte page is pinned iff its being
1546    attached to a pinned pagetable. */
1547 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1548 				    unsigned level)
1549 {
1550 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1551 
1552 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1553 
1554 	if (pinned) {
1555 		struct page *page = pfn_to_page(pfn);
1556 
1557 		SetPagePinned(page);
1558 
1559 		if (!PageHighMem(page)) {
1560 			xen_mc_batch();
1561 
1562 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1563 
1564 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1565 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1566 
1567 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1568 		} else {
1569 			/* make sure there are no stray mappings of
1570 			   this page */
1571 			kmap_flush_unused();
1572 		}
1573 	}
1574 }
1575 
1576 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1577 {
1578 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1579 }
1580 
1581 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1582 {
1583 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1584 }
1585 
1586 /* This should never happen until we're OK to use struct page */
1587 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1588 {
1589 	struct page *page = pfn_to_page(pfn);
1590 	bool pinned = PagePinned(page);
1591 
1592 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1593 
1594 	if (pinned) {
1595 		if (!PageHighMem(page)) {
1596 			xen_mc_batch();
1597 
1598 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1599 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1600 
1601 			__set_pfn_prot(pfn, PAGE_KERNEL);
1602 
1603 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1604 		}
1605 		ClearPagePinned(page);
1606 	}
1607 }
1608 
1609 static void xen_release_pte(unsigned long pfn)
1610 {
1611 	xen_release_ptpage(pfn, PT_PTE);
1612 }
1613 
1614 static void xen_release_pmd(unsigned long pfn)
1615 {
1616 	xen_release_ptpage(pfn, PT_PMD);
1617 }
1618 
1619 #if PAGETABLE_LEVELS == 4
1620 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1621 {
1622 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1623 }
1624 
1625 static void xen_release_pud(unsigned long pfn)
1626 {
1627 	xen_release_ptpage(pfn, PT_PUD);
1628 }
1629 #endif
1630 
1631 void __init xen_reserve_top(void)
1632 {
1633 #ifdef CONFIG_X86_32
1634 	unsigned long top = HYPERVISOR_VIRT_START;
1635 	struct xen_platform_parameters pp;
1636 
1637 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1638 		top = pp.virt_start;
1639 
1640 	reserve_top_address(-top);
1641 #endif	/* CONFIG_X86_32 */
1642 }
1643 
1644 /*
1645  * Like __va(), but returns address in the kernel mapping (which is
1646  * all we have until the physical memory mapping has been set up.
1647  */
1648 static void *__ka(phys_addr_t paddr)
1649 {
1650 #ifdef CONFIG_X86_64
1651 	return (void *)(paddr + __START_KERNEL_map);
1652 #else
1653 	return __va(paddr);
1654 #endif
1655 }
1656 
1657 /* Convert a machine address to physical address */
1658 static unsigned long m2p(phys_addr_t maddr)
1659 {
1660 	phys_addr_t paddr;
1661 
1662 	maddr &= PTE_PFN_MASK;
1663 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1664 
1665 	return paddr;
1666 }
1667 
1668 /* Convert a machine address to kernel virtual */
1669 static void *m2v(phys_addr_t maddr)
1670 {
1671 	return __ka(m2p(maddr));
1672 }
1673 
1674 /* Set the page permissions on an identity-mapped pages */
1675 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1676 {
1677 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1678 	pte_t pte = pfn_pte(pfn, prot);
1679 
1680 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1681 	if (xen_feature(XENFEAT_auto_translated_physmap))
1682 		return;
1683 
1684 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1685 		BUG();
1686 }
1687 static void set_page_prot(void *addr, pgprot_t prot)
1688 {
1689 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1690 }
1691 #ifdef CONFIG_X86_32
1692 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1693 {
1694 	unsigned pmdidx, pteidx;
1695 	unsigned ident_pte;
1696 	unsigned long pfn;
1697 
1698 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1699 				      PAGE_SIZE);
1700 
1701 	ident_pte = 0;
1702 	pfn = 0;
1703 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1704 		pte_t *pte_page;
1705 
1706 		/* Reuse or allocate a page of ptes */
1707 		if (pmd_present(pmd[pmdidx]))
1708 			pte_page = m2v(pmd[pmdidx].pmd);
1709 		else {
1710 			/* Check for free pte pages */
1711 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1712 				break;
1713 
1714 			pte_page = &level1_ident_pgt[ident_pte];
1715 			ident_pte += PTRS_PER_PTE;
1716 
1717 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1718 		}
1719 
1720 		/* Install mappings */
1721 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1722 			pte_t pte;
1723 
1724 #ifdef CONFIG_X86_32
1725 			if (pfn > max_pfn_mapped)
1726 				max_pfn_mapped = pfn;
1727 #endif
1728 
1729 			if (!pte_none(pte_page[pteidx]))
1730 				continue;
1731 
1732 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1733 			pte_page[pteidx] = pte;
1734 		}
1735 	}
1736 
1737 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1738 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1739 
1740 	set_page_prot(pmd, PAGE_KERNEL_RO);
1741 }
1742 #endif
1743 void __init xen_setup_machphys_mapping(void)
1744 {
1745 	struct xen_machphys_mapping mapping;
1746 
1747 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1748 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1749 		machine_to_phys_nr = mapping.max_mfn + 1;
1750 	} else {
1751 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1752 	}
1753 #ifdef CONFIG_X86_32
1754 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1755 		< machine_to_phys_mapping);
1756 #endif
1757 }
1758 
1759 #ifdef CONFIG_X86_64
1760 static void convert_pfn_mfn(void *v)
1761 {
1762 	pte_t *pte = v;
1763 	int i;
1764 
1765 	/* All levels are converted the same way, so just treat them
1766 	   as ptes. */
1767 	for (i = 0; i < PTRS_PER_PTE; i++)
1768 		pte[i] = xen_make_pte(pte[i].pte);
1769 }
1770 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1771 				 unsigned long addr)
1772 {
1773 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1774 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1775 		clear_page((void *)addr);
1776 		(*pt_base)++;
1777 	}
1778 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1779 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1780 		clear_page((void *)addr);
1781 		(*pt_end)--;
1782 	}
1783 }
1784 /*
1785  * Set up the initial kernel pagetable.
1786  *
1787  * We can construct this by grafting the Xen provided pagetable into
1788  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1789  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1790  * kernel has a physical mapping to start with - but that's enough to
1791  * get __va working.  We need to fill in the rest of the physical
1792  * mapping once some sort of allocator has been set up.  NOTE: for
1793  * PVH, the page tables are native.
1794  */
1795 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1796 {
1797 	pud_t *l3;
1798 	pmd_t *l2;
1799 	unsigned long addr[3];
1800 	unsigned long pt_base, pt_end;
1801 	unsigned i;
1802 
1803 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1804 	 * mappings. Considering that on Xen after the kernel mappings we
1805 	 * have the mappings of some pages that don't exist in pfn space, we
1806 	 * set max_pfn_mapped to the last real pfn mapped. */
1807 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1808 
1809 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1810 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1811 
1812 	/* Zap identity mapping */
1813 	init_level4_pgt[0] = __pgd(0);
1814 
1815 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1816 		/* Pre-constructed entries are in pfn, so convert to mfn */
1817 		/* L4[272] -> level3_ident_pgt
1818 		 * L4[511] -> level3_kernel_pgt */
1819 		convert_pfn_mfn(init_level4_pgt);
1820 
1821 		/* L3_i[0] -> level2_ident_pgt */
1822 		convert_pfn_mfn(level3_ident_pgt);
1823 		/* L3_k[510] -> level2_kernel_pgt
1824 		 * L3_k[511] -> level2_fixmap_pgt */
1825 		convert_pfn_mfn(level3_kernel_pgt);
1826 
1827 		/* L3_k[511][506] -> level1_fixmap_pgt */
1828 		convert_pfn_mfn(level2_fixmap_pgt);
1829 	}
1830 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1831 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1832 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1833 
1834 	addr[0] = (unsigned long)pgd;
1835 	addr[1] = (unsigned long)l3;
1836 	addr[2] = (unsigned long)l2;
1837 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1838 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1839 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1840 	 * it will be also modified in the __ka space! (But if you just
1841 	 * modify the PMD table to point to other PTE's or none, then you
1842 	 * are OK - which is what cleanup_highmap does) */
1843 	copy_page(level2_ident_pgt, l2);
1844 	/* Graft it onto L4[511][510] */
1845 	copy_page(level2_kernel_pgt, l2);
1846 
1847 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1848 		/* Make pagetable pieces RO */
1849 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1850 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1851 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1852 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1853 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1854 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1855 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1856 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1857 
1858 		/* Pin down new L4 */
1859 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1860 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1861 
1862 		/* Unpin Xen-provided one */
1863 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1864 
1865 		/*
1866 		 * At this stage there can be no user pgd, and no page
1867 		 * structure to attach it to, so make sure we just set kernel
1868 		 * pgd.
1869 		 */
1870 		xen_mc_batch();
1871 		__xen_write_cr3(true, __pa(init_level4_pgt));
1872 		xen_mc_issue(PARAVIRT_LAZY_CPU);
1873 	} else
1874 		native_write_cr3(__pa(init_level4_pgt));
1875 
1876 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1877 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1878 	 * the initial domain. For guests using the toolstack, they are in:
1879 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1880 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1881 	 */
1882 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1883 		check_pt_base(&pt_base, &pt_end, addr[i]);
1884 
1885 	/* Our (by three pages) smaller Xen pagetable that we are using */
1886 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1887 	/* Revector the xen_start_info */
1888 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1889 }
1890 #else	/* !CONFIG_X86_64 */
1891 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1892 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1893 
1894 static void __init xen_write_cr3_init(unsigned long cr3)
1895 {
1896 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1897 
1898 	BUG_ON(read_cr3() != __pa(initial_page_table));
1899 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1900 
1901 	/*
1902 	 * We are switching to swapper_pg_dir for the first time (from
1903 	 * initial_page_table) and therefore need to mark that page
1904 	 * read-only and then pin it.
1905 	 *
1906 	 * Xen disallows sharing of kernel PMDs for PAE
1907 	 * guests. Therefore we must copy the kernel PMD from
1908 	 * initial_page_table into a new kernel PMD to be used in
1909 	 * swapper_pg_dir.
1910 	 */
1911 	swapper_kernel_pmd =
1912 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1913 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1914 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1915 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1916 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1917 
1918 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1919 	xen_write_cr3(cr3);
1920 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1921 
1922 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1923 			  PFN_DOWN(__pa(initial_page_table)));
1924 	set_page_prot(initial_page_table, PAGE_KERNEL);
1925 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1926 
1927 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1928 }
1929 
1930 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1931 {
1932 	pmd_t *kernel_pmd;
1933 
1934 	initial_kernel_pmd =
1935 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1936 
1937 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1938 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1939 				  512*1024);
1940 
1941 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1942 	copy_page(initial_kernel_pmd, kernel_pmd);
1943 
1944 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1945 
1946 	copy_page(initial_page_table, pgd);
1947 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1948 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1949 
1950 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1951 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1952 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1953 
1954 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1955 
1956 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1957 			  PFN_DOWN(__pa(initial_page_table)));
1958 	xen_write_cr3(__pa(initial_page_table));
1959 
1960 	memblock_reserve(__pa(xen_start_info->pt_base),
1961 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1962 }
1963 #endif	/* CONFIG_X86_64 */
1964 
1965 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1966 
1967 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1968 {
1969 	pte_t pte;
1970 
1971 	phys >>= PAGE_SHIFT;
1972 
1973 	switch (idx) {
1974 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1975 	case FIX_RO_IDT:
1976 #ifdef CONFIG_X86_32
1977 	case FIX_WP_TEST:
1978 # ifdef CONFIG_HIGHMEM
1979 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1980 # endif
1981 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
1982 	case VSYSCALL_PAGE:
1983 #endif
1984 	case FIX_TEXT_POKE0:
1985 	case FIX_TEXT_POKE1:
1986 		/* All local page mappings */
1987 		pte = pfn_pte(phys, prot);
1988 		break;
1989 
1990 #ifdef CONFIG_X86_LOCAL_APIC
1991 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1992 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1993 		break;
1994 #endif
1995 
1996 #ifdef CONFIG_X86_IO_APIC
1997 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1998 		/*
1999 		 * We just don't map the IO APIC - all access is via
2000 		 * hypercalls.  Keep the address in the pte for reference.
2001 		 */
2002 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2003 		break;
2004 #endif
2005 
2006 	case FIX_PARAVIRT_BOOTMAP:
2007 		/* This is an MFN, but it isn't an IO mapping from the
2008 		   IO domain */
2009 		pte = mfn_pte(phys, prot);
2010 		break;
2011 
2012 	default:
2013 		/* By default, set_fixmap is used for hardware mappings */
2014 		pte = mfn_pte(phys, prot);
2015 		break;
2016 	}
2017 
2018 	__native_set_fixmap(idx, pte);
2019 
2020 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2021 	/* Replicate changes to map the vsyscall page into the user
2022 	   pagetable vsyscall mapping. */
2023 	if (idx == VSYSCALL_PAGE) {
2024 		unsigned long vaddr = __fix_to_virt(idx);
2025 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2026 	}
2027 #endif
2028 }
2029 
2030 static void __init xen_post_allocator_init(void)
2031 {
2032 	if (xen_feature(XENFEAT_auto_translated_physmap))
2033 		return;
2034 
2035 	pv_mmu_ops.set_pte = xen_set_pte;
2036 	pv_mmu_ops.set_pmd = xen_set_pmd;
2037 	pv_mmu_ops.set_pud = xen_set_pud;
2038 #if PAGETABLE_LEVELS == 4
2039 	pv_mmu_ops.set_pgd = xen_set_pgd;
2040 #endif
2041 
2042 	/* This will work as long as patching hasn't happened yet
2043 	   (which it hasn't) */
2044 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2045 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2046 	pv_mmu_ops.release_pte = xen_release_pte;
2047 	pv_mmu_ops.release_pmd = xen_release_pmd;
2048 #if PAGETABLE_LEVELS == 4
2049 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2050 	pv_mmu_ops.release_pud = xen_release_pud;
2051 #endif
2052 
2053 #ifdef CONFIG_X86_64
2054 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2055 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2056 #endif
2057 	xen_mark_init_mm_pinned();
2058 }
2059 
2060 static void xen_leave_lazy_mmu(void)
2061 {
2062 	preempt_disable();
2063 	xen_mc_flush();
2064 	paravirt_leave_lazy_mmu();
2065 	preempt_enable();
2066 }
2067 
2068 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2069 	.read_cr2 = xen_read_cr2,
2070 	.write_cr2 = xen_write_cr2,
2071 
2072 	.read_cr3 = xen_read_cr3,
2073 	.write_cr3 = xen_write_cr3_init,
2074 
2075 	.flush_tlb_user = xen_flush_tlb,
2076 	.flush_tlb_kernel = xen_flush_tlb,
2077 	.flush_tlb_single = xen_flush_tlb_single,
2078 	.flush_tlb_others = xen_flush_tlb_others,
2079 
2080 	.pte_update = paravirt_nop,
2081 	.pte_update_defer = paravirt_nop,
2082 
2083 	.pgd_alloc = xen_pgd_alloc,
2084 	.pgd_free = xen_pgd_free,
2085 
2086 	.alloc_pte = xen_alloc_pte_init,
2087 	.release_pte = xen_release_pte_init,
2088 	.alloc_pmd = xen_alloc_pmd_init,
2089 	.release_pmd = xen_release_pmd_init,
2090 
2091 	.set_pte = xen_set_pte_init,
2092 	.set_pte_at = xen_set_pte_at,
2093 	.set_pmd = xen_set_pmd_hyper,
2094 
2095 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2096 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2097 
2098 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2099 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2100 
2101 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2102 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2103 
2104 #ifdef CONFIG_X86_PAE
2105 	.set_pte_atomic = xen_set_pte_atomic,
2106 	.pte_clear = xen_pte_clear,
2107 	.pmd_clear = xen_pmd_clear,
2108 #endif	/* CONFIG_X86_PAE */
2109 	.set_pud = xen_set_pud_hyper,
2110 
2111 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2112 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2113 
2114 #if PAGETABLE_LEVELS == 4
2115 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2116 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2117 	.set_pgd = xen_set_pgd_hyper,
2118 
2119 	.alloc_pud = xen_alloc_pmd_init,
2120 	.release_pud = xen_release_pmd_init,
2121 #endif	/* PAGETABLE_LEVELS == 4 */
2122 
2123 	.activate_mm = xen_activate_mm,
2124 	.dup_mmap = xen_dup_mmap,
2125 	.exit_mmap = xen_exit_mmap,
2126 
2127 	.lazy_mode = {
2128 		.enter = paravirt_enter_lazy_mmu,
2129 		.leave = xen_leave_lazy_mmu,
2130 		.flush = paravirt_flush_lazy_mmu,
2131 	},
2132 
2133 	.set_fixmap = xen_set_fixmap,
2134 };
2135 
2136 void __init xen_init_mmu_ops(void)
2137 {
2138 	x86_init.paging.pagetable_init = xen_pagetable_init;
2139 
2140 	/* Optimization - we can use the HVM one but it has no idea which
2141 	 * VCPUs are descheduled - which means that it will needlessly IPI
2142 	 * them. Xen knows so let it do the job.
2143 	 */
2144 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2145 		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2146 		return;
2147 	}
2148 	pv_mmu_ops = xen_mmu_ops;
2149 
2150 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2151 }
2152 
2153 /* Protected by xen_reservation_lock. */
2154 #define MAX_CONTIG_ORDER 9 /* 2MB */
2155 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2156 
2157 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2158 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2159 				unsigned long *in_frames,
2160 				unsigned long *out_frames)
2161 {
2162 	int i;
2163 	struct multicall_space mcs;
2164 
2165 	xen_mc_batch();
2166 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2167 		mcs = __xen_mc_entry(0);
2168 
2169 		if (in_frames)
2170 			in_frames[i] = virt_to_mfn(vaddr);
2171 
2172 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2173 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2174 
2175 		if (out_frames)
2176 			out_frames[i] = virt_to_pfn(vaddr);
2177 	}
2178 	xen_mc_issue(0);
2179 }
2180 
2181 /*
2182  * Update the pfn-to-mfn mappings for a virtual address range, either to
2183  * point to an array of mfns, or contiguously from a single starting
2184  * mfn.
2185  */
2186 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2187 				     unsigned long *mfns,
2188 				     unsigned long first_mfn)
2189 {
2190 	unsigned i, limit;
2191 	unsigned long mfn;
2192 
2193 	xen_mc_batch();
2194 
2195 	limit = 1u << order;
2196 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2197 		struct multicall_space mcs;
2198 		unsigned flags;
2199 
2200 		mcs = __xen_mc_entry(0);
2201 		if (mfns)
2202 			mfn = mfns[i];
2203 		else
2204 			mfn = first_mfn + i;
2205 
2206 		if (i < (limit - 1))
2207 			flags = 0;
2208 		else {
2209 			if (order == 0)
2210 				flags = UVMF_INVLPG | UVMF_ALL;
2211 			else
2212 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2213 		}
2214 
2215 		MULTI_update_va_mapping(mcs.mc, vaddr,
2216 				mfn_pte(mfn, PAGE_KERNEL), flags);
2217 
2218 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2219 	}
2220 
2221 	xen_mc_issue(0);
2222 }
2223 
2224 /*
2225  * Perform the hypercall to exchange a region of our pfns to point to
2226  * memory with the required contiguous alignment.  Takes the pfns as
2227  * input, and populates mfns as output.
2228  *
2229  * Returns a success code indicating whether the hypervisor was able to
2230  * satisfy the request or not.
2231  */
2232 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2233 			       unsigned long *pfns_in,
2234 			       unsigned long extents_out,
2235 			       unsigned int order_out,
2236 			       unsigned long *mfns_out,
2237 			       unsigned int address_bits)
2238 {
2239 	long rc;
2240 	int success;
2241 
2242 	struct xen_memory_exchange exchange = {
2243 		.in = {
2244 			.nr_extents   = extents_in,
2245 			.extent_order = order_in,
2246 			.extent_start = pfns_in,
2247 			.domid        = DOMID_SELF
2248 		},
2249 		.out = {
2250 			.nr_extents   = extents_out,
2251 			.extent_order = order_out,
2252 			.extent_start = mfns_out,
2253 			.address_bits = address_bits,
2254 			.domid        = DOMID_SELF
2255 		}
2256 	};
2257 
2258 	BUG_ON(extents_in << order_in != extents_out << order_out);
2259 
2260 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2261 	success = (exchange.nr_exchanged == extents_in);
2262 
2263 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2264 	BUG_ON(success && (rc != 0));
2265 
2266 	return success;
2267 }
2268 
2269 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2270 				 unsigned int address_bits,
2271 				 dma_addr_t *dma_handle)
2272 {
2273 	unsigned long *in_frames = discontig_frames, out_frame;
2274 	unsigned long  flags;
2275 	int            success;
2276 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2277 
2278 	/*
2279 	 * Currently an auto-translated guest will not perform I/O, nor will
2280 	 * it require PAE page directories below 4GB. Therefore any calls to
2281 	 * this function are redundant and can be ignored.
2282 	 */
2283 
2284 	if (xen_feature(XENFEAT_auto_translated_physmap))
2285 		return 0;
2286 
2287 	if (unlikely(order > MAX_CONTIG_ORDER))
2288 		return -ENOMEM;
2289 
2290 	memset((void *) vstart, 0, PAGE_SIZE << order);
2291 
2292 	spin_lock_irqsave(&xen_reservation_lock, flags);
2293 
2294 	/* 1. Zap current PTEs, remembering MFNs. */
2295 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2296 
2297 	/* 2. Get a new contiguous memory extent. */
2298 	out_frame = virt_to_pfn(vstart);
2299 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2300 				      1, order, &out_frame,
2301 				      address_bits);
2302 
2303 	/* 3. Map the new extent in place of old pages. */
2304 	if (success)
2305 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2306 	else
2307 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2308 
2309 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2310 
2311 	*dma_handle = virt_to_machine(vstart).maddr;
2312 	return success ? 0 : -ENOMEM;
2313 }
2314 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2315 
2316 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2317 {
2318 	unsigned long *out_frames = discontig_frames, in_frame;
2319 	unsigned long  flags;
2320 	int success;
2321 	unsigned long vstart;
2322 
2323 	if (xen_feature(XENFEAT_auto_translated_physmap))
2324 		return;
2325 
2326 	if (unlikely(order > MAX_CONTIG_ORDER))
2327 		return;
2328 
2329 	vstart = (unsigned long)phys_to_virt(pstart);
2330 	memset((void *) vstart, 0, PAGE_SIZE << order);
2331 
2332 	spin_lock_irqsave(&xen_reservation_lock, flags);
2333 
2334 	/* 1. Find start MFN of contiguous extent. */
2335 	in_frame = virt_to_mfn(vstart);
2336 
2337 	/* 2. Zap current PTEs. */
2338 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2339 
2340 	/* 3. Do the exchange for non-contiguous MFNs. */
2341 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2342 					0, out_frames, 0);
2343 
2344 	/* 4. Map new pages in place of old pages. */
2345 	if (success)
2346 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2347 	else
2348 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2349 
2350 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2351 }
2352 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2353 
2354 #ifdef CONFIG_XEN_PVHVM
2355 #ifdef CONFIG_PROC_VMCORE
2356 /*
2357  * This function is used in two contexts:
2358  * - the kdump kernel has to check whether a pfn of the crashed kernel
2359  *   was a ballooned page. vmcore is using this function to decide
2360  *   whether to access a pfn of the crashed kernel.
2361  * - the kexec kernel has to check whether a pfn was ballooned by the
2362  *   previous kernel. If the pfn is ballooned, handle it properly.
2363  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2364  * handle the pfn special in this case.
2365  */
2366 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2367 {
2368 	struct xen_hvm_get_mem_type a = {
2369 		.domid = DOMID_SELF,
2370 		.pfn = pfn,
2371 	};
2372 	int ram;
2373 
2374 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2375 		return -ENXIO;
2376 
2377 	switch (a.mem_type) {
2378 		case HVMMEM_mmio_dm:
2379 			ram = 0;
2380 			break;
2381 		case HVMMEM_ram_rw:
2382 		case HVMMEM_ram_ro:
2383 		default:
2384 			ram = 1;
2385 			break;
2386 	}
2387 
2388 	return ram;
2389 }
2390 #endif
2391 
2392 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2393 {
2394 	struct xen_hvm_pagetable_dying a;
2395 	int rc;
2396 
2397 	a.domid = DOMID_SELF;
2398 	a.gpa = __pa(mm->pgd);
2399 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2400 	WARN_ON_ONCE(rc < 0);
2401 }
2402 
2403 static int is_pagetable_dying_supported(void)
2404 {
2405 	struct xen_hvm_pagetable_dying a;
2406 	int rc = 0;
2407 
2408 	a.domid = DOMID_SELF;
2409 	a.gpa = 0x00;
2410 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2411 	if (rc < 0) {
2412 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2413 		return 0;
2414 	}
2415 	return 1;
2416 }
2417 
2418 void __init xen_hvm_init_mmu_ops(void)
2419 {
2420 	if (is_pagetable_dying_supported())
2421 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2422 #ifdef CONFIG_PROC_VMCORE
2423 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2424 #endif
2425 }
2426 #endif
2427 
2428 #ifdef CONFIG_XEN_PVH
2429 /*
2430  * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2431  * space creating new guest on pvh dom0 and needing to map domU pages.
2432  */
2433 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2434 			    unsigned int domid)
2435 {
2436 	int rc, err = 0;
2437 	xen_pfn_t gpfn = lpfn;
2438 	xen_ulong_t idx = fgfn;
2439 
2440 	struct xen_add_to_physmap_range xatp = {
2441 		.domid = DOMID_SELF,
2442 		.foreign_domid = domid,
2443 		.size = 1,
2444 		.space = XENMAPSPACE_gmfn_foreign,
2445 	};
2446 	set_xen_guest_handle(xatp.idxs, &idx);
2447 	set_xen_guest_handle(xatp.gpfns, &gpfn);
2448 	set_xen_guest_handle(xatp.errs, &err);
2449 
2450 	rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2451 	if (rc < 0)
2452 		return rc;
2453 	return err;
2454 }
2455 
2456 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2457 {
2458 	struct xen_remove_from_physmap xrp;
2459 	int i, rc;
2460 
2461 	for (i = 0; i < count; i++) {
2462 		xrp.domid = DOMID_SELF;
2463 		xrp.gpfn = spfn+i;
2464 		rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2465 		if (rc)
2466 			break;
2467 	}
2468 	return rc;
2469 }
2470 
2471 struct xlate_remap_data {
2472 	unsigned long fgfn; /* foreign domain's gfn */
2473 	pgprot_t prot;
2474 	domid_t  domid;
2475 	int index;
2476 	struct page **pages;
2477 };
2478 
2479 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2480 			    void *data)
2481 {
2482 	int rc;
2483 	struct xlate_remap_data *remap = data;
2484 	unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2485 	pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2486 
2487 	rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2488 	if (rc)
2489 		return rc;
2490 	native_set_pte(ptep, pteval);
2491 
2492 	return 0;
2493 }
2494 
2495 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2496 				 unsigned long addr, unsigned long mfn,
2497 				 int nr, pgprot_t prot, unsigned domid,
2498 				 struct page **pages)
2499 {
2500 	int err;
2501 	struct xlate_remap_data pvhdata;
2502 
2503 	BUG_ON(!pages);
2504 
2505 	pvhdata.fgfn = mfn;
2506 	pvhdata.prot = prot;
2507 	pvhdata.domid = domid;
2508 	pvhdata.index = 0;
2509 	pvhdata.pages = pages;
2510 	err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2511 				  xlate_map_pte_fn, &pvhdata);
2512 	flush_tlb_all();
2513 	return err;
2514 }
2515 #endif
2516 
2517 #define REMAP_BATCH_SIZE 16
2518 
2519 struct remap_data {
2520 	unsigned long mfn;
2521 	pgprot_t prot;
2522 	struct mmu_update *mmu_update;
2523 };
2524 
2525 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2526 				 unsigned long addr, void *data)
2527 {
2528 	struct remap_data *rmd = data;
2529 	pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2530 
2531 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2532 	rmd->mmu_update->val = pte_val_ma(pte);
2533 	rmd->mmu_update++;
2534 
2535 	return 0;
2536 }
2537 
2538 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2539 			       unsigned long addr,
2540 			       xen_pfn_t mfn, int nr,
2541 			       pgprot_t prot, unsigned domid,
2542 			       struct page **pages)
2543 
2544 {
2545 	struct remap_data rmd;
2546 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2547 	int batch;
2548 	unsigned long range;
2549 	int err = 0;
2550 
2551 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2552 
2553 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2554 #ifdef CONFIG_XEN_PVH
2555 		/* We need to update the local page tables and the xen HAP */
2556 		return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2557 					     domid, pages);
2558 #else
2559 		return -EINVAL;
2560 #endif
2561         }
2562 
2563 	rmd.mfn = mfn;
2564 	rmd.prot = prot;
2565 
2566 	while (nr) {
2567 		batch = min(REMAP_BATCH_SIZE, nr);
2568 		range = (unsigned long)batch << PAGE_SHIFT;
2569 
2570 		rmd.mmu_update = mmu_update;
2571 		err = apply_to_page_range(vma->vm_mm, addr, range,
2572 					  remap_area_mfn_pte_fn, &rmd);
2573 		if (err)
2574 			goto out;
2575 
2576 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2577 		if (err < 0)
2578 			goto out;
2579 
2580 		nr -= batch;
2581 		addr += range;
2582 	}
2583 
2584 	err = 0;
2585 out:
2586 
2587 	xen_flush_tlb_all();
2588 
2589 	return err;
2590 }
2591 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2592 
2593 /* Returns: 0 success */
2594 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2595 			       int numpgs, struct page **pages)
2596 {
2597 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2598 		return 0;
2599 
2600 #ifdef CONFIG_XEN_PVH
2601 	while (numpgs--) {
2602 		/*
2603 		 * The mmu has already cleaned up the process mmu
2604 		 * resources at this point (lookup_address will return
2605 		 * NULL).
2606 		 */
2607 		unsigned long pfn = page_to_pfn(pages[numpgs]);
2608 
2609 		xlate_remove_from_p2m(pfn, 1);
2610 	}
2611 	/*
2612 	 * We don't need to flush tlbs because as part of
2613 	 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2614 	 * after removing the p2m entries from the EPT/NPT
2615 	 */
2616 	return 0;
2617 #else
2618 	return -EINVAL;
2619 #endif
2620 }
2621 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2622