xref: /linux/arch/x86/platform/efi/quirks.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/string.h>
4 #include <linux/time.h>
5 #include <linux/types.h>
6 #include <linux/efi.h>
7 #include <linux/slab.h>
8 #include <linux/memblock.h>
9 #include <linux/bootmem.h>
10 #include <linux/acpi.h>
11 #include <linux/dmi.h>
12 #include <asm/efi.h>
13 #include <asm/uv/uv.h>
14 
15 #define EFI_MIN_RESERVE 5120
16 
17 #define EFI_DUMMY_GUID \
18 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
19 
20 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
21 
22 static bool efi_no_storage_paranoia;
23 
24 /*
25  * Some firmware implementations refuse to boot if there's insufficient
26  * space in the variable store. The implementation of garbage collection
27  * in some FW versions causes stale (deleted) variables to take up space
28  * longer than intended and space is only freed once the store becomes
29  * almost completely full.
30  *
31  * Enabling this option disables the space checks in
32  * efi_query_variable_store() and forces garbage collection.
33  *
34  * Only enable this option if deleting EFI variables does not free up
35  * space in your variable store, e.g. if despite deleting variables
36  * you're unable to create new ones.
37  */
38 static int __init setup_storage_paranoia(char *arg)
39 {
40 	efi_no_storage_paranoia = true;
41 	return 0;
42 }
43 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
44 
45 /*
46  * Deleting the dummy variable which kicks off garbage collection
47 */
48 void efi_delete_dummy_variable(void)
49 {
50 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
51 			 EFI_VARIABLE_NON_VOLATILE |
52 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
53 			 EFI_VARIABLE_RUNTIME_ACCESS,
54 			 0, NULL);
55 }
56 
57 /*
58  * Some firmware implementations refuse to boot if there's insufficient space
59  * in the variable store. Ensure that we never use more than a safe limit.
60  *
61  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
62  * store.
63  */
64 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
65 {
66 	efi_status_t status;
67 	u64 storage_size, remaining_size, max_size;
68 
69 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
70 		return 0;
71 
72 	status = efi.query_variable_info(attributes, &storage_size,
73 					 &remaining_size, &max_size);
74 	if (status != EFI_SUCCESS)
75 		return status;
76 
77 	/*
78 	 * We account for that by refusing the write if permitting it would
79 	 * reduce the available space to under 5KB. This figure was provided by
80 	 * Samsung, so should be safe.
81 	 */
82 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
83 		!efi_no_storage_paranoia) {
84 
85 		/*
86 		 * Triggering garbage collection may require that the firmware
87 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
88 		 * that by attempting to use more space than is available.
89 		 */
90 		unsigned long dummy_size = remaining_size + 1024;
91 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
92 
93 		if (!dummy)
94 			return EFI_OUT_OF_RESOURCES;
95 
96 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
97 					  EFI_VARIABLE_NON_VOLATILE |
98 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
99 					  EFI_VARIABLE_RUNTIME_ACCESS,
100 					  dummy_size, dummy);
101 
102 		if (status == EFI_SUCCESS) {
103 			/*
104 			 * This should have failed, so if it didn't make sure
105 			 * that we delete it...
106 			 */
107 			efi_delete_dummy_variable();
108 		}
109 
110 		kfree(dummy);
111 
112 		/*
113 		 * The runtime code may now have triggered a garbage collection
114 		 * run, so check the variable info again
115 		 */
116 		status = efi.query_variable_info(attributes, &storage_size,
117 						 &remaining_size, &max_size);
118 
119 		if (status != EFI_SUCCESS)
120 			return status;
121 
122 		/*
123 		 * There still isn't enough room, so return an error
124 		 */
125 		if (remaining_size - size < EFI_MIN_RESERVE)
126 			return EFI_OUT_OF_RESOURCES;
127 	}
128 
129 	return EFI_SUCCESS;
130 }
131 EXPORT_SYMBOL_GPL(efi_query_variable_store);
132 
133 /*
134  * Helper function for efi_reserve_boot_services() to figure out if we
135  * can free regions in efi_free_boot_services().
136  *
137  * Use this function to ensure we do not free regions owned by somebody
138  * else. We must only reserve (and then free) regions:
139  *
140  * - Not within any part of the kernel
141  * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
142  */
143 static bool can_free_region(u64 start, u64 size)
144 {
145 	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
146 		return false;
147 
148 	if (!e820_all_mapped(start, start+size, E820_RAM))
149 		return false;
150 
151 	return true;
152 }
153 
154 /*
155  * The UEFI specification makes it clear that the operating system is free to do
156  * whatever it wants with boot services code after ExitBootServices() has been
157  * called. Ignoring this recommendation a significant bunch of EFI implementations
158  * continue calling into boot services code (SetVirtualAddressMap). In order to
159  * work around such buggy implementations we reserve boot services region during
160  * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it
161 * is discarded.
162 */
163 void __init efi_reserve_boot_services(void)
164 {
165 	void *p;
166 
167 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
168 		efi_memory_desc_t *md = p;
169 		u64 start = md->phys_addr;
170 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
171 		bool already_reserved;
172 
173 		if (md->type != EFI_BOOT_SERVICES_CODE &&
174 		    md->type != EFI_BOOT_SERVICES_DATA)
175 			continue;
176 
177 		already_reserved = memblock_is_region_reserved(start, size);
178 
179 		/*
180 		 * Because the following memblock_reserve() is paired
181 		 * with free_bootmem_late() for this region in
182 		 * efi_free_boot_services(), we must be extremely
183 		 * careful not to reserve, and subsequently free,
184 		 * critical regions of memory (like the kernel image) or
185 		 * those regions that somebody else has already
186 		 * reserved.
187 		 *
188 		 * A good example of a critical region that must not be
189 		 * freed is page zero (first 4Kb of memory), which may
190 		 * contain boot services code/data but is marked
191 		 * E820_RESERVED by trim_bios_range().
192 		 */
193 		if (!already_reserved) {
194 			memblock_reserve(start, size);
195 
196 			/*
197 			 * If we are the first to reserve the region, no
198 			 * one else cares about it. We own it and can
199 			 * free it later.
200 			 */
201 			if (can_free_region(start, size))
202 				continue;
203 		}
204 
205 		/*
206 		 * We don't own the region. We must not free it.
207 		 *
208 		 * Setting this bit for a boot services region really
209 		 * doesn't make sense as far as the firmware is
210 		 * concerned, but it does provide us with a way to tag
211 		 * those regions that must not be paired with
212 		 * free_bootmem_late().
213 		 */
214 		md->attribute |= EFI_MEMORY_RUNTIME;
215 	}
216 }
217 
218 void __init efi_free_boot_services(void)
219 {
220 	void *p;
221 
222 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
223 		efi_memory_desc_t *md = p;
224 		unsigned long long start = md->phys_addr;
225 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
226 
227 		if (md->type != EFI_BOOT_SERVICES_CODE &&
228 		    md->type != EFI_BOOT_SERVICES_DATA)
229 			continue;
230 
231 		/* Do not free, someone else owns it: */
232 		if (md->attribute & EFI_MEMORY_RUNTIME)
233 			continue;
234 
235 		free_bootmem_late(start, size);
236 	}
237 
238 	efi_unmap_memmap();
239 }
240 
241 /*
242  * A number of config table entries get remapped to virtual addresses
243  * after entering EFI virtual mode. However, the kexec kernel requires
244  * their physical addresses therefore we pass them via setup_data and
245  * correct those entries to their respective physical addresses here.
246  *
247  * Currently only handles smbios which is necessary for some firmware
248  * implementation.
249  */
250 int __init efi_reuse_config(u64 tables, int nr_tables)
251 {
252 	int i, sz, ret = 0;
253 	void *p, *tablep;
254 	struct efi_setup_data *data;
255 
256 	if (!efi_setup)
257 		return 0;
258 
259 	if (!efi_enabled(EFI_64BIT))
260 		return 0;
261 
262 	data = early_memremap(efi_setup, sizeof(*data));
263 	if (!data) {
264 		ret = -ENOMEM;
265 		goto out;
266 	}
267 
268 	if (!data->smbios)
269 		goto out_memremap;
270 
271 	sz = sizeof(efi_config_table_64_t);
272 
273 	p = tablep = early_memremap(tables, nr_tables * sz);
274 	if (!p) {
275 		pr_err("Could not map Configuration table!\n");
276 		ret = -ENOMEM;
277 		goto out_memremap;
278 	}
279 
280 	for (i = 0; i < efi.systab->nr_tables; i++) {
281 		efi_guid_t guid;
282 
283 		guid = ((efi_config_table_64_t *)p)->guid;
284 
285 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
286 			((efi_config_table_64_t *)p)->table = data->smbios;
287 		p += sz;
288 	}
289 	early_memunmap(tablep, nr_tables * sz);
290 
291 out_memremap:
292 	early_memunmap(data, sizeof(*data));
293 out:
294 	return ret;
295 }
296 
297 static const struct dmi_system_id sgi_uv1_dmi[] = {
298 	{ NULL, "SGI UV1",
299 		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
300 			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
301 			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
302 		}
303 	},
304 	{ } /* NULL entry stops DMI scanning */
305 };
306 
307 void __init efi_apply_memmap_quirks(void)
308 {
309 	/*
310 	 * Once setup is done earlier, unmap the EFI memory map on mismatched
311 	 * firmware/kernel architectures since there is no support for runtime
312 	 * services.
313 	 */
314 	if (!efi_runtime_supported()) {
315 		pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n");
316 		efi_unmap_memmap();
317 	}
318 
319 	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
320 	if (dmi_check_system(sgi_uv1_dmi))
321 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
322 }
323 
324 /*
325  * For most modern platforms the preferred method of powering off is via
326  * ACPI. However, there are some that are known to require the use of
327  * EFI runtime services and for which ACPI does not work at all.
328  *
329  * Using EFI is a last resort, to be used only if no other option
330  * exists.
331  */
332 bool efi_reboot_required(void)
333 {
334 	if (!acpi_gbl_reduced_hardware)
335 		return false;
336 
337 	efi_reboot_quirk_mode = EFI_RESET_WARM;
338 	return true;
339 }
340 
341 bool efi_poweroff_required(void)
342 {
343 	return !!acpi_gbl_reduced_hardware;
344 }
345